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English summary

The Norwegian Armed Forces have over the last few years given priority to the procurement of
less-lethal weapons (LLW) for use in certain scenarios. The purpose of FFI project 1255 has
therefore been to support the armed forces in choosing the right means for different tactical
scenarios and in a rapidly evolving marked. One class of scenarios where LLW can be a relevant
tool involves human crowds. Choosing the right tool in such a scenario requires insight into the
behaviour of human crowds.

The collective behaviour of human crowds is of interest not only to the armed forces, but also in
civil applications such as pedestrian traffic studies, security planning of events involving large
crowds, and police crowd management during political demonstrations and riots. The latter
scenario is also relevant for the armed forces in operations abroad where peace-keeping and law-
enforcement is an important part of the assigned task. In situations where law-enforces confront a
crowd which include hostile or even violent individuals, one must decide whether or not to utilize
LLW to control the crowd. The important question then is what can be achieved in a given
scenario in terms of crowd management depending on whether LLWs are applied or not.

This report describes a new, robust crowd dynamics simulation model capable of simulating a
wide range human crowd behaviour. It is a technical report and documents the important first
steps towards a potentially useful tool in the analysis of LLW-related operations. This includes
not only normal pedestrian traffic, but also scenarios such as evacuation or riots which might
involve running agents. The model relies on a number of model parameters. Default values of
these parameters have been determined on the basis of fundamental properties of the human body,
semi-analytical models of fundamental crowd behaviour, and simplified crowd test simulations.

The new model not only captures crowd movement well, it also provide information on force
levels which in turn can be used to assess the risk of injuries and deaths.
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Sammendrag

Forsvaret har dei siste ara lagt vekt pa a kjgpe inn Mindre-dgdelege vapen (MDV) for & kunne
handtere visse situasjonar. FFl-prosjekt 1255 har hatt som formal & hjelpe Forsvaret med & velge
riktige verkemiddel under ulike taktiske situasjonar og i ein marknad som er i rask utvikling. Ein
klasse av situasjonar der MDV kan vere eit aktuelt verkemiddel involverer starre
menneskemengder. A kunne velge riktig verkemiddel i ein slik situasjon krev at ein har innsikt i
korleis menneskemengder kan opptre.

Kunnskap om dynamikken til menneskemengder er av interesse ikkje berre for Forsvaret, men
kan 6g komme til nytte innanfor sivile bruksomrade som t.d. studiar av fotgjengartrafikk,
planlegging av sikringstiltak rundt arrangement som involverar store menneskemengder og
planlegging av politiaksjonar ved politiske demonstrasjonar og oppteyar. Det siste scenarioet er
og relevant for Forsvaret i utanlandsoperasjonar der fredshevaring og arbeidsoppgaver knytta til
lov-0g-orden er ein viktig del av oppdraget. | situasjonar der ein som ordensmakt skal konfrontere
ei menneskemengd som inneheld fiendtleg innstilte eller til og med valdelege enkeltindivid, ma
ein vurdere kor vidt ein skal ta i bruk MDV for & halde kontroll pa menneskemengda. Det viktige
sparsmalet er i sa fall i kva grad ein kan paverke dynamikken til menneskemengda, med eller utan
bruk av MDV.

Denne rapporten skildrar ein ny, robust simuleringsmodell for studiar av dynamikken til ei
menneskemengd. Han er av teknisk karakter og dokumenterar viktige fyrste steg pa vegen mot eit
potensielt nyttig verkty i analysen av MDV-relevante operasjonar. Modellen er ikkje berre i stand
til & simulera normal fotgjengartrafikk, men 0g scenaria knytt til evakuering eller opptgyer som
kan involvere springande personar. Modellen bygger pa ei rad modelparametrar. Standardverdiar
for desse parametrane har blitt bestemt pa bakgrunn av grunnleggande eigenskapar ved
menneskekroppen, semianalytiske modellar av fundamental dynamikk i menneskemengder og
foreinkla simuleringar av menneskemengder. Den nye modellen skildrar ikkje berre rarsla i ei
menneskemengde pa ein god mate. Han gjev i tillegg informasjon om storleiken pé kreftene som
verkar i menneskemengda. Dette er informasjon som kan vere nyttig i vurderinga av risikoen for
personskader og dgdsfall grunna uheldig dynamikk i menneskemengder.
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1 Introduction

The collective behaviour of human crowds is of interest il @pplications such as pedestrian
traffic studies, security planning of events involving krcrowds, and police crowd manage-
ment during political demonstrations and riots. The lasisgnario is also relevant for the armed
forces in operations abroad where peace-keeping and lasweement is an important part of
the assigned task. In situations where law-enforces confiaccrowd which include hostile or
even violent individuals, one must decide whether or nottilize less-lethal weapons (LLW)

to control the crowd. The important question then, is what loa achieved in a given scenario
in terms of crowd management depending on whether LLWs goéealpor not.

Crowd modelling has in recent years become an importantitosiudying the dynamics of
human crowds (ség_ZhQ_u_eJJ e{.l_leO) for a review), in apgtioa ranging from military simu-
lation, safety engineering, architectural design, andaligntertainment. Most of these models
are developed with a typical pedestrian type crowd in miritis Tmplies that the models are
tested for moderate and high crowd densities, and modetetaim velocities (walking). This
report documents the development of a new numerical cromamijcs model. The model is
designed to be a robust simulation tool capable of handlotfh hormal pedestrian scenarios as
well as more extreme scenarios like a riot. This means tleatitbdel must be able to handle
widely different human crowds, both in terms of crowd degnsihd in terms of human velo-
cities. The size of the simulated crowd could range from atiws (or smaller in validation
tests) to a few thousand people, and the time scale of thesosrcould vary from a fraction

of a minute to hours. Ultimately, the model is meant to becenseipplement to the purely phe-
nomenological descriptions in the study of crowd eventsrevtid Ws are relevant. To achieve
this, we will in future have to extend the basic crowd moddalibed in this work with models
of different LLWSs, as well as more advanced models for denishaking and human motiva-
tion.

In the current work, we focus on the development of a numeneadel for the simulation

of human crowds based on the agent force modelling con[:_@ibm_&Mol_né},ﬁQQb). An
important issue is finding the right level of complexity iretimodel, and this means minimizing
the number of free parameters as much as possible witholgatieag important aspects of
crowd behaviour. The basic assumption for the model is thateasity in a human crowd
increases, so do the limitations on the movement of indalsluThe human body itself has
certain characteristics when it comes to compressibitiby)stitutive properties, speed limitations
and so forth. Furthermore, we need to take into account tiit sbstacles will prevent or

at least slow down the crowd flow. From these observationscameformulate a set of basic
forces that in principle can have great effect on human bebavNext, it is a fair assumption
that humans manage to optimize their body movement withersp the object or goal of

the individual. Obviously, it is beyond the scope of the mddedescribe in detail the vast
number of forces involved in reproducing optimised body eroents. However, we can provide
simplified force models to make individuals capable of avmjdsolid obstacles and maintaining
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a moderate speed when moving unhindered.

So what about less easily quantifiable effects from for mstapsychological and social factors?
Obviously, these effects will in many cases be very impdriarorder to accurately predict the
effectiveness of LLWs. Decision-making by individuals irci@wd, in particular individuals

with a leading role in a group, can have a substantial effadhe overall outcome of e.g. a
crisis. Models failing to take these effects into accourit imicertain scenarios fail at providing
adequate predictions. Still, a simplified model can neetesgs provide us with important
information. In this work, the strategy is to start out witlsienple model where psychological
and social factors are kept to a minimum. Well aware of thatditions of such a model, the
plan is in future to gradually extend the applicability oétmodel by including additional
non-physical effects.

This report is organized as follows: Sectidn 2 reviews olsarnal data on the biomechanical
properties of the human body which are important when sitimgehuman crowds. It also gives
an overview of the equations of motion and explains how weeastimate crowd density and
calculate the interaction range. In sectidn 3, we look atinkernal forces that represent desired
movements, capabilities and limitations associated waithendividual agent. The inter-agent
forces are responsible for trying to keep individual agesgigarated at distances larger than
some reasonable minimum distance. These forces are dmsbaénisectioi 4. Similar forces
associated with the agents interactions with solid bouesare covered in sectiéh 5. Important
model parameters not specified earlier, are determinedciioeéd on the basis of simplified
simulations and semi-analytic models. Full-scale sinutet on a selection of more or less
well-known crowd dynamics tests are presented in se€liond7campared with results from
literature. A conclusion is provided in sectibh 8. More igpth information on aspects of the
boundary interaction is provided in Appendi¥ A and AppenBix

2 Simulation model overview

This section serves several purposes. First, we establigixgerimental framework in which
the simulation model should fit. Next, the overall equatiohsnotion are formulated and a
suitable expression for the crowd number density is fourtte st part of this section deals
with interactions at a distance. This is relevant both foeragent and boundary forces. How
the strength of such interactions will depend upon the @hoicspatial interaction function, is
described. The concepts of obstacle avoidance and crowdsiep are also introduced, and
variable interaction range is discussed.

2.1 Observations regarding human anatomy and behaviour

It is of vital importance for any numerical model to be givefiren analytic and/or experi-
mental basis. A human crowd model should be no different. &Saspects of a crowd’s be-
haviour could be described quite well by a fluid model. Otrsreats are more likely to be
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assicated with the granular nature of a human crowd. And gainaother aspects can only be
described when considering the full psycho-social charatics of individuals in the crowd.

2.1.1 Biomechanical properties of the human body

Although it has been a goal to minimize the number of free patars by neglecting many of
the psycho-social factors, the model will still rely on arlfailarge number of parameters. Some
of these parameters will have to be determined by fitting Kitran results to observations of
key crowd behaviour. However, many parameters can be dietedmdirectly or indirectly, on

the basis of biomechanical properties of the human bodyleT2l gives an overview of some
important properties relevant in this work and referenceéere this is applicable. The values
refers to an adult hum

Parameter Observed value ‘ Reference

Shoulder width 0.4-0.5m Weidmann (1992)

The anteroposterior size 0.25-0.3m Weidmann (1992)

Shoe size 0.25-0.3m Weidmann (1992)

Mass 50-100 kg —

Pedestrian walking speed 1.34m/s+ 0.26m/s | Weidmann (1992)

Fast running speed 6.0-8.0 m/s Novacheck (1998)
Typical whole-body acceleration 0.1g Kavanagh & Menz (2008)
Maximum muscle-driven acceleratior 0.5-0.8¢g Kugler & Janshen (2010)
Chest (low speed) spring force 300-1000 N/cm | Viano & King (2000)
Max. chest compression before injury 20%-40% Viano & King (2000)
Critical 1-minute force asphyxia limit 1000 N Fruin (1993)

Critical 10-second force asphyxia limijt 6000 N Fruin (1993)

Max. manual force on structures 30-75% of weight | Fruin (1993)

Min. distance to obstacles 0.75-1.50 m Weidmann (1992)

Table 2.1 Biomechanical properties of the human body wijilfta} values as derived from
various empirical studies.

On the basis of the order of magnitude estimate of whole-tamtyleration given in table 2.1,
we can use a simple analysis to determine roughly at whaerérg interactions must become
effective if collisions with obstacles in the flow path arelte avoided. If we assume an initial
velocity vy and a mean acceleratian the minimum effective range for the interaction must be

Smin = V2 /(28). (2.1)

We see that the required range is highly dependent on théveelaelocity between the agent
and the obstacle. If the obstacle also is a moving agent, dfgomd a will be twice as large. If

The current simulation model makes the simplifying assimnpaf a circular human cross-section, typically with
an effective diameter of 0.3-0.4 m.
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both agents are running towards each other at a speed of 5;6and we assume a mean accel-
eration of around 0.1g, then the interaction between thedfauld have a range of roughly 30
m. This will ensure that a direct collision is avoided witheasonable acceleration magnitude.

2.1.2 Assumptions regarding fundamental human behaviour in crowds

A crowd model cannot be constructed using biomechanicgestizs and mathematics alone.
The development must also be guided by observations andnptisus regarding human beha-
viour in a crowd. In this section, | have tried to list the maissumptions used in developing
the current model.

1. Local density is the primary parameter in determining dizpamics of a crowd.

2. Isolated agents have a large interaction range. Thigaictien range decreases with
increasing density.

3. Agents optimize their movements so as to minimize eneampsemption and maximize
efficiency.

4. Agents will try to navigate around limited-sized obstsclBody forces are adjusted
according to velocity so that the minimum distance to oldetaand other agents becomes
only weakly dependent on the original velocity.

5. A pair of agents in a crowd experience a mutual repulsifeceff they are not familiar
with each other. This holds even though the two agents arenrddinger of colliding.
However, the repulsion is anisotropic so that a net posteepulsion is experienced in a
uniform crowd causing the average velocity in the crowd topdwith increasing crowd
density.

6. In low density crowds, agents can easily maintain thedfgrred speed.

7. In high density crowds, agents will resort to moderatelewf pushing in order to try
maintaining a non-zero velocity.

8. As an agent approaches the preferred location, the assdgireferred speed drops to O.
How accurately the agent defines the preferred locationeeas®m dependent.

Some assumptions are trivial, while others are made froneraxental work @@8;

wmwmmmwma Some assumptions
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have even come about simply as a result of the numericalectggds met in this work. The
assumptions made will always have great impact on the mdidgiimulation results do not fit
sufficiently well with observations, this could be an indioa that the list of assumptions needs
revising.

