
Simulation architectures and service-oriented
defence information infrastructures
– preliminary findings

FFI-rapport 2013/01674

Jo Hannay, Karsten Br°athen and Ole Martin Mevassvik

Forsvarets
forskningsinstituttFFI

N o r w e g i a n D e f e n c e R e s e a r c h E s t a b l i s h m e n t

Simulation architectures and service-oriented
defence information infrastructures
– preliminary findings

FFI-rapport 2013/01674

Jo Hannay, Karsten Bråthen and Ole Martin Mevassvik

Forsvarets
forskningsinstituttFFI

N o r w e g i a n D e f e n c e R e s e a r c h E s t a b l i s h m e n t

FFI-rapport 2013/01674

Simulation architectures and service-oriented defence
information infrastructures – preliminary findings

Jo Hannay, Karsten Bråthen and Ole Martin Mevassvik

Norwegian Defence Research Establishment (FFI)

30 August 2013

 2 FFI-rapport 2013/01674

FFI-rapport 2013/01674

1233

P: ISBN 978-82-464-2270-1

E: ISBN 978-82-464-2271-8

Keywords

Informasjonsinfrastruktur

Tjenesteorientert arkitektur, Service-Oriented Architecture (SOA)

High-Level Architecture (HLA)

Interoperabilitet og løs kopling

NATO Architecture Framework (NAF) og The Open Group Architecture Framework
(TOGAF)

Approved by

Karsten Bråthen Project Manager

Anders Eggen Director

English summary

In line with strategic decisions, the Norwegian Armed Forces’ systems portfolio should be de-
veloped in terms of service orientation: Software should be organized in parts so as to be presented
as services which can be used readily and rapidly in a range of contexts. This demands that services
are interoperable, in the sense that they can function as services for each other; which in turn, de-
mands a common method of communicating data and specifying what the service provides. This
also demands loose coupling in the sense that services are sufficiently generic to be useful over a
range of service consumers, rather than being designed for one consumer only. A service-oriented
manner of organizing software (an architecture) will enable one to build and rebuild software sys-
tems readily and rapidly—by adding and replacing services. Service-oriented architecture is geared
explicitly to handle rapidly changing operational needs. The Norwegian Armed Forces information
infrastructure (INI) is a part of, and should underlie, this service-oriented systems portfolio.

Modelling and simulation software must be embedded in this service-oriented portfolio. Well-
defined architectural standards already exist for modelling and simulation software. They share
many of the characteristics strived for in service-oriented architectures, while differing on other
characteristics. An important question therefore pertains to how to integrate modelling and simula-
tion software into the service-oriented portfolio.

An essential aspect of this question is what a service should be; what it should offer, how much it
should offer, etc. NATO’s C3 Classification Taxonomy is a partitioning of consultation, command
and control (C3) functionality (at the enterprise level and at the IT systems level) in a service-
oriented spirit. The taxonomy may be used as a tool for elaborating upon a adequate partitioning of
functionality into services, and may be used as a starting point for development, such that it defines
the building blocks and relationships of a service-oriented systems portfolio and a service-oriented
information infrastructure. We outline a method for using the C3 Taxonomy for this purpose.

We apply parts of the method on simulation systems. This then gives a placement of modelling and
simulation software according to the C3 Taxonomy. Although the systems portfolio extends beyond
C3, this gives a starting point for integrating simulation systems with the Norwegian Armed Forces’
systems portfolio and information infrastructure (INI).

The use of the method and the use cases we suggest in this report, are to be considered illustrations.
Our user stories should be replaced by ones elicited more systematically, and our analyses should be
supplemented by empirical studies, e.g., experiences gathered through the use of demonstrators, and
literature studies. Nevertheless, we have mapped out and laid the grounds for further work. It is not
self-evident what services should be and where the boundaries are for technical feasibility and cost-
benefit. It is necessary to conduct systematic studies at all levels—from operational needs down
to technical solutions—in order to gain headway in defining modelling and simulation services.
Locally, we suggest that this can be done by conducting small manageable pilots in the various
military domains, with tight collaboration between military practitioners and researchers, and where
the entire spectrum from operational needs to technical feasibility is considered.

FFI-rapport 2013/01674 3

Sammendrag

I tråd med strategiske føringer, skal Forsvarets systemportefølje være tjenesteorientert: Program-
vare skal organiseres i deler slik at de fremstår som tjenester som kan tas i bruk enkelt og raskt
i ulike anvendelser. Dette krever at tjenestene er interoperable; det vil si at de kan fungere som
hverandres tjenester, som igjen fordrer en felles måte å kommunisere på og en tydelig bruksanvis-
ning (tjenestekontrakt). Dette krever også at tjenestene er løst koplet, i den forstand at de er nyttige
for mange tjenestebrukere, snarere enn at de er skreddersydd mot en bestemt tjenestebruker. En
tjenesteorientert organisering av programvare, en arkitektur, skal gjøre det mulig å bygge opp og
endre IT-systemer raskt og enkelt ved å bytte og legge til tjenester. Tjenesteorientert arkitektur er
eksplisitt motivert ut fra at de operative behovene endrer seg stadig. Forsvarets informasjonsin-
frastruktur (INI) er en del av, og skal understøtte denne tjenesteorienterte systemporteføljen.

Modellerings- og simuleringsprogramvare må inngå i en slik tjenesteorientert portefølje. I model-
lering og simulering har man allerede veldefinerte programvarearkitekturer som til dels har noen av
egenskapene man søker etter i tjenesteorienterte arkitekturer, samtidig som det er tydelige ulikheter.
Spørsmålet er da hvordan modellering- og simuleringsprogramvare skal innlemmes i porteføljen.

En vesentlig del av dette spørsmålet er hva en tjeneste skal være; hva den skal levere, hvor omfangs-
rik den skal være, osv. NATOs C3-taksonomi er en inndeling av konsultasjon, kommando og
kontroll-funksjonalitet (både på virksomhetsnivå og på IT-system-nivå) etter tjenesteorienterte prins-
ipper. Taksonomien kan brukes som et verktøy til å finne hensiktsmessige oppdelinger av funksjon-
alitet og kan brukes som utgangspunkt for utvikling slik at den gir byggesteinene og sammenhen-
gene i en tjenesteorientert systemportefølje og en tjenesteorientert informasjonsinfrastruktur. Vi
skisserer en metode for å bruke C3-taksonomien som et slikt utgangspunkt for utvikling.

Vi bruker deler av metoden med henblikk på simuleringssystemer. Dette gir samtidig en plassering
av modellerings- og simuleringsprogramvare i henhold til C3-taksonomien. Selv om Forsvarets
systemportefølje ommfatter mer enn konsultasjon, kommando og kontroll, gir dette et utgangspunkt
for å integrere simuleringssystemer med porteføljen og INI.

Bruken av metoden og brukstilfellene vi foreslår i denne rapporten er å anse som illustrasjoner.
Brukstilfellene våre bør erstattes med brukstilfeller som er uthentet systematisk, og analysene vi gjør
bør suppleres med mer empiri (for eksempel erfaringer gjennom demonstratorer) og litteraturstudier.
Vi har likevel kartlagt grunnen og lagt opp løypa for videre arbeid. Det er ikke innlysende hva
tjenester skal være og det er heller ikke innlysende hvor grensene går for hva som er teknisk mulig
og hva som er kost-nyttig. Det er nødvendig med ytterligere systematisk arbeid på alle nivåer – fra
operative behov og ned til tekniske løsninger – for å komme videre med å definere modellerings-
og simuleringstjenester. Vi foreslår at slikt arbeid gjøres i form av mindre overkommelige piloter i
forskjellige domener, i tett samarbeid mellom operativt personell og forskere, og der spekteret fra
operative behov til teknisk mulighet ivaretas.

4 FFI-rapport 2013/01674

Contents

1 Introduction 7

2 Defence information infrastructures and their architectures 10

2.1 Architecture for the Norwegian Armed Forces Information Infrastructure 11

2.2 The C3 Taxonomy 14

3 A method for developing the C3 systems portfolio 20

3.1 Use cases as requirements to CIS capabilities 21

3.2 Use Cases as requirements to operational context 23

3.3 Use Cases as requirements using the C3 Taxonomy 23

3.3.1 The ideal situation and the way there 27

3.3.2 NAF and TOGAF 29

4 Tentative use cases for modelling and simulation 31

4.1 Training 34

4.1.1 Train as you fight. 34

4.1.2 “Train as you fight” is not enough. 36

4.2 Mission rehearsal and planning 37

4.2.1 Rapid composability 38

4.2.2 Scenario generation 38

4.3 Missions 39

4.4 Retrospective analyses 39

4.5 Concept development and experimentation (CD&E) 39

5 Service-Oriented Architecture 40

5.1 The Consumer-Provider relationship 40

5.2 The Registrar role 44

5.3 Implications on use cases 46

6 The High Level Architecture 48

7 Loosely coupled and interoperable software systems 52

8 Loosely coupled and interoperable M&S components 57

9 Discussion 62

FFI-rapport 2013/01674 5

10 Conclusion 63

References 66

Abbreviations 77

6 FFI-rapport 2013/01674

1 Introduction

Modern defence activities are characterized by joint operations at all levels. Such combined opera-
tions may involve different units, defence services, national allies, as well as a host of civilian actors
at all levels. Computerized information systems, which support the complex flow of information
and which structure the presentation of information, have become a key enabler for joint operations.
The requirements for such information systems only increase in number and complexity. Further,
multiple information systems must be combined and interoperate in so-called federations of sys-
tems supported by an information infrastructure. Therefore, a number of architectures have been
put forward which set out to catalogue and structure the information necessary for collaboration,
as well as giving standards for how to exchange that information between actors in an operation.
These architectures give guidelines, and in some cases, strict requirements of compliance, for how
defence information infrastructures should represent and exchange information in terms of data. In-
formation infrastructures and their architectures evolve according to perceived short-comings and
new information-handling technology. For example, an information infrastructure might provide a
common platform to represent and exchange data in a uniform manner, but may be too proprietary
and excluding so that useful “third-party” systems cannot be integrated. Such an infrastructure must
therefore evolve to new needs or be replaced by a different infrastructure.

Current Norwegian and international developments in defence information infrastructures are ser-
vice oriented. Service orientation entails that information systems, and also parts thereof, are viewed
as integral components that provide well-defined information-handling services to both current and
future service consumers, which may be end users or other services. The provision of a service to
an unspecified range of service consumers entails that the service cannot be designed with a spe-
cific consumer in mind. Services are required to be loosely coupled with each other; they may
interact and be combined with any other component as long as there is an agreement on how to
specify information format and exchange. In theory, this ensures that information systems can be
assembled and combined readily and rapidly according to the particular information handling de-
mands at hand; for example, in a joint operation. Service-oriented architecture (SOA) [26] is an
architectural approach intended to enable information systems, and the information infrastructures
they both constitute and rely on, to evolve readily and rapidly according to upcoming and unforeseen
needs.

Service orientation also permeates the concept of cloud computing, which defines IT services
on a broader arena (software-as-a-service, data-as-a-service, platform-as-a-service, security-as-a-
service, network-as-a-service, infrastructure-as-a-service, and even everything-as-a-service). Our
focus is on software, and we will therefore relate to SOA in our discussion.

For the Norwegian Defence Information Infrastructure (INI), the Norwegian Ministry of Defence
states [85] (translated from Norwegian):

FFI-rapport 2013/01674 7

“The information infrastructure of the future must support network-based modes of
operation by enabling the organization of all Armed Forces resources in a collaborating
network. The Armed Forces must therefore have capabilities which satisfy National
and NATO demands to interoperability and functionality, and which make it possible
to meet digital threats while developing the Armed Forces toward a higher level of
maturity with regards to network-based defence.”

The current status of the INI is that a rudimentary architecture has been defined [82], with the
intention of SOA explicitly stated. However, the architecture has not been realized into a working
information infrastructure, in the sense that services may be accessed or provided or that applications
may be routinely built by using modules or components in the infrastructure. At present, the INI is
coarse-grained, and it is fair to say that substantial efforts must be made to populate the infrastructure
to make it operational. There are general recommendations on how to do so [124, 83, 84].

Prompted by both national strategic relevance – note the reference to NATO in the above quote –
and, more technically, to the explicit interoperability requirements of diverse cross-national collab-
oration [124], we will align our discussion to NATO’s framework. NATO has come further in its
efforts and its more elaborate architecture makes it easier to discuss concrete methods and points
of advancement. The foundational structure of Norway’s and NATO’s information infrastructure
architectures are similar, if not overlapping. Therefore, our discussions and proposed methods will
apply directly to the INI.

NATO’s information infrastructure goes under the name of the Networking and Information Infra-
structure (NII). It is developed under the NATO Network-Enabled Capability (NNEC) program. On
NNEC’s web pages [78] it is stated that:

“The networking and information infrastructure (NII) is the supporting structure
that enables collaboration and information sharing amongst users and reduces the decision-
cycle time. This infrastructure enables the connection of existing networks in an agile
and seamless manner.

This leads to Information Superiority, which is the ability to get the right informa-
tion to the right people at the right time. NATO defines information superiority as the
operational advantage derived from the ability to collect, process, and disseminate an
uninterrupted flow of information while exploiting or denying an adversary’s ability to
do the same. [...]

NNEC is about people first, then processes, and finally technology.”

The last sentence above is notable. We will return to that point during our discussion.

For the technological part of NNEC, it is the NATO Communications and Information Agency
(NCIA) which coordinates activities. A NNEC feasibility study was conducted in 2005. According
to recommendations from the NATO Consultation, Command and Control Board (NC3B), who
oversees the activities of the NCIA, “... the NNEC FS [feasibility study] postulated that the concept

8 FFI-rapport 2013/01674

of SOA is key to meeting the NNEC operational requirements and is an essential part of the overall
strategy” [75].

NCIA has developed the Consultation, Command and Control (C3) Classification Taxonomy [73].
If not an architecture in the full sense of the word, the taxonomy may at least be viewed as an archi-
tecture sketch of a a C3 systems portfolio and an information infrastructure to support that portfolio.
The taxonomy encompasses both the operational context and the technological context. At the tech-
nological level, the taxonomy maps out concepts on all layers; from physical layers of wired and
wireless communication services, through middle-level services which software developers can use
to develop applications in a service-oriented way, and up to user-level service-oriented applications
and systems. In other words, it is envisioned that service orientation and service-oriented design and
development permeate all levels of both systems portfolio and information infrastructure, in order
to meet the demands of NNEC at the operational level. We intend to shed light on how modelling
and simulation might fit into this picture. The total portfolio that an information infrastructure must
support includes several other activities beyond C3. However, we relate to the C3 Taxonomy in
this discussion because of its relatively high level of maturity and aptness for illustrating the points
made in our discussion.

Modelling and simulation (M&S) systems are a part of today’s computerized information systems
capability for defence operations. Among other things, they are used in operations training and long-
and short-term planning. However, the integration of simulation into defence information infrastruc-
tures is, at present, in its infancy. The current focus on service orientation promises new possibilities
for integrating simulation into defence information infrastructures, and there are several initiatives
focusing on these possibilities. However, while architectures for service-oriented defence informa-
tion infrastructures currently exist at the conceptual level, architecture standards and development
standards for M&S are well-defined and are realized into working systems, often using off-the-shelf
software. In M&S it is desirable to be able to develop new simulation components (e.g., a model
of a new combat aircraft), or to upgrade an existing simulation component, and add it to an existing
simulation system. The need for loose coupling and flexible extension, modification and integration
has therefore been recognized for some time in the M&S domain as well, as reflected e.g., in the
NATO Modelling and Simulation Masterplan [76, 77]. Currently, the M&S architecture that has
come farthest in terms of standardization and modern technology, is the High Level Architecture
(HLA) [38]. This report will therefore focus on how M&S according to HLA might be embedded
into an information infrastructure following NATO’s framework.

To guide these efforts, it is important that not only technological aspects are considered, but also op-
erational capabilities. It is an essential aspect of service orientation that services should be defined,
or at least targeted, ultimately at the enterprise level; in other words at the needs and (often tacit)
requirements of end users. To this end, we propose use cases for using and utilizing a defence
information infrastructure that incorporates modelling and simulation. We will relate to the C3 Tax-
onomy when formulating use cases, and we will propose use cases at several layers of the taxonomy.
At more technical layers, we will discuss the use cases in terms of characteristics of HLA and tech-

FFI-rapport 2013/01674 9

nical aspects of SOA: Both the HLA and SOA promote interoperability and very loose coupling.
At first sight, HLA and SOA seem to be motivated by similar aims, to provide similar types of in-
frastructure, and to provide similar types of extendibility (dynamic and static). We will attempt to
clarify relevant differences and similarities.

We hypothesize that a main disabler for developing both the INI and the NII lies in a lack of a
practicable method for detailing the architectures and a lack of a practicable method for developing
the architecture into a working information infrastructure. We look into the possibility of using the
structure of the C3 Taxonomy to discipline a production strategy which could detail the architecture
and develop the implied information infrastructure.

In summary, we will seek answers to the following research questions:

1. What are the requirements of users of a service-oriented defence information infrastructure
that incorporates M&S software systems?

2. How can these requirements be used to build the information infrastructure?
3. To what extent is it desirable and then possible to package application-size M&S software to

loosely coupled and interoperable units in the context of a service-oriented defence informa-
tion infrastructure?

4. To what extent is it desirable and then possible to use service-orientation internally in M&S
software; hereunder,

(a) can SOA be used as a simulation management framework beyond HLA?
(b) can component/module-size M&S software be packaged as loosely coupled and inter-

operable units?

We follow a flow of argumentation as follows: In Section 2, we define our understanding of what
an information infrastructure and its architecture are. We describe the architecture sketches for the
Norwegian Armed Forces information infrastructure (INI) and NATO’s networking and information
infrastructure (NII). In Section 3, we suggest how the C3 Taxonomy can be used in systematizing
and disciplining a method for eliciting requirements and for refining these into working parts of the
information infrastructure according to the desired architecture. In Section 4, we give suggestions
as to how such requirements can be formulated and what they might be. We then introduce Service-
Oriented Architecture and the High Level Architecture in Sections 5 and 6. We give examples of
more technical requirements and give examples of where working software may be placed in the C3
Taxonomy in Sections 7 and 8. Sections 9 and 10 discuss and conclude.

2 Defence information infrastructures and their architectures

There is a bundle of terms denoting complex information systems and their descriptions; e.g.,
“information infrastructure”, “information system framework”, “architecture”, “reference architec-
ture”, “reference model”, ”architecture framework”, “reference information infrastructure”, “sys-
tems of systems”, “federation of systems”, etc.; ad nauseam. We shall limit our vocabulary to

10 FFI-rapport 2013/01674

“information infrastructure”, which is a concrete and working information-technological support
structure which enables the successful construction and running of a “federation of systems” which
is a large and complex, but concrete and working collection of loosely coupled information hand-
ling systems. Further, we will use the term “architecture”, which is a structural description at some
suitable level of abstraction of a (planned) concrete working system; here of an information infra-
structure and/or a federation of systems. We will also use the term “architecture framework” to
denote a framework for developing architectures.

