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English summary

A preliminary investigation of quantum chemical methods for the calculation of formation
enthalpies, crystal densities, and impact sensitivities is presented. In particular, all calculations
presented are density functional theory calculations with the B3LYP functional and the 6-31g(d)
basis set. In total, 14 high-energy compounds were investigated, including the known RDX,
NTO, and TNT, as well as some recently proposed compounds.

Gas formation enthalpies were calculated from atomization energies together with experimental
element formation enthalpies. Solid formation enthalpies were obtained from those of gas phase
by either experimental sublimation enthalpy data or empirical methods. The root mean square
error for the evaluation of solid formation enthalpies was found to be about 55 kJ/mol.

Crystal densities were approximated by two quantum chemical analogues of the empirical
volume additivity procedure, as suggested in the work of Rice et al. [1] and Politzer et al. [2].
In particular, estimates were obtained by calculating the molecular volume as that enclosed by
a 0.001 electrons/bohr3 isosurface of the electron density. A variant of this approach, taking
into account the electrostatic potential, is also evaluated. The root mean square error for these
methods was found to be 0.10 g/cm3. It is argued that this error is still too high for effective
estimation of detonation and combustion parameters.

A correlation between bond dissociation energies and impact sensitivities was obtained, based
on experimental data of the compounds RDX, NTO, TNT, and a trinitropyrazole. In particular,
the logarithm of the impact energy was shown to vary linearly with the bond dissociation
energy of the weakest X−NO2 bond divided by the electronic ground-state energy. Based on
this correlation, estimated impact energies for eight of the other compounds are presented.
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Sammendrag

Muligheten for estimering av formasjonsentalpier, krystalltettheter og gjennomslagssensitivitet
ved hjelp av kvantekjemiske metoder presenteres. Alle beregninger ble gjort med tetthetsfunk-
sjonalteori, der B3LYP-funksjonalen sammen med et 6-31g(d) basis-sett er benyttet. Totalt ble
beregninger utført på 14 molekyler, inkludert de mer kjente RDX, NTO, TNT, i tillegg til nye
foreslåtte forbindelser.

Gassformasjonsentalpier ble beregnet fra atomiseringsenergier og eksperimentelle atomentalpi-
formasjonsdata. Formasjonsentalpier for fast fase ble funnet fra gassformasjonsentalpiene ved
hjelp av enten eksperimentelle sublimeringsentalpidata eller empiriske metoder. Gjennomsnittlig
rot-avvik ble bestemt til omlag 55 kJ/mol.

Krystalltettheter ble estimert ved hjelp av to kvantekjemiske analoger til volumadditivitet-
metoden, foreslått i arbeidene til Rice et al. [1] og Politzer et al. [2]. Molekylvolumet i disse
metodene ble estimert som volumet begrenset av en 0.001 elektroner/bohr3 isoflate til elektron-
tettheten. En variant av denne metoden, der det elektrostatiske potensial begrenset til isoflaten
er en ekstra faktor, er også evaluert. Gjennomsnittlig rot-avvik ble bestemt til 0.10 g/cm3. Det
argumenteres for at denne feilen er for stor for effektiv estimering av detonasjons- og forbren-
ningsparametre.

En korrelasjon ble funnet mellom dissosiasjonsenergier og gjennomslagssensitiviteter, basert på
eksperimentelle data for RDX, NTO, TNT og et trinitropyrazol. Mer spesifikt korrelerer logar-
itmen til gjennomslagsenergien med dissosiasjonsenergien til den svakeste X−NO2-bindingen
dividert på den elektroniske grunntilstandsenergien. Basert på denne korrelasjonen, presenteres
estimat for gjennomslagsenergien til åtte av de andre forbindelsene.
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1 Introduction

This report was written as a part of a summer internship at FFI, 2014. The purpose I had in
mind while writing this report was two-fold. First, to provide a brief introduction to the field of
quantum chemistry. The methods routinely used in the field are rarely black-box and hence a
good grasp of the different theoretical aspects is helpful. This accounts for the extensive theory
section, which covers both general material to introduce the reader to quantum chemistry as
well as some recent research within the high-energy materials field. Second, to present the
results we achieved during these three months. In particular, we present estimates of formation
enthalpies, impact sensitivities, and crystal densities for a range of known and novel high-
energy compounds. These are shown in Figure 1.1.
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Figure 1.1 Studied compounds. RDX (1), NTO (2), TNT (3), a trinitropyrazole (4) [3], three
alternatives to NTO (5, 6, 7) proposed by us, a compound studied by FOI (8) [4],
three furazan derivatives (9, 10, 11) [5], a high-boron explosive (12) [6], a proposed
alternative to ammonium perchlorate (13) [7], and a tetrazole (14) [7].
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2 Theory

In quantum mechanics all the information one can possibly have of a system is encoded in the
wavefunction Ψ. For time-independent problems, it is obtained by solving the time-independent
Schrödinger equation

H ψ = Eψ, (2.1)

where H is the Hamilton operator, E is the energy, and ψ differs from Ψ by a phase-factor.
For a given Hamiltonian, equation (2.1) can have many solutions, but normally we are most
interested in the solution with the lowest energy E: the ground-state wavefunction and energy.

For molecular systems, the wavefunction will be a function of the electronic and nuclear co-
ordinates, denoted r and R, respectively. We write

ψ = ψ(r,R). (2.2)

The Hamiltonian for such systems contains nuclear and electronic kinetic energy terms as
well as Coulombic terms describing nuclear-nuclear repulsion, nuclear-electron attraction, and
electron-electron repulsion.

Equation (2.1) is much too difficult to solve for molecular systems and one must resort to
approximations. The first step is the decoupling of electronic and nuclear motion. The nuclei,
being many times more massive than electrons, move slowly. Thus, from the point of view
of electrons, the nuclei can be considered fixed. This is the Born-Oppenheimer approximation
[8, 9]. For a given set of nuclear coordinates R, one solves the electronic Schrödinger equation

H ψelec(r;R) = E(R)ψelec(r;R). (2.3)

The corresponding equation for the nuclei shows that they move in the potential energy gener-
ated by the electrons [9]; the function E(R) is therefore sometimes called the potential energy
surface. Methods that try to solve (2.3) directly are termed ab initio meaning “from first prin-
ciples”.

2.1 Geometry Optimization: Equilibrium Geometries and Transition Structures

The potential energy surface E(R) describes the electronic energy of the system as the mo-
lecular geometry R changes. Stable conformations of a molecule correspond to minima of this
potential energy and are called equilibrium geometries. A bond breaking, for example, can be
described by movement from one minima Rreactants to another Rproducts. During this reaction
path the molecule reaches a point of highest potential energy called a transition structure1. In
terms of the potential energy surface, transition structures are maxima in one direction and
minima in all others: they are first order saddle points. Finding equilibrium geometries and
transition structures is known as geometry optimization.

1Not to be confused with a transition state. The transition state may be different from the transition structure due to
other contributions to the energy; e.g. it may be temperature-dependent [8].
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Most optimization algorithms use information of inclination and curvature about a point Rk to
select an appropriate step Rk → Rk+1. This information is embodied in the gradient ∇E(R)

and Hessian G(R) of E, respectively. The potential energy surface can be approximated by a
Taylor expansion about some point Rk, truncated after second order:

E(R) = E(Rk) +∇E(Rk)(R − Rk) +
1

2
(R − Rk)

TG(Rk)(R − Rk). (2.4)

Taking the gradient of this equation, and supposing that at Rk+1 we will be at an extremum
(i.e. ∇E(Rk+1) = 0), the Newton-Raphson iteration [10]

Rk+1 = Rk −G(Rk)∇E(Rk) (2.5)

is obtained. Calculating and storing the Hessian G in each step is expensive, and optimiza-
tion methods often approximate it. The quasi-Newton methods, for example, estimate G with
increasing accuracy in each step [8]:

lim
l→∞

Gl = G. (2.6)

The GDIIS method, which is the standard minimization method of the GAUSSIAN09 software,
uses gradients and geometries of previous steps to minimize the Newton step Rk+1 − Rk [10].
The motivation for this can be appreciated by noting that, at convergence, the Newton step
vanishes. For transition state searches another method is employed in GAUSSIAN09: Rational
function optimization (RFO), for which the quadratic (2.4) is replaced by a rational function
approximation [10, 11].

Not only is the Hessian indispensable for choosing the next step in optimizations, it also char-
acterizes what kind of extremum has been found: if the Hessian G(R∗) only has positive eigen-
values, then R∗ is an equilibrium geometry; if it has one negative eigenvalue, R∗ is a transition
structure. We will return to transition structure searches in Section 2.9.

For a more detailed descriptions of these procedures, I recommend the review by Schlegel [10].

2.2 Electron-electron Interactions: Exchange and Correlation

One of the most challenging tasks in quantum chemistry is to properly describe the instantan-
eous interactions between electrons in a molecule. These interactions are normally grouped in
two categories: exchange and correlation. According to the Pauli exclusion principle, no two
electrons can be in the same quantum state [9]. Thus electrons tend to “avoid” one another;
this purely quantum mechanical effect goes by the name of exchange. Correlation, on the other
hand, refers to the more familiar instantaneous Coulombic interaction between electrons [12].

Which type of electron-electron interaction is dominant depends on the type of system. For
transition structures, a particular type of correlation (called static) not present for equilibrium
geometries becomes important. It arises from near-degeneracy of configurations as bonds are
stretched2. This is not incorporated in density functional theory (DFT) [13], and is treated in

2This means that the determinants corresponding to the different configurations cannot be treated in isolation.
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an ad hoc fashion by special functionals. For a proper description of such situations, multi-
reference methods are needed [12].

Even though DFT requires different functionals for different applications, it combines high
accuracy with low cost—comparable to Hartree-Fock—making it the ideal candidate for our
investigations.

2.3 Density Functional Theory

Ab initio methods seek the wavefunction ψ by attempting to solve the electronic Schrödinger
equation (2.3). Density functional theory, on the other hand, is based on the remarkable fact
that ψ is not really needed: as shown by Hohenberg and Kohn [14], all the ground-state inform-
ation of a system is determined solely by the electron density n(r).