2.2 Introduction to the agent-based force model

In the choice between different modelling approaches, gantabased, social force approach
introduced by Prof. Dirk Helbing and his collaborators a#in20 years agc{ (Helbing & MQIc|ér,
) was preferred. The idea behind the Helbing force misdiel model crowd behaviour

by formulating forces which describe interaction betweairof persons, interaction between
a person and a solid wall, and the self-propelling force Whigpresents the own will of the
person to move in a certain way. Each person (hereafterreeféo as agent) has attributes
such as massi,), physical diameterd,), position ), and velocity ¢,). The basic equations
of motion are:

dr,
— o, 2.2
7 v (2.2)
and
dvg T A B
me—t = Fot SN Fu+> FL (2.3)
beA beB

The forces acting on agentin the basic model are divided into 3 parts based on the obfect
interaction: FZ indicates the internal forces (often referred to as the fwiite), .7-'3‘}, represents
interactions with neighbouring ageit(where A is the set of all agents), arﬁ‘fb denotes in-
teractions with solid boundary elemdn{where s is the set of all boundary elements). Each
of the three groups of forces can be split up according to ttagacteristics of the interaction.
This is illustrated in Figl_2]1. The internal forces are tspp into a displacement force depend-
ent on the agent’s position, a flow force dependent on thetagezlocity relative to the desired
velocity, and a strain force dependent on the agent’s ugloelative to a upper velocity limit.
The inter-agent forces are either long-range social foocesontact forces. The former type of
interactions include obstacle avoidance and crowd repulsivhile the latter type of interactions
deals with direct physical contact and typically has bottoenmral and a transversal component.
The boundary forces are formulated so as to match the igtamtdorces.

Local density is an important property when describing avdroStill, density is not included
as a variable in the original Helbing modlal_(H&Ibing,_EatEaMgsﬂsL [ZOQb). Instead the
model focuses to a large extent on close-range interacttbeseby making the model less
suited for modelling low and moderate density crowds. Lategmpts to correct this, utilized

a crude density estimatE (Lakoba, Kaup & Finkel$tEin, bOMi)re recently, the link between

crowd modelling and a fluid method known as Smoothed Partigidrodynamics (SPH) (see

review inLMQnaghAnL(ZD_bS)) was pointed outLb;uLelLer_étLa]zlda. According to this method,
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Inter-

Displacement
force

Flow force

Social
- Obstacle avoidance
- Crowd repulsion

Contact

- Normal force
- Transversal force

Social

- Obstacle avoidance
- Wall repulsion

Contact

- Normal force
- Transversal force

' Strain force

Figure 2.1 Forces in the basic agent model are sorted in 3 gscaccording to the object of
interaction.

the density at the position of an agentdenotedp,,, is calculated as
Pa = ZWab- (24)
b

whereWy, = W(ra/hay, hap) 1S @ sSmoothing kernel. The kernel is dependentrgn the
distance between agenisandb, and the characteristic scale lendtl),, often referred to as the
smoothing length, wherg,;, is found as the mean smoothing length of the two agents. # thi

work, the chosen kernel is taken frimJALendJabd_dQQS):

7 (2 —v)*(1 + 2v)
©647h? )

if 0 <v<2;

W(v, h) (2.5)

otherwise

The smoohting lengthy,, is itself dependent op,, so that Eq[2]4 in reality is a non-linear
equation (see sectidn 2.5.3 for details). Note also thatlédmesity at the location of an agent
a will never be zero because the agent itself contributes eécstm in Eq[2}4 by the amount
W(0, hg).

2.3 Spatial interaction function

A main challenge in developing a robust crowd model is to deschuman movement with
sufficient degree of accuracy both in low and high densitynades. In low density crowds,
agents should make appropriate modifications to their patled on the location and relative
speed of any obstacles, even when these obstacles araursfibin the agent. In high density
crowds, the interactions should in general be restrictea nouch smaller region. In order to
improve efficiency and accuracy, the range of the inter-agad boundary forces should be
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linked to the local crowd number density. The effective iatéion range will depend both on
the shape of the spatial interaction function and the seagth.

In the Helbing model, the spatial interaction function usadsocial forces is exponentially
decaying with the normalized distance from the physicaiusdf the agent. The blue curve in
Fig.[2:2 shows this function in a logarithmic plot. Becau$¢he chosen functional form, the
interaction strength will drop off quickly with normalizetdistance. Increasing the scale length
will only to a limited degree help avoiding dynamical effe¢hat resemble colliding billiard
balls. Note that this refers to the interaction strengthda@ingle pair of interacting agents. If
we assume a uniform crowd, the relative interaction stteffighm all agents at a given distance
can be found by multiplying the curves in Fig. 2.2 with thetalice. Even so, the interaction
force in the original Helbing model drops off very quickly tvinormalized distance.

100.0000 £ 3
10.0000 F| -

1.0000 k
N 0.1000%
0.0100

0.0010
0.0001 [

Figure 2.2 Comparison of different spatial interaction étions as functions of the normalized
distance from the chosen origin. The blue, red, orange arémrcurves correspond
to the exponential function, the Coloumb function, the tagp€oloumb function, and
the tapered and softened Coloumb function.

Drawing parallels to systems governed by electrostaticravitational forces, a new spatial
interaction function, referred to as a Coloumb functionprisposed. This function will in its
original form be written as

1

olz,€) = 22 + €2’

(2.6)

wheree is an optional softening parameter to avoid the singulaity = 0. The case withe =

0 is illustrated in FigC2ZR by the red curve. Notably differéhan the exponential function, the
Coloumb function goes to infinite at= 0 and drops off very slowly for large values of The
latter behaviour could lead to a very large effective intdom range. However, this is avoided
by adding a taper functiod@ at an appropriate distance. Apart from the functional foimthis
work chosen to be equal to the smoothing kernel defined il Ejd2is characterized by the
taper start distance, zo, and thetaper half width, z,,. These two parameters defines the taper
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variable¢ = (z — zp)/z,. The taper function itself can then be written as

1 if £ <0;
() =4 L2-911+2) ifo<e<y 2.7)
0 otherwise

By multiplying the original Coloumb functio®, with the taper functionl, we get acom-
pactly supported interaction function

D(z,€) = Py(z,¢6)¥ <Z — ZO> , (2.8)

Zw

which means tha®(z, ¢) is exactly zero beyond the cut-off distaneg, = z¢ + 2z,. The
orange curve in Fig. 212, shows the Coloumb function mudtgbby the taper function with
20 = 10 andz, = 2. The green curve in Fi§. 2.2 shows the corresponding Colofumé&tion
with a softening parameter equal to 1.

2.4 Obstacle avoidance and crowd repulsion

Based on assumptions 4 and 5 listed in sedfion2.1.2, it moredle to divide the social in-
teraction forces described in sectidds 4 Bhd 5 into two sépaffects: Agents need to be able
to navigate in between nearby obstacles, whether it be atlpemts or solid barriers. At the
same time, agents will interact with a neighbouring crowgebple if the crowd density is
non-negligible. The former type of interaction, which wdlwefer to asobstacle avoidance

is in nature a point-point interaction. The latter type demaction, which we will calcrowd
repulsion, could be considered more of a fluid type force.

Obstacle avoidance, or simply avoidance, deals with howmtagavoids isolated obstacles in
the preferred path. This is usually important in low densdgions where the concept of a
crowd is somewhat misleading, or simply when the distanca s$ingle obstacle/neighbouring
agent is considerably smaller than the typical agent sépararhe number of neighbouring
agents which gives rise to a non-zero avoidance interastwuld therefore be more or less
independent of density with a relative strong emphasis em#arest obstacles/neighbouring
agents. The tapered Coloumb function with zero softenigrésponding to the orange curve
in Fig.[2.2) could be well suited for describing the avoidamdfect. Since the contact force
between two agents becomes non-zero for distances lesshthanean agent diametet,

we require the normalized avoidance distance at the agentedér to be equal to unity. For
distances larger than the agent diameter, the avoidantandésis normalized by the avoidance
scale lengthp 4.

The crowd repulsion on the other hand, describes the almesspre-like forces that an agent
experiences from a larger crowd or boundary structure. Al ftid@scription could therefore

be considered more appropriate in describing this type tefaation [(Mell.er_el_flilL_Zth).
However, it is beyond the scope of the current work to expthre possibility. Instead of a
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fluid formulation, crowd repulsion is described with a foration similar to that used for
obstacle avoidance, although with some important diffegsn Because of its nature, the crowd
repulsion should become gradually more important as thsigjeis increased. This implies that
the number of crowd interactions should be zero when theitgeissvery low, and gradually
increase as density increases. This type of interactionldhwt put a very strong emphasis

on single obstacles/neighbouring agents. But just as witidance interaction, it is practical

to have an interaction function with compact support (fimitieraction range). The tapered
Coloumb interaction function with the softening parametgual to 1 is a suitable starting point
for the crowd repulsion model. Distance will be normalizedthe corresponding scale length,
referred to ad¢.

2.5 Variable interaction range

The number of interactions per agen, in a uniform crowd is dependent on the interaction
range R and the density, and is given asV, = 7TR2,0. If R was to be constant, theN,

would increase too rapidly for an efficient and accurate rijgsen to be achieved both in

high and low density crowds. If, on the other hand, weRetx p~'/2, this would lead to

a roughly constantV,. This would fit the description of the obstacle avoidance,viould

not enable us to model density dependent crowd phenomemahikfundamental diagram
dS_thz.dsghnﬂid&LeﬂAi”_ZLbOQ). For the modelling of the droepulsion, a weaker dependence
of R on p is required, e.gR « p~ /4. In this section, the algorithms for determining the scale
lengths,b4 andbg, as functions of density will be presented.

2.5.1 Obstacle avoidance scale length

Based on the description of obstacle avoidance given inosg2t4, we find that the avoidance
interaction rangeR 4, depends on the corresponding scale lengif),(the normalized cutoff
distance for the tapered Coloumb function,.(), and the agent diameted)(as

Ry = (Zmax — 1)bA +d. (2.9)

As already mentioned?4 o p~'/2 would imply a roughly constant number of avoidance
interactions which could be expressed as

Ny=nR%p= ﬂRi’re,pref. (2.10)

Since N4 is independent of density, we can safely exprdssusing a reference density,;,
and a reference interaction range, ... Combining Eqs[ 2]9 arld 2110, we can get an expres-
sion for the reference scale length . as

1 N\ /2
DA e = [( A > - d] . (2.11)
Zmax — 1 T Pref

In order to avoid a singularity & = 0, we allow the scale length to deviate from a strict
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p~1/2-dependence and choose the following dependence on density

) 1/2
Pref + pA,mm) ) (212)

bA - bA re <
el p+ P A, min

The additional parametgry ., is chosen so thaiy = ba g if p = 0. This implies thatp 4 i
can be written as

Pref
min — . 2.13
P o /oA — 1 (13)

To summarize, obstacle avoidance is characterized by tixémwaen scale lengthb o, the
typical number of interactionsy,4, and to a much lesser degree gn. From the discussion

in section 2,111, we have that the interaction range shoeldshlarge as around 30 m to avoid
collisions with other agents if both agents are runningz,lf = 14 as shown in Figl_2]2, this
implies thatb4 o ~ 2 m is a good choice. A suitable choice fdfy might be 5. The reference
density, p.r, Should be small compared to relevant levels of crowd dgnsitich is on the order
of unity. We will setp, = 0.1 m~2. If d is roughly 0.5 m as indicated in Tallle P.1, then«
and p 4 ., become roughly 0.29 m ands - 10~2 m~2, respectively.

2.5.2 Crowd repulsion scale length

A similar discussion can be presented when it comes to crepdision. The relation between
the interaction rangé- and the scale length- is

Re = zmade. (2.14)

The number of crowd interactiongyc, is not in this case independent of density. Instead, we
specify an optimal number of interactiofé: .., at a given large density,.... Note that we are
completely free in choosing the value gf... We can e.g. set,., equal to a realistic maximum
crowd density value. The corresponding ... will then indicate an upper limit to the number
of crowd interactions per agent. This number is expressed as

NC max = TRZ Pryax = Wzaaxbémaxpmax. (2.15)

Choosing the crowd interaction range to be proportionghtd/4, we can formulate the crowd
scale lengthp, in a similar way as we did with 4 in Eq.[Z.12 as

N\ 1/4
Pret + pC,mm) ) (2 16)

bC’ = bC re (
el P + pC,min

By combining Eq[Z.T5 and 2116 with = p.,, and assuminga, >> pc min, We find thatbe
can be expressed as

(2.17)

1/2
NC,max
bC,ref = )1/2] .

1/2
7T’Zr%axpméx (pref + pmin
We use the same reference density as in the case of obstadlarmse, and again, we link the
density parametesc, ., t0 @ maximum scale length- , which corresponds to the cape= 0.
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So by combining Eq.2.17 and Elg. 2116 wjih= 0, we get

NE e

PC,min = m (2.18)
Since crowd repulsion is considered a fluid-like effect iis ttnodel, the number of interactions
per agent should be substantially larger than what was the foa the obstacle avoidance
in crowds of medium and high densities. At the same, we mussider the computational
expense of having a large number of interactions per agemte $he crowd repulsion scale
length has a weaker dependence on the density than the aveidaale length, a smaller
maximum scale length must be chosen in this case. A suitdigiee could béc g = ba /2 =
1.0 m. For p..« = 6 m—2, an acceptable number of interactions, both with regardstoiracy
and efficiency, would béV¢ . ~ 50. From Eq[2.IB, we then calculate: ., to be equal to
1.1-1073 m~2. And finally, we findb¢ . = 0.32 m from using Eq[2.18.

2.5.3 Comparison of scale lengths and robust calculation of smoohting length

The solid and dashed lines in Fig. 2.3 illustrate how the attaristics of the obstacle avoid-
ance and crowd repulsion, respectively, change with cimgndensity. In the left panel, the
avoidance scale length is seen to drop quickly as the deimsitgases from 0 to the reference
density at0.1 m~2. The crowd scale length is a factor of two smaller than thédance scale
length at zero density, but drops more slowly than the lagerfor p larger than roughly,/2,
the crowd scale length is larger than the avoidance scatghefhe grey, dashed line in the
same panel shows the mean agent separation divided by thaliwed cut-off distance,,..

By comparing this curve with the other two curves, we can kafethat in a uniform crowd,
the obstacle avoidance range will never be much larger tharagent separation whereas the
crowd repulsion range becomes significantly larger tharatfent separation for large densities.

The middle panel illustrates how the interaction strendtB different distances vary with
density. Assuming a uniform crowd, the average inter-ageparationA is roughly given as
A = p~1/2. The red, green, and blue lines in the middle panel corresporihe density-
dependent distances/2, A, 2A. The first case corresponds to a particularly close-by reigh
bour. In accordance with the general description in se@idh the obstacle avoidance dom-
inates over the crowd repulsion for all densities excephaihtermediate density range of
roughly 0.01 — 1 m~2. The second case represents the normal minimum distancsigbbours.
Here, the intermediate density range where crowd repuldmninates has been extend up to
p ~ 3 m~2. The third case corresponds to a neighbour which is not arttumgearest neigh-
bours. In this case, the interaction strength is small evieeye except for the crowd repulsion
in high density regions.