A federation of systems is, in our discussion, a collection of loosely coupled collaborating inform-
ation systems; see Figure 2.1. An individual information system may consist of purely human
routines; e.g., strategies and plans for information handling. It may be purely technical in terms of
software or hardware. Or it may consist of all levels of information handling from human through
software to hardware. Usually, individual systems are designed with the intent that their constituent
parts interoperate; i.e., work together and communicate with each other to fulfil the system’s goals.
When assembling systems into a federation of systems it is not obvious that the systems will inter-
operate well – or at all – without considerable effort. This is because individual systems are often
not designed to interoperate with other systems; and in particular, not designed to interoperate with
a range of systems that may not be known at the time of design. The idea of service orientation
is that systems can be designed to interoperate with other, perhaps future systems. The purpose
of an information infrastructure is, in our context, to facilitate this service orientation. This can
be done by providing common services for constructing new service-oriented systems, by provid-
ing services to service-enable or refactor existing, possibly stove-piped systems, and by providing
services to couple systems together into a federation of systems.

An architecture of an information system (or of a federation of systems, or of a information in-
frastructure) is, according to ISO/IEC 42010:20071: “The fundamental organization of a system,
embodied in its components, their relationships to each other and the environment, and the prin-
ciples governing its design and evolution.” Thus, an architecture provides plans or blueprints for the
system, as we indicated above. But there should also be a method for constructing an architecture
and for maintaining it. Such a method is what we here refer to as an architecture framework. In ad-
dition, we hold that there should exist a method for constructing a working information system from
an architecture; see Figure 2.2. An architecture framework is a specification of what an architecture
should be, preferably with a method for constructing a concrete architecture according to the archi-
tecture framework. In turn, an architecture should preferably come with a method for constructing
a working system (e.g., an information infrastructure or a federation of systems) according to the
architecture.

2.1 Architecture for the Norwegian Armed Forces Information Infrastructure

Figure 2.3 shows a sketch of an architecture for the Norwegian Armed Forces Information Infra-
structure (INI) [82]. It is layered into decision support services (yellow) and core services (light
blue) with a communication infrastructure in the form of communication services (grey). The de-

FFI-rapport 2013/01674 11

DB

strategy

technique

application

strategy

technique

strategy

technique

application

service

service

strategy

application

c
o
m

p
u
te

r

DB

application

service

service

DBc
o
m

p
u
te

r

c
o
m

p
u
te

r

DB DB

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.1 Federation of systems exemplified by systems consisting of human processes (a), of a combin-

ation of human processes and software processes (b), of a combination of human, software

processes and hardware processes (c), of software processes only (d), of hardware processes

only (e). Together, the systems form a federation of systems (f).

cision support services are divided into Specific functional services and Generic functional services.
Information security (red) and service management (green) flank the figure as cross-cutting con-
cerns.

Figure 2.4 shows an alternative sketch of the architecture. Due to input from the Norwegian De-
fence Research Establishment (FFI) in 2007 regarding M&S, further categories were added and
M&S elements tentatively placed: M&S in general in “K2 og ledelse” (C2), simulation-based train-
ing and exercise in “Utdanning, trening og øving” (Education, training and exercise), the Runtime
Infrastructure of HLA (Section 6) in “Informasjonsutveksling” (Information exchange) and the Co-
alition Battle Management Language (C-BML) and Military Scenario Definition Language (MSDL)
(Section 7) in “Mediering” (Mediation). In general, FFI has made several initiatives toward defining
the architecture of INI.

The present architecture sketches are very high level and simply indicate what types of applications
and services should be included in the information infrastructure and at which level of end-user
versus technical orientation they should be considered. To populate the categories (boxes) with
applications and services is a step toward developing an information infrastructure from the archi-

12 FFI-rapport 2013/01674

M
e
th

o
d

Method

Architecture

Framework

Figure 2.2 Architecture framework, architecture of system, and system, with methods for transforming one

to the other.

tecture. The architecture lacks explicit and official population of working software, although the
category names indicate where several such pieces of software belong. There has not been substan-
tial advancements in detailing the INI architecture beyond what we have reported here.

In the latest IT strategy document from the Norwegian Chief of Defence [86], it is decided that:

• Architecture descriptions follow the NATO Architecture Framework (NAF) [74]
• Architecture development follow The Open Group Architecture Framework (TOGAF) [45]
• The INI is to be developed in pace with NATO’s NNEC and is to be harmonized with NATO’s

NII and the C3 Classification Taxonomy

Together, NAF and TOGAF provide guidelines for implementing a method for constructing archi-
tectures. One has to provide the concrete methods for requirements elicitation, entity modelling,
etc, but with that in place one has an architecture framework; i.e., a method for constructing an
architecture of the INI, in line with our remarks above. The third point entails an explicit focus on
NATO’s information infrastructure architecture, to which we will now turn.

FFI-rapport 2013/01674 13

Figure 2.3 Architectural sketch for the Norwegian Armed Forces Information Infrastructure (INI) [124].

2.2 The C3 Taxonomy

The C3 Classification Taxonomy (C3 Taxonomy for short) is a sorting of functionality. More pre-
cisely, it is a sorting of capability concepts relevant to producing enterprise computer system support
for Consultation, Command and Control (C3) in NATO; see Figure 2.5 and Figure 2.6 (more detailed
view). It explicitly includes, in the same picture, the operational context (Operational Context frame
in Figure 2.5) and the computing context (Communication and Information Systems (CIS) Capabilities

frame in Figure 2.5). The following summarizes the motivation for the C3 Taxonomy:

“The C3 Classification Taxonomy provides a tool to synchronize all capability
activities for Consultation, Command and Control (C3) in the NATO Alliance by con-
necting the Strategic Concept and Political Guidance through the NATO Defence Plan-
ning Process (NDPP) to traditional Communications and Information Systems (CIS)
architecture and design constructs [...] Throughout the years, many communities have
developed and contributed components to the overall CIS capability of the Alliance but
sadly, most groups did their work in splendid isolation. Today we are confronted with
a patch-quilt of systems, applications, vocabularies and taxonomies and simple Eng-
lish words such as service or capability have become highly ambiguous. As a result of
extreme stove-piping, NATO now faces a very complex fabric of capabilities that are
not interoperable and attempts to solve these problems are often hampered by lack of
mutual understanding caused by confusing vocabularies” [11].

The guiding of technology by an explicit focus on operational context is very much in line with
the motivation behind SOA. The focus on enterprise-driven service definition shifts the definition

14 FFI-rapport 2013/01674

Figure 2.4 Alternative architectural sketch for the INI.

of an organization’s enterprise processes back to where they belong, in the organization’s strategy
domain, and away from the IT-department: Although user requirements are in focus in modern
software development practices, it is still technologists who define the architecture of the system
and who develop the system. The resulting software system will possibly fulfil needs at the point of
deployment, but will probably become an obstacle when the organization’s strategy and processes
inevitably change. SOA promises to produce software systems which are agile to an organization’s
strategy and process – here defence strategy and tactics – also after deployment.

As can be seen from Figure 2.5, the taxonomy has an Operational Context at the top, layered into
Missions and Operations which are supported by Operational Capabilities; the latter being foundational,
generic operational modules on which missions and operations may be built. Below the operational
context are the Communication and Information Systems (CIS) Capabilities, which are the information
technology support for the operational context. The CIS capabilities presents themselves to the end
user in the form of User Applications geared toward specific domains (air, land, maritime, joint, etc.)
and communities of interest (modelling and simulation, environment, missile defence, etc.); see Fig-
ure 2.6. Below this layer are various layers of Technical Services, which may be used to develop and
implement the user-facing capabilities. The Technical Services are layered in an analogous manner
to the traditional Open Systems Interconnection (OSI) and Transmission Control Protocol/Internet
Protocol (TCP/IP) models, both of which have more domain-dependent IT functionality at the top
and increasingly generic and technical functionality, including hardware, lower down. Thus, the up-
per layers of the C3 Taxonomy’s Technical Services consist of the Community of Interest (COI) Services

geared toward realizing User Applications.

FFI-rapport 2013/01674 15

M&S

Figure 2.5 C3 Classification Taxonomy [73] – Main categories; with NATO Exploratory Team 034 (M&S

as a Service) M&S-relevant layers indicated [97].

At the User-Facing Capabilities layer, software is denoted applications. Software and hardware at the
Technical Services layers are denoted services. However, services and applications should both fulfil
requirements of interoperability and loose coupling. We will return to this below.

Two cross-cutting concerns are defined in the taxonomy (IA and SMC Groupings in Figure 2.5).
The Information Assurance (IA) grouping “provides a collection of measures to protect information
processed, stored or transmitted in communication, information or other electronic systems in re-
spect to confidentiality, integrity, availability, non-repudiation and authentication” [11]. The Service

Management and Control (SMC) grouping “provides a collection of capabilities to coherently manage
components in a federated service-enabled information technology infrastructure. SMC tools enable
service providers to provide the desired quality of service as specified by the customer” [11].

16 FFI-rapport 2013/01674

Figure 2.6 C3 Classification Taxonomy [73]

FFI-rapport 2013/01674 17

M
e
th

o
d

Method

NATO Architecture

Framework (NAF)

The Open Group Architecture

Framework (TOGAF)

INI

?

Figure 2.7 NAF as architecture framework, TOGAF as development method and C3 Taxonomy as archi-

tecture for the INI, but no explicit method for developing the INI.

Both sketch versions of INI’s architecture in Figures 2.3 and 2.4 can be mapped onto the C3 Tax-
onomy. The overall structure of the latest version includes cross-cutting concerns corresponding
to Information Assurance (IA) (red) and Service Management and Control (SMC) (violet). This
correspondence is why it is meaningful to relate to the C3 Taxonomy when developing the INI.
Together with NAF and TOGAF, one has a method for developing the architecture of the INI via the
C3 Taxonomy, but not an explicit method for developing the INI itself; see Figure 2.7.

With its service-oriented structure, the C3 Taxonomy may be regarded as an architecture sketch
for both human and computerized systems for C3. The information infrastructure (the INI or the
NII) lies somewhere as a part of this. There are at present unclarities as to the boundaries of such
an infrastructure; should an infrastructure be limited to “pipes” and roads” or should it include
maintenance services, “public transport” and other “utility vehicles”? For example, the INI archi-
tecture as sketched in the previous section only considers the Technical Services portion of the C3
Taxonomy, and there are arguments for leaving User Applications outside of the INI; in particular re-
garding stove-piped systems [124]. There are a host of challenges in defining the system boundaries
for an infrastructure, but the principles of common applicability and stability should be essential

18 FFI-rapport 2013/01674

Community of Interest (COI) Services

Core Enterprise Services

Infrastructure

Services

Enterprise Support

Services

COI-Specific

Services

User Applications

Maritime Warfare Area ApplicationsMSA Reference Applications Maritime Picture Applications

Vessels

Application

Maritime Track

Analysis

Application

Maritime Picture

Management

Application

SOA Platform

Services

Blob Storage Services

Information Discovery Services

Information Platfrom Services

Message-oriented Middleware

Services

Geospatial Services

Infrastructure Storage Services

Automatic Identification

System (AIS) Services

Water Space Management (WSM)

Services
Vessel Position Services

Maritime Information Services

Maritime COI Services

Maritime Situational Awareness (MSA) Applications

Maritime COI Applications
Water Space Management and

Prevention of Mutual Interference

(WSM/PMI) Application

Maritime Operations Planning

Application

Maritime Alerts Management

Application

Vessels List Application

Maritime Messaging and

Communication Application

Figure 2.8 Current status of population of the C3 Taxonomy for one of the User Applications categories.

Concrete applications in square boxes. Lines indicate required services.

FFI-rapport 2013/01674 19

inclusion criteria for whatever lies within the infrastructure.

In our discussion, we do not need to take a particular standpoint regarding the system boundaries
of the envisioned information infrastructure. Modelling and simulation systems typically belong in
the User Applications, Community of Interest Services and Core Enterprise Services categories, and we
will relate to the relevant categories in the taxonomy regardless of the exact boundaries of the infra-
structure. Our approach will assume that stove-piped systems are eventually converted to service-
oriented systems front-ended by a thin client residing in the User Applications layer, using services at
lower layers.

The C3 Taxonomy is maintained via the NATO Allied Command Transformation (ACT) Technology
for Information, Decision and Execution superiority (TIDE) Enterprise Mapping (EM) portal on
Tidepedia (a NATO Wikipedia analogue). Through EM, the taxonomy functions as a semantic Wiki
on which authorized persons may summarize current knowledge, develop a common understanding
of concepts and ultimately populate the taxonomy with working systems (human, software and
hardware). There is no corresponding interactive gateway for collaboration toward the Norwegian
Defence Systems portfolio and INI.

The C3 Taxonomy has been populated with a substantial number of artefacts in some of the categor-
ies directly related to specific defence branches. For example, the Maritime COI Applications category
has been divided into subcategories – one of them being Maritime Situational Awareness (MSA) Applica-

tions, which has further been divided into MSA Reference Applications, Maritime Picture Applications and
Maritime Warfare Applications. Several of the categories have been populated with concrete applica-
tions; see Figure 2.8 for an overview and the EM wiki for full details. Also at the Core Enterprise

Services and the Communications Services levels has there been substantial activity toward populat-
ing the taxonomy. When it comes to M&S, however, the current status is that there is somewhat
less information present in the taxonomy. A NATO Exploratory Team ET-034 M&S as a Service
(MSaaS) has recently conducted introductory studies on how to integrate M&S in the C3 Taxonomy.
The extent of M&S relevant layers as perceived by the team is indicated in Figure 2.5. Our current
work is in line with this initiative, and we will outline a light-weight method for developing both
the architecture and the C3 systems portfolio. We shall also propose tentative placements in the
taxonomy of M&S-related artefacts.

3 A method for developing the C3 systems portfolio

The lack of progress on the Norwegian INI is the likely result of many factors. We hold that one im-
portant obstacle is the lack of a leveraged practitioner-oriented method for engaging in development
work on the INI. The decision to use NAF, TOGAF and the more detailed C3 Taxonomy with its
wiki interface are improvements in this respect. However, to reach a stage of actual development,
one needs to make the method more concrete.

We outline a use case-driven development method which utilizes the structure of the C3 Taxonomy.
While this does not provide a concrete method as such, it provides concepts which enable concret-

20 FFI-rapport 2013/01674

ization. Conceptual simplicity and small steps are crucial for a deployed method to be employed,
and we suggest using practices from agile management and development [111, 100, 24, 115].

The C3 Taxonomy includes Operational Context and the Communication and Information Systems (CIS)

Capabilities. From the point of view of M&S, our main interest lies in populating the CIS Capabilities

part of the infrastructure. We therefore start by outlining the method at the CIS Capabilities level.

3.1 Use cases as requirements to CIS capabilities

The development of the C3 systems portfolio, including an information infrastructure such as INI
or NII, at the CIS Capabilities level is a very large IT-systems development project. Large IT devel-
opment projects increasingly adopt agile management and development methods, with the intention
to manage the inevitable high levels of complexity and uncertainty in such projects. Appropriate
requirements elicitation and handling is of crucial importance when using such methods. For re-
quirements elicitation, nominees from each stakeholder group should engage in systematic methods
for determining, formalizing, and content analysing system requirements; see e.g., [56]. These
methods should be used both individually and in groups. For requirements handling, there are three
key points from agile methodology which we bring forward here:

• Requirements are elaborated and refined over time according to the project’s rising level of
knowledge and understanding of needs.

• Requirements are partitioned and formulated so that they represent meaningful parts of func-
tionality for those stakeholders who are relevant at a given point of elaboration and refinement.

• Requirements are partitioned so that they represent viable production elements.

In agile development, requirements are formulated in use cases, which are specifically formulated
to capture how a stakeholder intends to use the system under development. In line with the first
point above, at early stages of the development project, use cases are high-level place-holders, often
called epics. During the course of the project epics get elaborated and refined into user stories and
ultimately end up as concrete development tasks (sprint tasks in Scrum) which produce shippable
code – here parts of applications and services; see Figure 3.1. In line with the second point above,
epics are usually formulated in terms of the organization’s business or operational requirements to
the system under development and should be rooted in the business case for the development project.
Hence the partitioning of functionality represented by the epics reflects the system as seen from the
business or operational context. Moreover, in line with the third point above, an epic represents a
piece of the system which, from the vantage point of business or operational context, makes sense
to produce as a subsystem. Epics should be explicitly prioritized according to estimated benefit/cost
[18, 113].

As an epic becomes elaborated and refined, more technical details become relevant and therefore
other stakeholders become involved. User stories and sprint tasks therefore represent a partitioning
of the system which is meaningful for more technical concerns. A user story or a sprint task is
viable for production from a technical point of view. Note that the operational context present in

FFI-rapport 2013/01674 21

Elaborate

user story

Elaborate

user story

Elaborate

epic

Epic

User Story User Story User Story

Refinement of epic

Elaborate

user story

Refinement of user story Refinement of user storyR.of user story

App/

Service
App/

Service

App/

Service

App/

Service
App/

Service

App/

Service

App/

Service

App/

Service

cost

benefit

cost

benefit

cost

benefit

cost

benefit

Figure 3.1 Stepwise epic elaborate-refine tree for applications and services. Epics are elaborated into,

possibly, several user stories, which by separating concerns between them, represent a refine-

ment of the epic. Likewise, user stories are elaborated and refined (developed) into applications

or services. Note that there may be several layers of both user stories and epics.

an epic is preserved down through the hierarchical elaboration and refinement into user stories and
sprint tasks. The epic’s prioritization according to estimated benefit/cost should also be preserved.

Although Figure 3.1 shows a single layer of epics and user stories, it is possible to detail epics into
more detailed epics, and likewise to have several levels of user stories. When to call use cases epics
and when to call use cases user stories is a matter of taste. In Scrum, user stories are usually use
cases at the level of granularity and detail where it is feasible to order them in a production queue
(backlog) ready for processing by Scrum teams [53, 17].

Use cases should be explicitly linked to impact goals elaborated in the business case for the devel-
opment project. Impact goals are measurable goals which the project should reach. In general, we
promote using a use case syntax in order to structure use cases and to obtain traceability of impact
goals through all levels of refinement of use cases. For example,

Use case: As <stakeholder A> I can <perform actions d in the domain> by using
<functionality f in system S under development> to <perform actions s in S> in
order to <reach impact goal I>.

Here, all stakeholders A, impact goals I , actions d should be defined in the business case, while
functionality f , actions s, system S, are incrementally detailed through stepwise refinement. In
agile settings, the business case itself is updated according to evolving knowledge in the project; so
A, I , d may also be detailed and refined into more specific actors, goals and actions.

22 FFI-rapport 2013/01674

As mentioned above, use cases (epics and user stories) are requirements specifications and at the
same time production units. They are the driving artefacts in an agile development project and
they eventually get transformed into working software. More detailed specifications, such as UML
diagrams or NAF diagrams, may be attached to use cases as desired.

3.2 Use Cases as requirements to operational context

The basic method for eliciting and handling requirements to CIS Capabilities (applications and ser-
vices) may also be used for eliciting and handling requirements to the Operational Context. Sim-
ilar systematic methods involving multiple stakeholders may be used to elicit operational epics.
Then, for handling requirements, the same schema for elaborating and refining epics may be used.
Through a series of elaboration and refinements, scenarios are eventually detailed into concrete op-
erational tactics, techniques, procedures (TTPs); see Figure 3.2. Again, although Figure 3.2 shows a
single layer of epics and scenarios, it is possible to detail epics into more detailed epics, and likewise
to have several levels of scenarios. In requirements elicitation, detailing and refinement processes
for software, the product owner is kept in the loop constantly and evaluates finished parts or proto-
types of the system. For eliciting, elaborating and refining TTP requirements, similar methods for
ensuring “product owner” feedback can be used; including prototyping in virtual worlds and static
and dynamic modelling (i.e., simulation).