Definition 1 The electron density n(r) is the probability density to find an electron at r.

Theorem 1 (Hohenberg-Kohn existence theorem) The ground-state energy and all other
ground-state electronic properties are uniquely determined by the electron density.

Thus the ground-state energy is a function of the function n(r), also known as a functional. We
write E = E[n(r)].

How does one decide if a given trial density n′(r) is appropriate? A procedure is provided by
the DFT variation theorem [9].

Theorem 2 (DFT variation theorem) For a trial density n′(r), the calculated energy
exceeds the ground-state energy of the true density n(r). That is,

E[n′(r)] ≥ E[n(r)]. (2.7)

It thus makes sense to choose the density which minimizes the energy.

The preceding discussion presupposes that the functional E[n(r)] is known—this is not the
case. To isolate contributions to the energy, it is common to introduce the Hohenberg-Kohn
functional F [n(r)], defined by

E[n(r)] =
∫

v(r)n(r) dr
︸ ︷︷ ︸

Electron-nuclear interaction

+ F [n(r)]. (2.8)

The Hohenberg-Kohn functional is further divided into contributions to kinetic energy as well
as correlation and exchange. A first approximation to the kinetic energy is provided by a non-
interacting system of electrons and denoted Ts[n(r)], while a first approximation to correlation
is the Coulomb interaction J [n(r)] of the electron density with itself. This Kohn-Sham decom-
position of the energy serves to define the important exchange-correlation functional Exc[n(r)]:

F [n(r)] = Ts[n(r)] + J [n(r)] + Exc[n(r)]. (2.9)

14 FFI-rapport 2014/01514



Note that DFT is only variational if the true functional E[n(r)] is known. The variation the-
orem breaks down when an approximation of Exc[n(r)] is made.

To make use of this theory, a functional form of the density n(r) is needed. The most common
is the Kohn-Sham approach (KS), in which the density is written in terms of a set of functions
called molecular orbitals ϕi:3

nKS(r) =
∑

i

|ϕi(r)|2 (2.10)

Minimizing the energy in the Kohn-Sham decomposition (2.8) for this expansion of the density
yields the Kohn-Sham equations, which are solved iteratively/self-consistently [8, 15].

As the exchange-correlation function Exc[n(r)] is unknown and no systematic procedure for
improvement exists, there are a large number of approximations of it. Two important classes are
the local density approximation (LDA) and generalized gradient approximation (GGA). LDAs,
still popular in solid-state physics, can be written as4

ELDA
xc [n(r)] =

∫
f(n(r)) dr. (2.11)

GGAs, more commonly used by chemists, introduces a non-local dependence on the gradient of
the density ∇n(r):

EGGA
xc [n(r)] =

∫
f(n(r),∇n(r)) dr. (2.12)

In our calculations, we have used the B3LYP functional. It is a hybrid functional: the exchange-
correlation energy is written as a weighted sum, fitted to atomic data, of the Hartree-Fock
exchange, an LDA, and two GGAs [16].

2.4 Basis Sets

The molecular orbitals ϕi(r) in equation (2.10) are normally expanded in terms of a basis set of
atomic orbitals χn(r). That is,

ϕm(r) =
∑

n

cmnχn(r). (2.13)

The problem of minimizing the energy (2.8) thus reduces to determining the coefficients cmn.

In our calculations we have used the 6-31g(d) Pople basis set5. Such Pople bases consist of
Gaussian type orbitals (GTOs),

χGTO
i,j,k,ζ(r) = Nxiyjzke−ζr2 , (2.14)

where N is a normalization factor, i, j, k are integers, and ζ is a constant. Orbitals of high
i + j + k and low ζ are often added to typical basis sets; they are called polarization (denoted
∗) and diffuse (denoted +) functions, respectively.

3This is the form of a density derived from a determinantal wave function (a Slater determinant).
4I have chosen to ignore spin; for an introduction to treating spin in DFT, see Jacob and Reiher [15].
5Also denoted 6-31g*. Detailed descriptions of this notation can be found elsewhere, e.g. Helgaker et al. [12].
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2.5 Nuclear Motion: Translation, Rotation and Vibration

In the Born-Oppenheimer approximation, nuclear and electronic motion are decoupled. Al-
though not an equally good approximation, it is useful to consider the different forms of nuclear
motion—translation, rotation, and vibration—as separable as well. If such an approximation is
made, the energy of an isolated molecule can be decomposed as

E = Eelec + Etrans + Erot + Evib. (2.15)

Each of these modes of motion has a set of states with different energies. Now consider a
gas consisting of many molecules, all having the possibility of being in these different energy
states. For such macroscopic systems, thermodynamics provides a description through quantities
such as temperature and pressure. How these quantities emerge from the quantum mechanics
governing the world of molecules is the subject matter of statistical mechanics, to which we
return in Section 2.6.2.

The following section will begin by clarifying some terminology before returning to the issue of
treating many-molecule systems; resolving this issue will lead us to the enthalpy of formation.

2.6 The Enthalpy of Formation

2.6.1 The Enthalpy, the Reaction Enthalpy, and the Enthalpy of Formation

Definition 2 The enthalpy H of a system is defined as

H = E + pV, (2.16)

where E, p, and V is the energy, pressure, and volume of the system, respectively.

The “reaction enthalpy” is a common term in the literature; however, as one may note from the
above definition, talking about the enthalpy as a property of a reaction (instead of a system)
can lead to some confusion. The reaction enthalpy is actually a weighted sum of component
enthalpies:

Definition 3 The reaction enthalpy ∆rxH of a reaction with stoichiometric numbers
ν1, ν2, . . . , νn is defined as

∆rxH =
n∑

i=1

νiHi, (2.17)

where Hi is the enthalpy of the component i.

Finally, we define the enthalpy of formation:

Definition 4 The enthalpy of formation of a molecule, denoted ∆fH , is defined as the
reaction enthalpy of the reaction forming the molecule from its constituent elements in their
most stable state at temperature T = 298 K and pressure p = 1 atm [17].

16 FFI-rapport 2014/01514



The enthalpy of formation of a compound is very important for the performance of high-energy
materials; it allows for the calculation of the amount of energy released in decomposition or
combustion [18].

2.6.2 The Road from Energies to Enthalpies: Statistical Mechanics

To evaluate the formation enthalpy of a compound we need to be able to find component
enthalpies. For this, we apply the standard statistical mechanics procedure6: find the energy
states Ei; form the partition function

Q =
∑

i

g(Ei) exp(−Ei/kT ), (2.18)

g(Ei) being the degeracy of Ei; calculate the enthalpy H from Q. In general, the partition
function, and hence the enthalpy, is a function of temperature and pressure:

Q = Q(T, p), H = H(T, p). (2.19)

In the case of decoupled electronic, translational, rotational, and vibrational states, the partition
functions for each mode of motion forms the molecular partition function

Q = Qelec Qtrans Qvib Qrot (2.20)

resulting in the addition of energies, in accordance with equation 2.15. If one now considers a
set of N non-interacting indistinguishable molecules, an ideal gas, the total partition function Q
is obtained by

Q =
QN

N !
. (2.21)

Thus, for an ideal gas, finding Hi(T, p) for the component i amounts to knowing the electronic,
translational, vibrational, and rotational energy states. For the modes of motion where all the
states are freely available for excitation [20], the equipartition principle holds: each degree of
freedom contributes

1

2
RT (2.22)

to the energy. We assume this to be true for translational and rotational energy levels. Similarly,
we assume that none of the excited electronic states are available; this allows us to consider
only the ground state. Vibrational energy levels, however, must be treated explicitly.

2.6.3 Vibrational Motion: The Harmonic Oscillator

Treating vibrational motion is elegantly done by the harmonic oscillator approximation, in
which the potential E(R) experienced by the nuclei is expanded about an equilibrium geometry

6Essentially, this amounts to finding the partition function, because every thermodynamic quantity (enthalpy, en-
tropy, internal energy, chemical potential, etc.) can be calculated from it [19].
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Req to second order (see equation 2.4). If a transformation of the nuclear coordinates R %→ Q is
made, where Q are called normal modes, the wavefunction ψvib(Q) takes on a product-form of
one-dimensional harmonic oscillators ψvi(Qi) [9]:

ψvib(Q) =
∏

i

ψvi(Qi) =⇒ Ev1,v2,...,v3N−6 =
∑

i

Evi . (2.23)

With the vibrational energy levels thus found, the partition function Q can be formed, yielding
the final result7

H(T ) = E(T ) + pV

= E(0) + Evib(0) + Evib(T ) + Etrans(T ) + Erot(T ) +RT

= E(0) +
1

2
h
∑

i

fi +NAh
∑

i

fi
ehfi/kT − 1

+
3

2
RT +

3

2
RT +RT,

(2.24)

where fi are the vibrational mode frequencies, h is the Planck constant, NA Avogadro’s num-
ber, k the Boltzmann constant, and R the universal gas constant. To recap, this is the com-
ponent enthalpy at temperature T for an ideal gas within the harmonic oscillator approxima-
tion. We are actually interested in solid formation enthalpies, and one more trick is needed to
achieve this: Hess’ law.

2.6.4 Hess’ Law: Combining Fictitious Reactions

The solid formation enthalpy of a solid M(s) can in principle be calculated by the same proced-
ure as sketched for an ideal gas above. However, this is a complicated endeavor which we will
not pursue. Instead, we take a route through the gas phase by applying the useful Hess’ law:

Theorem 3 (Hess’ Law) If ∆rxHi are the reaction enthalpies of r reactions, then the
reaction enthalpy of the net reaction equals the sum of the individual reaction enthalpies.
That is,

∆rxH =
r∑

i=1

∆rxHi. (2.25)

Thus we calculate enthalpies for the gas-phase and then apply sublimation enthalpies justified
by Hess’ law:

E(0 K, gas) (2.24)−−−→ H(T, gas) (Hess’ law)−−−−−−→ H(T, solid).