The right hand panel of Fi§g.2.3 shows how the number of iotemas per agent changes
with density. In the avoidance case, the number of inteyastis more or less constant as
expected. Only at very low densities does the number ofantEms drop. In the crowd case,
the number of interactions has a very different densityatem: The increase is small for very
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low densities. For densities above the reference denbgyntimber of interactions increases
very rapidly. As specified by the input parameters, 50 imtimas per agent are found at=

6 m2.
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Figure 2.3 Characteristics of the obstacle avoidance ¢slities) and crowd repulsion (dashed
lines) as functions of crowd density. The left, middle, d@gbtrpanels show the scale
length, the normalized interaction strength, and the nunolb@teractions. The grey
curve in the left hand plot shows/ z,,..,, whereA = p_l/z. The red, green, and blue
curves in the middle panel correspond to interaction disesn\ /2, A, and2A.

Now, let us return to the question of how the density is cal®d. Eq[ 2} described how

this is done by adding weighted contribution from agentdini@a certain interaction range.
From the expression of the weight function given in Eqg] 2.8,see that the interaction range
in this case is given a&h, whereh was referred to as the smoothing length. The smoothing
length should in itself be dependent on density, much asubiance and crowd scale lengths,
and this makes Eq._2.4 non-linear. To achieve accurate batsahoothly varying density
estimates, the range of the weight function is made equdlgaange of the crowd repulsion.

This implies thath can be expressed as
(2.19)

Zmax

be.
5 C

h =

The non-linear nature of EQ. 2.4 needs special considesatilf the initial density is very

low, we know from the right-hand panel of Fig. 2.3 that the memof crowd interactions is
small. As a consequence, the density estimate can fluctubttastially, especially since the

distribution of agents often are highly inhomogeneous i tensity regions. Also in such
cases, the contribution from an agento its own density, hereafter referred to as the density
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self-contribution, is important. It is equal (0, h,) which is proportional toh; 2. This means
that a small increase in density, which in turn leads to aeses® inh,, can have a potential
feedback effect on the density estimate causing the detusitycrease even further. In fact, if
we assume the total density is dominated by self-contobuytihen it can be easily shown that
there exists an equilibrium value of the crowd scale lenfgth,which is about 70% smaller
thanbc o, the maximum value obc, given as input in section 2.5.2. For the avoidance scale
length, b4, the difference betweeh, ( and the maximum scale length in real simulations
becomes even larger.

025 T T[T T[T T [ TT T[T oooT 20 TTTT T T T[T PTT [T TTTT[TTTT lOOO

0.20
1.5¢
0.100¢F
0.15}
a E 10} £
o]
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0.5t
0.05¢
0.00 0.0 Lo bl bivn b b, 0.001 Levwetvnibidenbinna bbb,
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

r (m) r (m) r(m)

Figure 2.4 Characteristics of the interaction between tweras as functions of separation. The
solid line in the left panel shows the total density in a tvgesat system, while the
dashed line in the same panel shows the corresponding geatftcontribution. The
middle and right-hand panels show the scale length and nlizetdhinteraction
strength, respectively. Obstacle avoidance and crowdlsgpuare indicated by red
and blue curves, respectively, while the black curve in éltied panel indicates the
total interaction strength.

To avoid this problem, it is proposed to calculate the soahgths by replacing in the de-
nominators of Eqd. 2.12 and 2116 with = p — W(0, h), the density without the density
self-contribution. The strength of the non-linear couglivetween: and p in the low-density
regime is thus weakened substantially. This makes it e&siachieve a robust algorithm for
calculating the interaction scale lengths. Nevertheléssnon-linearity of Eq._2]4 can give rise
to temporal oscillations in the scale lengths. To avoid, this calculated the crowd scale length
at time step as

1 A
be = 5 0i" + bel, (2.20)
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whereb! ! is the scale length from the previous time step &his calculated by Ed_2.16 with
p = p'~!, the density estimate from the previous time step.

To illustrate the change in interaction scale lengths inltine density regime, we take a look
at a simple case where two isolated agents approach eaah Whessume standard input
parameters as described in sectibns 2.5.1[and| 2.5.2. @mastcs of the interaction between
the two agents as functions of separation are shown in(Hy.The left-hand panel shows
the density (solid line) and density self-contribution gded line). We see that the density
can become as large 822 m~2 if the agents come sufficiently close. This corresponds to
the density of a uniform crowd where the typical separatarobund 2.2 m. The dashed line
indicates that the self-contribution also increases aswioeagents approach each other. The
middle panel illustrates how the obstacle avoidance (redeguand crowd repulsion (blue
curve) scale lengths drop as the separation between thegenisais reduced. Note that the
latter scale length is only bigger than the former when thmasaion is smaller than about 1.5
m. The right-hand panel shows the corresponding interacticength for the two interaction
types together with the total interaction strength (blackve). Obstacle avoidance becomes
significant already at 15-20 m, while crowd repulsion givegligible contribution to the total
interaction for separations larger than 10 m or so.

3 Internal forces

Internal forces are introduced to model the fundamentdityalof agents to make choices
regarding their own movement. Such a description shoulldidecany limitations of this ability
dictated by the human body. The classic model incorporatesl force, as it is often referred
to, in a simple manner by having a force which depends exalysion the difference between
the preferred and actual velocity (Helbing, Fark Vi M). The preferred velocity itself
(denoted byu,) can vary in time and be related to the displacement from teéeped location
(denoted byz,). If the applications are restricted to cases where all Bsgerove at roughly the
same, moderate speed, this formulation gives satisfacesylts. However, we want to consider
applications where agents might have widely different f@gared) velocities. We also have to
take into account that the preferred locations are definéh verying degrees of accuracy. And
finally, we must consider the possibility that differentdes acting constructively might result
in unrealistically large accelerations or might accekeragents to unrealistically large velocities.
With this in mind, we formulate an internal force containitigee components, a displacement
force, a flow will force, and a strain forceFZ = RE + VI 1 87,

3.1 Displacement force

The first component R2) is directly dependent on the displaceméat, = z, — r, from the
preferred location. Let, denote a scale length that indicates how accurately agéargets the
preferred location. Out of convenience, we also defipe= o,/1n 2. The force attracting the
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agent to the preferred location is then defined as

RI = mg AT, { exp —{ﬁ — exp _2(~Sza 5Za. (3.1)
Fa Fa ILEA|

The attraction to the preferred location is at its largesd distance ob,, and the constant

A, determines the maximum strength of the displacement faktteough o, is a problem-
dependent parameter, we will assume that> o, omn iS @ model constant to be determined
later. It is also reasonable to include a damping force gatim agents when they are close

to their preferred location. The damping force can be foatad as an additional term in the
momentum equation which is proportional to both the vejpdﬂlmagﬂahllo_dS) and the
spatial weight factoexp(—dz,/0,).

3.2 Flow will force

The second componenvg") depends primarily on the difference in preferred and dctua
velocity. However, according to assumption 8 in seclionZ.fhere should also be a natural
softening of the force when the agent comes within the predelocation range,,. First, let us
define the softening parametgf as

0z H
Lo jf 0 <z, < 0g;

Ya = e B . ‘ ‘ (3'2)
1 otherwise

The softened preferred velocity is defined as

N 0z,
Ug = Ua’Yam7 (3.3)

wherea, > 0 is the unsoftened preferred speed during movement. It Gs@avenient to
define the normalized preferred velocity vectoy = qu_f and it is trivial to see thafa,| =
Yo < 1.

The flow will force is divided into two parts. The first part isdaiving force term in the direc-
tion of the preferred velocity, while the second force teramghens movement perpendicular to
the preferred velocity. First, we define the parallel ancpprdicular velocity components,

Y),a = Vg~ ’lla (34)
and
Via = %YaVa— U||,a'a'a7 (35)

respectively. Then, we define the corresponding normalzstacity deviations from preferred
velocity:

I”’a = 4 (36)
and
€. = —% (3.7)
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The flow will force,vf, can then be written as

Vf = mg A [F(xn,a)'aa + xl,a]’ (3.8)

where AY

will

is the flow will acceleration amplitude aridz) is a non-linear force amplifier.

3.2.1 Non-linear flow will

The original flow will force formulation is a strictly linedunction of velocity

(Helbing, Farkas & Vigsél{lQbO). It is meant to describe tdredency of an agent to try
maintain the preferred velocity in spite of external foreesing on the agent. Linear models are
often considered first order approximations to more complacesses. For instance, are linear
models often valid only under the assumption of small dewiat from an equilibrium state. In
the case of the flow will force, assumptions 6 and 7 listed otise[2.1.2 lead us to identify 2
regimes, forz < 1 andz ~ 1, where a non-linear flow will behaviour might be appropriate

In situations where a weak but nearly static external folte an an agent, the deviation from
the preferred velocity should be almost negligible. Thibégause the agent can easily balance
the external forces with a moderate will force. Comparechwtelocity deviation, though, the
required will force might be superlinear. In situations whéhe external forces are large, the
agent might nearly stop or even move in the opposite dineatidative to the preferred velocity.
If this is the case, it is likely that the agent will exhibitleanced determination or even resort
to pushing to secure a minimum of movement in the correcttime. To model this behaviour
appropriately, a non-linear force is also required.

The force amplified’(x) is defined as:

(
boz? + cox if 0 <ux < xg;
bz’ +ciz+d if xg < < xq;

T(z)={ ' e 0= ! (3.9)
T if 1 <a <o
asx® + box® 4+ cox + dy  Otherwise

The coefficients can be determined by requirlng:) and its first derivative to be continuous in
the interval0 < = < 1 and the second derivative to be continuous in the interyak = < 1.
The amplification atr = o is equal tox; » = (zo + z1)/2. The amplification atr = z2, I’z is
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a free parameter. The force amplification coefficients aga thiven as
X
b = ——£2 (3.10)
L
x
0 = 2712 (3.11)
o
by, = ! (3.12)
! a 2(.%'1 — .%'0)’ '
o = -——* (3.13)
Tr1 — X0
2
x
d = ! 3.14
1 2(1:1 — .CL'O)’ ( )
ay = (Do—1)/(1 —3xy + 322 —23), (3.15)
bg == —3&2%2, (316)
ca = 1+ 3aga3, (3.17)
and
—aoxs. (3.18)

do =

The shape of the amplifier is shown in Hig.13.1 for = 2. Although the parametersy — -

can be set independent of each other, the plot only shows i8eshof (z¢, z1, z2), namely
(0.05,0.1,0.5) (solid curve),(0.05,0.2,0.7) (dotted curve), and0.05,0.4,0.9) (dashed curve).

2.0 T T T
L al
L g1
- -: ,_
151 '
L 1.0+ -
0.5 -
00? | .
0.0 1.0
X
Figure 3.1 Non-linear will force amplifiel'(z) with I'; = 2. The solid, dotted, and dashed lines
correspond tdzg, =1, z2) = (0.05,0.3,0.7), (zo,z1,22) = (0.05,0.4,0.8), and

(0,1, 22) = (0.05,0.5,0.9), respectively.
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3.3 Strain force

External forces acting on an agent can be sorted into 2 fuedtahcategories. Contact forces
are real forces that in extreme cases can give rise to sudaermges in the dynamics of agents,
potentially leading to physical injury. Most other forcesd crowd model are pseudo forces.
Although some of these forces are described as interactiithsexternal entities, they are in
reality caused by the agents’ own bodies in response toidesisnade by the agents. The
strain force should reflect the physical limitations of thertan body. For instance, the model
should make sure that the magnitude of the total pseudo fiwes not become too large.
Also, an agent should not be accelerated to unrealisti¢adli velocities. In principle, the
limitations on the human body could be time-dependent,essprting the current physical (and
psychological) state of individual agents. For now, we waktrict the strain force model to be
universal and time-independent.

First, we deal with the limitation on velocity. Let,, o denote the speed at which the straining
force becomes non-zero, for instance 6 m/s. For speeds ldr@ev;, o + dv;,, for instance
9 m/s, the straining force should quickly become very lange strong damping occurs. To
achieve this, we can define thelocity strain force for agenta as
o 3 .
(”va“ Ullm,o) ﬁa |f H’UaH > Ulim,(];

Olim

S%,a = —mg Ay (3.19)
0 otherwise
whered,, is the unity vector in the flow direction of ageatand A3, is the velocity strain
acceleration amplitude.

We also want to put restrictions on the pseudo forces actmgroagent by introducing what
we call theacceleration strain force First we need to defined the pseudo force acceleration of

agenta as )

dvg dv, dve
@ da dt (3.20)
where dgf is the corresponding acceleration due to contact forcedatiens. The magnitude of
the pseudo force acceleration is writtgh for short. Letf;, o denote the acceleration at which
the straining force becomes non-zero, for instance 0.5g)letnthe upper limit to the pseudo
forces be defined af. o+4 fim, for instance 1.0g. A normalized variable= (f— fin.0)/9 fim,
is then introduced. Ify < 0, the pseudo force should not be reduced and the accelesitain

force becomes 0. However, if > 0, the modified pseudo force magnitude is found as

N

f& = fim0 + 0 fim tanh (). (3.21)

The effective acceleration strain force then becomes
fp do?
Si.=— (1 — f—j{, mad—t“. (3.22)

The total strain force is given a$Z = ST, + S7 .
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4 Inter-agent forces

The interaction between agents is formulated as a sum ofitcttens between pairs of agents.
For each pair of agents, the interactiﬂh'*}j}7 can be separated into a relatively long-range,
social force (denotecsj},) and a short-range contact force (deno(q@). The role ofSaAb is

to maintain a reasonable distance between adjacent ageaes mnormal conditions, whilé;‘},
accounts for the additional forces associated with dingleysical contact. When describing
agent-agent interaction, it is useful to define the sepmaratector,r,, = r, — rq, the relative
velocity, vy, = v, — v, and the mean massy, = (mg + myp) /2.