Requirements to CIS Capabilities (previous section) are also rooted in operational context. The im-
portant difference between handling requirements for the operational context and handling require-
ments to CIS Capabilities is that the focus of the latter is on using, and therefore on designing, some
computerized system. In contrast, the focus of the former is on using and designing a human-based
system; i.e., plans, routines, methods, modes for cooperation, etc. Although a human-based sys-
tem may, of course involve computerized systems, there is a point in remaining in the Operational

Context as long as possible, so as not to loose focus in favour of technology. The same use case
syntax as above can be used, but with the understanding that the <functionality f in system S under
development> refers to functionality in a human-based system.

It is worth noticing that the Multilateral Interoperability Program (MIP) uses the term “Capability
Package” to denote a manageable piece of capability functionality. Capability packages could take
the role of epics. Capability Package Teams in the MIP community use Scrum to develop capability
packages to the level of architectural model in NAF. There is also mention of TOGAF, see [52].

3.3 Use Cases as requirements using the C3 Taxonomy

The structure of the C3 Taxonomy can be used to discipline a combined approach to populating the
taxonomy, using the methods in Sections 3.1 and 3.2. We propose to populate the taxonomy with,
not only concrete artefacts (procedures, applications, services), but also with requirements (e.g., use
cases) at various levels of elaboration and refinement during development of the concrete artefacts.
And, we propose to place the requirements in step with elaborating and refining the taxonomy’s
categories.

FFI-rapport 2013/01674 23

Elaborate

scenario

Elaborate

scenario

Elaborate

epic

Epic

Scenario Scenario Scenario

Refinement of epic

Elaborate

scenario

Refinement of scenario Refinement of scenarioR.of scenario

TTP TTP TTP TTP TTP TTPTTP TTP

cost

benefit

cost

benefit

cost

benefit

cost

benefit

Figure 3.2 Stepwise epic elaborate-refine tree for operational tactics, techniques, procedures (TTPs).

Epics are elaborated into, possibly, several scenarios, which by separating concerns between

them, represent a refinement of the epic. Likewise, scenarios are elaborated and refined (de-

veloped) into TTPs. Note that there may be several layers of both scenarios and epics.

The key idea is that each top-level category in the C3 Taxonomy is a starting point for development
using the use-case-based approach. An example is given in Figure 3.3: The C3 Taxonomy has a
category named C3; see Figure 2.6. Epics at this abstract level describe on an abstract level what
the requirements for C3 operational capabilities are. We place these epics in the C3 category. In the
current state of the C3 Taxonomy as viewed via the EM wiki, the C3 category is sub-categorized
into the three categories Consultation, Command & Control and (perhaps somewhat misplaced) Com-

munications & Information Systems (see the EM wiki for descriptions of these subcategories). At the
more elaborated and refined level that these three subcategories constitute, the epics are refined
and detailed into more concrete scenarios for overall C3 capabilities. The scenarios are placed in
their respective categories. In Figure 3.3, the Communications & Information Systems category is hy-
pothetically detailed further onto a concrete category (denoted ?) populated by the concrete tactics,
techniques, procedures (TTPs) that result from elaborating and refining the scenarios fully.

In Figure 3.3, we skip down to the User Applications layer, where, for M&S, the current state of
the taxonomy subcategorizes the Modelling and Simulation COI Applications category into Scenario Pre-

paration Applications, Federation Management Applications and Model Development Applications. Epics
describe high-level requirements from the perspective of users of Modelling and Simulation COI Applic-

ations. The epics are then elaborated and refined until concrete applications populate the leaf nodes
in the Modelling and Simulation COI Applications tree.

Similarly, epics in top-level categories are starting points for development at the COI Specific Services

level; and so on at all levels of the C3 Taxonomy. As seen from Figure 2.5, it is envisioned that M&S

24 FFI-rapport 2013/01674

COI-Specific Services

User Applications

Capability Hierarchy, Codes and Statements

?

?

User
story

Command &

Control
Consultation

Scenario

Model

Development

Apps

Federation

Management

Apps

Scenario Prep.

Apps

User
story

User
story

User
story

Higher-level TTPs

determine lower-level

epics (for Apps)

Scenario

Scenario

Comm & IS

Higher-level Apps

determine lower-level

epics (for Services)

Scenario

?

?

M&S

Integration

Services

M&S

Infrastructure

Services
HLA Federates

User
story

User
story

User
story

User
story

OPSOPSOPSTTP

AppAppAppApp

AppAppAppService

Refinement

C3
Capability
Package

Refinement

M&S COI Apps Epic

Refinement

M&S COI

Services
Epic

Figure 3.3 Uniform approach to elaboration and refinement of requirements in the C3 Taxonomy. The

epic-elaborate-refine trees are placed horizontally away from the reader.

FFI-rapport 2013/01674 25

SOA Platform Services

COI-Specific Services

User Applications

?

User
story

Model

Development

Apps

Federation

Management

Apps

Scenario Prep.

Apps

User
story

User
story

User
story

?

?

M&S

Integration

Services

M&S

Infrastructure

Services

User
storyUser

story
User
story

User
story

AppAppAppApp

AppAppAppService

Refinement

M&S COI Apps Epic

Refinement

M&S COI

Services
Epic

User
story

User
story

?

?

User
story

Information

Discovery

Services

User
story

Elaborate

Elaborate

AppAppAppService

Elaborate (from Capability Package)

Refinement

Information

Platform

Services

Epic

Figure 3.4 Uniform approach to elaboration and refinement of requirements in the C3 Taxonomy. Tradi-

tional development.

26 FFI-rapport 2013/01674

specificity ceases at the bottom of the Core Enterprise Services, on grounds that the layers below are
generic for all higher services.

In general, the main point is:

Working in this manner, the C3 systems portfolio and its architecture are developed
iteratively and incrementally, and they are developed in parallel in an interleaving
manner, with production elements as the driving artefacts.

In line with current views on large agile development; e.g., [20], we postulate that this is a viable
method for gaining headway in developing the portfolio, including the NII and the INI, because both
architecture development and systems development are captured in the same process and because a
focus on production elements keeps one from the well-known tendency of loosing oneself in overly
ambitious models and meta-models of architecture and system.

3.3.1 The ideal situation and the way there

At the future utopian limit, when the C3 systems portfolio and the NII and INI are perfectly service
oriented, new user applications might be composed by orchestrating COI services on the fly. This
will perhaps be done by using a user application for orchestration which consults a repository of
service descriptions. Thus, epic-elaborate-refine trees in the User Applications layer will need only
relate to its own layer (and indirectly to the layer below via the repository). And similarly for the
other layers of the taxonomy. In other words, development can proceed (strictly) horizontally in
Figure 3.3.

Moreover, the “people, then process, then technology” statement made for NNEC in Section 1 may
be realized as promised by SOA: The concrete TTPs which are developed and populate the leaf
nodes of the elaborate-refine trees of epics (capability packages) in the Operational Context lay the
basis for epics on the next layer of the taxonomy; i.e., the User Applications layer. These epics are
then, in turn, elaborated and refined until concrete applications populate the leaf nodes in their
respective elaborate-refine trees; and so on through all layers of the C3 Taxonomy. This ensures the
continuous guidance of operational context in developing the C3 portfolio.

We are not at this utopian limit. Nevertheless, it is important to keep the ideal situation in view
as a guidance for developing the portfolio. It is not currently feasible to develop in a strictly top-
down manner, in the sense that one cannot suspend developing core enterprise services until all
business and operational processes have been defined and until all end-user applications have been
developed. But the end results should nevertheless bear witness of the top-down structuring. In
other words, the “people, then process, then technology” statement must be evident in the resulting
portfolio. This is possible by following best practices regarding incremental development wherein
not only requirements (use cases and scenarios) are refined and updated, but where also business
cases are updated during development. Thus, each elaborate-refine tree undergoes revision and the
C3 Taxonomy is constantly sanitized in accordance to current understanding of operational context.

FFI-rapport 2013/01674 27

NAF

TOGAF

Figure 3.5 Using the C3 Taxonomy to develop the C3 systems portfolio, including the NII and INI. Each

category in the taxonomy is the starting point for elaborate-refine development trees which lead

to the working systems portfolio.

28 FFI-rapport 2013/01674

On the way to this future limit, software will be in a transition from traditional (legacy) software to
service-oriented applications and services in the C3 Taxonomy sense. At early stages in this trans-
ition, traditional forms of software development will take place. This involves epic elaborate-refine
trees that penetrate most technical layers of the taxonomy: To construct an application in the ab-
sence of orchestration, service repositories and suitable services, one has to involve software at all
layers (the conventional three-layer interface-business-data architecture being a shallow example).
Thus, the more detailed use cases will often be expressed at lower layers of the taxonomy. Although
this temporarily compromises the ideal situation, this more realistic process should ensure cohes-
iveness between layers at early stages of development, which should gradually develop into loose
coupling in the SOA sense. This situation is depicted in Figure 3.4, where development at higher
layers introduces user stories at lower layers directly. In addition, development will certainly have
to proceed at all layers in parallel, both to explore technical feasibility and give feed-back to higher
layers in the taxonomy and to be ready once operational capabilities are fully developed.

Figure 3.5 summarizes our ideas in this section. The C3 Taxonomy can structure a unified product
element approach to developing the C3 systems portfolio – and its architecture, where operational
context guides development, even at stages of immature service orientation. The figure relates to
NAF and TOGAF, which we cover in the next section.

3.3.2 NAF and TOGAF

The above approach is agile in spirit. Therefore, we promote the use of documentation and descrip-
tion not as driving artefacts, but as supporting artefacts. The NATO Architecture Framework (NAF)
[74] is proposed as a description and documentation tool for Norway’s INI. It provides a range of
guidelines on how to describe and document an architecture. It suggests organizing development
and results in views:

NAV NATO All View
NCV NATO Capability View
NOV NATO Operational View
NSOV NATO Service-Oriented View
NSV NATO Systems View
NTV NATO Technical View
NPV NATO Programme View

For example, in one of the sub-views in the Capability View one should describe business case and
impact goals, while the Systems View has several sub-views giving guidelines for interfaces and
data flow at the programmer’s level. The layering of the NAF is compatible with the C3 Taxonomy.
Although NAF is not agile in style, it would be useful to utilize NAF at all levels. The important
point in our approach is that it is the use cases (epics and user stories/scenarios) which are the
artefacts that go into production. NAF documents may then be attached to these artefacts as needed.

FFI-rapport 2013/01674 29

The Open Group Architecture Framework (TOGAF) is proposed as an architecture development
method for Norway’s INI. TOGAF comes with an Architecture Development Method (ADM) which
“provides a tested and repeatable process for developing architectures. The ADM includes [...]
developing architecture content, transitioning, and governing the realization of architectures. All
of these activities are carried out within an iterative cycle of continuous architecture definition and
realization that allows organizations to transform their enterprises in a controlled manner in response
to business goals and opportunities” [45]. Phases within the ADM are as follows:

Preliminary Phase: Preparation activities required to create an Architecture Capability including
customization of TOGAF and definition of Architecture Principles.

Phase A: Initial phase of an architecture development cycle. It includes defining the scope of
the architecture development initiative, identifying the stakeholders, creating the Architecture
Vision, and obtaining approval to proceed with the architecture development.

Phase B: Development of a Business Architecture to support the agreed Architecture Vision.
Phase C: Development of Information Systems Architectures to support the Architecture Vision.
Phase D: Development of the Technology Architecture to support the agreed Architecture Vision.
Phase E: Initial implementation planning and the identification of delivery vehicles; i.e., Oppor-

tunities & Solutions for the architecture defined in the previous phases.
Phase F: How to move from the Baseline to the Target Architectures by finalizing a detailed Im-

plementation and Migration Plan.
Phase G: Gives Implementation Governance for architectural oversight of the implementation.
Phase H: Gives Architecture Change Management to establish procedures for managing change to

the new architecture.
Requirements Management: Examines the process of managing architecture requirements through-

out the ADM.

There is an explicit emphasis on iteration within and between phases, which makes TOGAF in line
with current best practices. There have been efforts to integrate TOGAF and NAF; e.g., [44]. Both
NAF and TOGAF are extensive frameworks, which require considerable expertise both to employ
in full or to select sufficient parts to use. When using complex methods it is important to retain
focus on and to keep track of the production elements. The overlying simplicity of epics and user
stories/scenarios as the driving artefacts in developing the C3 systems portfolio is intended to enable
one to keep this focus. Figure 3.5 indicates at a very high level how NAF and TOGAF may relate to
the development approach suggested above. It is necessary to detail this picture in detail in order to
give a viable process for developing the portfolio which integrates NAF, TOGAF, the C3 Taxonomy
and modelling efforts within NATO such as MIP’s capability package concept.

For M&S, several development methods have been devised. Notably, the Federation Development
and Execution Process (FEDEP) IEEE 1516.3-2003 [81] is minted toward developing HLA fed-
erations (Section 6), and the Distributed Simulation Engineering and Execution Process (DSEEP)
IEEE 1730-2010 [39] is a generalization of the FEDEP intended for developing (and utilizing) dis-

30 FFI-rapport 2013/01674

M
e
th

o
d

Method

Use Case-Based Method

with NAF elements

INI

NII

Use Case-Based Method

with TOGAF elements

Use Case-Based Method

Figure 3.6 Use-case-based method to develop architecture and information infrastructure using elements

of NAF and TOGAF.

tributed simulation systems in general; see [117] for an overview. Both methods are waterfall [51],
but are still applicable in the elaborate-refine dimension in our approach.

To summarize, we propose to drive the development of the architecture and the C3 systems portfolio,
including the INI or NII, by using use cases as production artefacts. We suggest to use elements of
NAF and TOGAF as needed; see Figure 3.6.

4 Tentative use cases for modelling and simulation

We shall now put forth use cases that will help us to structure the discussion on how M&S should
be integrated into the C3 systems portfolio and information infrastructures such as the INI and
NII. We shall focus on the CIS Capabilities part of the C3 Taxonomy, and we will start at the User

Applications layer. The Operational Context in the C3 Taxonomy has not yet been populated to any
substantial degree, so the idea that the concrete operational capabilities residing in the taxonomy
should be the base for defining epics belonging in the layers below is not realizable as such. We will
therefore follow a tentative approach in this report, in order to get the discussion under way. There

FFI-rapport 2013/01674 31

are, however, documents that do their part in defining the operational context. For M& S, there is
the NATO Modelling and Simulation Master Plan (Version 2.0) [77] which might reside in the C3

Policies category, but work on the operational context is outside the scope of this report.

Our discussion is intended as merely one of many preliminary efforts toward setting the stage for
more structured processes. In our tentative approach, we will relate to a straight-forward categoriz-
ation of operational capabilities that has arisen in informal discussions between defence personnel,
research colleagues and ourselves on M&S and defence infrastructures: In order to get started at the
User Applications layer, we will simply suggest use cases under the headings “Training”, “Mission
Rehearsal and Planning”, “Missions and Operations”, “Retrospective Analyses”, and “Concept De-
velopment and Experimentation (CD&E)”. These are somewhat in line with the NATO Modelling
and Simulation Master Plan (Version 1.0) which state the following application domains for M&S
[76], see also [119]:

• Defence Planning
• Training
• Exercises
• Support to Operations

In the present version (Version 2.0) of the Master Plan the application areas are [77]:

• Support To Operations (Operational Planning, Analysis, Decision-making)
• Capability Development (Defence Planning, Concept Development & Experimentation)
• Mission Rehearsal
• Training and Education
• Procurement

In other words, there are relevant application domains for M&S in an information infrastructure
which we do not address in our tentative approach.

Our use cases are, at present, not elicited in a joint stakeholder forum; instead they are synthesized
from literature and from our experience as researchers in the field. Moreover, we only present use
cases that are specific to M&S integrated in an information infrastructure. Use cases are, in fact,
requirement specifications. We must be precise about what these requirements are supposed to spe-
cify. The question of whether M&S should be integrated into defence information infrastructures is
not our focus; that discussion has been resolved other places. Instead we focus on how M&S should
be integrated; what should be applications, what should be services and at which level of granularity
should applications and services be modularized and defined. Therefore, the use cases we propose
are requirements for how users of the C3 systems portfolio, NII and INI, with M&S applications
and services integrated, will use M&S in conjunction with other applications and services in the
portfolio. Note that users of the portfolio include stakeholders that access the portfolio at various
layers as defined by its architecture (expressed through the C3 Taxonomy); from operational per-
sonnel using User Applications to application/service users and providers, owners, developers and IT

32 FFI-rapport 2013/01674

User-Facing Capabilities

User Applications

Scenario Prep. Apps

Communication and Information Systems (CIS) Capabilities

Epic 3

Epic 1

Epic 9

Training

Epic 7

Planning &
Rehearsal

Epic 10

Missions

Epic 11

Retro-
spective

Epic 12

Service Management
Domain Applications

CD&E

Epic 2.1

Epic 6

Epic 5

Epic 4

SMC Applications

Epic 2

Training
Planning &
Rehearsal

Epic 8

HLA Federations and
Front Ends

Modeling and Simulation
COI Applications

VR-Forces
GUI

(front end)

FFI COA
Analysis

Federation

Planning &
Rehearsal

HLA
Federation

Figure 4.1 User stories tentatively placed in C3 taxonomy categories – User-Facing Capabilities part.

service personnel accessing the Technical Services. Users of the portfolio also include applications
and services that use other applications and services.

We will illustrate by means of three stakeholder types: The “operational personnel” stakeholder
represents end users with an interest in using applications and services for defence activities under
the above headings. The various “operators” stakeholders represent personnel who is capable of
combining services and applications (by using suitable applications); e.g.; a training operator for a
Computer-Assisted Exercise (CAX). The “software developer” stakeholder represents IT expertise
capable of designing and developing applications and services from lower-level services or from
scratch. In relation to the CIS Capabilities, the first two types of stakeholder are typically users at the
User Applications layer, while the third type of stakeholder is a user at the Community of Interest (COI)

Services and the Core Enterprise Services layers. We will include impact goals for illustration only.
These are not the results of a business case analysis.

We will tentatively place each use case in a category in the C3 Taxonomy. The appropriate category
is determined in the “by using” clause in a use case, since this is were the direct demand on the
system; i.e., the portfolio, is expressed. We summarize the location into categories in Figures 4.1
and 6.3. We allow ourselves to place use cases at all levels of specificity in the taxonomy.

FFI-rapport 2013/01674 33

4.1 Training

Training here means to perform tasks in order to gain procedural knowledge; i.e., to gain practical
experience to some extent, prior to, or outside of, performing actual tasks in the actual job or per-
formance situation. Procedural knowledge differs from declarative knowledge which is obtained
from studying books or attending lectures or courses.

Training is common in many disciplines, for example in sports and the arts. It is less common in less
manual disciplines, where it is less straight-forward to define practice tasks and perhaps difficult to
define even the actual work tasks themselves. In civilian management, which involves judgement
and decision making in a highly changing environment, the idea of training is typically undeveloped.
Expertise is obtained over years of actual job practice through trial and failure in actual work life;
often with catastrophic outcomes.