As an example, take the compound CaHbNcOd(s). To apply Hess’ law, construct a set of fic-
titious reactions which, when added all up, result in the formation reaction whose enthalpy of

7Note that the pressure dependence of H has vanished. This is true for ideal gases [21].
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reaction is the enthalpy of formation. One possible choice is the following:

aC(g) + bH(g) + cN(g) + dO(g) −−→ CaHbNcOd(g) (2.26)

CaHbNcOd(g) −−→ CaHbNcOd(s). (2.27)

aC(graphite) −−→ aC(g) (2.28)
b

2
H2(g) −−→ bH(g) (2.29)

c

2
N2(g) −−→ cN(g) (2.30)

d

2
O2(g) −−→ dO(g) (2.31)

The two cases in which experimental enthalpy data must be used are (2.27) and (2.28). In our
work, we used experimental data for (2.27)–(2.31), thus making the following quantum chem-
ical calculations required: energy calculations on C(g), H(g), N(g), O(g), and CaHbNcOd(g).

For the cases in which no enthalpy of sublimation data is available, empirical methods can be
used: the Trouton’s approximation yields the estimate [7]

∆subH[J/mol] = 188Tm[K], (2.32)

where Tm is the melting temperature; if no melting point data is available, the Joback method
[22] can first be used for Tm, then (2.32) yields ∆subH; and, Keshavarz [23] has published a
method for calculating sublimation enthalpies based on molecular weight and some structure
contributions.

2.7 Crystal Density Approximations

Detonation and combustion performance depend to a large extent on the crystal density ρ of a
compound. Accurate estimation of this quantity is hence crucial to determine whether a novel
energetic material is worth pursuing further.

A simple empirical method is the volume additivity method. It assigns a certain amount of
volume to molecular groups and atoms such that, upon addition of all the individual volume
contributions that make up a molecule, we get a “molecular volume”. If M is the mass of a
single molecule, then the density ρ can be approximated by

ρ =
M∑
i Vi

, (2.33)

where Vi is the volume contribution of the atom or group i. Holden et al. [24] notes two objec-
tions to such an approach: first, the assignment of volume to atoms and groups is, even if one
adds the environment of the group as a factor, limited by the scope of the fitting set, and thus
is not applicable to novel, unusual compounds; second, it does not readily take into account
molecular conformation or crystal packing efficiency.

Rice et al. [1] provided a non-empirical method for calculating the “molecular volume”; they
suggested that the volume enclosed by an isosurface of the electron density n(r) provides a

FFI-rapport 2014/01514 19



measure of the molecular volume. In particular, they approximated the density by

ρisosurface =
M

V
, (2.34)

where V is the volume enclosed by the 0.001 electrons/bohr3 electron density isosurface.
Note that this is superior to volume additivity in two respects: there is no fitting to data and
it is easily obtained for any molecule. The choice of isosurface is arbitrary, though Rice et al.
[1], using the 0.001 electrons/bohr3 isosurface on 180 neutral CHNO molecules and 38 high-
nitrogen molecules, achieved a root-mean-square deviation of 3.6 and 3.4%, respectively.

Although the isosurface method provides a less arbitrary way of predicting the molecular
volume, it completely ignores intermolecular interactions. Politzer et al. [2] suggested that
information of the intermolecular interactions are present in the electrostatic potential V(r).

Definition 5 The electrostatic potential (ESP) V(r) of a state with electron density n(r) is
defined by

V(r) =
∑

N

ZN

|RN − r|
−

∫
n(r’)
|r’ − r|

dr’, (2.35)

where N , ZN , and RN denote the nuclei, their atomic numbers, and their position vectors.

Picking one parameter derived from V(r), restricted to r on the 0.001 electrons/bohr3 isosur-
face, Politzer et al. [2] achieved better agreement with experiment [25]. The parameter con-
sidered was

σ2+σ
2
−

σ2+ + σ2−
(2.36)

where σ2− and σ2+ are the variances of positive and negative V(r) values with r restricted to the
isosurface. From this, a least-squares fit was done to

ρPolitzer = α

(
M

V

)
+ β

(
σ2+σ

2
−

σ2+ + σ2−

)
+ γ. (2.37)

It is important to note that weighting the importance of molecular volume to ESP parameter(s)
requires fitting to experimental data, thus bringing back in the empiricism and hence non-
transferability.

2.8 Sensitivity

The sensitivity of a material refers to its susceptibility to initiation due to external explosion
stimuli. These can be grouped as thermal, mechanical or electrostatic; in particular, common
measurements made on explosives include sensitivity to impact, friction, electrostatic discharge,
and heat [7].

There is abundant experimental data on impact sensitivity, measured by the so-called dropham-
mer method, thus making it the best candidate for testing theoretical models of sensitivity.
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The value measured by drophammer tests is the height h50 at which 50% of the drops initiate
reaction. Not surprisingly, since the potential energy of a body in a gravitational field is propor-
tional to its mass, the h50 value depends on the mass dropped. A measure independent of the
mass—at least not in any trivial sense—of the sample is the impact energy, defined as [26]

I50 = mgh50, (2.38)

where g is the acceleration of gravity. This is the kinetic energy at impact for which 50% of the
samples dropped initiates.

A large number of correlations between sensitivity and molecular or crystal properties have
been identified, including the number of low-frequency (doorway) modes [27, 28], band gaps
[29], composition [30], ESP properties [31, 32], and bond dissociation energies [32, 33]. Ini-
tiation is a very complex process, as pointed out by Dlott [27], and simple correlation studies
should be used with caution as evidence for mechanistic processes. Even so, many of these cor-
relations can be traced to the special properties of X−NO2 bonds, thus leading some to believe
the bonds to be “trigger-linkages” for initiation [26].

No matter what the reason, if a correlation exists, it can predict the sensitivity of novel com-
pounds for which no data exists. This is our motivation for considering one such correlation:
that of bond dissociation energies.

2.8.1 The Bond Dissociation Energy

The work of Mathieu [34] and Song et al. [33] documents a correlation between sensitivity and
bond dissosiation energies.

Definition 6 The bond dissociation energy (BDE) of a bond, written A−B, is defined to be

EBDE = (E(A) + E(B)) − E(A−B), (2.39)

where E(X) denotes the ground-state electronic energy of compound X (ignoring zero-
point vibrational energy).

In the case of CHNO explosives, the bond(s) in question are of the type X−NO2. If there are
several such bonds in a molecule, the one of lowest BDE is used as a measure of sensitivity.

2.8.2 Reaction Kinetics as a Possible Explanation

A possible explanation of the observed correlation of bond dissociation energies and sensit-
ivity is proposed by Mathieu [34]. It is based on Arrhenius kinetics and is described in the
following.

Assuming that the rate-limiting step in initiation is the unimolecular dissociation reaction

A−NO2 −−→ [A···NO2]
‡ −−→ A · +NO2 · (2.40)
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Arrhenius kinetic theory will relate the reaction rate r to the activation energy to reach the
transition state E‡ by

r = κ[A−NO2], κ = Ce−
E‡
RT , (2.41)

where [A−NO2] denotes the concentration of A−NO2 and C is a constant. Taking the logar-
ithm of r, we obtain

ln r = ln(C[A−NO2])−
E‡

RT
. (2.42)

And now comes the key step: we are supposed to believe that the higher the rate of reaction r

the higher the sensitivity. That is,

ln

(
1

I50

)
= − ln I50 ∝ ln r = ln(C[A−NO2])−

E‡

RT
. (2.43)

If ln(C[A−NO2]) can be treated as a constant for a set of compounds, then the impact energy
can be expressed as

ln I50 = C1

(
E‡

RT

)
+ C2. (2.44)

Initiation in solid explosives is thought to occur by hot-spot formation [35], in which thermal
energy become concentrated in small regions of the material. Hence, in such regions, the local
temperature T will be very different from the ambient 298 K temperature. The observed correl-
ation of sensitivity to EBDE/E can then be explained if

1. The local temperature is proportional to the energy of the molecule: T ∝ E.
2. The activation energy is proportional to the bond dissociation energy: E‡ ∝ EBDE.

In our work we therefore try to locate transition structures and thus approximate E‡. Based on
T ∝ E,

ln(I50) = C ′
1

(
E‡

E

)
+ C ′

2. (2.45)

Although fewer assumptions are made in (2.45), B3LYP is known to make significant errors in
barrier heights [36, 37]. Therefore, we add the second assumption—that is, E‡ ∝ EBDE—and
postulate that

ln(I50) = C ′′
1

(
EBDE

E

)
+ C ′′

2 . (2.46)

The correlation is not expected to be perfect. First, it ignores the role of the heat capacity and
thermal conductivity [26]; if these are high it will help suppress hot-spot formation [27], thus
reducing the impact sensitivity. Second, if several weak X−NO2 are present, the trigger-linkage
hypothesis and simple probability theory dictate that the more such bonds, the more sensitive
the compound [34]. Third, the X−NO2 bond dissociation might not be the rate-limiting step of
initiation.
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2.8.3 Complications: Bond Dissociation Energies and Quantum Chemistry

Evaluating the bond dissociation energy (see equation 2.39) requires the calculation of
E(A−NO2), E(A · ), and E(NO2 · ). Although all these energies are accurate, measured by
relative errors, the difference

EBDE = (E(A · ) + E(NO2 · ))− E(A−NO2) (2.47)

is a small quantity and may be very inaccurate.

Choosing the same basis set for all three calculations results in an uneven description: the
fragments (A· and NO2·) effectively enjoy a larger basis set by “borrowing” from orbitals on
the other fragment when part of the molecule A−NO2. This is the basis set superposition error
(BSSE), which may be corrected for by applying the counterpoise correction [38]. Another
source of error is the neglection of zero-point vibrational energies.

In our work neither the BSSE nor zero-point vibrational energies were taken into account. We
are encouraged by the fact that, in the work of Song et al. [33], the correlation was equally
strong when these effects were taken into account as when they were not.

2.9 Transition Structures

As mentioned in Section 2.1, a transition structure R∗ is a nuclear geometry for which the
Hessian G(R∗) has a single, negative eigenvalue8.