4.1 Social force

The concept of a social force was originally presenteLj irbigl & MQIna’} {L9_9_k) and the

most common approach has been to use a force which is stréctlgl, anisotropic, but in-
dependent of velocity. In this section, we will look at thecisb force model adopted in the
current work. As described in sectibn 2.4, the social forceqlit into 2 types of interactions:
obstacle avoidance and crowd repulsion. The social forcagamta from agentd is therefore
written as

S7 = St + S5 (4.2)

where the indices 1 and 2 refer to obstacle avoidance anddcrepulsion, respectively. The
corresponding interaction scale lengths for the two tydesteractions were found in sec-
tions[2.5.1 and2.512. In this section, we will take a closeklat how these interactions are
formulated.

4.1.1 Obstacle avoidance interaction

The construction of the obstacle avoidance formulationriimarily guided by assumptions 3
and 4 listed in section 2.1.2. For this reason, the intavads dependent on both the separation
and the velocity difference between the two agents, anddiee fincludes both a radial com-
ponent and a normal component. While the first component easebn as being analogous to
the electrostatic force, the second component resemltges#gnetic forc 05).

First, let us consider the radial force component for a paagentse andb. The velocity
dependence of the component, formulated as a function afethéve, radial velocity, is de-
termined by a simple linear function, denot&dv,,, ), defined as

Vab,r H
—2 if yep. > 0;
— Vref+, ao,r =—
T(Uabﬂ‘) = Tab = refTVab

0 otherwise

(4.2)

wherewv, represents normal walking speeds) — 1.5 m/s.

While the radial component is effective in slowing agentsvdavhen approaching other agents,
the second component improves the ability of the agents teeracound obstacles. This is
achieved by a force, which we will refer to as tteflection force that is perpendicular to the
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relative velocity. In formulating the deflection force, wesfineed to define the scalar
Qv('f‘aba vab) = Qv,ab = (vab X ’f;ab) ' 27 (43)

where 2 is the unity vector in the direction out of the computatiop&ne. The sign of2,
indicates which way around an obstacle is more natural forgent to move. fQ, 45| > €,,
wheree, is a small constant e.g. 0.01, we can defii)g,;, as

Z:v,ab = Qv,ab/‘Qv,ab’- (44)

If not, ¥, o is set equal to 1 or -1 based on either agent preferencest¢ageferring to move
either to the right or to the left) or based on random choicextNwe need to determine to
what extent the two agents are on collision course. This meduy the function

Vab,r

if vy > €y;
HU (Uab,m Uab) = Hv,ab = UU(Zb . (45)
- otherwise

In crowds where the density is small or medium, agents agadylito navigate around neigh-
bouring agents as if they were isolated obstacles. And sheénter-agent separation decreases
with increasing density, the deflection force must increagk increasing density to prevent
collisions with other agents. For larger crowd densitiesfletttive motion around individual
neighbours becomes less effective. In this regime, ingrgabe deflection force further will
contribute to increased flow in the crowd. Based on this aspumwve propose a density-
dependent ehancement of the deflection foreg,, which we simply formulate as

Daid(p) = 1+ eavoidL7 (4.6)

P Pavoid

wheree,,.i« and p,..q are constants that need to be determined.

Finally, we can formulate the full obstacle avoidance fonoeagenta from agentb as

vabxﬁ

Sf}ab = _mabq)(rab/bA,ah O) {AgvoidTabrAab + AgvoidDavoid(pab)Ev,abHv,ab } ) (47)

ref

wherez,, = 74/ba qp IS Normalized distancéy o, = (ba,. + bap)/2 is the mean avoidance
scale length, and!”, ., and A% _ are yet to be determined force constants.

avoid avoid

4.1.2 Crowd repulsion

In contrast to obstacle avoidance, crowd repulsion onlysists of a radial component. Com-
pared with the radial component of the avoidance interactioe velocity dependent factar,,
is replaced by a angular dependent fagtyy, defined as
1494 Tap
2
where the parametdr < 6, < 1 determines the level of anisotropy in the crowd repulsion.
The actual value of), is yet to be determined, but generally, one can say that demdglwill

Oap = O + (1 — by) ; (4.8)
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result in increased anisotropy which in turn means redueed $peed in a uniform crowd. On
the other handfy, = 1, will result in a completely isotropic force and thereforera net crowd
repulsion in a uniform crowd. The crowd repulsion force oerag: from agentb is

S5 = —Mab Acow®(Tab /b abs 1) OavPab, (4.9)

where A IS the crowd repulsion force amplitude.

4.2 Contact force

The contact force is very similar to the classic modeLb;uﬂw.tLEaLkas_&M;sékL(ZD_(bO).

The force between two agents during physical contact i$ splinto a radial component; only
dependent on the separation, and a transversal compomrgandent on both the separation and
the transversal velocity difference. The full contact éoexerted on agent by agentb is

CA = (2my — ma)[krPap + Kt (Vap - tap)Eap) A(rap — dap), (4.10)

where

Alz) = x if x <0 (4.11)

0 otherwise

andd,, is the mean agent diameter. Note that the mean mags,has been replaced by the
asymmetric expressiotm; — m,. This is done to ensure that the more massive agent is
favoured in a situation with direct contact. This is impattin order to reduce the probability
of mutual blocking (see sectidn_7.3). In the original modgl,= 1.6 - 103s72 andx; =
3.2-103(ms)™! (for 75 kg agents). Since our agents are assumed to haveusacitand not
elliptical) shape, and because we assume the agents wéaesckhat add a certain level of
compressibility, we choose, = 5.0 - 10252 andx; = 2.5 - 103(ms)~!. This corresponds
to a radial force of around 0.5g per centimetre compresdfone neglect the effect of the
social force, we can estimate the total compression exparteby each of the two agents to
be around 2.2 cm times the velocity difference (in m/s) at fishtact. Even with a velocity
difference of 2 m/s at first contact, the compression will @ateed the 20% injury limit found
experimentaIIyL(MLanD_&_Km_bLZQ_dO). For more robust handliof physical contact forces, the
spring force should increase when the compression ingestsave a certain limit.

5 Solid boundary interaction

Complex geometrical structures in two dimensions can batoacted by combining points,
straight lines, and curves with constant curvature, andhénmhodel, we have chosen to build
solid boundaries by combining one or more instances of thas& structures. We will refer

to the basic structures used in a given modebasndary segments The boundary prevents

an agent from being influenced by anything located on therctioe of the boundary. In other
words, an agent does not interact with a neighbouring agérif the two are separated by a
boundary segment. Boundaries can thus effectively lingtitlieraction region of nearby agents.
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If boundary related corrections were not introduced, agyétated near boundaries would
therefore experience both an artificial drop in the crowdsitgras well as an imbalance in the
crowd forces.

To achieve a realistic crowd behaviour near boundariesctineent crowd model incorporates
three boundary related correction mechanisms. First, émsity is corrected when boundaries
come within the interaction range to compensate for theatémhu in effective interaction area.
Secondly, agents interact with individual boundary segsi@norder to balance the inter-agent
forces and thereby to avoid collisions with the boundarless particularly important when
modelling dense crowds that the boundary forces match tee-a&gent forces as closely as
possible. Just as for the inter-agent force, the bounda*gefﬁfb acting on agent due to
boundary segmerit is separated into a social force (denoﬁﬁ,) and a contact force (denoted
Cfb). Finally, the preferred location and velocity is tempdyamodified to take into account
boundaries that prevent the agent from taking the diredertmthe preferred location.

Sufficiently close to boundaries, the simulation area isas#pd intoboundary interaction
sectors one on either side of each two-dimensional boundary segm@imes or curves).

Every sector is restricted by the associated boundary segamel straight lines, callesector
lines, starting at the corresponding end points. Just as a boysggment will have exactly
two end points, does it also have two interaction sectorstandsector lines per end point

(so four in all). If an end point is not shared with any otheudary segment, then the two
associated sector lines are identical and parallel to thmdery tangent (directed away from
the segment midpoint). If exactly two boundary segmentsesttee same end point, the two
associated sector lines are given by the bisector of the hgtea formed by the two connected
segments. The two sector lines are in this case parallel gpasite and the sum of the two
angles is2w. Fig.[A.2 shows an example where to boundary segments, ohatkand B,

share an end point, markéd. The dashed red line through marks the exterior and interior
(relative to the segment normal vector) sector lines. Ifenthian two boundary segments share
an end poinip, then the two sector lines associated with boundary segianpointp is equal
to the bisector to the angles betwdeand the closest boundary segments on either side of
Fig.[A.3 shows an example where 3 segments, marke®, andC', share the end poirit;.
Again, sector lines are indicated by dashed coloured lifibs. red sector line is shared by
segments4d and B, the green line is shared by segmedt&nd C, while the blue line is shared
by segments3 andC'.

The interaction between an agenand a boundary segmebtcan be described as an approx-
imation to the interaction betweenand imaginary agents outsideas viewed bya). For now,

let us define thénside and outsideof segment such that agent is located on the inside of

b. The imaginary agents are then assumed to filldhter interaction sector so that agentis
separated from the imaginary agents by segmeiithe imaginary agents are assumed to be
uniformly distributed in the outer interaction sector with agent separation which is consistent
with the density of ageni. Just as in the inter-agent case, the social boundary faleesnd
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on a spatial separation vector. In the current context,wbdor is defined as the vector from
agenta to its mirror image with respect t. If the separation vector intersects the boundary
segment, we refer to the intersection as loeindary interaction point. In this case, the separ-
ation vector will be normal to the boundary segment (if a lanecurve segment). In the event
that the separation vector does not intersect the boundanyent, the separation vector is
defined by mirroring the agent about the nearest boundanmyesgigend point.

Before we can discuss the social boundary forces in morél,demneed to look at the bound-
ary interaction scale lengths and how the calculated deissitorrected near boundary seg-
ments. Then, the contact boundary force is briefly discussed

5.1 Boundary interaction scale length

The interaction scale lengths of boundary interaction khbe comparable to the correspond-
ing scale lengths of inter-agent interaction. This meaas tthe scale lengths should be large
when the crowd density is close to zero and decrease as tiséydiewreases. Fig. 5.1 depicts
a uniform crowd below a boundary segment defined by the ppinendp,. It shows the dis-
tribution of agents (circles with black filling) and the cesponding imaginary mirror agents
(circles with grey filling). In this case, one has made thepdiiiying assumption that the relev-
ant sector lines are normal to boundary segment. It also shiegvcrowd repulsion interaction
range and the projected position onto the boundary of agent

Figure 5.1 A uniform crowd (black dots) and the correspogdinirror agents (grey dots) located
below and above, respectively, of a boundary defined by timspg andp,. The
dashed circle indicates the wall repulsion interaction gan See main text for further
details.

The boundary forces should match the inter-agent forcas thds is particularly important
when it comes to wall repulsion which should balance crowaliston, the dominant force in
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dense crowds with small relative velocities. The obviousiad would therefore be to let the
boundary scale lengths be equal to the inter-agent scajghignas given by EqE. 2112 ahd 2.16.
So, we choose the wall repulsion interaction scale lengttitfe interaction between agemt

and boundary segment b¢c 4, to be equal td¢ 4, the crowd repulsion scale length of agent

a. In the case of obstacle avoidance, on the other hand, wetneedke sure that we get an
efficient agent interaction with isolated, static obstsaclke order to achieve this, it is important
that the interaction scale length is sufficient large.

Fig.[Z.3 showed that even a very modest crowd density.@f m~2 will cause the avoidance
scale length to be reduced by more than a factor of 2 relabivits tmaximum value. At the
same time, boundary tests have revealed that a rapid dedre#ise boundary scale length

can cause agents to make unrealistically sudden movemeatsboundaries. To avoid this
model deficiency, the scale lengths should have a relatieglydependence on density when
the density is much smaller than the reference density. igbreh levels of density, the obstacle
avoidance boundary scale length should approach the pomdimg inter-agent scale length. To
achieve this, we first define the density weight factor forrage ¢,, as

Pa
Sa = . 5.1
T pat Pt ®-1)

The obstacle avoidance scale length for the interactiowd®t agent: and boundary segment
b, b can then be formulated as a weighted sum of the avoidance krajth of agent and
the maximum avoidance scale length:

bA,ab - §abA,a + (1 - §a)bA,0o (52)

With p. andba o as defined in sectidn 2.5.1, the boundary avoidance scajghlérecomes
roughly 95% of its maximum value when the crowd density isaéda 0.01 m—2.

5.2 Density correction

Crowd density is computed as a weighted sum over neighbm@agents within a circular
interaction region (see EQ.2.4). Because nearby boursdeaie represent a truncation of this
interaction region, an artificial drop in density would typily be observed if the estimated
density is not properly corrected. Referring to the exangblewn in Fig[ 5.1, only agents found
below the line fromp, to p, are included when calculating the density of e.g. agent is

not practical to include the contribution from the imaginanirror particles indicated above the
p1 — po line. As a result, the computed density will not be consisteith the typical agent
separation. Therefore, we want to correct the computeditgidng renormalizing the weight
function, W,,;,, defined in Eq[2J5. First, we approximatg,, by a step function where all
agents within interaction range is given the same weighe éffective interaction range with
this simplified weight function is?, , = x,h,, Where

L _ (5.3)

T W) VT
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Using this simplified weight function, and assuming a camtims rather than a discrete agent
distribution, we can estimate the reduction in calculatedsity for agent. when we know the
fractional reduction in the associated interaction areatdunearby boundaries.

Another simplification we will make when deriving the degsiorrection is related to how

we treat information regarding the coupling of boundarynsegts. To accurately calculate

the fractional reduction in the interaction area of ageme would need information not only
on the location of individual boundary segments, but alsdvow these boundary segments

are connected (as seen in Hig.]5.1). This could lead to guie-¢onsuming computations
which, in the current context, is not strictly necessary lideo to obtain adequate accuracy. To
simplify the problem, we try to calculate the reduction iteiraction area due to each nearby
boundary segment separately without considering how setgnage connected. Referring to the
discussion in sectiop] 5 regarding sectors and sector lthesmeans not calculating the exact
interaction sectors. What we do need to take into accoutieigossibility that one boundary
segment might be partially hidden behind other boundarynseds. Therefore, before accepting
the interaction area reduction caused by a boundary segmartest is performed to check if

is visible to agent or hidden behind other, closer boundaries. Now, we are réadigscribe
the density correcting algorithm in more detail.