In contrast, the military has held a conscious focus on training on all levels of organization, from
operational and decision-making levels down to the war fighter. Modelling and simulation play an
essential role in this. In defence training, one plans to use the full range of Live-Virtual-Constructive
simulation. The “live” aspects involves real personnel with real equipment, but where sensors detect
e.g., movements and simulated hits (e.g., by laser, rather than live ammunition). The “virtual”
aspect involves real personnel with simulated equipment; for example, pilots training in an aircraft
simulator. The “constructive” aspect involves simulated personnel with simulated equipment, as
when various simulation systems, such as Joint Theatre Level Simulation (JTLS), simulate troop and
vehicle movements according to battlefield commands and terrain data; thus avoiding the logistics
involved with live training. All LVC aspects can, in theory, be combined in various measures to
cater for the training objective at hand; from small-scale personnel training in defence academia to
large-scale joint defence exercises involving all of LVC or the constructive aspect only.

4.1.1 Train as you fight.

The maxim “Train as you fight” embodies the idea that training for a task should be undertaken on
tasks as close to the actual task as possible in an environment as close to the actual environment as
possible. If you undergo training with tools different from those you will use in an operation, you
will be unprepared for the operational situation to the extent the tools differ in essential character-
istics. The same goes for differing environments.

Epic 1: As operational personnel I can train realistically by using User Applications in
order to increase skills by a factor s and reduce time to proficiency by x%.

M&S provides substitutes for actual tasks and environments where the latter are not feasible during
training. However, it is important that participants view and manipulate the simulated battle situation
through their regular applications used in actual operations (these are often complex); otherwise they
will not be training a vital part of their operational task [116, 119].

34 FFI-rapport 2013/01674

Thus, in order to use M&S to train as you fight, the relevant simulation system must be integrated
with, and front-ended by, the appropriate application(s) used in operations. For example, in a CAX
involving computer-generated forces (CGF), simulated entities might be controlled through a com-
mand and control (C2) system; rather than directly in the simulation application itself (even when
the simulation application has a better user interface). Another example is embedded training, in
which on-board control systems in actual vehicles are stimulated with simulated data.

Further, the simulation application and operational application should be loosely coupled, in the
sense that it should be transparent to the user of the operational application which simulation sys-
tem it is that is feeding simulated data. Barring security issues, it should also be possible for the user
to not see any difference between simulated and real data. Moreover, evolving combat structures de-
mand new training regimes. Therefore, an essential capability lies in combining various operational
applications with various simulation applications according to the training objectives at hand.

Epic 2: As training operator I can compose realistic training regimes by using a SMC

Application to combine M&S COI Applications with other User Applications in order to
increase skills by a factor s and reduce time to proficiency by x%.

The Service Management and Control (SMC) Applications manage, control and monitor services in all
layers of the portfolio. In Epic 2, it is envisioned that there is an application in that category which
can be used to combine systems at the User Applications level.

For illustration, we elaborate Epic 2 according to the current state of the C3 Taxonomy. We use a
“dot”-notation and indentation to indicate subcategories.

Epic 2.1: As training operator I can compose realistic training regimes by using
SMC Applications .

Service Management Domain Applications .
Service Inventory Management Applications and
Service Availability Applications and
Service Portfolio Management Applications

to find, request use of, and combine
User Applications .

M&S COI Applications .
HLA Federations and Front Ends with

Joint COI Applications

in order to increase skills by a factor s and reduce time to proficiency by x%.

The category User Applications . M&S COI Applications . HLA Federations and Front Ends does not exist at
present. Our intention is that it contains concrete HLA-federations or their front ends (Section 6);
i.e., simulation systems available to end-users.

FFI-rapport 2013/01674 35

4.1.2 “Train as you fight” is not enough.

Realistic training is important. However, research in various domains has shown that training that
simply reflects actual circumstances is not sufficient. For the defence domain, Shadrick and Lussier
remark: “The maxim ’Train as you fight’ has risen to such a level of familiarity in the U.S. Army that
the value of the notion goes almost unquestioned. Yet studies of the development of expertise clearly
indicate that ‘as you fight’, [...], is neither the most effective nor efficient method of developing
expertise” [102, p. 294]. For example, while it is pertinent to train using actual tools in an actual
environment, it is important to focus training on the difficult parts of a task. Such targeted training
is well-known: a musician will repeatedly focus on a difficult passage, thus engage in an artificial
behaviour compared to an actual performance, while still using his actual instrument.

Epic 3: As operational personnel I can train artificially by using User Applications in
order to increase skills by a factor s and reduce time to proficiency by x%.

In general, repetition frequency in task exposure should be designed from an understanding of risk,
where risk = likelihood x consequence, rather than on likelihood alone [102]. Modelling and simu-
lation enables risk-based task repetition. For example, flight simulators enable pilots to drill emer-
gency scenarios in take-off and landing routines, which has very low likelihood, but extremely high
consequence, compared to normal in-flight routines.

Epic 4: As training operator I can compose risk-based training regimes by using a SMC

Application to combine M&S COI Applications with other User Applications, during training
in order to increase skills by a factor s and reduce time to proficiency by x%.

In addition to repeating “hard passages”, it may be necessary to engage in artificially enhanced tasks
to heighten performance. Such tasks are the result of task analyses and depend on the actual task at
hand. There are many ways to analyse tasks, but the important focus here is on differences between
what a task demands in terms of observable behaviour and what a task demands in terms of cognitive
processes [60, 103]. So-called job-oriented task analysis focuses on the activities (sub-tasks), tools,
products, and outcomes tasks and subtasks that must be done in order to complete a task. There
is a lot of research on this area; see e.g., [10, 125, 12]. On the other hand, worker-oriented task
analysis focuses on the task doer in terms of knowledge, skills, abilities, and other characteristics;
for example personality, intelligence, and expertise [1, 99, 98, 35]. However, for analysing the
thought processes which are involved, one must use methods of cognitive task analysis. Particularly
relevant for judgement and decision making tasks, such analysis uncovers a range of unconscious
processes as well as how decision-makers of varying degrees of proficiency think [72, 30, 49, 47].

In tactical decision making (for which Shadrick and Lussier’s remark above was made), it is not suf-
ficient to engage in normal training, even if it involves both realism and repetitions, since this does
not in itself focus on developing decision-making skills [102]. Tactical decision makers must en-
gage also in training that triggers the explicit development of thinking skills. Moreover, judgement

36 FFI-rapport 2013/01674

and decision tasks are often so-called inconsistent (different people develop differing successful
strategies) [14, 13] or ill-defined (hard even to define successful strategy) [43, 104, 95, 122]. For
such tasks, teaching any one particular strategy has shown to be futile [49, 102]. Instead, the idea
is to train adaptability; i.e., how to adapt to unknown and surprising situations. In line with this,
the notion of adaptive thinking [93] has been adopted in the defence domain for tactical decision
making [103, 102].

Epic 5: As training operator I can compose training regimes for adaptive thinking and
decision making by using a SMC Application to combine M&S COI Applications with other
User Applications, during training in order to increase skills by a factor s and reduce
time to proficiency by x%.

Training for adaptive thinking requires artificial tasks (to trigger responses to unfamiliar or unfore-
seen events) [37, 112] or standard decision tasks in a deliberate practice setting [103, 102]. Delib-
erate practice [25] is a framework that takes the short-comings of “learning on the job” head on.
Apart from a strong focus on difficult aspects and risk-based repetition, its essence lies in immedi-
ate and tailored feedback (by a coach or computer-adaptive system) followed by immediate tailored
re-trials; and a focus on integrating parts which have been re-trained into the whole task.

Modelling and simulation is essential in both enabling the use of artificial tasks and enabling delib-
erate practice regimes. Artificial tasks have to be simulated by necessity, while deliberate practice
demands flexibility and adaptability in the training regime. The active coaching and tailored re-trials
in deliberate practice demands capabilities that allow the coach/trainer to call M&S components into
play during training.

Epic 6: As training operator I can compose deliberate practice regimes by using a SMC

Application to combine M&S COI Applications with other User Applications, during training
in order to increase skills by a factor s and reduce time to proficiency by x%.

4.2 Mission rehearsal and planning

In contrast to training, which is a long-term activity, mission rehearsal and planning is a short-term
activity for a specific mission or operation.Traditionally, round-the-table war gaming has been used
in rehearsal and planning. This is cumbersome and time consuming and gives little time for playing
through alternative scenarios and plans. Also, although the group process implied in war gaming is
regarded as beneficial, there are issues of diverging perceptions of the situation which are not easily
resolved in traditional settings. Simulation aids all the above in that it enables frequent replaying of
plans and scenarios and the virtual playing out and testing of refined plans. Through role playing,
simulation also enables building of common mental models of the mission or operation.

FFI-rapport 2013/01674 37

Epic 7: As operational personnel I can plan and prepare for missions by using User

Applications in order to increase quality of plans by a factor q and increase common
understanding by a factor c.

4.2.1 Rapid composability

A Commander of the U.S. Army Training Support Center states: “Nowhere is the need for rapid
environment shaping more important than in mission rehearsal for real-world operations. In this
case, both speed (i.e., rapid scenario generation) and accuracy are paramount to prepare military
forces for imminent deployment and the conduct of operations. Current joint M&S is more suited
to an 18-month JELC1 vice the much shorter period required for rapid mission rehearsal (i.e., as
short as 3–7 days). To achieve shorter planning cycles prior to training events, joint M&S solutions
must be far more flexible than they have been – they must also be composable at the trainer level in
order to provide units realistic rehearsal opportunities apart from simulation centers or established
training capabilities that might not be able to respond in short time periods” [23].

Epic 8: As mission rehearsal operator I can prepare personnel for operations by using
a SMC Application to combine component-size M&S COI Services and other COI-Specific

Services rapidly and readily, prior to rehearsals and planning in order to reduce time to
mission rehearsal readiness to t hours/days.

4.2.2 Scenario generation

The Commander continues: “Composability is more than just speed, however, it is also about fram-
ing the environment accurately and in so doing, limiting those parts of the environment that don’t
need to be modeled – that is, gaining efficiencies and reducing complexity in areas that aren’t central
to the training objectives. The trainer is closest to the unit and understands the training objectives
best. He or she is best placed to select the geographical “playbox”, the various factions in the battle-
space, and the limiting factors that will shape the unit’s operations. By allowing the trainer to frame
the scenario directly and enabling rapid, and intuitive scenario generation, large-scale manpower
savings can be achieved and unit training objectives are more likely to be best served. Compos-
ability also implies using only that which is needed, thus less M&S resources (computing power,
bandwidth, etc.) are likely to be consumed when better environment precision is realized” [23].

Epic 9: As mission rehearsal operator I can construct scenarios at appropriate levels of
detail without the aid of “M&S professionals” by using a M&S COI Applications . Scenario

Preparation Application to combine component-size M&S COI Services and other COI-

Specific Services rapidly and readily, prior to, and during, rehearsals and planning in
order to improve mission rehearsal and planning quality by a factor y.

1Joint Exercise Life Cycle (JELC) is the series of planning conferences and meetings, along with database work,
that frames training audience training objectives and formulates MSEL [Master Scenario Events Lists] and M&S en-
vironments to support the training objectives. The JELC for large-scale joint exercises can take 12–18 months prior to
execution of the training event. [Footnote part of quote]

38 FFI-rapport 2013/01674

4.3 Missions

The capabilities given by M&S in the portfolio in the above epics transfer directly through to mis-
sions and operations. Plans devised during mission rehearsal and planning could be given new
parameters during operations to reflect actual events, and the plan can then be re-simulated on this
new knowledge. If the plan and simulation is platform-independent, the plan could be appended
to communication between echelons; e.g., to actual battle orders, giving orders a new dimension.
Replaying actual events in a simulation engine at high speed may also uncover trends in slow troop
movement that would otherwise be hard to discern.

Epic 10: As operational personnel I can update plans during missions with situational
intelligence and then extrapolate to evaluate future best course of action by using a User

Application to recombine and rerun plans developed in mission planning and rehearsal
in order to improve quality of situational awareness for missions by a factor a.

4.4 Retrospective analyses

Systematic and targeted post-operation analysis enables learning, even in the complex system that
warfare constitutes. Replaying actual events and analyzing these in relation to plans and scenarios
(e.g., in terms of what-if analyses) should give valuable learning input.

Epic 11: As operational personnel I can conduct post-operation analyses by using a
User Application to rerun recorded events and recombine and rerun plans based on recor-
ded or alternative events in order to improve learning from experience by a factor l.

4.5 Concept development and experimentation (CD&E)

During a demonstration of a piece of simulation software developed at FFI, a LtCol remarked to
us the following insight, which exactly captures the motivation for service orientation and the need
for agile usage: When clever people get their hands on powerful tools, they will inevitably find
novel ways to use them and apply them to entirely new situations. This is an “emergent effect”
[105] arising in a federation of systems; i.e., an effect that is not obvious from regarding the system
a priori. By enabling increased flexibility, M&S should spur the generation of emergent effects,
but M&S is also central in planned activities for experimentation due to increased possibilities for
controlled experiments and other analytical and empirical studies [3, 2, 48].

Epic 12: As a user of the portfolio I can conduct studies on Communication and Inform-

ation Systems (CIS) Capabilities by using M&S with other Communication and Information

Systems (CIS) in order to improve innovation by a factor v.

The “user” here covers any user of the portfolio at all levels. The “user” is required to be a “reflective
practitioner” in the sense of [7, 8, 41], who may, or may not, be aided by academic researchers.

FFI-rapport 2013/01674 39

The epics in Section 4 are expressed at the User Applications layer and above. These use cases lay
explicit and implicit demands on lower technical layers of the C3 Taxonomy. To understand what
these requirements are, we must understand the characteristics of these lower layers. In the next
sections we give an overview over Service-Oriented Architecture and the High Level Architecture.

5 Service-Oriented Architecture

It is explicitly stated at the strategic level that Norway’s INI and NATO’s NII, and the entire C3
systems portfolio should have service-oriented architectures. Service-orientation is perceived as
instrumental in implementing a network-enabled defence regime.

Service-Oriented Architecture is an architectural software systems design and run-time approach
which promotes abstraction, loose coupling, reusability, composability and discovery. It is easily
seen that SOA inherits several ideas from object-oriented and component-based software and sys-
tems development. However, SOA extends, and in some important cases, deviates from the dogmas
of classic object-orientation.

In use, SOA has three main actors: the Service Provider, the Service Consumer and the Service Re-
gistrar2; see Figure 5.1. A service provider registers a service it wishes to provide to the community
with a registrar. A consumer looking for a service consults the registrar for suitable services, and if
found, establishes a binding between a concrete Client within the consumer and a concrete Service
hosted by the relevant provider, where the terms of this binding is agreed upon in a Service contract.
For the purpose of our discussion, we will detail parts of this constellation below.

5.1 The Consumer-Provider relationship

Conceptually, SOA prescribes that services are developed, hosted and maintained by a service pro-
vider (who presumably is an expert on that service), whereas data is owned by a service consumer
(who presumably is an expert on those data) and can be processed by requesting the hosted service.
This is in direct contrast to classic object-orientation, where data and the functionality to process
that data are packaged together in an abstract data type [33, 54, 92, 34].

The idea of an abstract datatype is that users of the datatype need no information on the internal data
representation or functional implementation. The implementer is then free to choose the combina-
tion of data representation and functional implementation which optimizes computation, conceptual
understanding, correctness reasoning, etc. While encapsulation as a principle is carried forward
by SOA, the extremely tight coupling between data and functionality is not. SOA goes further on
the encapsulation idea in that functionality and data are encapsulated separately. Not only need a
consumer not be concerned about how functionality is implemented behind the scenes; the service
provider need not concern itself with how data is represented internally at the customer.3 In ad-

2The Registrar often goes by the name “Service Broker”. There is unclarity around this terminology, but we will use
“Broker” to denote a somewhat different entity later.

3Home media appliances have been used to exemplify SOA. For example, following the abstract data type paradigm,

40 FFI-rapport 2013/01674

Service Consumer Service Provider

Service Registrar

Service

contract

ServiceClient

register

bind

find

Registry

Figure 5.1 SOA Triangle (adapted from [26].

dition, both data and functionality may be complex and may viably be constructed by composing
sub-data and sub-functionality using other providers. Further, to realize genuine decoupling of data
and functionality, and of sub-components of both data and functionality, it must be possible for
consumers and providers to be located at different places and on different platforms.

All this decoupling presents issues of communicating data and service requests between the con-
sumer and provider; i.e., the bind between the specific client and service. The idea of message
passing arose from object-orientated programming and allowed very late binding. This was fur-
ther developed in the various component-based software techniques [114]. SOA does not prescribe
any specific technology for implementing consumer-provider communication. However, there is an
obvious need for community-wide agreements (standards) on how to communicate. This creates
market opportunities for the vendor who can deliver a framework which enables such standardized
communications, and there are therefore certain prominent technologies in terms of both features
and market; see Figure 5.2. Current practice mostly uses WWW technology; in particular Web
Service technology [126]. There are mainly two modes of Web Service. The oldest mode passes
messages in terms of the Simple Object Access Protocol (SOAP) [127], using XML [130] docu-
ments. Interface specifications and thus service contracts are written using the Web Services De-
scription Language (WSDL) [128]. The newer Representational State Transfer (REST) style [28]
passes messages using leaner formats such as JavaScript Object Notation (JSON) [46], Plain Old
XML (POX) [130], or Rich Site Summary (RSS). Interface specification are here written in the Web
Application Description Language (WADL) [129]. On the underlying communications layer, SOAP
may use several protocols, the most common being the Hypertext Transport Protocol (HTTP), the
File Transfer Protocol (FTP) and the Simple Mail Transport Protocol (SMTP). On the other hand,
REST mostly uses HTTP. Web services adhering to SOAP are often referred to as “Big Web ser-

every CD would come with its own CD player, whereas SOA would prescribe things as they are; you may use the same
CD in multiple players of varying quality of service [9, 32]. The analogy has also been used to illustrate object-orientation
(beyond abstract data types) versus SOA [36]. Discussions on the aptness of the analogy illustrates that connotations of
“object-orientation” are many-faceted and often include the later developments of component-based programming [114].

FFI-rapport 2013/01674 41

Service Consumer Service Provider

WSDL

ServiceClient XML

SOAP

HTTP, SMTP, FTP

Service Consumer Service Provider

WADL

ServiceClient

J
S

O
N

P
O

X
HTTP

R
S

S

Service Consumer Service Provider

Ad hoc

ServiceClient

J
S

O
N

HTTP

TCP

Figure 5.2 Prominent technologies used for SOA. WebServices (WS-* or Big Web Services), REST (REST-

ful WebServices) and WebSockets.

vices” or “WS-*” and web services adhering to REST often go under the name of “RESTful” web
services. For a comparison of SOAP and REST and a guide to deciding between the two, see [90].

A recent development is the WebSocket Protocol [27]. Roughly, WebSocket APIs allow a user at
the applications layer to bypass the layer of HTTP and do transactions directly on the layer below,
using Transmission Control Protocol (TCP)-based connections. The WebSocket Protocol is part
of the upcoming HTML5 specification and provides a full duplex, communications channel that
operates via a single socket over the Web. In contrast, the HTTP protocol was not designed for
real-time duplex communication, and one has to simulate duplex communication over two channels
with substantial message transfer overhead. Websockets communicate binary data, unlike SOAP
and REST which are text based. WebSockets are viewed by some as the next evolution in web
communications and also essential for realizing SOA beyond the enterprise intranet [121] due to
efficiency reasons. At the same time, others are sceptical that WebSockets will be useful beyond the

42 FFI-rapport 2013/01674

Service

Provider

Broker

Service

Consumer

Client

Service

Provider

Service

Consumer

Client

Service

Consumer

Client

Service

Service

Service

Provider

Service

Service

contractService

contractService

contract

to Registrar

Figure 5.3 Broker technology.

intra-enterprise network, due to security reasons and the added load on other infrastructure when
stripping messages of their HTTP headers, etc. [57]. Security can be provided by the web browser,
but the lack of typing adds challenges when writing service contracts.