While minimation runs (i.e. finding equilibrium geometries) usually converge to a minimum
irrespective of the suitability of the initial geometry, this is not the case with transition structure
searches: for minimization, the gradient always point down-hill; for transition structures, one
must step up-hill in one direction and down-hill in every other. Such searches often end in a
minimum or a saddle point of order greater than one. Choosing the initial geometry is therefore
essential to successfully locate transition structures. There are many possible strategies to
choose an initial geometry, and I will review some of them.

One strategy is simply to use “chemical intuition”. This corresponds to choosing an initial
geometry which minimizes repulsion (according to your own reckoning). A useful assumption
to make is the Hammond postulate: molecules of similar energy have similar structures [10].
The transition structure is thus more similar to the products in endothermic reactions, and more
similar to the reactants in exothermic reactions.

If no analogous reactions exist or intuition fails, there are methods which produce an initial
guess for the transition structure from the product and reactant geometries [10]: among these
is the quadratic synchronous transit (QST) method, in which a series of steps are taken along
the path connecting the reactants and product, the maximum being selected as the initial guess;
and, the empirical valence bond (EVB) model, which constructs surface approximations to the

8Or a single imaginary frequency, since the frequencies are proportional to the square roots of the eigenvalues [8].
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product and reactant minima and look for a minimum along the intersection of the two surfaces.

Another option is to do a grid search (or scan), in which some coordinates are chosen and
E(R) evaluated by incrementally changing these. This can either be done with fixed geometries
(relaxed search) or re-optimized for each incremental change (rigid search).

Once a transition structure search is successful, one must make sure of the following: first,
an accurate Hessian must be calculated to confirm the result; second, displacement along the
normal mode Qk corresponding to the negative eigenvalue λk must “resemble” the reaction
path. If its difficult to ascertain, reaction path following should be performed (see Schlegel
[10]).

As noted in Section 2.2, methods that perform well for equilibrium geometries and thus for
bond dissociation energies (such as B3LYP), may fail to describe transition structures. In partic-
ular, B3LYP is known to systematically underestimate barrier heights [36, 37] and inaccurately
describe saddle point geometries [37]. Alternative functionals designed to provide accurate
saddle point energies; for example, the BH&HLYP (Becke half-and-half LYP), which most
significantly differs from B3LYP in that the fraction of Hartree-Fock exchange is increased, per-
forms much better for saddle points [37]. A similar modification of the MPW1PW91, called the
modified Perdew-Wang 1-parameter-method (MPW1K), has shown promise [36, 37] and should
be considered for future work. Be aware, however, that these modified functionals usually
perform worse on equilibrium geometries.

2.10 Detonation and Combustion Parameters

We estimated common performance parameters for a range of CHNO compounds using the
EXPLO5 program [39]. For a list of calculated quantities, see Section 3.2.

I will briefly mention the assumptions that are made by the program for calculating the para-
meters listed above. First, to solve the shock adiabat equation, the phases are modeled by
different equations of state (EOS). The gas-phase model is the Becker-Kistiakowsky-Wilson
(BKW) EOS. For the solid carbon, either the Cowan and Fickett EOS or the Murnaghan EOS
is used. Thermodynamic functions are then calculated using these EOS and the shock adiabat
equation solved iteratively yielding the detonation parameters.

To find rocket parameters, such as the specific impulse, the flow through the nozzle must be
characterized. The EXPLO5 program allows for the following flow idealizations: frozen equi-
librium, for which the equilibrium inside the rocket is retained during the flow; equilibrium
flow, for which the composition is always at chemical equilibrium; or, finally, equilibrium to
the nozzle throat and frozen from the throat to the exit. Combining one of the flow idealiz-
ations above with the mass, momentum, and energy conservation equations yield the rocket
parameters. For these calculations the gas-phase EOS is the virial equation, truncated after the
ρ2 term.
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3 Procedure

The GAUSSIAN09 software [11] was used for quantum chemical calculations, while the pre-
paration of input files were done in GaussView [40]. For the calculation of detonation and
combustion parameters, we used EXPLO5 [39].

3.1 Quantum Chemical Calculations in GAUSSIAN09

Our choice of method was DFT with the B3LYP functional and the 6-31G(d) Pople basis set.
To request this method, write b3lyp/6-31g(d) in the Route section of the input file.

For geometry optimization, the keyword opt is provided in the Route section. To find a trans-
ition state instead of a minimum, include the option ts in the input: opt=(ts, calcfc).
The option calcfc ensures that the Hessian is calculated in the initial step.

To find enthalpy corrections, the vibrational energy levels must be calculated. This is done
by adding the keyword freq in the Route section. To do an optimization and a subsequent
vibrational energy calculation, write opt freq. The vibrational frequencies also confirm
whether a minimum (or transition structure) has been found. The ideal gas enthalpy

H(T ) = E(T ) +RT (3.1)

is provided in the output file by e.g.

Sum of electronic and thermal Enthalpies= -878.846571.

If the total spin is non-zero an unrestricted formalism must be used. This is requested by
adding a “u” in front of the method name, e.g. ub3lyp. Below the Route section is a line
containing

charge multiplicity

0 2

corresponding to a total spin of 1/2.

GAUSSIAN09 supports the calculation of the electron density and the volume of its 0.001 a.u.
isosurface. Requesting the calculation of the density is done by writing density in the Route
section, while the volume integration by volume=tight. The option tight is added since
the expected accuracy of the Monte carlo integration [41] is only about 10% without it [11].

3.2 Detonation and Combustion Parameters in EXPLO5

In detonation calculations we used the BKWG EOS without covolume corrections. For the
combustion parameters, we assumed a chamber pressure of 70 bar and ambient conditions of 1
bar and 298 K as well as equilibrium flow through the nozzle.
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Using the crystal density ρ, the heat of formation ∆fH , and the stoichiometry, the following
performance parameters were calculated:

• Detonation parameters:

– Detonation velocity D

– Detonation pressure P

– Heat of explosion Qv

– Temperature of explosion Tv

– Specific gas volume released (per mass explosive) V0

• Combustion parameters:

– Specific impulse Isp.
– Characteristic exhaust velocity c∗.
– Combustion chamber temperature Tp.
– Mean molar mass of gaseous products M̄g.

3.3 Enthalpy of Formation

Calculating the gas enthalpy of formation was done as described in Section 2.6.1. To find the
solid enthalpy of formation, the sublimation enthalpy must be subtracted from the gas formation
enthalpy by Hess’ law. The sublimation enthalpies were estimated by the method described by
Keshavarz [23] and by the Trouton method (see equation 2.32). Applying the Trouton method
requires the melting point, which was provided by the Joback method [22] if no experimental
value was found.

3.4 Crystal Density

In our work, we have estimated the crystal density ρ by the isosurface method suggested by
Rice et al. [1] and Politzer et al. [2]. That is, from Rice et al. [1],

ρisosurface =
M

V
, (3.2)

where V is the volume enclosed by the 0.001 electrons/bohr3 electron density isosurface. We
refer to this as the “isosurface method”. Similarly, we refer to the method proposed by Politzer
et al. [2],

ρPolitzer = α

(
M

V

)
+ β

(
σ2+σ

2
−

σ2+ + σ2−

)
+ γ, (3.3)

as the “Politzer method”. We used the parameters optimized by Rice and Byrd [25] from 180
neutral and 23 ionic CHNO systems for the B3LYP/6-31g(d,p) level of theory; these are tabu-
lated in Table 3.1. Since the parameters are optimized for 6-31g(d,p) basis set, we recalculated
the density with the 6-31g(d,p) basis set (for the 6-31g(d) optimized structures).
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Table 3.1 Optimized Politzer parameters. The parameters α,β, and γ from [25] optimized to the
B3LYP/6-31g(d,p) method and basis set.

Parameter Unit Value

α g/cm3 1.0462

β g/(cm3 Eh
2) 826.8681

γ g/cm3 −0.1586

Finding the ESP parameter (given by σ+ and σ−) requires the density n(r) (to find the isosur-
face) as well as the electrostatic potential V(r) (to calculate the variances). These values can be
output from GAUSSIAN09 to so-called CUBE files by using

1. The formchk utility. Creates a formatted checkpoint file (.fch) from the checkpoint file
(.chk).

2. The cubegen utility. This creates a CUBE file (.cub) file from the .fch file containing
values of the quantity of interest. We chose the default 803 points of evaluation. (This, on
average, yielded about 2000 points on the 0.001 electrons/bohr3 isosurface.)

Reading off the data from these .cub files we did with a MATLAB program (see Appendix D).
To identify a point as “on” the isosurface, we set the tolerance to

∣∣n(r)− 0.001 electrons/bohr3
∣∣ < 10−4 electrons/bohr3 . (3.4)

3.5 Bond Dissociation Energies

For compounds containing X−NO2 bonds we calculated the dissociation energies by using
equation 2.39. If several such bonds were present, we only used the lowest EBDE in the sensit-
ivity correlation.

3.6 Transition structures

Three strategies were used to produce initial geometries for transition structure searches:

1. Intuition. Guessing non-systematically by stretching X−NO2 bonds and changing the
O−N−O angle.

2. Hammond’s postulate. Weighted averaging of the Z-matrices of the optimized geomet-
ries of the reactant, Y−NO2, and the products, Y· and NO2·. For the script used, see
Appendix E.

3. Quadratic synchronous transit (QST). The input for such searches was from optimized
geometry of reactants and products (QST2) and with an additional Hammond transition
state guess (QST3). In GAUSSIAN09 this is requested by adding opt=QSTn to the
Route section.
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Confirming the result was done by recalculating an accurate Hessian (freq) and inspecting the
normal mode displacement in GaussView5.
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4 Results

4.1 Enthalpy of Formation

Gas formation enthalpies, calculated by DFT at the B3LYP/6-31g(d) level of theory, are listed
in Table 4.2. Atomic energies of C, H, N, O, and B was required to find these and are listed in
Appendix A. From the gas formation enthalpies, estimates of the solid formation enthalpies was
obtained by the Keshavarz and Joback/Trouton methods and are listed in Table 4.1. Comparison
of gas and solid formation enthalpies is shown in Figures 4.1 and 4.2.