Let us first assume that boundary segneis a straight line, for instance as shown in Hig]5.1.
If an agenta is within interaction range&k, of an infinite straight line, the circle with radius
R, and the line will have exactly two intersections. Since tberimary segmerni is of finite
length, we have to consider the possibility tlhatas only one or even no intersection with the
interaction circle ofa, even thoughb is within interaction range ofi. That part of boundary
segment which is inside the interaction region afwill be referred to as the boundary seg-
mentb inside agenta. We will denote the end points of the segmentofside a by ¢; and e,
and the distance between these two pointgpyIn order for boundary segmentto be relev-
ant in this context, the midpoint between and c; must be visible to agent (and not hidden
behind other boundary segments). Assuming this is the gasean calculate the reduction

in the interaction area af by b, §A?, as follows: Let the distance from agento boundary
segment be given ass,,, and the angle between the two vectors from the position t@f the
end pointsc; andc, be referred to ag.,. Then,6A% can then be estimated as

1
0AG = 5 (Xab G — sablar). (5:4)

If boundary segmeni is a curve with radiug?;, the reduction in the interaction area ®tue
to b can be calculated in a similar fashion. Once agajnandc, denote the end points of
inside a, and the distance between andc; is given byl,,. As before,s,, is the distance
from the agent to the straight line betweenandc,, and y,; is the angle between the two
vectors from the position af to ¢; and cs, respectively. In addition, we need to calculatg,
the distance from the curve origin to the straight line bemve andc,, and x,,, the angle
between the two vectors from the curve originctoand ¢y, respectively. With these additional
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parameters, we find the estimated reduction in the interaciea ofa due to the curved
boundary segmerit, §A’, to be given as

1
OAG = 5 [Xab RS % Xeb B — (Sab = 5cb)la]. (5.5)

where the correct sign to use for the second term is foundllmsvid A closed regionSy, is
defined by the curvé and the straight lines from the end pointsboéind the position of agent
a. If Sy, is convex, then the second term in [EQ.]5.5 should be posifilternatively, if S, is
concave (non-convex), then the second term in(Eq. 5.5 sHmildegative.

The normalized reduction in the interaction area of agedte to all visible boundary seg-
ments within interaction rangeéy,, is estimated by adding the reduction found for each bound-
ary segment and divide by the full interaction area for tmepdified weight function

b
5y, — 20940 (5.6)

If accurately calculatedjY, < 1 and the density correction of agemtC, , should then be

given as
1

Cp,a — 1_75}/;1. (57)

However, we have to take into account thiat’ was estimated without properly taking into
account the connection between different boundary segmeéot this reasonjY, could in
special cases become larger than unity. If this is the cagdSE could caus€’, , to become
infinite and possibly negative. To get a more robust algorjtive first ensure thatY, < 1.
Then, to avoid an infintely large density correction, we ghlte the correction factor by this

modified expression:
1

1-9Y, + Ey(;Yf’

Cora= (5.8)

whereey typically would be around 0.1. This would ensure thagt, < 10.

5.3 Social boundary force

Just as agents have a tendency of maintaining a reasonatd@dat to neighbouring agents if
possible, so will agents also try to keep away from solid llawies. The term “social boundary
force” refers to boundary-agent forces which act on a digtaand are analogous to the social
inter-agent forces described in section] 4.1. As in the dagemt case, the social forces are
sorted into boundary avoidance and wall repulsion. Theasdaice on agent from boundary
segmenb is therefore written as

SE = ST+ S5, (5.9)

where the indices 1 and 2 refer to obstacle avoidance andrggllsion, respectively. The
corresponding interaction scale lengths for the two tydesteractions are given by Eqgs. 5.2
and[2.16, respectively.
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5.3.1 Boundary avoidance interaction

The boundary avoidance interaction is a relatively shange force, and we can therefore
safely assume that an agentn this case only interacts with at most one mirror agent per
boundary segmerit This means that the interaction with the mirror agent patpah can easily
be approximated by a single interaction withThe only requirement for such an interaction, is
thatb is inside the interaction range afand that the separation vector betweeand b is not
intersected by other boundary segments.

The obstacle avoidance formulation presented in[EJ. 4.Thiminter-agent case, is the starting
point for the formulation used in the case of boundary irtoa. There are however a few
modifications introduced: The deflection force, represkmig the second term of EQ. 4.7,
describes the ability of the agent to navigate around veligtismall obstacles. Solid boundaries,
such as walls, are normally quite large in comparison andensily navigated around. The
deflection force is therefore not applicable in this case strmlld not be included. In order
to maintain a good balance between inter-agent forces anddaoy forces, it is reasonable to
compensate for this omission by increasing the radial corapbof the boundary avoidance
force. We also want the boundary avoidance interaction ¢cease with increasing crowd
density and to be much smaller when an agent is not headiegtlgitowards a boundary. With
these modifications, the boundary obstacle avoidance fomcagenta from boundary segmerit
can be formulated as

STy = —ma®(rap/baap, 0)CBAL T <M>p8ﬁaba (5.10)

’ Pret

whereY;, is defined by Ed._412,.; is the same reference density used in sediion 25,1+
Tab/bA.ap 1S NOrmalized separation distandg, ., is the boundary avoidance scale lengtj,
is the force constant introduced in section 4.1.1. The far@ameter<Cs > 1, g > 1, and
pp > 1 are the yet to be determined through calibration tests.

5.3.2 Wall repulsion interaction

Wall repulsion, which is the boundary force equivalent towad repulsion, has a longer in-
teraction range in medium and high density crowds than thedary avoidance force. As a
consequence, the single interaction point approximasomnot sufficiently accurate in describ-
ing this type of boundary interaction. An exception to thiteris if the boundary segment is a
point. Then, the formulation from the inter-agent modelegi in Eq.[4.D, can be applied dir-
ectly to the agent-mirror agent interaction. If on the othand, the boundary segment is a line
or a curve, the wall repulsion acting on agenfrom boundary segmerit should ideally equal
the total crowd repulsion force amfrom all mirror agents which fit inside the appropriate in-
teraction sector associated withIn[Appendix A we try to estimate the wall repulsion arby
calculating the effect of the mirror agent distribution.i§ban be done by integrating the wall
repulsion force over the appropriate interaction sectoiiy.[5.1, the red and blue coloured
regions indicate that part of the interaction sector of therfdlary segment from; to p, which

is inside the interaction range of agentNote that in this case, we have simplified the problem
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by assuming the sector lines (indicated by dotted lineshareal to the boundary segment.
This assumption is used in the first approximation to the wegllsion, discussed in section

Al

We also assume that the wall repulsion, just as the boundaigance force, is normal to
boundary segmerit In addition, wall repulsion will be proportional to the erd density of
agenta, pq. If 24 = rap/bc,q is the normalized distance from agento the mirror image of
a about the boundary segmentthe contribution to the wall repulsion force on agenfrom
boundary segmerit can be written as

Sg,ab - _maAcrowd@abpa b%‘,algg” (Zab)fabv (5 11)

where®,,, is defined by Eq._4]8 and'}"(z,), derived iAppendix A, is given by Eq. A.P8.

It remains to be seen how accurate the new model of wall rigpuls. As a simple test, we
want to calculate the wall repulsion on an agerfor the cases of two different, straight bound-
aries. The first boundary is sufficiently large so that the poisits are located outside the range
of the agent-boundary interaction. The second boundaryhemther hand, has a total length
which is identical to the interaction radius. This meang tha boundary end points will be
inside the interaction range if the agent is sufficientlyseldo the boundary. We assume a uni-
form crowd density. Agent is placed on the boundary symmetry line, but the distanca fro
the boundary vary. First, we calculate the boundary forcexplicitly generating mirror agents
on the outside of the boundary and directly calculating thal tinter-agent crowd repulsion
force on agent: from all the mirror agents. This is the reference result. MTivee calculated

the wall repulsion force using EQ.5]11. In Hig.15.2 we comepiéwe calculated force for the

two boundaries in question as a function of normalized abeondary separation. The solid
lines refer to the direct interaction with mirror agents,ilelthe dashed lines are made from
using the approximation given by Hq. 5l11. The colours iagiche crowd density, in the range
1 — 6 m~2. The dotted curve in both panels shows the wall repulsiohdftioundary segment

is a point and the wall repulsion therefore is modelled asglsiinteraction between the agent
in question and its corresponding mirror agent.

Both panels of Fig_5l2 reveal a good match between the walefoalculated by direct sum-
mation and using the integral approximation. As expectiee,dashed curves representing the
integral approximation show none of the smaller scale tiaria found in the solid curves rep-
resenting summation over discrete mirror agents. We alse that the integral approximation
slightly overestimates the force at larger distances, miqudar when the density is moderate.
This is reasonable since the mirror agent spacing is qui¢e leelative to the interaction scale
length, ranging from abouib- at p = 1 to aboutdbs at p = 6.

To illustrate the effect of introducing both the density reation described in sectidn 5.2 and
the wall repulsion force described here, we have consulurte examples which involve a
static crowd in a complex, closed boundary. The agents asadput evenly and the average
density of the crowd is 2 agents per square meter. The ontg$oincluded are the crowd
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Figure 5.2 Normalized wall repulsion force as a function ofmalized distance from a
boundary calculated using mirror agents (solid lines) ahd hew wall repulsion
approximation (dashed lines). The colour indicates thewctaensity. Paned
corresponds to a straight boundary where the size is largantthe interaction
diameter, whereas panblshows the case where the length of the boundary is equal
to the interaction radius. The dotted line indicates the#oin the case of a boundary
point.

repulsion and wall repulsion forces. In the first example, loundary is built using only line
segments. In Fig._5.3, the boundary is indicated by the sblatk lines. It can be seen that
the boundary exhibits both convex and concave angles, iiti@ado line segments that are
only connected to other segments at one of the two end pdiatsh agent in the crowd is
represented by a filled circle with an outer ring. The colouthe circle indicates the norm
of the total force, while the colour of the ring correspondghe estimated crowd density,
For agents with a sufficiently large force strength, a redvarstarting at the agent’s position
indicates the direction of the total force.

Sufficiently far from the boundary, we see that the desanipts satisfactory. However, the un-
corrected crowd density is seen to drop for agents locataden¢o the boundary. As expected,
the estimated density is at its lowest where the interioleaigyat its smallest. For instance,
the density drops to about 1.2 near corners where 3 linessede Coinciding with the drop in
estimated density, is the force imbalance. The force isydwminting towards the boundary
and the force strength can reach 10-20% of the gravitatifimak. This is comparable to what
is a reasonable upper limit to forces acting on agents duriogement. Therefore, it represents
an unacceptably high level of noise in a static or semies@iowd. Fig[5.4 shows the corres-
ponding results when the density correction and wall répulare used. First, we see that the
density near the boundary never drops below 1.7-1.8. S&cahé force strength is less than
1% of the gravitational force and therefore negligible fossnagents. A few agents, such as
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Figure 5.3 Snapshot of a static crowd inside a closed boundétine segments when no specific
boundary handling is applied. The colour of the filled ciscknd outer rings indicate
the acceleration norm and the calculated desnity, respelsti Red arrows show the
direction of the acceleration vector.
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Figure 5.4 Snapshot of a static crowd inside a closed boundétine segments when density
correction and wall repulsion are applied. The colour of filed circles and outer
rings indicate the acceleration norm and the calculatednitgsrespectively. Red
arrows show the direction of the acceleration vector.
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the agent located roughly at= 9.7 andy = 1.7, still show a noticeable force imbalance but
this is due to a slightly inhomogeneous crowd distributiather than errors in the boundary
treatment.

As an additional test, we modify the boundary used in theiptesvtwo tests. This time we
introduce curved segments at two places in the upper paheoboundary. The right-most
curve has positive curvature, while the left-most curve megative curvature. Despite the
change in the shape of the two boundary segments[Fig. Svésslitde change in the boundary
related errors when no boundary corrections are appliegi[F8 shows the corresponding
results when estimated density is corrected and wall repuls included. Again, we see that
the boundary corrections remove much of the variation irsiigrand the force imbalance. We
also see that the level of errors near the curved boundamesgg is roughly the same as the
corresponding error level near any of the line boundary segs

P
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Figure 5.5 Snapshot of a static crowd inside a closed boundéboth line and curve segments
when no specific boundary handling is applied. The colouheffilled circles and
outer rings indicate the acceleration norm and the calcedatesnity, respectively.
Red arrows show the direction of the acceleration vector.

5.4 Contact boundary force

Contact boundary forces are treated completely analogotisetinter-agent contact forces.
Again, the separation vector is defined as the vector fromagent in question and its mirror
image with respect to the boundary segment. The mirror agesgsume to have the same
physical properties as the parent agent, and the velocitiovef the mirror agent is a mirror
image of the velocity of the parent agent with respect to thendary. With these boundary
properties, the contact boundary force between a boundamyeatb and an agent will take
the form given in Eq_4.10.
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Figure 5.6 Snapshot of a static crowd inside a closed boundéboth line and curve segments
when density correction and wall repulsion are applied. Takur of the filled
circles and outer rings indicate the acceleration norm anel talculated desnity,
respectively. Red arrows show the direction of the accétarasector.

5.5 Automatic path finder

We want agent: to automatically consider solid boundaries when tryingeach the preferred
location z,,. If a boundary obstructs the direct path4g, then the agent should choose a
preferred velocity which would correspond to moving arotinel boundary. Since a boundary
typically has a substantial size relative to the size of glsimgent, a simple deflection force
(see sectioh 4.71.1) will not be sufficient. Instead, we iiice an algorithm which allows the
preferred velocity to be modified by nearby boundaries. Titeraatic path finder considers
both boundary segments and individual vertices. The dlgariused is described in detail in

Appendix B.