It may seem from Figure 5.1 that once a service is discovered, then binding and communication
is always done directly between provider and consumer. This can often be the case. However,
current technology also promotes the use of a Broker; see Figure 5.3. The broker facilitates pub-
lish/subscribe protocols, in which a consumer does not bind directly with a provider, but subscribes
to services published by providers. The broker handles publication messages and routes service pro-
vider messages to those consumers who have subscribed to relevant services and routes consumer
messages to appropriate publishers. The WS-BrokeredNotification standard (under the more gen-
eral WS-Notification standard) [88] is a dominant technology for this. In this standard, the broker
may, or may not interact with the registrar, and the broker may therefore take on various degrees of
the registrars role.

Note that SOA’s decoupling of data and functionality also means that there are no immediate data
types or persistent objects that can administrate the system’s state; i.e., the set of variables that record
how the system processes its data over time. A loosely coupled service which is not aware of its
potential consumer ahead of time, cannot necessarily update or keep track of the consumer’s state.
However, middleware – such as a broker – can be used as a central state-administration service. We
will return to this later.

The need to integrate legacy software into new architectures is ever-present, also in SOA. A common
way to service-enable existing software is to place a gateway (wrapper) in front of the software
system, which translates communication from the software system to the standard communication
used in the SOA; see Figure 5.4.

FFI-rapport 2013/01674 43

Consumer

(Legacy)

Provider

(Legacy)

Service

contract

ServiceClient

W
ra

p
p
e
r W

ra
p
p
e
r

Figure 5.4 Gateways (wrappers) are often used to service-enable software which was not designed service

oriented at the outset.

5.2 The Registrar role

SOA’s principles may be used at all levels of technology, but also at all levels of organization. In
fact, from a computing standpoint, SOA extends the ideas of object-orientation and component-
based design to the organization. However, equally, if not more, important, is the converse influence
of business process on software and systems design that SOA promotes.

Viewing software systems at the enterprise level already introduces integration issues when inter-
department systems and old and new systems must communicate. Strategies such as developing ad
hoc links between systems on the one hand or replacing the entire IT portfolio with an Enterprise
Resource Planning (ERP) system on the other hand, have proven costly. Middleware solutions such
as Enterprise Service Buses (ESB) which factor out the integration issues have often been developed
in-house to cater for the technology of the organization’s specific systems, thus effectively relocating
integration problems instead of solving them; see e.g., [96] and Figure 5.5.

With the demands of network-enabled defence come cross-enterprise-demands on software services.
Enterprise-specific integration solutions are no longer adequate. In addition, the unfortunate and
common situation where an organization’s business work-flows are dictated by the (usually bad)
architectural design of its IT systems, becomes intolerable when multiple organizations are involved.
Thus, the shift of focus toward facilitating globalized business processes necessitates abstraction,
looser coupling, reuse, and composability on a whole new level.

Apart from decoupling data and functionality, SOA entails that services must be loosely coupled
with respect to both location and time. This is especially relevant for network-enabled capabilities
where mobile units move through disadvantaged grids [42]. The physical location and implement-
ation details of each service must be transparent to consumers, and which services are available
may vary over time. Thus, dynamic binding and dynamic service invocation are key capabilities
which consumers and providers must support and be prepared for. This means that consumers can-
not rely on knowing the names of services, or even their existence, at design time. Abstraction
now also means abstracting away from programming language and run-time platform. Loose coup-

44 FFI-rapport 2013/01674

System

System

System System

System

System

Enterprise Service Bus (ESB)

SystemSystem SystemSystem

Figure 5.5 Integration headache. Enterprise Service Bus (ESB): Integration headache factored out.

ling, reusability, and composability now also mean interoperability, in the sense that services may
dynamically discover and use each other, thereby generalizing the conventional client-server config-
uration. This inter-enterprise business-oriented demand on software systems is perhaps the largest
conceptual leap that SOA offers from conventional component-based development [114].

The dynamic discovery mechanism through the Service Registrar is essential to the loose coupling
of SOA. Without the discovery mechanism, services have to be known statically, thereby precluding
the idea that services may be created and hosted independently of specific consumers. In fact, it
has been argued that “SOA in practice” often does not include the discovery mechanism and only
involves the lower part of the SOA triangle [63, 62]. For example, it is common to use WebService
technology with no registrar and happily proclaim a service-oriented architecture. Without the dis-
cipline of using a service registrar, it is also tempting to revert to tighter coupling in other areas of
the consumer-provider relationship, thereby making “SOA in practice” even less SOA.

For platform-independent and dynamic discovery, service interfaces have to be written in a uniform
generic manner. This is a marked departure from Application Programming Interfaces (APIs) and
Remote Procedure Calls (RPCs), where knowledge of the name and parameters of functionality
must be known at design time. Again, SOA does not prescribe a specific technology for the service
registrar or the relationships with it. In practice, it is the Web Services technology again that is
the predominant technology. The Web Services Description Language (WSDL) [128] is an XML-
based language for describing web services and how to access them. Data types can be specified
using XML Schema in the WSDL file for a service, and a consumer that finds that a service is

FFI-rapport 2013/01674 45

appropriate by reading its WSDL file can subsequently call operations listed in the file using SOAP.
The equivalent for RESTful services is the Web Application Description Language (WADL), also
based on XML, but not a standard. However, the current version of WSDL, WSDL 2.0, also partially
supports REST. Figure 5.2 incorporates the WSDL and WADL documents.

The registrar’s role is to administrate a repository of service descriptions. Continuing the WWW
technology regime, Universal Description, Discovery and Integration (UDDI) [87] is an XML-based
registry designed to handle SOAP requests and provide access to WSDL documents describing web
services. However, development and support for UDDI has by now ceased. Another standard is the
WS-Discovery standard [89]. This approach is decentralized and based on mutlicasting advertise-
ment and probe SOAP messages over the network.

Many of SOA’s ideas are not possible to implement elegantly with today’s technology. At present it
is therefore important to be aware of the following distinction: Design-time discovery and runtime
discovery. Today, most discovery is done by humans at design time [26]; in direct contrast to the
true loose coupling ideal mentioned above. For example, a systems designer or software developer
may consult a registrar to determine whether an appropriate service exists or needs to be developed.
Runtime discovery in the ideal sense, would mean that a consumer could check at runtime whether
an appropriate service is available and then automatically locate and consume that service – and
even make the service inter-operate with other consumed services. This would require semantic
interoperability and more [118]; technologies which are in their infancy. Runtime discovery and
interoperability in the ideal sense is not, at present, wide-spread. Technologies such as UDDI and
WS-Discovery are nonetheless geared toward runtime discovery. Currently, more static variants
of the ideal scenario are possible. For example, a consumer may use WS-Discovery to probe for
services, and consume services at runtime, provided that the consumer has been sufficiently prepared
at design-time for consuming these services. Thus, run-time service discovery is more akin to a
service availability check, where the actual services are known at design time. See [55] for an
example, where a GUI viewer application is capable of displaying data form a variety of services.
The viewer probes the network using WS-Discovery to check which services are on-line and to list
available services for the user to choose from.

5.3 Implications on use cases

According to the ideal scenario, the concrete applications at the User Applications layer in the C3
Taxonomy should ultimately determine which services to develop at lower levels. And to develop
services at a level one should start by defining epics at that level. Again, since the taxonomy is
sparsely populated, we tentatively speculate what epics might be defined at lower levels.

The level of activity at the nether levels is a function of the level of maturity of service orientation.
At advanced levels of maturity, one can envision end users composing and orchestrating systems by
dragging and dropping services from a repository and organizing them in via a GUI, where after
interoperability issues are automatically resolved behind the scenes. At modest levels of maturity,
i.e., where we are at today, programmers have to manually set up communication between systems,

46 FFI-rapport 2013/01674

usually “SOA-fizing” systems on the fly. This often involves large design and programming efforts.

All this makes it clear that content in an information infrastructure is not static and that requirements
at various levels will evolve over time. At present, there is a need for technical services that aid
programmers in making things at all levels interoperable. In the distant future – when everything
is loosely coupled and interoperable – software developers may be able to drag and drop technical
services via a GUI to compose and orchestrate the necessary services to support user applications.
End users may even be able to compose applications themselves from high-level services.

Our tentative higher-layer use cases from Section 4 are ignorant to the details or status of SOA.
However, it is clear that they lay demands on the architecture in terms of (re-)composing applications
and services readily and rapidly, in time for, and even during, operational activities. These use cases
will enjoy diverse solutions according to technological maturity. We will now discuss implications
of our use cases according to present maturity. Of course, one should still strive for solutions in
more mature technology as it arrives.

Since SOA is not in a state where services can be composed on the fly, software developers must
invest development efforts to realize these use cases. Among the Core Enterprise Services one must
therefore find tools (software services) to aid developers in such efforts:

Epic 13: As software developer I can develop User Applications by using SOA Platform

Services to combine COI-specific Services readily and rapidly in order to reduce time to
shippable code by k%.

This is also applicable at the Users Applications layer, since users at this level cannot, at present,
combine applications themselves:

Epic 14: As software developer I can develop User Applications by using SOA Platform

Services to combine User Applications readily and rapidly in order to reduce time to
shippable code by k%.

Indeed, while it may be conceptually tempting to regard services as the building blocks for develop-
ing higher-level services and user applications; and to regard user applications as situation-specific
systems composed for the task at hand (and therefore not meant to function as building blocks them-
selves), this conceptually clean view is, at least at present, not realistic. Many of today’s systems are
stove piped or involve thick (obese) clients with very few building blocks in common. At present, it
is therefore necessary to view applications themselves as building blocks to make other applications,
and the questions of loose coupling and interoperability apply to both services and applications.

Further, our tentative use cases suggest that M&S functionality must interoperate with other func-
tionality at the User Applications layer and also that it must be possible to compose M&S functionality
into M&S COI Applications. We here choose to use the impact goal part of the epic to point to the epics
to which it contributes.

FFI-rapport 2013/01674 47

Epic 15: As software developer I can develop User Applications where M&S COI Applica-

tions interoperate with other User Applications by using SOA Platform Services to combine
loosely coupled and interoperable M&S COI Services and M&S COI Applications with other
loosely coupled and interoperable COI-Specific Services and User Applications in order to
enable Epics 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14.

Epic 16: As software developer I can develop M&S COI Applications where M&S COI

Services interoperate by using SOA Platform Services to combine loosely coupled and
interoperable M&S COI services in order to enable Epics 1, 3, 8, 9, 13.

Some of the use cases asked for applications (tentatively placed in the SMC Applications and Scenario

Preparation Applications categories) which enable semi-IT technical personnel (operators) to compose
and recompose applications readily and rapidly. At present-day maturity, it is possible to develop
applications which fulfil this to a modest degree, by means of service-availability check and service
import applications as mentioned in the previous section.

Epic 17: As software developer I can develop User Applications which invoke design-
time specifiable COI-Specific Services and User Applications at runtime by using SOA

Platform Services to combine COI-enabling Services in order to enable Epics 8, 9.

Epics 15, 16 and 17 illustrate the need to start epics at the Technical Services layers, as well as at the
User-facing Capabilities layers.

The placement of the epics above in the C3 taxonomy is summarized in Figure 6.3. In order to be
more specific about M&S technology, we now turn to M&S software architecture.

6 The High Level Architecture

The M&S community has been at the forefront with regards to interoperability due to explicit de-
mands on reuse and composability in complex simulation systems. The Simulation Interoperability
Standards Organization (SISO) coordinates many of the research and development efforts in these
areas in close collaboration with NATO; specifically the NATO Modelling and Simulation Group,
and other standardization organizations. As a result, several working solutions exist for M&S sys-
tems which enable loose coupling and interoperability. At present, the High Level Architecture
(HLA) is adopted by a wide range of communities. It enables viable principles toward loose coup-
ling and interoperability, and also refines principles developed earlier in other approaches. The HLA
is a design, development, and runtime standard for distributed simulation software systems [91, 50].
The latest version, HLA Evolved IEEE 1516 – 2010, STANAG 4603, as well as the previous version
IEEE 1516 – 2000, which is currently most in use, are defined in [38]. The present HLA standard
has three parts :

48 FFI-rapport 2013/01674

1516-2010 Framework and Rules
1516.1-2010 Federate Interface Specification
1516.2-2010 Object Model Template (OMT) Specification

In addition, two older parts are still relevant:

1516.3-2003 Recommended Practice for HLA Federation Development and Execution Process
(FEDEP)

1516.4-2007 Recommended Practice for Verification, Validation, and Accreditation of a Federation
– An Overlay to the FEDEP

In HLA, the main simulation software modules that make up a simulation system are called fed-
erates. Federates may be combined to form a federation, coordinated by a runtime infrastructure
(RTI); see Figure 6.1. Federates communicate with the RTI by means of APIs for Java or C++.
In HLA Evolved, there is, in addition, a Web Service API which allows one to package federates
as web services within the federation [69, 67, 70]. HLA prescribes a publish/subscribe protocol:
federates publish object attributes and interactions between attributes, and federates may subscribe
to updates of published attributes and interactions. The RTI coordinates these messages. Federates
may also query the RTI on-the-spot for updates.

In HLA, the objects and interactions that are shared (i.e., whose attributes are published and sub-
scribed) among federates in a federation are declared in a Federation Object Model (FOM), which
is input to the RTI. Thus, all federates must relate to this data declaration during runtime, and also
during design time. At run-time, the declarations in the FOM give rise to variables that constitute
the shared state of the federation. The RTI thus administers the shared state of the federation. The
RTI also administers time according to several time management schemes [29]. The federates them-
selves are ignorant with respect to the shared state; i.e., a federate is not aware of the states of other
federates, except for the parts of the shared state that the federate subscribes to. For example, a fed-
erate may simulate an entity that fires a ground-to-air missile toward an entity at a specified location
without needing to know which ground entities are in the simulation. Indeed, a federate need not
know which other federates are present in the federation. Nevertheless, a federate who wishes to
monitor if any of its entities will be hit by the missile can subscribe to the part of the shared state
that reflects the relevant information.

A FOM is an object model based on inheritance according to the OMT. It is therefore possible
to extend a FOM at modification time by declaring new subclasses of existing classes. New or
modified federates may then relate to the extended FOM. In HLA Evolved, the concept of modular
FOM enables one to extend and compose a FOM by using FOM modules at runtime [91]. Each
FOM module describes a certain aspect of the information exchange [66]. While existing federates
cannot relate to new FOM modules, new federates that relate to the extended FOM can dynamically
join the federation.

FFI-rapport 2013/01674 49

HLA Federation

Federate

Runtime Infrastructure (RTI)

FederateFederate FederateFederate

Java API WS API Java API C++ API C++ API

Federation Object Model (FOM)

Figure 6.1 High-Level Architecture (HLA).

Several reference FOMs exist which set out to declare what is needed in various defence simu-
lation scenarios. Of special interest is the Realtime-Platform-Reference Federation Object Model
(RPR-FOM) [108] and its guide, the Guidance, Rationale, & Interoperability Modalities (GRIM)
(Version 1.0) [107] SISO-STD-001.1-1999.4 Work is currently under way on RPR-FOM and GRIM
version 3.0. The RPR-FOM declares a range of defence entities and interactions between them
which are relevant for simulations at the weapons platform level. It is the result of data model de-
velopment under the Distributed Interactive Simulation (DIS) standard IEEE 1278 [40]. The DIS
infrastructure is a bus which distributes data between simulator components in a standard format,
Protocol Data Units (PDU), without the filtering (e.g., publish/subscribe) and timing control of
which HLA is capable [118]. Another reference FOM is the NATO Education and Training Net-
work (NETN) FOM [80].

There are also standard methods for communicating with a simulation system (i.e. a federation in
HLA). The Coalition Battle Management Language (C-BML) is a formalized language under stand-
ardization to provide a common language for expressing a commander’s intent, across C2 systems,
simulation systems and also autonomous systems [79]. The Military Scenario Definition Language
(MSDL) SISO-STD-007-2008 [109] is a standard for describing scenarios; e.g., for initializing sim-
ulation systems.

In terms of our remarks on architectures and methods for architectures in Section 2, HLA and
associated methods live up to the requirements for both architecture development and system de-
velopment, see Figure 6.2. The HLA standard as an architecture framework can be instantiated to
concrete HLA architectures using FEDEP and DSEEP mentioned in Section 3.1. The FEDEP and
DSEEP are federation lifecycle processes and cater for architectural work as well as systems devel-
opment work. For developing an architecture, the OMT describes how to declare the various object
models in HLA federations: In addition to a FOM for the federation, each individual federate has

4RPR is pronounced “reaper” to complete the allusion to Death.

50 FFI-rapport 2013/01674

M
e
th

o
d

Method

- HLA IEEE 1516---2010, STANAG 4603

- OMT IEEE 1516.2-2010

- SEDRIS ISO/IEC 18023

- FEDEP IEEE 1516.3-2003

- DSEEP IEEE 1730-2010

- FAD

- BOMs

- FEDEP IEEE 1516.3-2003

- DSEEP IEEE 1730-2010

- RPR-FOM + GRIM SISO-STD-001.1-1999

- NETN FOM

- BOM SISO-STD-003-2006

- FEAT

Figure 6.2 Architecture framework, architecture development method, and federation development method

for HLA with federation example from FFI.

a Simulation Object Model (SOM) associated to it which declares the federate’s state space, and
the RTI is associated with a Management Object Model (MOM). The Base Object Model (BOM)
standard SISO-STD-003-2006 provides a method for defining abstract object models of entities and
interactions in a simulation system [106], which is useful in developing both the architecture and
the federation. The Federation Agreement Template (FEAT) describes how to write a Federation
Agreement Document (FAD). The former is part of the method for developing an architecture, the
latter is part of the method for developing a federation. Other standards are also relevant for con-
structing a concrete HLA architecture, such as the Synthetic Environment Data Representation and
Interchange Standard (SEDRIS) ISO/IEC 18023 [101]. Reference FOMs constitute, together with
FEDEP and DSEEP, a method for developing a concrete HLA federation from a concrete architec-
ture; exemplified in Figure 6.2 by a federation developed at FFI.

We have tentatively placed HLA functionality (APIs), FOMs, the RTI and the RPR-FOM in categor-
ies in the current state of the C3 Taxonomy; see Figure 6.3. We place HLA federates in a tentative
HLA Federates category. This raises the question of how service enabled HLA federates are; which
we discuss in Section 8. We place HLA federations in a HLA Federations category under User Ap-

plications; see Figure 4.1. The RTI is placed in Message-Oriented Middleware Services, but should
eventually be relocated into a more specific category. Note that our placement of concrete artefacts
does not imply that we think that they are services or service oriented. Rather, our placement reflects
a desire that the artefacts should become services or service oriented in a future systems portfolio.