Table 4.1 Solid formation enthalpies. The formation enthalpies ∆fHsolid calculated by the
Keshavarz and Joback/Trouton method are listed and compared to experimental values
when possible. Values for which an experimental melting point value was used instead
of the Joback estimate are marked with a dagger (†).

Compound
∆fHcalc

solid[kJ/mol]
∆fH

exp
solid[kJ/mol]

Deviation[kJ/mol]
Keshavarz Joback/Trouton Keshavarz Joback/Trouton

RDX (1) 67.8 108.4† 79.1[42] −11.3 29.3

NTO (2) −35.4 −95.8† −117.2[43] 81.8 21.4

TNT (3) −32.2 −22.9† −63.2[44] 31.0 40.3

(4) 200.5 175.5† 93.7[3] 106.8 81.8

(5) 105.2 36.5 – – –
(6) 111.8 71.3 – – –
(7) 137.8 37.5 – – –
(8) 176.3 104.4 – – –
(9) 428.4 344.9 372.8[5] 55.6 −27.9

(10) 696.3 594.7 667.8[5] 28.5 −73.1

(11) 661.6 601.1 673.2[5] −11.6 −72.1

(13) −579.9 −518.1 – – –
(14) 633.7 536.8 – – –
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Table 4.2 Gas formation enthalpies. The formation enthalpies ∆fHgas calculated by
DFT-B3LYP/6-31g(d) are listed and compared to experimental values when possible.

Compound ∆fHcalc
gas [kJ/mol] ∆fH

exp
gas [kJ/mol] Deviation[kJ/mol]

RDX (1) 198.3 191.6[45] 6.7

NTO (2) 6.2 – –
TNT (3) 82.1 24.1[46] 58.0

(4) 261.6 – –
(5) 159.2 – –
(6) 221.0 – –
(7) 188.3 – –
(8) 241.1 – –
(9) 504.7 – –
(10) 780.0 – –
(11) 710.2 – –
(12) −273.2 – –
(13) −415.8 – –
(14) 686.0 – –
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Figure 4.1 Formation enthalpies as compared to experimental values. Calculated gas and solid
formation enthalpies ∆fHcalc are plotted against experimental values ∆fHexp.
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Figure 4.2 Error of calculated gas and solid formation enthalpies. Calculated gas and solid
formation enthalpies ∆fHcalc are plotted against the error compared to experimental
values ∆fHexp.

4.1.1 Evaluation of the Joback, Trouton, and Keshavarz Methods

Melting points calculated by the Joback group contribution method [22] as well as sublimation
enthalpies by the Trouton and Keshavarz method [23] are compared to experimental values in
Table 4.4 and 4.3, respectively.

Table 4.3 Sublimation enthalpies by the Keshavarz and Trouton methods. Keshavarz and
Trouton sublimation enthalpies are compared to experimental data.

Compound
∆subHcalc[kJ/mol]

∆subHexp[kJ/mol]
Deviation [kJ/mol]

Keshavarz Trouton Keshavarz Trouton

RDX (1) 130.4 89.9 112.5[45] 17.9 −22.6

TNT (3) 114.3 66.8 105.0[47] 9.3 −38.2
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Table 4.4 Melting points by the Joback method. Calculated melting points T Joback
m are compared

to experimental data.

Compound T Joback
m [K] T exp

m [K] Deviation[K]

RDX (1) 710.4 478.2 232.2

NTO (2) 628.3 542.7 85.6

TNT (3) 666.5 355.1 311.4

(4) 785.2 458.2 327.0

4.2 Crystal Density

Calculated and experimental crystal densities are presented in Table 4.5 and Figures 4.3, 4.4.
The calculated densities was obtained by the Politzer and isosurface methods, as described in
3.4.
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Figure 4.3 Calculated crystal densities compared with experimental data. Calculated densities
ρcalc by the isosurface and Politzer methods are compared to experimental values
ρexp.
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Figure 4.4 Error of calculated crystal densities. Calculated densities ρcalc by the isosurface and
Politzer methods are compared to experimental values ρexp .

Table 4.5 Crystal densities. Calculated densities ρcalc by DFT-B3LYP: the isosurface method
with a 6-31g(d) basis set, and the Politzer method with a 6-31g(d,p) basis set. The
calculated densities are compared to experimental data when possible.

Compound
ρcalc[g/cm3]

ρexp[g/cm3]
Deviation[g/cm3]

Isosurface Politzer Isosurface Politzer

RDX (1) 1.93 1.87 1.80[7] 0.13 0.07
NTO (2) 1.73 1.75 1.91[48] -0.18 -0.16
TNT (3) 1.69 1.74 1.64[7] 0.05 0.10
(4) 1.78 1.82 1.88[3] -0.10 -0.06
(5) 1.85 – – – –
(6) 1.92 – – – –
(7) 1.87 – – – –
(8) 1.83 – – – –
(9) 1.87 1.86 1.96[5] -0.09 -0.11
(10) 1.98 1.92 2.02[5] -0.04 -0.10
(11) 1.85 1.79 1.85[5] 0 -0.06
(12) 1.59 – – – –
(13) 1.82 – – – –
(14) 1.84 – – – –
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4.3 Detonation and Combustion Parameters

Calculated detonation parameters and combustion parameters are tabulated in Table 4.6 and 4.7,
respectively.

Table 4.6 Detonation parameters. Calculated detonation velocity D, detonation pressure P ,
heat of explosion Qv, temperature of explosion Tv, and released specific volume V0.
The detonation velocity and pressure was compared to experimental data when
possible.

Compound Dcalc[m/s] Dexp[m/s] P calc[kbar] P exp[kbar] Qv[kJ/kg] Tv[K] V0[m3/mol]

RDX (1) 9205 8750[7] 412 347[7] −6283 4213 731

NTO (2) 7633 8560[48] 243 272[48] −4116 3400 689

TNT (3) 7412 6950[7] 230 210[7] −5382 3743 571

(4) 8431 8651[3] 330 359[3] −6562 5282 638

(5) 8387 – 323 – −5362 4517 672

(6) 9192 – 408 – −6243 4539 748

(7) 9017 – 371 – −5695 3875 776

(8) 8389 – 330 – −6055 4504 632

(9) 8703 9600[5] 365 – −6925 5674 612

(10) 9221 10000[5] 428 – −7106 5734 629

(11) 9217 – 406 – −7388 5996 662

(13) 5837 – 137 – −1562 2078 622

(14) 8933 – 355 – −5711 4370 723

4.4 Statistical Analysis of Methods for Enthalpy, Density, Detonation Velocity and
Pressure Estimation

We have calculated root mean square error ∆RMSE and signed mean error ∆sgn,

∆RMSE =

√
1

N

∑
(xcalc − xexp)2 (4.1)

∆sgn =
1

N

∑
(xcalc − xexp), (4.2)

for enthalpies, crystal densities, detonation pressures, and detonation velocities; see Table 4.8.

To find some measure of our ability to distinguish between compounds through our methods,
we have considered the approximate 68% confidence interval given by9 (ρ−∆RMSE, ρ+∆RMSE).
We define a confidence interval fraction ξ as the size of this confidence interval divided by the
typical range for the given quantity. It is listed in Table 4.9. If ξ = 0, our method is accurate; if
ξ = 1, we cannot have any confidence in our calculations.

9This is justified by the fact that ∆RMSE is an estimate for the standard deviation of the error.
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Table 4.7 Combustion parameters. Calculated specific impulse Isp, characteristic velocity c∗,
isobaric combustion temperature Tp, mean molar mass of gaseous products M̄g, and
oxygen balance Ω. In all calculations, the chamber pressure was assumed to be 70 bar
and the flow through the nozzle at equilibrium.

Compound Isp[s] c∗[m/s] Tp[K] M̄g[g/mol] Ω[%]

RDX (1) 271 1613 3360 24.2 −21.6

NTO (2) 211 1309 2399 26.0 −24.6

TNT (3) 212 1316 2158 21.6 −74.0

(4) 266 2612 3694 30.2 −3.9

(5) 250 1410 3378 31.1 4.6

(6) 269 1512 3425 27.3 0

(7) 258 1569 3035 23.1 −24.5

(8) 259 1553 3438 26.6 −25.8

(9) 254 1441 3878 31.5 0

(10) 261 1475 3961 30.6 0

(11) 291 1644 4383 28.3 −10.3

(13) 150 924 1617 36.0 35.6

(14) 257 1579 3331 24.1 −28.2

4.5 Sensitivity and Bond Dissociation Energy

As expected (see Section 2.8.2) a linear relationship between EBDE/E and ln(I50/I◦50) was
obtained,

ln

(
I50
I◦50

)
= 1.653 × 104

(
EBDE

E

)
+ 0.797, (4.3)

for the four compounds for which experimental impact sensitivities could be found: RDX (1),
NTO (2), TNT (3), and the trinitropyrazole (4). The correlation coefficient is R2 = 0.9978 for
the logarithmic relationship proposed by Mathieu [34], but only R2 = 0.9508 for the linear
relationship proposed by Song et al. [33]. The logarithmic fit is presented in Figure 4.5.

From (4.3) we have estimated the impact sensitivity of the compounds (5, 6, 7, 8, 9, 10, 12,

Table 4.8 Method error estimation. The root mean square error and mean signed error, ∆RMSE

and ∆sgn, respectively, was found for the methods of enthalpy, density, detonation
velocity, and detonation pressure calculation.

∆fH[kJ/mol] ρ[g/cm3]
D[m/s] P [kbar]

Joback/Trouton Keshavarz DFT (gas) Isosurface Politzer

∆RMSE 54.7 57.6 41.3 0.10 0.10 676 40

∆sgn 0 40.1 32.4 −0.03 −0.04 −318 7
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Table 4.9 Confidence interval fraction ξ. To calculate this fraction, we have given typical
ranges of density, formation enthalpy, detonation pressure, and detonation velocity
based on the compounds for which we have experimental data.