6 Model calibration

In formulating the basic crowd model, we have introduced mlver of free parameters that
influence the behaviour of the model. Some of these parasnetere determined already in
section 2 based on fundamental observations and assumpégarding the human body and
human motion. Still, there are other parameters, such a®the amplitudesA?,, Acows

Ar ., andA? that need to be determined before applying the model to mamplex test
problems. This model calibration is achieved by using thel@ehto solve simplified problems
and comparing the results to observational data. Startitig ttve most fundamental parameters
and gradually extending the model to more complec problemescan determine the remaining
parameters, one at the time. In this section, we describedlilgration of the current crowd

model
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6.1 Uni-directional, homogeneous flow ( Ay /AY, and 6p)

The fundamental diagram for pedestrian motion is a coroeestn pedestrian traffic planning.
It describes the empirical relation between crowd densiaand the flow speed (or egivalently
the specific flow rate/). Despite the fact that there is a fairly large spread in timpidcal data

(Fruin. 1971 Helbing, Johansson & Al-Abideén, 2007: OldE68: Predtechenskii & Milinskii,
|_9;431 7 :|_S_tﬂ|l,|LO_Qb 92), the fundamental diagis widely used as a quantitative
benchmark for crowd modeIE_(D_a.a.mﬂn_dt mwmmlm6)

In the current work, we start by looking at steady-state;dirgctional flow in a homogeneous

and infinitely large crowd where the agents are placed in @mgalar grid formation. We neg-

lect contact force which should reduce the flow speed funiteen the agent spacing becomes
smaller than the agent diameterat- 5. Initially, we also assume the flow will force to be lin-
ear, that isl'(z) in Eq.[3.8 is identical ta: for all z. Later, we will look at the effect of having
a non-linear will force.

As a result of these assumptions, the crowd model can be@ddoca semi-analytic calcu-
lation where the only free parameters are the force amglitatio, A..../AY,,» and the level

of isotropy, fy. The former parameter scales the strength of each indivichoavd repulsion
interaction relative to the flow will force. The latter paret@r determines the level of the net
crowd force in a uniform crowd. The two parameters are linkad must therefore be con-
sidered together. The original social force model of Hedhim typical used with parameters that
correspond toA /Ay, ~ 10 andfy ~ 0.3 — 0.8 dMethLel_al.,_ZQzljl). In the current model,

the range of the social force is larger. It is therefore reabte that a slightly smaller value of
Acons/ AL, 1S appropriate in this case.

will

6.1.1 Results with a linear will force

Fig.[6.1 shows the results of the analysis fof,../ AL, = 6 and a preferred velocity of 1.4
m/s. The left- and right-hand panel show the flow spagdatd flow rate {), respectively, as
a function of crowd density4). The red, green, olive, bright blue, and dark blue curvesese
pond tof, = 0.1,0.2,0.3,0.4, and0.5, respectively. For comparison, we have included data
from two empirical studies. The dashed curves represeniEidmann model constructed on
the basis of numerous data sets, many of which are multititireal rather than uni-directional

dlALeidma.nhLlQ_dZ). According to this model, the flow speediisrgas

v:u<1—exp [—WV (l—i>}> , (6.1)
P Pmax

whereu = 1.34 m/s, pn.x = 5.4 agents/m, and~y, = 1.913 agents/m. The open circles in Fig.
are taken from an empirical study of pedestrian flow actbe Jamarat Bridge in Makkah
dHering, Johansson & AI-Abidelsh,ldO?). Although the eticpi data agree qualitatively,
there is substantial difference quantitatively. This dopértly be because the Weidmann model
also relies on data from multi-directional flow. Also, sd@ad physical characteristics of the
crowds are factors that are likely to play a role.
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Figure 6.1 Fundamental diagrams for uni-directional peies flow. The left- and right-hand
panels show the flow speed @nd flow rate (), respectively, as a function of crowd
density p). The semi-analytical results with linear will force fal,./ AL, = 6 and
6y ranging from 0.1 (red) to 0.5 (dark blue) are compared to tredann model

2) (dashed line) and empirical data from

-Abi e|n_(2£b07) (open circles).

First, we notice that the flow speed drops too quickly for $nmlt non-zero density levels.
This regime will be addressed by the non-linear will forcepéfier. For larger densities, the
solid lines show that the new crowd model with,../AY, = 6 fits reasonably well to the
empirical data. The model fits nicely with the Jamarat Bridgéa if 6, = 0.3 is chosen. If

on the other hand, = 0.4 — 0.5 is chosen, the resulting fundamental diagram fits well with
the Weidmann model. If the ratid,../AY, IS increased, the isotropy paramefigrmust be
decreased in order to maintain roughly the same curves ifutidamental diagram, and vice
versa. In fact, the fundamental curves appear in this cabe ttefined by a single variable
roughly equal toAo./AY, + 1000 = 9. We choosed o./AL, = 6 andfy = 0.3 as default

values for the new crowd model.

6.1.2 Results with a non-linear will force

To achieve a better fit with the empirical data for< 1, we want to use the non-linear will
force as determined by the will force amplifier (see Eql 318)e amplifier is characterized by
the parameters, =1, 2, andI’y. We need strong relative amplification for< 1 sozy < 1,
for instancex, = 0.05. The last two parameters, and Ty, is related to when and how strong
the amplification is when the flow speed is relatively smadkresponding to relatively high
density. These parameters cannot be properly determirgawtiincluding contact forces. For
now, we assume, = 0.9 andI'; = 2. We are left with determining:, for which we have

rg9 < x1 < Zo. In the following test, we consider; in the ranged.2 — 0.5. The results are
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shown in Fig[6.R2 and once again compared to the Weidmann Ir(*ﬂMma.nﬁLlQ_dZ) and the
Jamarat Bridge data (Helbin hansson & Al-Abi éen, 20@7s clear that the non-linear

Figure 6.2 Fundamental diagrams for uni-directional pedies flow. The left- and right-hand
panels show the flow speeg) @nd flow rate (), respectively, as a function of crowd
density p). The semi-analytical results with a non-linear will forfo
Acowa/ ALy = 6, 0 = 0.3, andz ranging from 0.2 (blue) to 0.5 (yellow) are
compared to the Weidmann mod_el_(ﬂeidﬂwlamjl%Z) (dashe3dalimd empirical

data from Helbing, Johansson & Al-Abideen (2007) (openies:

amplfier gives a better fit to the empirical data in the low dgn®gime. At larger densities,
the effect is negligible. Compared to the Weidmann modek= 0.4 — 0.5, should be a suitable
choice. Subsequent tests of multi-direction flow indict&t &1 = 0.5 is close to the optimal
value. Therefore, we choosg = 0.5 as the default value.

6.2 Multi-directional, homogeneous flow (AL ., /Acowd)

It is still open for debate how the fundamental diagram for @tirtlirectional case should differ
from the corresponding uni-directional case. How maS_e_bh_neﬁier_e_t_ElL(;dOQ) points to
flow direction as possibly the most important factor in ekptay differences in the fundamental
diagram obtained with different experimental data. In suppf this view, experimental data
exist where a reduction in flow speed with increased diractimbalance has been observed
dNavin & Wheelér]_lsa_dg). We will look at a multi-directiongkoblem very similar to the uni-
directional problem described in sectionl6.1. Agents aitelly placed as in the uni-directional
case, in a homogeneous, infinite crowd on a rectangular gridétion. A single lane of agents
move at a constant speed, while all other agents are assunieddtatic. Since the agents

in the lane move relative to the agents in the surroundingvarohe crowd is not strictly
homogeneous with a time-independent state unless we @&vexay a suitable time period. This
is solved by averaging over a sufficiently large number diedéint configuration where the
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position of agents in the lane is shifted relative to the timsiof the other agents. Note that
this averaging will in itself cause a slight decrease in flpged relative to that found in the
uni-directional case.

Since this problem involves velocity differences betweateracting agents, the obstacle avoid-
ance force will be non-zero. However, symmetry causes tfledalien force to be zero. The
only parameter is thereford’ ., the radial component of the avoidance force. It is this para
meter that determines the difference between the unittbredd case and the multi-directional
case. Using the same semi-analytical approach used irs&Efl, we want to investigate ex-
actly how large the reduction in flow speed is for a given valtiel .. In Fig.[6.3, we see the
fundamental diagram in the multi-directional case for Sedént values of the ratial’, ../ Acows

ranging from 0.0 (dark blue) to 0.4 (red).

2.5 [ T T T T T T

2.0

Figure 6.3 Fundamental diagrams for pedestrian flow in aisthackground crowd. The left-
and right-hand panels show the flow speepland flow rate (), respectively, as a
function of crowd densityp]. The semi-analytical results with a non-linear will force
for Agowa/AY, = 6, 0p = 0.3, and A7, ../ A«ows Fanging from 0.0 (dark blue) to 0.4

will avoid

(red) are compared to the Weidmann mohel (WeileamI 1988hédi line) and

empirical data frorr{l_HﬂlbinngQha.nssgn_&_Al;Abmle O@®pen circles).
Let us assume that the Jamarat Bridge Helbin [-Abi ,|;0_0J7) repres-

ents a more or less uni-directional case, and the Weidmardelmepresents a multi-directional
case. If so, the ratiol], .,/A.oa Should be chosen so that the resulting fundamental diagram
fits roughly with the Weidmann model. As before, the flattgnaf the fundamental curves in
Fig.[6.3 for densities larger than roughlyagentgm? is caused by the non-linear will force
and the fact that contact forces are not included in the seralytic model. Apart from this
apparent flaw in the new model, we see tHg}.,/A.oa = 0.2 gives a quite good fit with the

Weidmann model. However, there are at least two factors msider before concluding. First,
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the semi-analytic analysis was based on a lane of agentsnqavia static crowd. If we in-
stead had considered a truly two-way flow, the relative uglatifference between agents of
adjacent lanes would be twice the flow speed. According td2E%.the radial avoidance force
would then be upto a factor two larger (for relative velastimuch smaller than the reference
velocity). This would result in a smaller equilibrium flowegxd relative to that shown in Fig.
[6.3, in particular where the flow speed is much smaller thanréfierence velocity. The second
factor to bear in mind, is that the Weidman model is consédian the basis of data that also
include uni-directional streams. This could imply thatiyrmulti-directional streams should
result in flow speeds that lie slightly below that of the Weam model. All in all, it would be
reasonable to conclude thadf, /Ao Should be in the range 0.1 to 0.3. We will for now keep
Al o/ Avons = 0.15 as a default value.

6.3 Agent meeting ( A%, ., /Aqoud)

avoid

In order to determine the appropriate level of the obstaetédance deflection force, we look
at a simple system describing the close-up meeting of twatag&ince only two agents are
involved, we assume thd®,,. (defined in Eq[C4J6) is roughly 1. First, we concentrate on the
case where only one of the agents is moving. Afterwards, wk & the more realistic case
where both agents are moving. In both cases, preferreddosaare defined so that a nearly
head-on collision between the two agents would occur if amtivas governed by the flow will
force alone. In the absence of a deflection force, the inierabetween the two agents would
be strictly radial. Although effective at slowing down migiagents, a radial force would in
this case contribute very little to deflecting agents frontraight line. As a consequence, the
two agents will either collide or, at best, make a sharp turceathe separation between the two
agents have become sufficiently small. To achieve a much meatistic movement past the
static agent, we need to include a non-zero deflection force.

6.3.1 Asymmetric meeting

In this test problem only one of the agents is moving. Thacstdent is located at origin. The
moving agent starts at the positiep = (—30 m, —0.05 m) with a preferred location at; =
(30 m, —0.05 m). The distance between the static agent and the straighbétweeerr, andr;
is therefore onlys cm, which corresponds to roughly 25% of the agent radius. édew with
the inclusion of a non-zero deflection force, the moving agdgh deviate from the straight
line in such a way that the minimum separation between theagents becomes larger than
5 cm. Fig.[6.4 shows how the minimum separation between thetage-,,) and the maximum
acceleration d,,,) on the moving agent varies with varying preferred speeddsitiction force
amplitude. The blue, green, red, and yellow curves corms$go a preferred speed of 1 m/s,
3 m/s, 5 m/s, and 7 m/s. First, we notice the steady increatieeiminimum separation with
increasing deflection force. Whett /A ..« = 0.1, the minimum separation is around 1 m
for all preferred speeds. Fot?, /Ao = 0.5, the minimum separation has increased to 2-

avoid,

3 m. The other important result to note, is the sharp increaseaximum acceleration with

FFl-rapport 2015/01750 43



increasing preferred speed whéf, .,/ Aqou is around 0.1 or less. Note also that there is a
minimum in the recorded maximum acceleration #8f,,,/Aqows = 0.15
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Figure 6.4 Simulation of a moving agent originally on an anhbead-on collision course with a
static agent. Top and bottom panels show the minimum separ@h metres) and
maximum acceleration (in percentagegf respectively, as functions of the ratio
Al -/ Aoue The preferred speed of the moving agent is 1 m/s (blue), 8gmeen), 5
m/s (red), and 7 m/s (yellow).

Observational data should determine what is a realisgicalhimum separation between a
moving and a static agent. For now, we assume that 1.5-2.5reagonable. If we in addition
aim at minimizing the recorded acceleration, we can corechhat the results in Fi§. 8.4 point
towards an optimal value of?, /A of around 0.15. This also implies that! , and A7,
are comparable in size. In Fig._6.5, we have plotted the patheomoving agents for the 4
different choices of preferred speed wiﬂjlvoid/Acmwd = 0.15. The colour of the different curves
indicates the agent speed, while the colour of the filledesrshows the acceleration mag-
nitude. We see that there are relatively small variationthénflow path for different preferred
speeds. Also, there are no sharp changes of direction, vidicbnsistent with a moderate

acceleration.

6.3.2 Symmetric meeting

Now, we look at the case where both agents are moving. Ond &geriginal placed at, o =
(—15 m,—0.025 m) with a preferred location at,; = (30 m, —0.025 m). The other agent is
original placed atr, o = (15 m,0.025 m) with a preferred location at;, ; = (—30 m,0.025 m).
Just as in the previous test case, the minimum separatiovebntthe two agents would only be
about 25% of the agent radius if the agents had moved in ktrliges between their respective
original and preferred locations.
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Figure 6.5 Flow pattern of a single agent originally on an alsh head-on collision course with
a static agent. The deflection ratiﬂgvoid/Amwd, is equal to 0.15. The colour of the
different curves indicates the agent speed, while the cabthe filled circles shows
the acceleration magnitude.