FFI-rapport 2013/01674 51

This focus on the future implies that we do not place DIS functionality in the taxonomy, because it
is essential for interoperability that future development relates to standards; in this case HLA.

We place software, including machine-readable documents such as the RPR-FOM in the taxonomy.
In our proposal, standards such as HLA are not first-class citizens of the taxonomy unless they
actually play the role of use cases (a use case being a requirements specification and production
element). On the other hand, standards are relevant as necessary references and complementary
requirements specifications attached to the software. The EM wiki’s structure gives opportunity to
record such “second-class citizens” in the C3 Taxonomy.

In the following sections, we will discuss further implications of Epics 15 and 16 (Section 5.3). The
reason for focusing on these two is that they represent two essential technical challenges: Loosely
coupled and interoperable software systems at the User Applications level, and loosely coupled and
interoperable M&S modules and components at the Community of Interest (COI) Services level.

7 Loosely coupled and interoperable software systems

Somewhat independently of concerted SOA initiatives, research has strived for interoperability and
loose coupling for some time within both M&S and defence operational software systems. Many
command and control systems support XML-based web technologies for communicating their data
[116, 119]. Moreover, the Multilateral Interoperability Program (MIP) has developed the Joint
Consultation, Command and Control Information Exchange Data Model (JC3IEDM), which sets
out to specify the minimum set of data that needs to be exchanged in coalition or multinational
operations. Software systems that operate and communicate in terms of JC3IEDM data structures
therefore gain a certain level of interoperability since they, at least, operate in terms of the same
data structure. The JC3IEDM is a NATO standard (STANAG 5525) and is an entity relationship
model. The next generation of the JC3IEDM – the MIP Information Model (MIM) – is currently
under development and is UML based.

Further, C-BML mentioned earlier is designed for exchanging battle order and report data based on
JC3IEDM. Present C-BML implementations are XML-based, and a Web Service-based middleware
repository offers post/retrieve services on C-BML messages. In addition, MSDL for describing
scenarios is also XML based and uses parts of the JC3IEDM name space. Since there are no good
reasons for having borders between initialization data and exchange data [116], there are initiatives
toward aligning MSDL and C-BML; e.g., the NATO Modelling and Simulation Group Technical
Activities MSG-079, MSG-085 and SISO activities.

Figure 7.1 gives an overview of a demonstration held at the Interservice/Industry Training, Simu-
lation, and Education Conference (I/ITSEC) 2011 conference [94], where inter-system collabora-
tion was achieved using standards such as MSDL, C-BML, DIS and JC3IEDM. A Scripted BML
(SBML) server coordinated both the joint MSDL initialization as well as the exchange of C-BML
battle orders and reports. Conventional systems were service enabled using gateways (wrappers).

52 FFI-rapport 2013/01674

Technical Services

Communication and Information Systems (CIS) Capabilities

Community of Interst (COI) Services

COI-Enabling Services

Core Enterprise Services

SOA Platform Services

Information Platform
Services

Message-Oriented
Middleware Services

Epic 14

Epic 13

Epic 17

Epic 16

Epic 15

User
Story 15.1

Time Management
Services

Model Adaptation
Services

Data Engineering
Services

Coalition Battle
Management Services

Modeling and Simulation
Services

COI-Specific Services

Modeling and Simulation
Integration Services

Battlespace Object
Services

User Story
15.2

User Story
15.3

Modeling and Simulation
Infrastructure Services

User Story
16.2

User Story
16.1

Common Operational
Picture Services

HLA Federates

Modeling and Simulation
COI Services

Tasking and Order Services
Operational Planning

Services

User Story
16.3

HLA
Federate

VR-Forces Simulation
(back end)

HLA
API

BOM Aggregation BAF/
BASS

WebLVC
Server

FOM

C-BML
Service

MSDL
Service

SBML LVCAR-I
Gateways

I/ITSEC Demo
Gateways

LVCAR-I
Enumeration

RTI

RPR-FOM

MIM
Service

LVCAR-I
Common

Data
Abstraction

LVCAR-I
Situational
Awareness

LVCAR-I
Centralized
Monitoring

FFI Context-Based
Reasoning Service

User Story
16.3.1

Tactics
Service

Web
Services

XSLT

FFI C2
Gateway

Situational Awareness
Services

Terrain
ServiceWeather

Service

FFI Multi-Agent
System

Figure 6.3 Use cases and concrete services tentatively placed in C3 taxonomy categories–Technical Ser-

vices part.

FFI-rapport 2013/01674 53

JSAF

Router

JSAF GUI

ICC/JADOCSICC/JADOCS

OneSAF
UK C-BML

Translators

UAV Sim

(3D viewer)

US C2

GMU WS 2.5 Status

Server

BCIP

VRForces

NORTaC

UAV Controller &

JSAF

G
W

G
W

G
W

G
W

G
W

G
W

G
W

G
W

G
W

G
W

G
W

SBML Server

VPN

JC3IEDM: simulation system

Figure 7.1 Demonstration of inter-system collaboration using standards between C2 systems and simula-

tion systems [94]. Systems are service enabled using gateways (yellow “GW”).

SOA does not hinge on the use of Web Service technology or other technologies currently associated
with SOA. The use of other standards for interchanging data, such as C-BML or NATO Standardiza-
tion Agreements (STANAGs) is in line with being a SOA. The useful aspect of SOA thinking in this
context is that the software systems involved are loosely coupled and interoperable in the sense that
they can be used meaningfully in various constellations and provide functionality to various con-
sumers. Thus, if the systems involved in Figure 7.1 can be readily and rapidly re-combined, perhaps
with other systems, and give meaningful functionality, then this is an aspect of service orientation
which meets the requirements of Epic 15.

The I/ITSEC demonstration uncovers more detailed requirements at the technical level, related to
data model and communication standards (JC3IEDM, MSDL, C-BML), gateways, and coordina-
tion functionality (SBML). We can express these in a use case toward the present state of the C3
taxonomy. We are now at a level of detail that includes concrete services and can formulate a user
story under Epic 15. Note that we replace DIS by HLA in this use case in line with our remark
on the future C3 systems portfolio above. Figure 6.3 summarizes the placement of artefacts in the
following discussion.

User Story 15.1: As software developer I can increase loose coupling and interoperab-
ility of M&S COI Applications and other User Applications by using

54 FFI-rapport 2013/01674

COI-Enabling Services .

M&S Services .

Model Adaptation Services . I/ITSEC Demo gateways and
Coalition Battle Management Services . C-BML,MSDL,SBML and

Situational Awareness Services . Battlespace Object Services . JC3IEDM and
COI-Specific Services .

M&S COI Services . M&S Infrastructure Services . HLA and
Core Enterprise Services .

SOA Platform Services . Message-oriented Middleware Services . Web Services

to wrap and service-enable M&S COI Applications and other User Applications and provide
common views of data and common modes of communication
in order to enable Epic 15.

User story 15.1 is an example of an elaboration and refinement of an epic which penetrates layers
in the taxonomy as indicated in Figure 3.4.

Another demonstration was conducted as part of the LVC Architecture Roadmap Implementation
(LVCAR-I) [5, 19, 4]. The demo – designated a SOA pilot – set out to develop a prototype inter-
operability layer to connect the Army Joint Land Component Constructive Training Capability (JL-
CCTC) Multi-Resolution Federation (MRF) and the JLCCTC Entity Resolution Federation (ERF)
training system. Only one federate joined each federation; Joint Conflict and Tactical Simulation
(JCATS) in MRF and Joint Non-Kinetic Effects Model (JNEM) in ERF.

Both MRF and ERF are High Level Architecture (HLA) federations. Their stated value to the
demo is that they have widely different object models (FOMs) and time management, and therefore
challenge interoperability [5]: ERF uses an entity-centric DIS-based data model, while MRF is
an aggregate unit-centric data model based on the Aggregate Level Simulation Protocol (ALSP)
[123]. The MRF federation is time managed where all simulations coordinate the advancement of
simulation time. The ERF federation runs in real-time.

To offer coordination across these disparate federations, a service was developed for centralized
monitoring to provide the status of connected federations, and a second service was developed for
situational awareness providing ground truth for all entities within a geographic bounding box in a
Universal Core (UCore) XML format (yet another standard for communicating battle information).
In the demo, the situational awareness feed was used to populate a Common Operating Picture
(COP) displayed inside the Google Earth environment.

To support these services, a set of common data abstraction services where developed to maintain
the minimal set of data required to share object state across all entities [5].

User Story 15.2: As software developer I can enable coordination of diverse M&S COI

Applications by using
COI-Enabling Services .

FFI-rapport 2013/01674 55

Common Infrastructure Services

JCATS

JNEM

Common Data

Abstraction (CDA)
Common

Consumer Services

Situational

Awareness

Various comm. technologies

RTI CRC

HLA Adapter

LRC

Comm Mng

Plugin

Rule Mng

Comm Mng

HLA

Enumeration

Service

Facade

Enumertion Service

Centralized

Monitoring

UCore

Entity Cache

Aggregate Cache

Monitoring Cache

Initialization Cache

: simulation system

Figure 7.2 Demonstration of inter-system collaboration involving two HLA federations, common con-

sumer services and common data model [5]. Common infrastructure services are used for

communication. Gateways (standing rectangles) enable the HLA federations to participate in

the overall system; see more detailed view of gateway architecture in lower part of figure. The

RTI is decomposed into CRC = Central Runtime Component, LRC = Local Runtime Compon-

ent.

56 FFI-rapport 2013/01674

Situational Awareness Services .

Common Operational Picture Services .

LVCAR-I Situational Awareness Service and
LVCAR-I Centralized Monitoring Service and

Battlespace Object Services .

LVCAR-I Common Data Abstraction Services

to maintain the minimal set of data required to share object state across all entities in
the M&S COI Applications

in order to enable Epic 15.

The development of a so-called enumerations translation service was also under way in the demo.
Enumerations pertain to entity identity and representation, and problems arise when different sys-
tems use different enumeration schemes. The service was going to provide a set of common methods
for data producers and consumers to determine how to translate from native representations to com-
mon data abstraction representations. In this manner common functionality for gateways may be
factored out and offered as services.

User Story 15.3: As software developer I can build Model Adaptation Services . gateways
by using COI-Enabling Services . M&S Services . Data Engineering Services . LVCAR-I Enu-

meration to determine how to translate from native representations to common data
abstraction representations in order to enable Epic 15.

The LVCAR-I demo illustrates the use of inter-M&S system coordination management offered as
services. The main ideas concern factoring out common functionality; see [22, 21] for more details.

8 Loosely coupled and interoperable M&S components

In SOA terminology, the RTI in HLA federations functions as a state management deferral mech-
anism, since shared state management has been delegated away from the federates and to the RTI
[26]. This gives the federates a high level of autonomy with respect to other federates, but a heavy
dependency of federates on the RTI. The RTI could be seen as a utility service; i.e., middleware
that intentionally violates the SOA ideal of statelessness in order that other services may enjoy their
level of statelessness and state processing deferral [26]. However, as middleware goes, the RTI is
relatively active, since it is capable of administering complicated time management schemes and
since HLA promotes a “chatty” mode of data interchange.

In terms of SOA, what type of loose binding do federates within a federation enjoy? According to
[32], the reliance on the FOM precludes a loose binding in the SOA sense. There is loose binding
in the sense that federates may join or leave a federation during runtime, and there is loose binding
in the sense that federates are not aware of other federates in the federation; all they need to do is
to publish and subscribe to information. However, the data types (in the traditional sense of object

FFI-rapport 2013/01674 57

orientation) of that information has to be known at design time, and this is a tight coupling that
contrasts with SOA’s loosely coupled service contracts. So, although the federates do not manage
the shared state, they nonetheless have to relate to relevant portions of the shared state variables at
all times. Further, a federate cannot simply join a federation operating on a different FOM.

The idea of a federate as a service is therefore not straight-forward, and in light of the above discus-
sion, it does not help that one can use Web Services technology to join a federate to a federation.
A FOM represents the context for a specific orchestration (a federation). For a federate to function
as a service in the SOA sense, it must be able to digest and adapt to various FOMs [32]. Today,
FOMs are written in XML-style languages and are therefore in line with web technologies. How-
ever, producing federates that are capable of handling an arbitrary FOM on the fly seems unrealistic;
particularly in light of the complexity of many FOMs in use.

Instead, one may consider the following approach [68, 110, 15, 16]: In HLA, one has several types
of object model. Apart from FOMs, which are strictly necessary for federations to function, HLA
also provides templates for conceptual models. The Base Object Model (BOM) template mentioned
earlier describes how to model objects and interactions between them. In other words, BOMs are a
way to provide interface information – in XML-based language. What is more, there are guidelines
on how to aggregate BOMs and on how to translate BOMs to a FOM, using Extensible Stylesheet
Language Transformations (XSLT). One may therefore use BOMs as simulation service interface
specifications, and when combining services, the aggregated BOMs can be automatically translated
to the appropriate FOM necessary for the resulting federation to run. With modular FOMs, one can
also extend the federation at runtime. In this manner, the declaration for shared state (the FOM) can
be constructed during orchestration time using loosely coupled simulation components.

Figure 8.1 illustrates two ideas along this line of thought. On the lefthand side of the figure is an
example from [68, 32] where the RPR-FOM is used as the basis for defining BOMs. The idea is that
a BOM models states and behavior (interaction patterns) on an abstract level (independently of a
specific FOM) between a defined set of entities, and thus functions as abstract service specifications
for components as services. BOMs can be automatically translated into modular FOMs, so that with
service composition (into federates) one also generates the FOM du jour on the fly. On the right-
hand side of the figure, is an example from [110], where entity level BOMs are defined and used in
entity aggregation and entity de-aggregation. Entity BOMs are abstract specifications for entities as
a service, and composing entity services yields a new service specified by the corresponding BOM
aggregation; which can then be automatically translated to a FOM module to join the FOM du jour

User Story 16.1: As software developer I can develop M&S components as M&S COI

Services by using COI-Specific Services . M&S COI Services . M&S Integration Services . BOM

in order to enable Epic 16.

User Story 16.2: As software developer I can compose HLA federations as M&S COI Ap-

plications by using COI-Specific Services . M&S COI Services . M&S Integration Services . Aggregation

58 FFI-rapport 2013/01674

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Federate

Runtime Infrastructure (RTI)

FederateFederate FederateFederate

WS API WS API WS API WS API WS API

Modular FOM

Humvee

BOM

XSLT

Weapons effect

BOM

Resupply

BOM

Repair

BOM

Radar

BOM

Gun

BOM

Vehicle

BOM

Soldier

BOM

XSLT

XSLT

Figure 8.1 BOMs as service contracts for simulation components. The RPR-FOM used as the basis for

defining BOMs (left-hand side of figure) [68, 32]. Entity level BOMs defined and used in entity

aggregation and entity de-aggregation (right-hand side of figure) [110].

Service and Core Enterprise Services . SOA Platform Services . Information Platform Services . XSLT

in order to enable Epic 16.

As appealing as this sounds, composing components at this level of granularity meets the same
challenges as component-based software engineering in general. Years of experience has proven it
hard to build software components which are reusable over a range of applications. This has both
technological and organizational reasons. Harder still, is perhaps refactoring exercises, where large
pieces of monolithic software are attempted modularized into components by factoring out common
reusable functionality (e.g., the US JLVC-2020 project).

A challenge regardless of size is the composability of components based on their specifications and
the verification and validation of the composition. For modelling and simulation, specific issues
apply; see [120]. At lower levels of granularity components act increasingly detailed on the same
state space which complicates things further.

This depends on the extent to which the components interact with each other. In the case of the

FFI-rapport 2013/01674 59

aggregation/de-aggregation example shown in Figure 8.1 the entities may simply be aggregated so
as to represent one entity without components interacting; e.g., to save computation in the simu-
lation while moving forward. When the aggregate has reached its goal, say, the entities may be
deaggregated. SimVentions Inc. has developed their BOM Aggregation Framework (BAF) with a
BOM Aggregation Support Server (BASS) which provides this type of aggregation/deaggregation
functionality as run-time services into a HLA federation [110, 32]. See Figure 6.3 for a tentative
placement of BAF and BASS in the C3 Taxonomy.

On the other hand, if components are to interact, demands on interoperability and verification in
shared state mount the scene. It is argued that the BOM template is not sufficient for component
matching and that it gives weak support for verification and validation of a composition; e.g, [58].
To amend these issues, semantic enhancements of BOMs have been developed [65, 64, 71], and
methods for verifying the functionality of compositions have also been researched [58, 59].

A technological initiative which certainly presents a relevant use case, if not a direct step towards
intra-system loose coupling and interoperability, is MÄK Labs’ launch of its WebLVC platform.
WebLVC provides a framework that enables one to join a hosted federation via web applications.
The framework supports web applications written in JavaScript (simulating a fighter aircraft, say)
which may then communicate with a hosted WebLVC Server using the WebSocket protocol. The
Server then integrates the web applications with a hosted federation. The hosted federation is run-
ning on HLA using the RPR-FOM, or DIS. Federates are therefore still bound by these object
models, even if they may communicate with the federation over the internet. See Figure 6.3 for a
tentative placement of the WebLVC Server in the C3 Taxonomy.

At the moment, there might be a case for focusing on service-orientation with respect to a given
object model (FOM), rather than service-orientation in general across object models. This is espe-
cially relevant since there exist several reference FOMs, some of which are even standardized. We
will illustrate by referring to one more pilot study. In 2012, FFI demonstrated the feasibility of a
multi-agent framework, where a multi-agent system receives C-BML orders from a C2 system and
executes the orders by generating appropriate entity command movements in a simulation engine. A
battle order originating from a C2 system is a general instruction which has to be executed according
to knowledge about terrain, enemy actions, weather etc. The multi-agent system uses context-based
reasoning [31] to compute appropriate entity commands according to contextual data available in
the simulation; see Figure 8.2. The multi-agent system operates as a federate in an HLA federa-
tion running on a RPR-FOM extended to cater for the interactions with the multi-agent system; see
[61, 6] for details on certain aspects of the multi-agent system.

One can take the following stance on loose coupling and interoperability issues: Rather than striving
for a multi-agent system that can readily and rapidly be used as a service in an arbitrary FOM, one
might concentrate on service-enabling the multi-agent system in the sense of offering varying battle
order-execution strategies; e.g., in terms of reasoning algorithms (context-based reasoning, decision
trees, neural nets, etc.), in terms of environment data to be considered (terrain, weather, season,
mode of aggressiveness, etc.) and in terms of operational tactics. To realize our high-level epics it is

60 FFI-rapport 2013/01674

FFI COA Analysis Federation

NORTaC
RTI

FFI Multi-Agent

System
VR-Forces

GUI

JC3IEDM

VR-Forces

Simulation

Extended RPR-FOM

MSDL and Low-level C-BML

over

Web Services/WebSockets

SQL

FFI C2

Gateway

Figure 8.2 Course of Action (COA) Analysis Pilot at Norwegian Defence Research Establishment (FFI). In

this instance of the pilot, battle orders from a C2 system (NORTaC) are loaded into a JC3IEDM

database, which are then processed by the multi-agent system which, in turn, sends more de-

tailed battle orders to a VR-Forces back end. VR-Forces is a simulation framework kit de-

veloped by VT MÄK.

relevant to be able to vary these parameters readily and rapidly during training, mission preparation,
missions and retrospectives.