Property Typical range Method ∆RMSE ξ = 2∆RMSE
Typical range

∆fH −200–800 kJ/mol
Joback/Trouton 54.7 kJ/mol 11%

Keshavarz 57.6 kJ/mol 12%

DFT (gas) 40.1 kJ/mol 8%

ρ 1.60–2.10 g/cm3 Isosurface 0.10 g/cm3 40%

Politzer 0.10 g/cm3 40%

D 6500–10000 m/s Joback/Trouton for ∆fH , 676 m/s 38%

isosurface for ρ, EXPLO5.

P 200–400 kbar Joback/Trouton for ∆fH , 40 kbar 40%

isosurface for ρ, EXPLO5.

13). The results are summarized in Table 4.10.
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Figure 4.5 Impact sensitivity correlation with bond dissociation energy. Calculated EBDE/E

values plotted against the logarithm of experimental impact energies ln(I50/I◦50),
with the impact energy given in J and reference value I◦50 = 1 J.
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Using equation 4.3, we estimated the impact sensitivity for the compounds with X−NO2 bonds.
These estimates are listed in Table 4.10.

Table 4.10 Impact energies I50 and bond dissociation energies EBDE. Calculated EBDE/E

values for common explosives RDX (1), NTO (2), TNT (3) and the proposed
explosives (4, 5, 6, 7, 8, 9, 10, 12, 13) with X−NO2 bonds. Impact energies have been
estimated based on the obtained correlation, see equation (4.3).

Compound E[kJ/mol] EBDE[kJ/mol] EBDE/E Iexp
50 [J] Icalc

50 [J]

RDX (1) −2.36 × 106 171.0 7.26 × 10−5 7[7] –
NTO (2) −1.37 × 106 289.5 2.11 × 10−4 71[7] –
TNT (3) −2.32 × 106 263.5 1.13 × 10−4 15[7] –
(4) −2.20 × 106 267.1 1.21 × 10−4 17[3] –
(5) −1.91 × 106 45.0 2.36 × 10−5 – 3.3
(6) −2.25 × 106 43.4 1.93 × 10−5 – 3.1
(7) −1.72 × 106 211.2 1.23 × 10−4 – 17.0
(8) −2.31 × 106 266.7 1.16 × 10−4 – 15.1
(9) −2.84 × 106 120.8 4.25 × 10−5 – 4.5
(10) −3.13 × 106 81.0 2.59 × 10−5 – 3.4
(12) −2.25 × 106 204.5 9.10 × 10−5 – 10.0
(13) −2.07 × 106 121.6 5.88 × 10−5 – 5.9

4.6 Transition Structures

The initial goal was to find the transition structures for at least RDX (1), NTO (2), TNT (3),
and (4) to evaluate if

E‡ ∝ EBDE (4.4)

seems to hold for such compounds, but also to see if there existed an impact sensitivity correla-
tion of the form

ln

(
I50
I◦50

)
= C1

(
E‡

E

)
+C2. (4.5)

Locating transition structures turned out be rather difficult. Success was however achieved for
NTO (2) for which the barrier height was found to be 354.2 kJ/mol with the B3LYP/6-31g(d)
method. The geometry of the equilibrium and transition structure is shown in Figure 4.6, and an
energy diagram is given in Figure 4.7.
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Figure 4.6 Equilibrium and transition structure geometry of the C−NO2 bond dissociation of
NTO (2). The structures were found by B3LYP/6-31g(d).
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Figure 4.7 Energy diagram for the C−NO2 bond dissociation of NTO (2). The structures were
all optimized at the B3LYP/6-31g(d) level.
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5 Discussion

5.1 Enthalpy of Formation

The enthalpy of formation ∆fH shows a root mean square error of about 55 kJ/mol for both
the Joback/Trouton and Keshavarz methods. Given the large range of formation enthalpies, this
yields a very good ability to distinguish between compounds (ξ = 0.11). We note that all of
the estimated enthalpies lie within 105 kJ/mol and half within 50 kJ/mol of the experimental
values. Referring to figure 4.2, there is, on average, overestimation for both methods in the
range (-200 kJ/mol,+200 kJ/mol). Whether this is a true trend, or a result of the small set of
experimental values, should be investigated further. That the Keshavarz method has an signed
error of +40.1 kJ/mol reflects this overestimation. A similar underestimation of enthalpies with
the Joback method in the (200 kJ/mol, 800 kJ/mol) causes it to have zero signed error.

When comparing the Trouton and Keshavarz methods for obtaining the sublimation enthalpy
(Table 4.3) for RDX (1) and TNT (3), we find that whereas Keshavarz performs well, the
Trouton values are underestimates. In addition, as is seen from Table 4.4, the Joback method
overestimates the melting point of the compounds (1, 2, 3, 4). This combined Joback/Trouton
method thus has a fortunate error cancellation: the sublimation enthalpies

∆subH
Joback/Trouton = 188T Joback

m (5.1)

do seem to have an accuracy comparable to the Keshavarz sublimation enthalpies. The reason
for the large errors in Joback melting points is thought to be due to the large −NO2 group
contribution of 127 K. In any case, to rely on error cancellation (which may hold for some but
not all compounds) is not preferable. We conclude, therefore, that the Keshavarz method is the
more reliable and thus the one to use in future work.

5.2 Crystal Density

The success-story of enthalpy of formation is not repeated for the estimation of crystal densities
ρ. Our results show a root mean square error of 0.10 g/cm3 for both the isosurface method
and the Politzer method, somewhat too high to effectively distinguish between compounds
(ξ = 0.40). The Politzer method showing similar accuracy is not in agreement with previously
reported results [2, 25], but this may be due to too few experimental data points. Further in-
vestigations are needed to evaluate which method yield better estimates. However, it may be
noted that the worst predictions of the isosurface method (1, 2) are improved in the method of
Politzer.

A less optimistic possible conclusion is that the additional parameter of the Politzer method
does little or no good. Perhaps other parameters can be suggested that reflect certain situations
in which the isosurface method misses the mark. My next step would be to consider the field
of crystal structure prediction (CSP) as the best place for ideas; however, CSP is a difficult and
ultimately unsolved problem (see Woodley and Catlow [49] for a review).
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5.3 The Detonation Velocity and Pressure

The detonation velocity D and pressure P are calculated from ∆fH and ρ, as described in Sec-
tion 2.10. Thus, in addition to the errors intrinsic to the method of calculation by EXPLO5, the
errors in enthalpy and density calculations will contribute. Suspecting that accurate ρ and ∆fH

results in accurate D and P , we reran the calculations with experiment density and formation
enthalpy. A fourfold reduction in root mean square error for detonation pressure was found,
but no improvement for detonation velocity. The reason for this apparent paradox is that the D

values of furazan derivatives (9, 10) are underestimated by about 1000 m/s. Since there are no
experimental P for these compounds, they do not raise the root mean square error and hence
the fourfold decrease. The conclusion to draw is therefore that accurate ρ and ∆fH do result
in more accurate performance parameters, but that, for some reason, furazan derivatives are
not properly described by the method employed by EXPLO5. The culprit could be the lack of
hydrogen in these compounds.

5.4 Sensitivity and Bond Dissociation Energy

Our work on sensitivity correlations were based upon previous work by Mathieu [34] and Song
et al. [33]. In the work of Mathieu [34], the correlation

ln

(
I50
I◦50

)
= C1

(
EBDE

E

)
+C2, (5.2)

was obtained (but for shock sensitivities, not impact sensitivities). On the other hand, Song
et al. [33] obtained a non-logarithmic correlation:

I50 = C1

(
EBDE

E

)
+ C2. (5.3)

These results do not necessarily contradict one another. If a small region of x is considered,
the logarithm ln(x) can appear linear. We included NTO (2), which has the remarkably high
I50 = 71 J [7]. Thus, we believe our compounds cover a larger range of sensitivities, and
should be better suited to distinguish a logarithmic and linear trend.

Doing a least-squares fit of (5.2) for the compounds (1, 2, 3, 4) yielded a correlation coefficient
of R2 = 0.9978. A lower correlation coefficient, R2 = 0.9508, was obtained by fitting to (5.3).
Our work thus indicates that the logarithmic relationship proposed by Mathieu [34] is more
appropriate. The linear and logarithmic fits are shown in Figure 5.1.

The four compounds (1, 2, 3, 4) on which the fit was done are very similar to each other and
to (5, 6, 7, 8, 12) but very different from the furazan derivates (9, 10, 11). For this reason, I am
less confident in the accuracy of predicted impact energies for (9, 10, 11).
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Figure 5.1 Comparison of linear and logarithmic sensitivity correlation. Calculated EBDE/E

values are plotted against ln(I50/I◦50) in (a) and I50 in (b). The linear fit to (5.3) and
(5.2) are also plotted together with their correlation coefficient R2.

5.5 Transition Structures

The approach to transition structures that resulted in the transition structure for NTO (2) (see
Figure 4.7) was the Hammond postulate approach. The initial guess structure was a weighted
average of the Z-matrices of products and reactants: 82% “product-like”. The big surprise in
the optimized structure is that the O−N−O angle of the transition structure is larger than both
that of the reactant and product. This might be a recurring pattern in X−NO2 dissociation and
initial guesses for other compounds can be chosen with a large O−N−O angle.

The initial purpose of calculating transition structures was to reduce the number of assumptions
made in the correlation of bond dissociation energy with impact energy (see Section 2.8.2).
Given the correlation found when including the assumption E‡ ∝ EBDE, this original purpose
seem less motivated than before. However, the proportionality might not hold in general but
only for a certain class of similar compounds, thus making it difficult to accommodate the
compounds (11, 14) with no X−NO2 bonds. The obvious and perhaps naive approach is to
consider what the first step of decomposition in these compounds is, and then use the bond
dissociation energy of this step.