Figs.[6.6 and 617 show the simulation results corresponttirfgig.[6.4 and 615, respectively.
The level of the maximum acceleration has increased for pigferred speeds relative to
the asymmetric case. This is reasonable since the relagteeity between the two agents

is doubled from the asymmetric to the symmetric case. Ot that, Figl 616 confirms

the result found in the simulation of the asymmetric meethmgt the maximum acceleration
experienced by the agents is at its lowest &y /Ao @around 0.15. The flow pattern in Fig.
is just as smooth as the one seen in [Eig. 6.5. Both figusesraleal a generic weakness
in crowd force models: It takes a certain time, due to ineftiam a moderately strong force
starts to act until the accumulated effect on the velocityatceable. As a consequence, the
greatest effect on the trajectories of the agents seen m[BEi§ and_6]7 are after the agents
have passed each other. In reality, a human would act etvligroduce a trajectory which is
roughly symmetric about the point of meetiljug_CM_Qussalli.um_&lhﬂLa.uLalzLZQil).

6.4 Crowd naviagtion ( eaeq and paeiq)

In section[6.B, we determined an appropriate deflectiorefteeel in low density situations
where the velocities can be relatively large. We know frorpegience that the deflection force
should increase with increasing density until it reachaaesanot too large, upper limit. For this
reason, we introduced the deflection factoy,,4(p) > 1 (defined in Eq[416) in the expression
for the deflection force (see Eg. #.7). Now, we need to find @gmate values for the two
parameters.,..; and p..iq Which, together with the local density, gives Dg,.iq(p).

To calibrate the parameters, we study a problem where aesaggnta is to navigate through
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Figure 6.6 Simulation of two agents originally on an almosat-on collision course. Top and
bottom panels show the minimum separation (in metres) andnmouan acceleration
(in percentage o§), respectively, as functions of the ratitf ./ Acou. The preferred
speed of the agents is 1 m/s (blue), 3 m/s (green), 5 m/s é&ed)7 m/s (yellow).
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Figure 6.7 Flow pattern of two agents originally on an almbetd-on collision course. The
deflection ratio,A% ./ Aqewe, iS €qual to 0.15. The colour of the different curves
indicates the agents speed, while the colour of the filledlesrshows the acceleration
magnitude.
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static crowds of different densities. The position of theratg in the crowd follow roughly

a grid configurations, although with substantial randoms@auperimposed. Agentis to
navigate the crowd at an optimal angle of 34 degrees relatithe axis, at a desired speed

of 1.4 m/s. Each simulation is run for 30 s, or until agerttas moved 15 m in the preferred
direction. We perform simulations with crowd density vayibetweer0.36 m—2 and2.4 m—2
and D,,q ranging from 1 to 10 with 25 unique simulation setups in ad. finimize the effects
of stochastic noise, all 25 setups are simulated 5 times diitbrent starting seed for the
random number generator. This means a total of 125 indiVisinaulations. Fig[ 618 illustrates
the obtained trajectories of agemtfor one particular starting seed. The colour of each of the
trajectories indicate the chosen valuelof,;, ranging from 1 (black) to 10 (yellow). The
arrows show the instantaneous velocityaofvhere the colour of the arrows becomes darker as
the velocity decreases.

6: ° .- e o o o i ° I. ° .
e e o © o o o © ° 4]
3 e ® o o 0 0 0 0/ |
e ® © o 0 o (g0 ° ° o
2p o 02 0 0/% e o °o
E 0.2 F8c 0 o o g 0 o |
0 a P L ® L o @, d
0 2 4 6 8 10

Figure 6.8 Trajectories of agemnt navigating through a crowd where the density is
approximatelyl.2 m—2. The deflection factorl{,..) is set to 1 (black), 2 (blue), 4
(green), 6 (alive), 8 (red), and 10 (yellow), and the arrowdicate the instantaneous
velocity (darker arrows correspond to lower velocities).

We immediately see that the black trajectory, correspandio increase in the deflection force
amplitude relative to the low density limit, exhibits seslesharp bends and ends well before
the agent has moved 15 m. The corresponding velocities aa#. Shhe blue trajectory corres-
ponds toD,.q = 2. Again, the trajectory has sharp bends with correspondimgvielocities.
For larger values o), the trajectories become much more smooth with correspgnidirger
velocities. We note that the difference betwedeg,, = 4 (green curve) and),,., = 6 (olive
curve) is negligible. In both cases, the agent has movedpeeifeed distance of 15 m in less
than 30 s. The trajectories @, = 8 (red curve) andD,,; = 10 (yellow curve) do not ex-
tend as far as 15 m from the starting point. This indicates iha;; has become too large and
that the optimal value oD, lies in the range 4-6.
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To further investigate how the motion of agentdepends oD, for different crowd densities,
we construct the time integrated quantity defined as

|dvg.; /dt]|
I = St et (6.2)
wheredt; is the time between snapshatand:— 1, |dv,;/dt| is the norm of the acceleration of
a at snapshot, andv, ; indicates how large the velocity component parallel to themalized
preferred velocity 4,,) is:

Vo - Uy +107mis  if v, - Gy > 0;

Bos = a a a -a (63)
10~*m/s otherwise

In general, we are interested in identifying a model wheesabceleration is relatively small,
while the velocity is relatively large. In other words, siealvalues ofL,, indicate better mod-
els.

T T T T O ) LN B B LR

100

10

1 1 1 1 0
0 2 4 6 8 10 00 05 10 15 20 25
Davis P

Figure 6.9 Time-integrated quantitl, for agenta plotted as function of the deflection factor
D,..q (left-hand panel) and optimal deflection factor as a functid density
(right-hand panel). The curves in the left-hand panels espond to average crowd
density equal t®.36 m~2 (black),0.6 m—2 (blue),1.2 m—2 (green),1.8 m~2 (red),
and1.8 m—2 (yellow). The dotted and solid curves in the right-hand pahew the
numerical results and the analytical results given by[Eg.wlith e,,.,s = 9.2 and
Pavod = 1.1 M2,

We calculateL,, for all simulations, and we average over the 5 simulatiorth wdentical model
parameters. The results are plotted in the left-hand pangigo[6.9 where the time-integrated

L, is plotted as function of the deflection factdp,,.. The curves correspond to average crowd
density equal td®).25 m~2 (black), 0.36 m~2 (blue), 0.60 m~2 (green),1.2 m~2 (red), and

2.4 m~2 (yellow), and the filled circles correspond to the simulatatlies ofD,... For all but
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the smallest simulated density level, we see thais much larger than unity wheb, ., = 1.
When D, is increased, we see that, at first decreases for all simulated density levels. When
D,..iq is increased above a certain valug, starts to increase. Depending on density, we can
therefore identify an optimal value db,,.,;. The dotted line in the right-hand panel of Hig.16.9
shows the optimal value ab,.., found in the crowd navigation tests as a function of density.

Now we can fit the deflection parameters,s and p...iq to best fit the simulated data just de-
scribed. The simplified model for the deflection factér,f,) can fit the numerical data with
sufficiently high accuracy. if we cho0sg.q = 9.2 and pueq = 1.1 m~2. The solid line

in the right-hand panel of Fi§._8.9 shows hdw,., will vary when D,.4 no longer is a free
parameter but rather a function ef., and p...q @s given by Eq._4]6.

6.5 Agent pair equilibrium (AL, /AY, and o)

will

The next model constants to be determined 4fe ando,,,, parameters associated with the
displacement will force defined in sectibn13.1. To deterntime effects of these parameters, we
set up a test involving two identical agents who share theegamreferred location. We assume
a quasi-static situation where agent velocities are nidjgigcompared to the preferred speed.
The displacement and flow will forces will draw the agentsdais the preferred location,

while the mutual crowd repulsion will prevent the two agefntsn colliding. For a given

choice of A}, ando,,, force equilibrium is achieved at a given distaricefrom the preferred
location. As before, we assum&,../AL, = 6. Fig.[6.10 shows at what distance the two
agents experience force equilibrium as a function of thie tattween the displacement will
force amplitude and the flow will force amplitude. The effeftvarying o, the scale length of
the displacement, in increments of 1.0 m is illustrated @y dfiferent curves in the plot. The
grey curve corresponds o = 1.0 m, while in the other end of the scale, the resultsdoe

8.0 m are represented by the yellow curve. It is a reasonablereznent that the permanent
separation between the two agents should not be less thandadoO m. This corresponds to
5z > 0.5 m. From inspecting Fid. 6.10, we see th&}, = AY, ando = 4.0 m will result in

0z ~ 0.6, which corresponds to a inter-agent separation of 1.2 m.e&fsutt values, we choose
Ar =AY andoy, = 4.0 m.

will will

6.6 Single agent boundary avoidance (  Cg and gg)

The boundary avoidance model described in se¢fion]5.3dsreh 3 not yet determined para-
meters,Cg, g5, andpg. The parameters are coupled in a non-linear way which maldi i

ficult to determine one parameter at the time. First, we faruswo single agent scenarios
where the crowd density is negligible. In this cagg,is not an important parameter. In the first
scenario, the agent moves from a start location roughly 2@om fa straight wall, towards a
target location 1 m in front of the wall. In the second scemane make a 1 m wide opening

in the wall and specify that the agent should move throughptesage towards a target location
on the far side of the wall. A large set of simulations is perfed, varyingCi between 1.6
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Figure 6.10 Equilibrium distance)z from preferred location as a function of the ratio between
the displacement and flow will force amplitudes,, /A%, , when two isolated agents

share the same preferred location. The scale length of tglattement forcer,
range from 1 m (grey) to 8 m (yellow).

and 2.8,q5 between 3.0 and 6.0, with the optimal speed of the agenthosen between 1.0
m/s and 8.0 m/s.

The aim is to arrive at a model where the agent stops closeettatyet location without hitting
the wall and with a mean speed which is reasonably close tojtimal speed. To assess the
outcome of the simulations, we define 3 observable quamtitig, dv, anddér. The first observ-
able represents the maximum acceleration experiencedebggént. The second observable is
found as the difference between the optimal speed and treeaimraged speed of the agent,
normalized by the optimal speed. The last observable is etbfas the distance from the agent
to the target location at the point of closest encounter withwall. Better models result in
overall smaller values of the three observables. Therefeeedefine an upper acceptance limit
associated with each of the 3 observables. The criteriadoe@ing the model is that each of
the 3 observables are smaller than the corresponding limitSiv,., anddr,,. Dividing the
observables by the corresponding limits, give us the ratios

R, = I (6.4)
Ajim

R, - (6.5)
5U|im

and

1)

R = —, (6.6)
57“|im

which can be combined into a single scalar quantity

Rya = Ry Ry R, (67)
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For the first scenario, we have chosep = g, év, = 0.3, anddr,,, = 0.5 m. For each combin-
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Figure 6.11 Parametric study of a single agent moving towadtraight wall. The colour
indicates the range of optimal speed which resulted in olz®es below the
acceptance limits. The contour lines indicate the valu&Qf(Cx, q5).

ation of selected values @f3, ¢3 andu,, a simulation is run and,, is calculated. IfR, < 1,
R, < 1, andR, < 1, the particular pair of model parametdiSz, g5) is accepted asalid for

a given optimal speed,. Alternatively, the model is said tfail for the current optimal speed.
Let R..i(Cs, g5, us) denote the calculated value &%, for the selected parameter valu€s,
qs andu,, and letR,.(Cg, qz) denote the average @t,,, over allu, where the given model
is valid.

Fig.[6.11 summarizes the results of more than 2500 simuktds the first scenario in a

(Cg, qp)-diagram. The colours show the range of the optimal speedhichwa specific model
is valid. The red areas indicate the models which are valicafiotested optimal speed val-
ues, corresponding to a range of 7 m/s. The turquoise areizeasther hand, indicate models
which are valid only in about half the testeg range. The contour lines shol,.,(Cs, ¢5). A
smaller contour line value indicates a better descriptibthe problem within the valid optimal
speed range. When looking for the optimal choice @ and g, we need to identify a model
which provide both a large range of valig, and a small average value &,.,(C5, q5) among
the valid simulations. We see from F[g. 6.11 that the two rhpdeameters are coupled so
that there are several unique pairs of parameters that giughly the same result. The models
which are valid in the full optimal speed range is found ldps®y the line4.3Ci + 5 = ¢z.

The contour lines of Fid.6.11 seem to indicate that choosmgller values of’sz and g5

are better. Remember thgt determines how sensitive the boundary avoidance force is to
the angle between the direction of movement and the relatygtion of the boundary. In
the first scenario, the wall was directly in front of the agant the angle in question was
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Figure 6.12 Parametric study of a single agent moving thfoadgl.-m wide passage in a straight
wall. The colour represents the range of optimal speed wigshlted in agent
dynamics within the defined limits. The contour lines indisahe value of

RwaII(CB7 QB)-

therefore zero throughout the simulation. As a consequeheesimulation results were not
very sensitive to the choice @f. In the second scenario, on the other hand, the agent is going
to pass through a 1-m wide passage. In the beginning, thatisituis very similar to the first
simulation because the walls are almost directly in fronthef agent. But when the agent is
close to the passage, the angle between the direction ofmemteand the relative position of
the boundaries increases. A higher valugygf results in a stronger decrease in the boundary
avoidance force as the angle increases, which in turn méeanagent can pass through the
passage more easily. F[g. 6.12 shows a plot similar to th&igf6.11, but this time for the
scenario with a passage. In this case, the agent goes thtbegiassage and does not stop

in front of the wall. The observabl®, is therefore not relevant in this case and is therefore
assumed to be 1. For the two remaining observalifgsand R,,, the limits are this timey,,, =

g anddv;,, = 0.8, respectively. From Fid. 6.12, we see that the performarmft¢eeomodels

is now highly dependent ofiz and only weakly dependent daiz. To ensure that we have a
model which is valid for both scenarios for the full rangewgf we should chooses > 5 and
Cp =~ 2.5. Based on this analysis, we choage= 6 andCi = 2.5 as default values.