User Story 16.3.1: As software developer I can develop a FOM-specific COI-Enabling

Services . M&S Services . HLA Federates . Multi-Agent System by using COI-Enabling Services

. Operational Planning Services and COI-Enabling Services . Tasking and Order Services and
COI-Enabling Services . Situational Awareness Services to implement various battle order-
execution strategies in terms of reasoning algorithms, defence tactics and environment
data processing in order to enable Epic 16.

We can generalize this user story to a user story that expresses the principle of developing FOM-
specific federates as services:

User Story 16.3: As software developer I can develop FOM-specific M&S COI Ser-

vices . HLA Federates by using COI-Enabling Services in order to enable Epic 16.

Note that the numbering of the previous user story (16.3.1) reflects that it is an elaboration and part
of the refinement of User Story 16.3.

FFI-rapport 2013/01674 61

9 Discussion

From deliberating around our tentative use cases, it is evident that services and applications at
various levels of granularity are relevant. There are cases for which larger application-size pieces
of software must inter-operate and cases for which component-size pieces of software must inter-
operate. The notion of service orientation and the architecture of the C3 taxonomy give structures
which cater for these needs. However, as the pieces of inter-operating software get smaller, it is
probable that the number of technical difficulties in achieving loose coupling and interoperability
increases. Where to draw the line between what should be services and what should be traditional
components, modules or merely pieces of software, is a question of both technical feasibility and
cost-benefit. Further analyses and pilot studies are needed to arrive at more concrete conclusions.

The extent to which service orientation should penetrate HLA federations is an example in point. It
is not clear at present to which extent it is technically feasible or cost-beneficial to develop feder-
ates, simulation components or simulation entities as services. It does, on the face of things, seem
easier to defend developing entire federations as services. Within federations, literature seems to
suggest that common infrastructure functionality could be factored out into services. The FOM data
structure has been mentioned as an obstacle to true service orientation within federations. However,
it is clear that, relative to a given FOM, federates enjoy high degrees of both interoperability and
loose coupling, at least compared to solutions in other software domains. The existence of stand-
ard, albeit domain-specific, FOMs such as the RPR-FOM, pushes the issue of what more is needed
in terms of interoperability and loose coupling, since such FOMs serve a multitude of federations.
However, there are multiple instantiations and extensions of the RPR-FOM and also many other
“standard” FOMs. A more detailed analysis on the need for interoperability and loose coupling
between citizens of federations operating on such diverse FOMs is called for.

We have seen that the RTI in HLA can be seen as a state deferral mechanism in terms of SOA,
and HLA federations have many of the interoperability and loose coupling characteristics sought
after in SOA. As in many other areas of software development, it is easy to engage in dogmatic
discussions on what is SOA and what is not SOA. We hold that such discussions are valuable to
the extent that the dogma has been proven valuable as a whole in its own right; something which
dogmas in software development are hardly ever. Therefore, we think that it is important to focus
on the pragmatic aspects of the elements of SOA, and the extent to which they serve the needs for
interoperability as analysed, in the outset, from operational requirements, e.g., in use cases such as
those exemplified above.

It is important to gain headway in defining an architecture framework for M&S in a SOA inform-
ation infrastructure. A good way to start would be to populate the C3 Taxonomy in a systematic
manner, because it enables one to organize state-of-knowledge on the operational needs and the
derived technical needs for service orientation. We hold that it is important to employ state-of-the
art requirements elicitation and analysis on both operational and technical levels for this to succeed.
This involves iterative and incremental refinement and detailing, along with pilots and demonstrat-
ors for empirical guidance through this process. Our tentative use cases should then be replaced by

62 FFI-rapport 2013/01674

properly elicited use cases, together with complete detailing and refinement into system specifica-
tions and concrete operations, applications and services.

10 Conclusion

We conclude by responding to our introductory research questions to the extent possible based on
our discussion so far.

1. What are the requirements of users of a service-oriented defence information infrastructure
that incorporates M&S software systems?

Answering this question in full involves requirements elicitation and analysis on the scale of
a very large IT developments project. We have tentatively suggested requirements in the form
of well-structured use cases. We have suggested use cases at various levels of the NNEC C3
Taxonomy. The more detailed use cases – stemming from pilot studies – suggest concrete
applications and services.

2. How can these requirements be used to build the information infrastructure?

There are several ways to do this. We suggested a joint method based on requirements eli-
citation and analysis from best-practice software engineering. The method gives guidelines
to populate the C3 Taxonomy in a systematic and traceable manner, based on incremental
development at all layers of the taxonomy. We foresee that the content and the manner in
which the taxonomy will be populated will evolve according to how service oriented the tax-
onomy is at any one point in time. At early stages, development of the taxonomy’s content will
follow traditional software development practice which involves software development (from
scratch) through several layers of the taxonomy. At advanced stages where a lot of function-
ality is service oriented, loosely coupled and interoperable, software development can stay
within one layer. Other layers are accessed through home-layer composition and orchestra-
tion applications or services. Architecture development is an integral process to this, rather
than an isolated pre-process.

3. To what extent is it desirable and then possible to package application-size modelling and
simulation software as loosely coupled and interoperable units in the context of a service-
oriented defence information infrastructure?

According to our use cases and according to the pilots we have referred to, this is certainly de-
sirable and even necessary, since operational personnel must be able to access M&S function-
ality through their regular systems used in practice. Further, the centrality of M&S systems
in operational activities implies that some M&S systems should evolve to become front-end
members of the C3 systems in daily use by operational personnel. Packaging is possible, as

FFI-rapport 2013/01674 63

several pilot studies have demonstrated. Moreover, it is possible to specify technical use cases
which give good indications for concrete functionality necessary for realizing this packaging.

4. To what extent is it desirable and then possible to use service-orientation internally in simu-
lation software; hereunder,

(a) can SOA be used as a simulation management framework beyond HLA?

Certain elements of SOA are useful to enhance HLA; for example it is useful and possible
to factor out common gateway and coordination functionality for integrating federates
running under differing object models or time management schemes. It is also useful
and possible to provide entity aggregation and de-aggregation as a service beyond the
capabilities of HLA. As an aside, several features of HLA are definable in the SOA ter-
minology; for example, the RTI (the coordinating middelware in HLA) can be seen as
state-deferral service freeing the simulation modules (federates) from keeping track of
the total state of the simulation federation.

(b) can component/module-size M&S software be packaged as loosely coupled and inter-
operable units?

In the context of a HLA simulation system’s object model, M&S modules already are
loosely coupled and interoperable. However, it is non-trivial to reuse these modules
with a different object model (FOM); i.e.; in a substantially different simulation context.
Solutions to the problem have been solved theoretically, but implementing these ideas
requires advances in e.g., semantic technologies in order to conduct necessary verific-
ation and validation. At present, a more fruitful approach might be to develop services
with respect to a specific (reference) object model (FOM).

In order to develop a defence information infrastructure within the context of a systems portfolio
according to the C3 taxonomy, one should employ systematic methods for populating the taxonomy.
This involves systematic requirements elicitation, analysis, detailing and refinement down to con-
crete operations, applications and services. We have outlined one such method which combines
agile requirements handling with the structure of the C3 Taxonomy. Using the taxonomy’s vertical
structure (operational context to technical context) and the horizontal structure (detailing and refine-
ment of categories), it is possible to populate the taxonomy with requirements in addition to concrete
operations, applications and services. This should structure the development of the taxonomy and
also give traceability of the process. The method should help the human process of “getting things
started”, since one now has the opportunity to populate the taxonomy with low-detailed preliminary
insights on what eventually should be developed in terms of concrete operations, applications and
services. Integrating M&S in a defence information infrastructure must be part of this general pro-
cess of developing the taxonomy. The challenge remains, however, that M&S development cannot
wait till the NII or INI, or the C3 systems portfolio are in place, and therefore, M&S systems must

64 FFI-rapport 2013/01674

somehow be developed to be “INI/NII/C3 systems portfolio ready”.

The way forward should include the following topics:

• A more detailed investigation into the architectural implications of HLA’s Object Model Tem-
plate (OMT) and how those implications relate to service orientation.

• A more detailed investigation into the development processes of Federation Development and
Execution Process (FEDEP) and Distributed Simulation Engineering and Execution Process
(DSEEP) in the context of agile development, the C3 Taxonomy and enterprise and systems
architecture frameworks such as NAF and TOGAF.

• A more complete classification of M&S functionality as services.

A first avenue for investigating the three points above, is to conduct a narrow pilot study using the
methods suggested in this report: Start by defining a small capability package (meaningful at the
operational level) for a piece of functionality which involves M&S functionality. Then, elaborate
and refine incrementally and iteratively toward a working system for the capability package. Along
the way, use NAF and TOGAF, and spawn other elaborate-refine processes as needed. Focus on
service orientation.

FFI-rapport 2013/01674 65

References

[1] P. L. Ackerman and M. E. Beier. Methods for Studying the Structure of Expertise: Psy-
chometric Approaches. In K. A. Ericsson, N. Charness, P. J. Feltovich, and R. R. Hoffman,
editors, The Cambridge Handbook of Expertise and Expert Performance, chapter 9, pages
147–166. Cambridge Univ. Press, 2006.

[2] D. S. Alberts and R. E. Hayes. Campaigns of Experimentation: Pathways to Innovation and
Transformation. Information Age Transformation Series.

[3] D. S. Alberts and R. E. Hayes. Code of Best Practice for Experimentation. CCRP Publication
Series.

[4] G. W. Allen, R. Lutz, and R. Richbourg. Live, Virtual, Constructive, Architecture Roadmap
Implementation and Net-Centric Environment Implications. ITEA Journal, 31(3), 2010.

[5] G. W. Allen and L. Schroeder. Utilization of Service Oriented Architecture (SOA)-Based
Commercial Standards to Address Live, Virtual, Constructive (LVC) Interoperability Chal-
lenges. In Proc. Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC) 2011. National Training and Simulation Association, 2011.

[6] A. Alstad and O. M. Mevassvik. Low-level BML. In Proc. 2013 Spring Simulation Interop-
erability Workshop (SIW). Simulation Interoperability Standards Organization (SISO), 2013.

[7] C. Argyris. Knowledge for Action. Jossey-Bass Publishers, 1993.

[8] C. Argyris and D. A. Schön. Organizational Learning II. Theory, Method, and Practice.
Addison-Wesley Publishing Company, Inc., 1996.

[9] D. K. Barry. Web Services and Service-Oriented Architecture: The Savvy Manager’s Guide.
Morgan Kaufmann, 2003.

[10] S. Bonner. A Model of the Effects of Audit Task Complexity. Accounting Organization and
Society, 19:213–234, 1994.

[11] C4ISR Technology & Human Factors (THF) Branch, Allied Command Transformation
(ACT). The C3 Classification Taxonomy. Technical report, 2012. Document generated
from the ACT Enterprise Mapping Wiki on November 2012.

[12] D. J. Campbell. Task Complexity: A Review and Analysis. Academy of Management Review,
13(1):40–52, 1988.

[13] J. P. Campbell. Modeling the Performance Prediction Problem in Industrial and Organiza-
tional Psychology. In M. D. Dunnette and L. M. Hough, editors, Handbook of Industrial and
Organizational Psychology, volume 1, pages 687–732. Consulting Psychologists Press, Inc.,
second edition, 1990.

66 FFI-rapport 2013/01674

[14] J. P. Campbell, R. A. McCloy, S. H. Oppler, and C. E. Sager. A Theory of Performance. In
N. Scmitt and W. C. Borman, editors, Personnel Selection in Organizations, pages 35–70.
Josey-Bass, 1993.

[15] T. Chase and P. Gustavson. RPR-BOM Initiative: Providing a Set of Applicable BOMs to
the M&S Community. In Proc. 2005 Spring Simulation Interoperability Workshop (SIW).
Simulation Interoperability Standards Organization (SISO), 2005.

[16] T. Chase, P. Gustavson, and L. Root. From FOMs to BOMs and Back Again. In Proc. 2006
Spring Simulation Interoperability Workshop (SIW). Simulation Interoperability Standards
Organization (SISO), 2006.

[17] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.

[18] M. Cohn and R. Martin. Agile Estimating and Planning. Prentice Hall, 2005.

[19] J. E. Coolahan and G. W. Allen. LVC Architecture Roadmap Implementation—Results of
the First Two Years. In Proc. 2012 Spring Simulation Interoperability Workshop (SIW). Sim-
ulation Interoperability Standards Organization (SISO), 2012.

[20] M. Denne and J. Cleland-Huang. Software by Numbers: Low-Risk, High-Return Develop-
ment. Prentice Hall, 2003.

[21] D. L. Drake, I. X. Martins, R. A. Roca, and F. Carr. Live-Virtual-Constructive
Service-Oriented Architecture. Service-Oriented Architecture Application to Live-Virtual-
Constructive Simulation: Approach, Benefits, and Barriers. Technical Report NSAD-R-
2011-025, National Security Analysis Department, The Johns Hopkins University, Applied
Physics Laboratory, 2011.

[22] D. L. Drake and K. L. Morse. Use of SOA for Distributed Simulation: A Way Forward. In
Proc. 2012 Spring Simulation Interoperability Workshop (SIW). Simulation Interoperability
Standards Organization (SISO), 2012.

[23] M. G. Edgren. Cloud-Enabled Modular Services: A Framework for Cost-Effective Col-
laboration. In Proc. Conf. NATO M&S Group (MSG-094) Transforming Defence through
Modelling and Simulation—Opportunities and Challenges, 2012.

[24] H. Erdogmus. Let’s Scale Agile Up. Agile Times, 2(1):6–7, April 2003.

[25] K. A. Ericsson. The Influence of Experience and Deliberate Practice on the Development of
Superior Expert Performance. In K. A. Ericsson, N. Charness, P. J. Feltovich, and R. R. Hoff-
man, editors, The Cambridge Handbook of Expertise and Expert Performance, chapter 38,
pages 683–703. Cambridge Univ. Press, 2006.

[26] T. Erl. SOA principles of Service Design. Prentice Hall, 2007.

FFI-rapport 2013/01674 67

[27] I. Fette and A. Melnikov. The WebSocket Protocol—Request for Comments: 6455.
On Internet Engineering Task Force (IETF) pages, http://tools.ietf.org/pdf/
rfc6455.pdf, 2011. Accessed September 2012.

[28] R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture. ACM
Transactions on Internet Technology, 2(2), 2002.

[29] R. M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley-Interscience, 2000.

[30] G. Gigerenzer and P. M. Todd, editors. Simple Heuristics that Make Us Smart. Oxford
University Press, 1999.

[31] A. J. Gonzalez, B. S. Stensrud, and G. Barret. Formalizing Context-Based Reasoning: A
Modeling Paradigm for Representing Tactical Human Behavior. Int’l J. Intelligent Systems,
23:822–847, 2008.

[32] P. Gustavson, T. Chase, L. Root, and K. Crosson. Moving Towards a Service-Oriented Archi-
tecture (SOA) for Distributed Component Simulation Environments. In Proc. 2005 Spring
Simulation Interoperability Workshop (SIW). Simulation Interoperability Standards Organiz-
ation (SISO), 2005.

[33] J. V. Guttag. The Specification and Application to Programming of Abstract Data Types.
PhD thesis, Department of Computer Science, University of Toronto, 1975. Technical Report
CSRG-59.

[34] J. E. Hannay. Abstraction Barrier-Observing Relational Parametricity. In M. Hofmann, ed-
itor, Typed Lambda Calculi and Applications. Proceedings of the 6th International Confer-
ence, TLCA, Valencia (Spain), volume 2701 of Lecture Notes in Computer Science, pages
135–152. Springer Verlag, 2003.

[35] J. E. Hannay. Personality, Intelligence, and Expertise: The Impact on Software Development.
In A. Oram and G. Wilson, editors, Making Software: What Really Works and Why We Believe
It, chapter 6. O’Reilly, 2010.

[36] H. He. What is Service-Oriented Architecture. On O’Reilly xml.com, http://www.xml.
com/pub/a/ws/2003/09/30/soa.html, 2003. Accessed September 2012.

[37] K. J. Holyoak. Symbolic Connectionism: Toward Third-Generation Theories of Expertise.
In K. A. Ericsson and J. Smith, editors, Toward a General Theory of Expertise: Prospects
and Limits, pages 301–335. Cambridge University Press, 1991.

[38] IEEE Standards Association. 1516-2010 – IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA), howpublished = http://standards.ieee.

org/findstds/standard/1516-2010.html, note = Accessed September 2012,
year = 2010.

68 FFI-rapport 2013/01674

[39] IEEE Standards Association. 1730-2010—IEEE Recommended Practice for Distributed Sim-
ulation Engineering and Execution Process (DSEEP). http://standards.ieee.org/
findstds/standard/1730-2010.html, 2010. Accessed February 2013.

[40] IEEE Standards Association. Standard for Distributed Interactive Simulation (DIS). http:
//standards.ieee.org/develop/project/1278.2.html, 2012. Accessed
September 2012.

[41] P. Jarvis. The Practitioner-Researcher. Jossey-Bass Publishers, 1999.

[42] F. T. Johnsen, T. H. Bloebaum, and M. R. Brannsten. Quality Aspects of Web Services. Tech-
nical Report FFI-rapport 2012/02494, Norwegian Defence Research Establishment (FFI),
2012.

[43] E. J. Johnson. Expertise and Decision under Uncertainty: Performance and Process. In
M. T. H. Chi, R. Glaser, and M. J. Farr, editors, The Nature of Expertise, pages 209–228.
Lawrence Erlbaum Associates, Inc., 1988.

[44] H. D. Jørgensen, T. Liland, and S. Skogvold. Aligning TOGAF and NAF—Experiences
from the Norwegian Armed Forces. In P. Johannesson, J. Krogstie, and A. Opdahl, editors,
The Practice of Enterprise Modeling, volume 92 of Lecture Notes in Business Information
Processing, pages 131–146. Springer, 2011.

[45] A. Josey. TOGAF Version 9.1 Enterprise Edition—An Introduction. http://pubs.

opengroup.org/architecture/togaf9-doc/arch/, 2011. Accessed January
2013.

[46] json.org. Introducing JSON. http://json.org, 2013. Accessed July 2013.

[47] D. Kahneman and S. Frederick. A Model of Heuristic Judgment. In K. J. Holyoak and R. G.
Morrison, editors, The Cambridge Handbook of Thinking and Reasoning, pages 267–294.
Cambridge Univ. Press, 2004.

[48] R. A. Kass. The Logic of Warfighting Experiments. The Future of Command and Control.
DoD Command and Control Research Program, 2006.

[49] G. Klein. Developing Expertise in Decision Making. Thinking & Reasoning, 3(4):337–352,
1997.

[50] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer Simulations—An Introduction to
the High Level Architecture. Prentice Hall PTR, 1999.

[51] R. Landaeta and A. Tolk. Project Management Challenges for Agile Federation Develop-
ment: A Paradigm Shift. In Proc. 2010 Fall Simulation Interoperability Workshop (SIW).
Simulation Interoperability Standards Organization (SISO), 2010.

FFI-rapport 2013/01674 69

[52] B. Lang, M. Gerz, O. Meyer, and D. Sim. An Enterprise Architecture for the Delivery of a
Modular Interoperability Solution. In Semantic and Domain-based Interoperability: Proc.
RTO Information Systems Technology Panel (IST) Symposium. NATO Research and Techno-
logy Organisation, 2011.

[53] C. Larman and B. Vodde. Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum. Addison Wesley, 2008.