Transition structure searches provide a more powerful approach to reactivity. Proposed reaction
mechanisms may be considered by finding their transition structures, and which mechanism
dominates can be probed by calculating the energy of these structures. This was indeed done by
Tsyshevsky and Kuklja [50] for ANFF-1 and BNFF-1, two compounds similar to the furazan
derivatives (9, 10, 11). Their results indicate that the trigger for initiation is ring-cleavage in
these compounds.
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5.6 Comparison of Proposed Compounds

Klapötke [7] notes that new nitrogen-rich compounds should not be worse than RDX (1) in
terms of performance, stability, and chemical properties (low water solubility, smoke-free com-
bustion, etc.). In particular, and relevant to our work, the compound should have the following
desired properties:

D > 8500 m/s

p > 340 kbar

−Qv > 6000 kJ/kg

I50 > 7 J.

As discussed in Section 5.3, our ability to distinguish D and p is rather low. Thus, for com-
pounds which have calculated values close to the limits of Klapötke, we cannot say with any
certainty whether they have the desired property. On the outset, however, we do have experi-
mental data for some of the compounds: the trinitropyrazole (4) satisfies D > 8500 m/s and
p > 340 kbar, while the two furazan derivatives (10, 11) satisfy the velocity requirement. The
trinitropyrazole (4) also satisfies the sensitivity requirement (17.0 J).

Some calculated values are well above the Klapötke limits, indicating that the corresponding
compounds satisfy them; in particular, we note the high detonation velocities and pressures
of compounds (6, 7): 9192 m/s, 9017 m/s and 408 kbar, 371 kbar, respectively. While (6) is
very sensitive (3.1 J), (7) has an impact sensitivity comparable to that of TNT (17.0 J). No
performance calculations could be done on the boron compound, but we note that its impact
sensitivity satisfies the criterion (10.0 J).

The compound studied by FOI (8), differing from (4) by only a methyl group, does not have
improved sensitivity nor detonation nor performance parameters according to our calculations.

Another important performance parameter is the specific impulse. Most compounds has a
calculated specific impulse in the range 250–270 s. Those outside this region is NTO (2) and
TNT (3) below (with 211 s and 212 s, respectively) and one furazan derivative (12) above
(with 291 s). The proposed alternative of NTO with high D, p, and I50, compound (7), is in the
middle region and hence has a much higher specific impulse (258 s) than that of NTO.

In conclusion, the trinitropyrazole (4) and the NTO alternative (7) show most promise in this
preliminary investigation. Further research is needed to confirm these findings.
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6 Conclusions

The impact sensitivity correlation with bond dissociation energy (5.2) reported by Mathieu [34]
is in good agreement with our results: the correlation coefficient was found to be R2 = 0.9978

for a set of four common explosives. The linear relationship reported in [33] seem to be due
to the small range of sensitivities considered. Our results indicate that there is a correlation for
impact sensitivities and not only shock sensitivities, as reported in [34].

For the purposes of accurate performance parameter calculations, the accurate calculation of
formation enthalpies and crystal densities is essential. Although there are ways to systematically
increase the accuracy of formation enthalpy calculations (which is already reasonably accurate),
there is no such procedure for the crystal densities. Although a rough indication of densities
can be concluded (into the categories “high” and “low”), many compounds cannot be compared.
Further research devoted to correcting the isosurface densities or other approaches (such as
CSP) is needed.

Accurate estimation of the important parameters D,P , and Isp depends on accurate ρ, and ∆fH

calculation. These calculated values thus also falls into rough categories “high” and “low”.
Nevertheless, they do, by this rough classification, yield a good indication of whether further
research and perhaps synthesis of a compound is worth pursuing.

Of the compounds studied, two stand out as promising: The trinitropyrazole (4) and (7), having
high D and p, Isp in the medium range (∼ 260 s), and comparable sensitivity to TNT (17.0 J).
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7 Epilogue: A Discussion of Crystal Density Corrections

The main conclusion of this report is that crystal density approximations must be improved if
true prediction of detonation and performance parameters are to be feasible. Our approach was
that of molecular volume V calculated as the interior volume of an isosurface of the electron
density n(r). However, if crystal structure prediction is to be avoided, we must make correc-
tions to this approach. The Politzer correction did not improve our predictions to any extent for
our set of experimental densities; even so, it may be a reasonable approach to make use of the
electrostatic potential V(r). If electrostatic intermolecular interactions are favorable, this might
be reflected in positive and negative values of V with r limited to the isosurface.

The issue is then whether the parameter

σ2+σ
2
−

σ2+ + σ2−
(7.1)

adequately describes when corrections to the molecular volume are needed. Politzer argues in
the following manner. The quantity

σ2+σ
2
−

(σ2+ + σ2−)
2

(7.2)

has a maximum when both positive and negative regions are equally strong, indicated by
σ+ = σ−; and, since σ2+ + σ2− indicates the strength, the product (7.1) should be large if in-
termolecular interactions are favorable. Such favorable interactions cause the isosurface method
to overestimate the volume and hence underestimate the density. Thus β should be greater than
zero in

ρ = α

(
M

V

)
+ β

(
σ2+σ

2
−

σ2+ + σ2−

)
+ γ. (7.3)

The linear correcting of (7.3) means the following: the larger the parameter (7.1) is, the larger
the underestimation of ρ. Thus, we should expect a linear decreasing trend if (7.1) is plotted
against the error in ρ as calculated by the isosurface method.

Our results does not seem to support a linear decreasing trend, see Figure 7.1. It is unfortunate
that we only have seven densities, from which no definite conclusion can be drawn. One may,
for example, remove a few presumed “outliers” in Figure 7.1 and achieve a high R2. However,
this results in an increasing trend, contrary to the physical arguments given above.

The choice of the fitting parameters α,β and γ should also be considered. From (7.3) we note
that the parameter γ plays the role of correcting for the α scaling of the isosurface density. If
we suppose that the extra parameter (7.1) is to play the role of correcting the isosurface estim-
ate, then γ should be dropped altogether and α optimized such that it yields good estimates for
compounds with small (7.1).

I propose a somewhat simpler parameter than the one above, but the physical argument is
mostly the same. The goal is to find a parameter which is large if interactions are favorable and

44 FFI-rapport 2014/01514



small if they are not. The variances σ2− and σ2+ certainly reflect if there are negative or positive
peaks of V(r), with r restricted to the isosurface of n(r). Thus, a simple product form will do:
either

√
σ−σ+, (7.4)

the geometric mean of the standard deviations or

σ−σ+, (7.5)

the geometric mean of the variances. We want the quantity to be significant only when both
negative and positive peaks of V are present, thus the choice of geometric means instead of
arithmetic ones.

In Figure 7.2 the quantity σ−σ+ is plotted against the error in ρ. One should not read too much
into the fact that R2 is tripled for this choice; there are too few experimental values to compare
with to draw any conclusions.
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Figure 7.1 Politzer correction plotted against the error of isosurface densities. A linear fit was
made, resulting in the correlation coefficient R2 = 0.18.

The following is an attempt to make precise “favorable intermolecular interactions” and why
σ−σ+ might be a measure of this. We know that the sign of V(r) corresponds to a predom-
inance of negative or positive charge in the neighborhood of r. More precisely, it corresponds
to the potential energy of a unit point charge due to Coulombic interaction with the nuclei and
the electron density n(r). Let positive and negative peaks of the electrostatic potential V(r) be
modeled by point charges q+ and q−. Then, if σ+ and σ− signify that positive and negative
peaks of V are present, we can identify the product σ+σ− with q+q− in an average sense. If we
further suppose that intermolecular distances d are similar for different molecules, we find from
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Figure 7.2 Possible correction factor σ−σ+ plotted against the error of isosurface densities. A
linear fit was made, resulting in the correlation coefficient R2 = 0.57.

Coulomb’s law

Epot ∝
q+q−
d

(7.6)

that the potential energy interaction Epot is roughly measured by the product σ−σ+.

Supposing that the isosurface density underestimation is linear in σ−σ+, the density ρ can be
written

ρ =
M

V
+ β(σ−σ+). (7.7)

This should also include a scaling factor for M/V such that the error is approximately zero
when σ−σ+ is small. The current V value (by choice of isosurface) is fine-tuned to produce
∆unsgn = 0. Hence it overestimates the ρ value for compounds with small σ−σ+ and overestim-
ate those with large σ−σ+. Whether a scaling of the volume V %→ αV , a constant correction
γ for all compounds, or a different isosurface should be chosen is not clear. The form (7.7) is
conserved if a new isosurface is chosen; the other two options are

ρ =
M

αV
+ β(σ−σ+) (7.8)

and

ρ =

(
M

V
+ γ

)
+ β(σ−σ+). (7.9)

There is little reason, however, to believe that the error in ρ of the isosurface approach is
linear in σ−σ+. We try to put this on a sounder physical basis. For simplicity, suppose that the
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isosurface is a sphere10 of radius R and that the larger the interaction Epot, measured by σ−σ+,
the larger the contraction of the sphere. That is, if interaction is included, the radius R contracts
by x:

R %→ R− x, (7.10)

where

x = β(σ−σ+). (7.11)

Then we may write the fraction of mass M to volume V as

ρ =
M

4π
3 (R− x)3

=
M

4π
3 R3

(
1 + 3

( x

R

)
+ 6

( x

R

)2
+ . . .

)
(7.12)

= ρ0

(
1 +

3β

R
(σ−σ+) +

6β2

R2
(σ−σ+)

2 + . . .

)
.

where a Taylor expansion about x = 0 was done. If only the first-order correction contributes
significantly, then we are left with the linear relationship of the correction β(σ−σ+):

ρ− ρ0 =
3βρ0
R

(σ−σ+). (7.13)

Note that this is only strictly true if we can regard ρ0/R as constant over the set of compounds.
Also, this yields us with a simple test: it predicts that the correlation will deteriorate if com-
pounds of very different sizes (R) are considered.

Interested in whether the second-order correction is insignificant, we gave an estimate of β by
assuming a first-order correction of the density by 0.10 g/cm3, a molecular weight of 150 g/mol,
and a density of 2 g/cm3. For this set of values, the second order term is approximately an
order of magnitude smaller than that of the first order. That is, the second order correction is
about 0.01 g/cm3 and thus not important to consider.