[54] B. H. Liskov and S. N. Zilles. Programming with Abstract Data Types. ACM SIGPLAN
Notices, pages 50–59, 1974.

[55] K. Lund, F. T. Johnsen, T. H. Bloebaum, and E. Skjervold. SOA Pilot 2011—Service Infra-
structure. Technical Report FFI-rapport 2011/02235, Norwegian Defence Research Estab-
lishment (FFI), 2012.

[56] L. A. Maciaszek. Requirements Analysis and Systems Design. Addison Wesley, third edition,
2007.

[57] L. Macvittie. SPDY versus HTML5 WebSockets. On SOAWorld Magazine, http://soa.
sys-con.com/node/2296338, 2012. Accessed September 2012.

[58] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi. Fairness Verification of BOM-Based
Composed Models Using Petri Nets. In Proc. 11th IEEE Workshop on Principles of Advanced
and Distributed Simulation, pages 1–8. IEEE Computer Society, 2011.

[59] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi. Verifying Dynamic Semantic Com-
posability of BOM-Based Composed Models Using Colored Petri Nets. In Proc. 2012
ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation
(PADS), pages 250–257. IEEE Computer Society, 2012.

[60] E. J. McCormick, P. R. Jeanneret, and R. C. Mecham. A Study of Job Dimensions as Based
on the Position Analysis Questionnaire. J. Applied Psych., 56(4):347–368, 1972.

[61] O. M. Mevassvik and A. Alstad. Stridsledelsesspråk for koalisjonsoperasjoner—en tekno-
logi for å integrere kommando og kontroll og simulering. Technical Report FFI-rapport
2012/00176, Norwegian Defence Research Establishment (FFI), 2012.

[62] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-End Support for QoS-Aware
Service Selection, Binding, and Mediation in VRESCo. IEEE Transactions on Services Com-
puting, 3(3):193–205, 2010.

[63] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar. Towards Recovering the
Broken SOA Triangle—A Software Engineering Perspective. In Proc. 2nd Int’l Workshop
Service Oriented Software Engineering (IW-SOSWE’07), pages 22–28. ACM, 2007.

70 FFI-rapport 2013/01674

[64] V. Mojtahed, B. Andersson, V. Kabilan, and J. Zdravkovic. BOM++, a Semantically En-
riched BOM. In Proc. 2008 Spring Simulation Interoperability Workshop (SIW). Simulation
Interoperability Standards Organization (SISO), 2008.

[65] V. Mojtahed, E.-O. Svee, and J. Zdravkovic. Semantic Enhancements when Designing a
BOM-based Conceptual Model Repository. In Proc. 2010 European Simulation Interoper-
ability Workshop (SIW). Simulation Interoperability Standards Organization (SISO), 2010.

[66] B. Möller, F. Antelius, M. Johansson, B. Löfstrand, and Å. Wihlborg. Processes and Tools
for Management and Reuse of FOM Modules. In Proc. 2010 Fall Simulation Interoperability
Workshop (SIW). Simulation Interoperability Standards Organization (SISO), 2010.

[67] B. Möller and C. Dahlin. A First Look at the HLA Evolved Web Service API. In Proc. 2006
European Simulation Interoperability Workshop (SIW). Simulation Interoperability Standards
Organization (SISO), 2006.

[68] B. Möller, P. Gustavson, R. Lutz, and B. Löfstrand. Making Your BOMs and FOM Modules
Play Together. In Proc. 2007 Fall Simulation Interoperability Workshop (SIW). Simulation
Interoperability Standards Organization (SISO), 2007.

[69] B. Möller and S. Löf. A Management Overview of the HLA Evolved Web Service API.
In Proc. 2006 Fall Simulation Interoperability Workshop (SIW). Simulation Interoperability
Standards Organization (SISO), 2006.

[70] B. Möller, K. L. Morse, M. Lightner, R. Little, and R. Lutz. HLA Evolved—A Summary
of Major Technical Improvements. In Proc. 2008 Fall Simulation Interoperability Workshop
(SIW). Simulation Interoperability Standards Organization (SISO), 2008.

[71] F. Moradi, R. Ayani, S. Mokarizadeh, G. H. A. Shahmirzadi, and G. Tan. A Rule-based
Approach to Syntactic and Semantic Composition of BOMs. In Proc. 11th IEEE Int’l Symp.
Distributed Simulation and Real-Time Applications (DS-RT 2007), pages 145–155. IEEE
Computer Society, 2007.

[72] T. Mussweiler. Comparison Processes in Social Judgment: Mechanisms and Consequences.
Psych. Review, 110(3):472–489, 2003.

[73] NATO Communications and Information Agency (NCIA). The C3 Classifica-
tion Taxonomy. http://www.ncia.nato.int/ourwork/Pages/Coherence/

C3-Classification-Taxonomy.aspx, 2011. Accessed August 2012.

[74] NATO Consultation, Command and Control Board. NATO Architecture Framework
Version 3. http://www.nhqc3s.nato.int/ARCHITECTURE/ docs/NAF v3/

ANNEX1.pdf, 2007. Accessed January 2013.

[75] NATO Consultation, Command and Control Board (C3B). Core Enterprise Services Stand-
ards Recommendations—The Service Oriented Architecture (SOA) Baseline Profile, Ver-
sion 1.7. On Tidepedia, 2011. Accessed September 2012.

FFI-rapport 2013/01674 71

[76] NATO Modelling and Simulation Group. NATO Modelling and Simulation Master Plan
(version 1.0), 1998.

[77] NATO Modelling and Simulation Group. NATO Modelling and Simulation Master Plan
(version 2.0). http://ftp.rta.nato.int/Public/Documents/MSG/NATO MS

Master Plan Web.pdf, 2012. Accessed January 2013.

[78] NATO Network Enabled Capability (NNEC). NATO Network Enabled Capability. http://
www.nato.int/cps/en/natolive/topics 54644.htm, 2010. Accessed October
2012.

[79] NATO Research and Technology Organisation. Coalition Battle Management Language (C-
BML). Technical Report RTO-TR-MSG-048, 2012.

[80] NATO Research and Technology Organisation. NATO Education and Training Network.
Technical Report RTO-TR-MSG-068, NATO Research and Technology Organisation, 2012.

[81] NATO Research and Technology Organisation Modelling and Simulation Group (NMSG)
Task Group MSG-005/TG-005. Federation Development and Execution Process (FEDEP)
Tools in Support of NATO Modelling & Simulation (M&S) Programmes. Technical Report
RTO-TR-MSG-005, 2004.

[82] Norwegian Ministry of Defence. Policy for militær tilpasning og anvendelse av informasjons-
og kommunikasjonsteknologi i Forsvaret. http://www.regjeringen.no/upload/
FD/Reglement/Policy militaer tilpasning IKT 2oppl.pdf, 2005. Ac-
cessed August 2012.

[83] Norwegian Ministry of Defence. Forsvarssjefens plan for utvikling av nettverksbasert forsvar,
Del I—Strategi, 2010.

[84] Norwegian Ministry of Defence. Forsvarssjefens plan for utvikling av nettverksbasert forsvar,
Del II—Plan, 2011.

[85] Norwegian Ministry of Defence. Et forsvar for vår tid. Prop. 73S (2011–201). Proposisjon
til Stortinget (forslag til stortingsvedtak). http://www.regjeringen.no/pages/

37583840/PDFS/PRP201120120073000DDDPDFS.pdf, 2012. Accessed January
2013.

[86] Norwegian Ministry of Defence. Forsvarets IKT-strategi, 2013.

[87] Organization for the Advancement of Structured Information Standards (OASIS). UDDI
Spec Technical Committee Draft. http://uddi.org/pubs/uddi v3.htm, 2004. Ac-
cessed September 2012.

[88] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Brokered Notification (WS-BrokeredNotification) 1.3. https://www.

72 FFI-rapport 2013/01674

oasis-open.org/committees/tc home.php?wg abbrev=wsn, 2006. Accessed
October 2012.

[89] Organization for the Advancement of Structured Information Standards (OASIS). Web Ser-
vices Dynamic Discovery (WSDiscovery) Version 1.1. http://docs.oasis-open.

org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf,
2009. Accessed October 2012.

[90] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. Big Web Ser-
vices: Making the Right Architectural Decision. In 17th Int’l World Wide Web Conference
(WWW2008), pages 805–814. ACM, 2008.

[91] M. D. Petty and P. Gustavson. Combat Modeling with the High Level Architecture and
Base Object Models. In A. Tolk, editor, Engineering Principles of Combat Modeling and
Distributed Simulation, chapter 19, pages 413–448. Wiley, 2012.

[92] G. D. Plotkin and M. Abadi. A Logic for Parametric Polymorphism. In M. Bezem and J. F.
Groote, editors, Typed Lambda Calculi and Applications. Proceedings of the International
Conference, TLCA’93, Utrecht (The Netherlands), volume 664 of Lecture Notes in Computer
Science, pages 361–375. Springer Verlag, 1993.

[93] E. D. Pulakos, S. Arad, M. A. Donovan, and K. E. Plamondon. Adaptibility in the Work Place:
Development of a Taxonomy of Adaptive Performance. J. Applied Psychology, 85(4):612–
624, 2000.

[94] J. M. Pullen, D. Corner, A. Brook, R. Wittman, O. M. Mevassvik, and A. Alstad. MSDL
and C-BML Working Together for NATO MSG-085. In Proc. 2012 Spring Simulation In-
teroperability Workshop (SIW). Simulation Interoperability Standards Organization (SISO),
2012.

[95] W. Reitman. Cognition and Thought. Wiley, 1965.

[96] H. Rognerud and J. E. Hannay. Challenges in Enterprise Software Integration: An Industrial
Study Using Repertory Grids. In Proc. 3rd Int’l Symp.Empirical Software Engineering and
Measurement (ESEM), pages 11–22. IEEE Computer Society, 2009.

[97] A. San Jose Martin. MSG-ET-34 M&S as a Service MSaaS—First Exploratory Team meet-
ing. Master Presentation, 2012.

[98] F. L. Schmidt, J. E. Hunter, and A. N. Outerbridge. Impact of Job Experience and Ability on
Job Knowledge, Work Sample performance, and Supervisory Ratings of Job performance. J.
Applied Psychology, 71(3):432–439, 1986.

[99] F. L. Schmidt, J. E. Hunter, A. N. Outerbridge, and S. Goff. Joint Relation of Experience and
Ability with Job Performance: Test of Three Hypotheses. J. Applied Psychology, 73(1):46–
57, 1988.

FFI-rapport 2013/01674 73

[100] K. Schwaber. Agile Project Management with Scrum. Microsoft Press, 2004.

[101] SEDRIS Technologies. SEDRIS. http://www.sedris.org/ab 4trpl.htm, 2006.
Accessed January 2013.

[102] S. B. Shadrick and J. W. Lussier. Training Complex Cognitive Skills: A Theme-based Ap-
proach to the Development of Battlefield Skills. In K. A. Ericsson, editor, Development of
Professional Expertise, chapter 13, pages 286–311. Cambridge University Press, 2009.

[103] S. B. Shadrick, J. W. Lussier, and R. Hinkle. Concept Development for Future Domains:
A New Method for Knowledge Elicitation. Technical Report 1167, U.S. Army Research
Institute for the Behavioral and Social Sciences, 2005.

[104] H. A. Simon. The Structure of Ill-structured Problems. Artificial Intelligence, 4:181–201,
1973.

[105] H. A. Simon. The Sciences of the Artificial. MIT Press, third edition, 1996.

[106] Simulation Interoperability Standards Organization (SISO). Base Object Model (BOM) Tem-
plate Specification.

[107] Simulation Interoperability Standards Organization (SISO). Guidance, Rationale, & Inter-
operability Modalities for the RPR FOM (GRIM 1.0). http://www.sisostds.org/
DigitalLibrary.aspx?Command=Core Download&EntryId=30822, 1999.
Accessed January 2013.

[108] Simulation Interoperability Standards Organization (SISO). Real-time Platform Ref-
erence Federation Object Model (RPR FOM 1.0). http://www.sisostds.org/

DigitalLibrary.aspx?Command=Core Download&EntryId=30823, 1999.
Accessed January 2013.

[109] Simulation Interoperability Standards Organization (SISO). Standard for: Military Scenario
Definition Language (MSDL). http://www.sisostds.org/DigitalLibrary.

aspx?Command=Core Download&EntryId=30830, 2008. Accessed August 2012.

[110] B. Sisson, P. Gustavson, and K. Crosson. Adding Aggregate Services to the Mix: An SOA
Implementation Use Case. In Proc. 2006 Spring Simulation Interoperability Workshop (SIW).
Simulation Interoperability Standards Organization (SISO), 2006.

[111] M. Sliger and S. Broderick. The Software Project Manager’s Bridge to Agility. Addison
Wesley, 2008.

[112] E. M. Smith, J. K. Ford, and S. W. J. Kozlowski. Building Adaptive Expertise: Implications
for Training Design. In M. A. Quinones and A. Dudda, editors, Training for 21st Century
Technology: Applications of Psychological Research, pages 89–118. APA Books, 1997.

[113] T. Sulaiman, B. Barton, and T. Blackburn. AgileEVM— Earned Value Management in Scrum
Projects. In Proc. IEEE AGILE 2006, pages 7–16. IEEE Computer Society, 2006.

74 FFI-rapport 2013/01674

[114] C. Szyperski, D. Gruntz, and S. Murer. Component Software, Beyond Object-Oriented Pro-
gramming (Second Edition). Addison-Wesley, 2002.

[115] H. Takeuchi and I. Nonaka. The New New Product Development Game. Harvard Business
Review, pages 137–146, January/February 1986.

[116] A. Tolk. Integration of M&S Solutions into the Operational Environment. In A. Tolk, editor,
Engineering Principles of Combat Modeling and Distributed Simulation, chapter 15, pages
295–327. Wiley, 2012.

[117] A. Tolk. Modeling and Simulation Development and Preparation Processes. In A. Tolk,
editor, Engineering Principles of Combat Modeling and Distributed Simulation, chapter 13,
pages 243–262. Wiley, 2012.

[118] A. Tolk. Standards for Distributed Simulation. In A. Tolk, editor, Engineering Principles of
Combat Modeling and Distributed Simulation, chapter 12, pages 209–241. Wiley, 2012.

[119] A. Tolk. Terms and Application Domains. In A. Tolk, editor, Engineering Principles of
Combat Modeling and Distributed Simulation, chapter 4, pages 55–78. Wiley, 2012.

[120] A. Tolk. Verification and Validation. In A. Tolk, editor, Engineering Principles of Combat
Modeling and Distributed Simulation, chapter 14, pages 263–294. Wiley, 2012.

[121] P. Vogel. Building a Simpler WebSockets Service. On Visual Studio
Magazine, http://visualstudiomagazine.com/articles/2012/06/22/

building-a-simpler-websockets-service.aspx, 2012. Accessed September
2012.

[122] J. F. Voss and T. A. Post. On the Solving of Ill-Structured Problems. In M. T. H. Chi,
R. Glaser, and M. J. Farr, editors, The Nature of Expertise, pages 261–285. Lawrence Erlbaum
Associates, Inc., 1988.

[123] A. L. Wilson and R. M. Weatherly. The aggregate level simulation protocol: an evolving
system. In Simulation Conference Proceedings, Winter 1994, pages 781–787, Dec. 1994.

[124] E. Winjum, O. I. Bentstuen, A. Eggen, K. Lund, R. H. MacDonald, N. A. Nordbotten,
R. Rasmussen, B. Reitan, and J. E. Voldhaug. Forslag til innretting av perspektivplan ma-
teriell (PPM) for programområde NbF-systemer. Technical Report FFI-rapport 2012/02075,
Norwegian Defence Research Establishment (FFI), 2012.

[125] R. E. Wood. Task Complexity: Definition of the Construct. Behaviour and Human Decision
Processes, 37:60–82, 1986.

[126] World Wide Web Consortium (W3C). Web Services Architecture. http://www.w3.

org/2002/ws/arch, 2004. Accessed September 2012.

FFI-rapport 2013/01674 75

[127] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 0: Primer (Second Edi-
tion). http://www.w3.org/TR/2007/REC-soap12-part0-20070427, 2007.
Accessed July 2013.

[128] World Wide Web Consortium (W3C). Web Services Description Language (WSDL) Ver-
sion 2.0 Part 1: Core Language. http://www.w3.org/TR/wsdl20, 2007. Accessed
September 2012.

[129] World Wide Web Consortium (W3C). Web Application Description Language (WADL) Sub-
mission. http://www.w3.org/Submission/wadl, 2009. Accessed July 2013.

[130] World Wide Web Consortium (W3C). Extensible Markup Language (XML). http://

www.w3.org/XML, 2013. Accessed July 2013.

76 FFI-rapport 2013/01674

Abbreviations

ACT NATO Allied Command Transformation
ADM TOGAF Architecture Development Method
API Application Programming Interface
BOM Base Object Model
C2 Command and Control
C3 Consultation, Command and Control
CAX Computer-Assisted Exercise
C-BML Coalition Battle Management Language
CD&E Concept Development and Experimentation
CIS Communications and Information Systems
COI Community of Interest
COP Common Operating Picture
DIS Distributed Interactive Simulation
DSEEP Distributed Simulation Engineering and Execution Process
EM Enterprise Mapping
ESB Enterprise Service Bus
FAD Federation Agreement Document
FEAT Federation Agreement Template
FEDEP Federation Development and Execution Process
FFI Forsvarets forskningsinstitutt (Norwegian Defence Research Establishment)
FOM Federation Object Model
FTP File Transfer Protocol
GRIM Guidance, Rationale, & Interoperability Modalities
GUI Graphical User Interface
HLA High-Level Architecture
HTML Hypertext Markup Language
HTTP Hypertext Transport Protocol
IA Information Assurance
IEEE Institute of Electrical and Electronics Engineers
INI Norwegian Defence Information Infrastructure
JC3IEDM Joint Consultation, Command and Control Information Exchange Data Model
JSON avaScript Object Notation
LVCAR LVC Architecture Roadmap
LVCAR-I LVC Architecture Roadmap Implementation
M&S Modelling and Simulation
MIM MIP Information Model
MIP Multilateral Interoperability Program
MSaaS M&S as a Service

FFI-rapport 2013/01674 77

MSDL Military Scenario Definition Language
MSG Modelling and Simulation Group
NAF NATO Architecture Framework
NATO North Atlantic Treaty Organization
NC3B NATO Consultation, Command and Control Board
NCIA NATO Communications and Information Agency
NDPP NATO Defence Planning Process
NETN NATO Education and Training Network
NII Networking and Information Infrastructure
NNEC NATO Network-Enabled Capability
OMT Object Model Template
OSI Open Systems Interconnection
REST Representational State Transfer
RPC Remote Procedure Call
RPR-FOM Realtime-Platform-Reference Federation Object Model
RSS Rich Site Summary
RTI Runtime Infrastructure
SISO Simulation Interoperability Standards Organization
SMC Service Management and Control
SMTP Simple Mail Transport Protocol
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOM Simulation Object Model
STANAG Standardization Agreement
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TIDE Technology for Information, Decision and Execution superiority
TOGAF The Open Group Architecture Framework
TTP Tactics, Techniques, Procedures
UDDI Universal Description, Discovery and Integration
WADL Web Application Description Language
WSDL Web Services Description Language
WWW World Wide Web
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

78 FFI-rapport 2013/01674

	Blank Page