We note that equation (7.13) indicates that the correction factor should be

σ−σ+
(ρ0
R

)
. (7.14)

Whether this improves the correlation is doubtful. The extra factor is a consequence of consid-
ering the isosurface to be a sphere, which is certainly not true for most compounds.

The arguments presented here contain a number of assumptions and close agreement with
experiment should not be expected. In conclusion, σ−σ+ might perform better than (7.1), as
suggested by our calculations, but a more extensive set of compounds is needed for a definite
answer.

10A better choice would be an ellipsoid, but this requires more information than the radius R.
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Appendix A Atomic Energy Calculations

The atomic energy calculations were done at the B3LYP/6-31g(d) level with spin multiplicities
of the ground states given by NIST [51]. The results are listed in Table A.1.

Table A.1 Atomic energy calculations. Energies of carbon, hydrogen, nitrogen, oxygen and
bohron at the B3LYP/6-31g(d) level are listed.

Atom Spin multiplicity (2S + 1) Energy [Eh]

C 3 −37.8462804085

H 2 −0.500272784191

N 4 −54.58448941

O 3 −75.06062312

B 2 −24.6543548367
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Appendix B Calculated Politzer Variances

For each compound with experimental crystal densities ρexp, we found the values σ− and σ+
from the ESP V calculated with the 6-31g(d,p) basis set og 6-31g(d) optimized geometries. The
values are listed in Table B.1.

Table B.1 Calculated variances σ−,σ+. The variances of the positive and negative regions of V
restricted to the 0.001 electrons/bohr3 isosurface are given for each compound for
which experimental density data was available.

Compound σ−[Eh] σ+[Eh]

RDX (1) 0.0098 0.0165

NTO (2) 0.0119 0.0220

TNT (3) 0.0091 0.0124

(4) 0.0087 0.0261

(9) 0.0071 0.0268

(10) 0.0074 0.0180

(11) 0.0081 0.0215
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Appendix C Calculated Sublimation Enthalpies

Sublimation enthalpies were calculated by the Joback and Keshavarz methods. As the Keshav-
arz method performed better, the Keshavarz estimates are listed in Table C.1.

Table C.1 Calculated sublimation enthalpies ∆subHKeshavarz by the Keshavarz method.

Compound ∆subHKeshavarz[kJ/mol]

RDX (1) 130.4

NTO (2) 41.7

TNT (3) 114.3

(4) 61.1

(5) 53.9

(6) 109.2

(7) 50.5

(8) 64.9

(9) 76.3

(10) 83.8

(11) 48.6

(12) –
(13) 164.0

(14) 52.3
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Appendix D Processing CUBE files: A MATLAB Script

% PROCESSING CUBE FILE TO CALCULATE POLITZER PARAMETERS.

% This script reads the .cub file for both electron density

% and that of the electrostatic potential and pick out values

% on the electrostatic potential limited to the 0.001 au electron

% density surface. Using these points, it calculates the Politzer

% parameters.

ElectronDensityData = importdata(’filenameWithElectronicDensity.cub’);

ElectrostaticPotentialData = importdata(’filenameWithPotential.cub’);

% Find which row the listing of points begin (this can probably be

% calculated in some way).

gridPointRowStart = 27;

% First job: find the average positive and average negative

% electrostatic potential value limited to the isosurface.

% We cumulatively add to a vector while counting the number

% of points

numberOfPointsPos = 0;

numberOfPointsNeg = 0;

sumOfElectrostaticPotPos = 0;

sumOfElectrostaticPotNeg = 0;

% The average at the end of the loop will be given by

% numberOfPoints/sumOfElectrostaticPot.

numberOfRows = length(ElectronDensityData.data(:,1));

% Tolerance

tolerance = 0.0001;

for j=1:4

for i=27:numberOfRows

% First: is the value in the correct range for the

% electron density?

if (isnan(ElectronDensityData.data(i,j)))

% Do nothing.

elseif ((abs(ElectronDensityData.data(i,j)-0.001) < tolerance))

% Check whether the ESP value is negative or positive.
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if (ElectrostaticPotentialData.data(i,j) < 0)

numberOfPointsNeg = numberOfPointsNeg + 1;

sumOfElectrostaticPotNeg = sumOfElectrostaticPotNeg + ...

ElectrostaticPotentialData.data(i,j);

else
numberOfPointsPos = numberOfPointsPos + 1;

sumOfElectrostaticPotPos = sumOfElectrostaticPotPos + ...

ElectrostaticPotentialData.data(i,j);

end
end

end
end

AveragePositive = sumOfElectrostaticPotPos/numberOfPointsPos;

AverageNegative = sumOfElectrostaticPotNeg/numberOfPointsNeg;

% Now for the variances.

sumOfSquareDevPos = 0;

sumOfSquareDevNeg = 0;

for j=1:4

for i=27:numberOfRows

% First: is the value in the correct range

% for the electron density?

if (isnan(ElectronDensityData.data(i,j)))

% Do nothing.

elseif ((abs(ElectronDensityData.data(i,j)-0.001) < tolerance))

% Check whether the ESP value is negative or positive.

if (ElectrostaticPotentialData.data(i,j) < 0)

sumOfSquareDevNeg = sumOfSquareDevNeg + ...

(ElectrostaticPotentialData.data(i,j)- ...

AverageNegative)ˆ2;

else
sumOfSquareDevPos = sumOfSquareDevPos + ...

(ElectrostaticPotentialData.data(i,j)- ...

AveragePositive)ˆ2;

end
end

end
end
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squareDevPos = sumOfSquareDevPos/numberOfPointsPos;

squareDevNeg = sumOfSquareDevNeg/numberOfPointsNeg;

% The parameter Politzer uses is then:

parameter = (squareDevPos*squareDevNeg)/...

((squareDevPos + squareDevNeg)ˆ2)*(squareDevPos + squareDevNeg);

% Linear parameters from Rice et al. fitting:

alpha = 1.0462;

beta = 0.0021; % g/cmˆ3*(1/(kcal/mol)ˆ2) -- convert to hartree/particle!

gamma = -0.1586;

conversionFactor = 627.4924ˆ2; % kcal/mol to hartree/particle in beta.

beta = conversionFactor*beta;

% Calculate the density from the isosurface method (for 6-31G**).

% Fill in values from GAUSSIAN output files.

volume = 110.623; %cmˆ3/mol

molarWeight = 202.99268; %g/mol

densityIsosurfaceMethod = molarWeight/volume; %g/cmˆ3

densityPolitzerMethod = alpha*densityIsosurfaceMethod +...

beta*parameter + gamma;

fprintf(’Density (Politzer): %.3f g/cmˆ3.\n’,densityPolitzerMethod);

fprintf(’Density (Isosurface): %.3f g/cmˆ3.\n\n’,densityIsosurfaceMethod);
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Appendix E Hammond Averaging Z-matrices: A MATLAB
Script

This script does not include NO2· because geometries were optimized for the isolated molecules
(not just separated) for bond dissociation energies. A modification of the script is needed if all
atoms are present in both Z-matrices.

% Script for generating a Z-matrix for initial transition structure guess.

% The values for bond lengths and angles of reactants and

% products are averaged.

% USE HAMMOND’S POSTULATE: in an endothermic process, the transition state

% will be similar to the products. Thus, we weigh the products by a weight

% 0 (pure reactants) -- 1 (pure products).

weight = 0.82;

Molecule = importdata(’RDX.txt’);

MoleculeWithoutNO2 = importdata(’RDXutenNO2.txt’);

% WARNING! BEFORE USING SCRIPT: Make sure the connectivity in the

% Z-matrices are identical and do not depend on the group leaving.

% Write the number of atoms in the leaving group:

leavingAtoms = 3; % NO2 group in this case, so 3 atoms.

% The field ’data’ of this struct contain the Z-matrix

% in columns 4,5,6.

% Allocate matrix.

numberOfAtoms = length(Molecule.data(:,4));

TransitionStateZMatrix = zeros(numberOfAtoms,3);

% Save the Z-matrices.

MoleculeZMatrix = Molecule.data(:,4:6);

MoleculeWithoutNO2ZMatrix = MoleculeWithoutNO2.data(:,4:6);

% Put NaN logicals in a matrix of same size as TransitionStateZMatrix

% for both.

NaNMolecule = isnan(MoleculeZMatrix);

NaNMoleculeWithoutNO2 = isnan(MoleculeWithoutNO2ZMatrix);
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for j=1:3

for i=1:numberOfAtoms

% All but the NO2 values for which there are no matrix elements.

if (i <= (numberOfAtoms-leavingAtoms))

if ((NaNMolecule(i,j))||(NaNMoleculeWithoutNO2(i,j)))

if (NaNMoleculeWithoutNO2(i,j))

TransitionStateZMatrix(i,j) = ...

MoleculeWithoutNO2ZMatrix(i,j);

else
TransitionStateZMatrix(i,j) = MoleculeZMatrix(i,j);

end
else % Average if both values exist.

TransitionStateZMatrix(i,j) = ...

(1-weight)*MoleculeZMatrix(i,j)+ ...

weight*MoleculeWithoutNO2ZMatrix(i,j);

end
else

TransitionStateZMatrix(i,j) = MoleculeZMatrix(i,j);

end
end

end

% Print the matrices (and check if they seem reasonable).

fprintf(’Input matrices: \n’);

disp(MoleculeZMatrix);

disp(MoleculeWithoutNO2ZMatrix);

fprintf(’Averaged (weighed!) Z-matrix: \n’);

disp(TransitionStateZMatrix);

% Display connection matrix: Needed for writing the Z-matrix for

% the guess structure.

fprintf(’Connection matrix: \n’);

disp(Molecule.data(:,1:3));

% Also, taking the difference between the products and reactants can reveal

% if some connections are wrong (the differences should be small).

fprintf(’Z-matrix for products minus reactants:\n’);

disp((MoleculeZMatrix(1:(numberOfAtoms-leavingAtoms), :) -...

MoleculeWithoutNO2ZMatrix));
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