6.7 Homogeneous crowd stopping near boundary ( pg)

Having determined’s and gz, we are left with only one undetermined boundary avoidance
parameter, namelyz. Since this parameter controls how much the boundary ano@#orce
increases with increasing crowd density, we formulate aade involving a uniform crowd.
The agents in the crowd are identical and placed in a lattiediguration. Just as in the first
of the two single agent scenarios in secfion 6.6, the ageot® nmowards a straight wall. The
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target location of each agent is chosen so that the entikgdcstiould move in an almost fixed
formation towards the wall, stopping 1 m in front of the wadlhis test is far more challenging
than the corresponding single agent test, especially fyineni optimal velocities. This is be-
cause the boundary avoidance force acts primarily on thetagéosest to the boundary and not
so much on the agents further away from the boundary. As thataglosest to the boundary
have started to slow down due to the repulsive force of thenthary, the agents further away
from the boundary are still moving forward at more or les$ $pleed. As a consequence, the
first line of agents will be pushed up against the boundary.anédyse the dynamics of the
agents closest to the boundary just as we did with the sirggatan the first scenario in sec-
tion[6.8, this time witha;, = ¢, dv;, = 0.8, anddr;, = 0.8 m. If we change the parametgg,
the optimal speed in the crowd)( or the crowd densityy), the observedr,.;, given by Egs.
[6.4, will change. Indirectly, we can therefore regdig, to be a function ofps, u, andp. To

assess the results, we define a new quaility(pz) which is derived fromR,,,; as
N, N, 1/3

1
Psum(pB) = N N ZZR\Nall(pBauk‘apl) ) (68)
WPk

whereN,, = 5 and N, = 4 is the number of simulated values ofand p, respectively. The
simulated values of; is in the range 1.0-5.0 m/s, whileis chosen to be in the range 0.1-

1.0 nT2. Note also thatP,,, is a sum over all simulations of the crowd scenarios and nyt on
those where the observables are below the defined limits[6EI§ showsP,,, as a function

of pg. Just as in the case with the single agent scenarios, tharsaludicate the size of the
range ofu where the results are valid. (The colour coding is similathiat used in Figd. 6.11
and[6.12.) We see that the lowest valuelyf, is found forps = 4. But we also see that the
largest valid optimal speed range is obtained witgh= 2. When we also take into account cpu
efficiency, we conclude that 2 is a suitable default valuettier parametepg.

7 Crowd tests

In the previous section, we calibrated the new crowd dynammodel, one or two parameters at
the time using simplified analysis, both semi-analytical anmerical. In this section, we apply
the new simulation model to full-scale applications. Wheossible, we compare the obtained
results with corresponding results from the literaturee Tihst 3 tests deal with basic pedestrian
traffic, while the last test cover a scenario more relevargvicuation and riot management.

7.1 Full-scale simulation of uni-directional flow

The first test simply re-visits the problem of uni-directirilow, described in sectidn 6.1. This
time, the problem is formulated as a full-scale simulatioraichannel which is 20 m long

and 10 m wide. Solid walls limits the channel width and a p#iddoundary condition causes
agents leaving the right-hand boundary to re-enter at tithdand boundary. Properties of the
agents are randomly chosen according to typical distobstidescribed ihAALeidmdnh_(lﬂ)QZ).
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Figure 6.13 Summary of parametric study of a crowd movingtd&a straight wall. The colour
indicates the range of optimal speag (vhich resulted in agent dynamics within the
defined limits. The ratio of valid range to tested. range, was (for increasing
values ofpg) 0.75, 0.94, 0.69, 0.69, 0.75, and 0.19.

Average mass, body-mass index (BMI), radius, and prefespsd is 70 kg, 24, 0.25 m, and
1.34 m/s, respectively. The standard deviation of mass,,B¥d preferred speed is 15 kg, 5,
and 0.26 m/s, respectively. Maximum allowed deviation istse times the standard deviation
for all 3 quantities.

In all, 7 simulations were performed with crowd density riawggfrom 0.5 m=2 to 6 m—2. The
simulations were terminated once a static solution had bé&mined. Based on the observed
average flow speeds of agents, the fundamental diagramsecaonistructed similar to that
shown in Figs[6ll and 8.2. Flow speead and flow rate {), respectively, as a functions

of crowd density §) are shown in the left- and right-hand panels of Fig] 7.1. Jineulated
results, represented by filled squares, are compared vétipdhametric model of Weidmann
Weidman 1_19_d2) (dashed line) and empirical data -Abideén
_ﬁ) (open circles). Just as the semi-analytical modstriteed in section 611, the simulated
results fit well with the empirical data. The Weidmann modepartly based on data from
multi-directional flow and exhibits a stronger drop in flonesg with increasing density. In
conclusion, the full-scale simulation behaves as expeeiddthe currently chosen model
parameters.

7.2 Bi-directional flow in a torus-shaped channel

The second test is taken frdMi&&MtL&L(bOlZ) wherast studied both experimentally
as well as numerically. The test describes a torus-shapaaneh with an inner radius of 2 m
and an outer radius of 4.5 m. The agents are initially plaeedlomly, at rest, inside the torus.
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Figure 7.1 Fundamental diagrams for uni-directional pedies flow. The left- and right-hand
panels show the flow speed @nd flow rate (), respectively, as a function of crowd
density p). The simulated results (black squares) are compared td\tbielmann
model |(Weidma||n|1_\;9|92) (dashed line) and empirical datanfro

i -Abi e|n_(2£|)07) (open circles).

At the start of the test, the agents start to walk in a preesede randomly chosen walking
direction so that half of the agents walk clockwise, while tither half of the agents walk anti-
clockwise, relative to the torus centre. All tests lasted@® s. In addition to numerical results,
experimental trials with 30, 50, and 60 agents, correspantth an average crowd density of
0.59 m~2, 0.98 m~2, and1.18 m~2, respectively, are described|in M i t|_a|._(|2012). The
distribution of preferred velocities inside the torus,atatined by single-agent experiments,

is characterized by an average preferred speed of 1.2 m/standard deviation of 0.16 m/s.
|Mo_LLs_3a'Ld_e_[_Al.|_(;O_112) reported both the formation of lareewell as instabilities due to inter-
individual variability.

In this section, we report on simulations correspondinghedxperimental setup described by
|Mo_LLs_3a'Ld_e_[_Al.|_(;O_112). Fig.T.2 shows two snapshots for efdie 3 simulations, taken after
30 s (top row) and 60 s (bottom row). Panels markeghdb, ¢c andd, ande andf are taken
from the simulations with 30, 50, and 60 agents, respegtideach agent is represented by a
filled circle and the colour of the circle indicates whethguaaticular agent moves clockwise
(blue) or anti-clockwise (red). The coloured arrows vigzelthe velocity of the agents. With
30 agents, we see very clearly from panglandb that a sorting has taken place: the agents
moving clockwise are typically found at lower radial distas than the agents moving anti-
clockwise. This is an example of lane formation and the las®en to be highly stable. Note
that in|Mo_LLs_saLd_e_t_£ll_(;0J12), the lanes were found to be lyeaistable even in the case of
just 30 agents. With 50 agents, we still typically get a tand structure, but this time the lanes
are less stable, as can be seen in paonelsdd. When 60 agents are used in the test, we see
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Figure 7.2 Simulation snapshots of bi-directional flow iroaus-shaped channel. The blue and
red dots indicate the instantaneous location of agents ngosiockwise and
anti-clockwise, respectively. Corresponding velocides shown by the coloured
arrows. Panel pairsa andb, c andd, ande andf show the agent distribution for the
case with 30, 50, and 60 agents, respectively, after 30 sr@pand 60 s (bottom
row).
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from panelse andf that we at 30 s have a slightly disordered two-lane structitesO s, this
has evolved into a more well-defined three-lane structwe: lanes moving anti-clockwise and
one lane moving clockwise.

0 10 20 30 40 50 60
t(s)

Figure 7.3 Average radial position and corresponding stdddeviation for agents moving
clockwise (blue) and anti-clockwise (red) as a functionimoft The top, middle, and
bottom panels show the results for the case of 30, 50, and &dsgespectively.

Two different ways of summarizing the data is shown in Hig8 ahd Z.4. In the first case,
the blue and red lines indicate the average radial positoragents moving clockwise and
anti-clockwise, respectively. The semi-transparenteldured zone around each line is the
corresponding standard deviation. The top panel showsethdts from the simulation with
30 agents. We see that it takes nearly 30 s before the cleefilyed, two-lane structure has
been established. This impression is confirmed by lookingpetactual crowd distribution at
different points in time during the first 30 s of the simulaticAfter 30 s, two lanes at radial
positions 3 m and 4 m have formed with negligible deviatiohe Tiddle panel of Fid. 713,
which corresponds to 50 agents, indicates a true lane famanly for a brief period around
30 s. This is only partially true, as can be seen by investigahe detailed agent distribution.
It takes some time before a clear structure has been deweklbpeafter around 12-13 s, we
can identify 3-4 lanes. However, this is not a very stablefiganation. Instabilities, as reported
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in [M_Qusﬁlﬁ_el_aLI.L(ZQJLZ), causes the first structure to bkebroAround 30 s, a new two-lane
structure has emerged. In turn, this structure graduallgrideates towards the end of the sim-
ulation. In the case with 60 agents, there are several sitegeobservations that can be made
on the basis of Fig. 7.3 (bottom panel). First, the separdtito a two-lane structure is clearly
visible only for a short period of time around 24 s. Furtherepdhe clockwise distribution
appears to become gradually more centred around the aveahge which at the end of the
simulation is around 3.3 m. The anti-clockwise distribnt@iso ends up with a very similar
average radial position, roughly 3.5 m, but in contrast t® d¢tockwise distribution, the standard
deviation of the anti-clockwise distribution increaseshwime. The reason for this, as we saw
in panelf of Fig.[7.2, is that the anti-clockwise distribution hasitspp into two lanes, an inner
lane at a radial position of roughly 2.2 m and an outer lane raid&l position of about 4 m.

density radial velocity
0.2 2.0 0.0 0.6
£
]
g
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e
g
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@ :
; - o Wy, A
10 20 30 40 50 10 20 30 40 50
t(s) t(s)

Figure 7.4 Crowd density (left panel) and radial velocitjgfit panel) as functions of time and
angular position. The density is given in agents/mhile velocity is given in m/s.

Finally, we look at how density fluctuations and radial moeaare distributed in time and
angular position for the three simulations. This is showifrig.[7.4 where the panels in the
left and right columns show the density and radial velocistributions, respectively. Again,
the top, middle, and bottom rows correspond to the simulatiwith 30, 50, and 60 agents, re-
spectively. For both quantities, we can see traces of casajue waves, although not as clearly
defined as that found E_Mmmm_ek la_L_dOlZ). In the 30 acmese, the waves travel more or
less unhindered. With 50 or 60 agents, stronger clusteriragents occur which can lead to
temporary congestion. This is indicated by dark red regiwhih lie almost horizontally. This
is not found to the same extentlin_Moussaid ét| al. (|2012). Aufeawhich the current results
have in common with the results [LD_M_O_US_S_a.Ld_Glt [aLdZOlZ)hésdbserved correlation between
local radial speed and density gaps.
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7.3 Pedestrian flow through bottlenecks

Another fundamental crowd dynamics test is the problem deptian flow through bottle-
necks, and numerous experiments focusing on this topic éas performed
W@@MWM;M@L@%
The setups might be slightly different from experiment tpeniment, but the essential com-
ponent is crowd flow through a corridor where the width sutidémnreduced. This creates a
bottleneck, a point where a certain level of congestian eésited. The aim of studies of this
type is to determine how the specific flow through the bottl&eechanges with changing bot-
tleneck width. In this work, we follow the setup proposedﬂ@i_e_d_e_t_a'. [(;odg) and which
is shown in Fig[’Zb: The upstream width of the corridor is 4The agents are initially placed
randomly in a start region which covers the full width of therredor and which starts 3 m
away from the bottleneck. The length of the region is adfiste that the mean initial crowd
density is 3.3 agentsAn The agents are initially at rest. We have performed siraratwith

20, 40, and 60 agents. The properties of the agents are the amthat used in sectign 1.2,
with the exception that the mean optimal speed is set to the standard value of 1.4 m/s.
The bottleneck width is varied from 0.6 m to 1.4 m and the tabth of the bottleneck is

2.8 m. The initial position of the agents within the startioegare drawn using a random num-
ber generator. However, the same seed has been used in @lhtsims. This means the initial
positions are identical for all simulations with the samenber of agents.

4 |
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Rkt _
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Figure 7.5 Layout of the bottleneck test together with thigalragent distribution for the case
with 60 agents. The agents start to move to the right, thrabghbottleneck.

In Fig.[Z.8 we have plotted the mean specific flow for the caghk 20 (blue line), 40 (green
line), and 60 (red line) agents as a function of bottlenectthv{b). The simulated results are
compared with experimental results taken fIJD_m_IS]ﬂL_GMhm_&_S_QhLe_le_ﬂb_éré_(ZdOG) (tri-

angles)m 1) (dlamondMUm%) (squarmﬁdLS_e;Lttlﬂd_el_fliIJ_(ZQbQ) (circles).
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When simulating this problem, we noticed that agents at #uk lof the crowd typically lag
slightly behind compared to the rest of the agents. This tabsge the repulsive force due to
nearby agents in front of them is not balanced by an oppgsditieécted repulsive force from
agents behind them. As a result, the net crowd repulsionbaillarger on agents at the back of
the crowd and the last group of agents to pass through thietedk will lag slightly behind
compared to the rest of the agents. If we calculate the meagifpflow based on all agents in
the crowd, we will therefore get somewhat lower values tHamel calculate the mean specific
flow based on half the crowd, those agents starting off ctdsethe bottleneck. By choosing
the latter approach, as we have done, we avoid including shaally a free surface effect.
The free surface effect is discussed in more detail in sefio

30F kretz v ;

[ Mueller ¢ ° ]

25 Muir . =] J

[ Seyfried o ]

— 2.0F -
7 C ]
= ]
™ 15F 2 -
1.0F -
0.5F .

0.6 0.8 1.0 1.2 14
b [m]

Figure 7.6 Mean specific flow as a function of bottleneck widjtor the case with 20 (blue
line), 40 (green line), and 60 (red line) agents. The sinedaesults are compared

with experlmental results taken fr&m.&mtz_ﬁmn&bghm_&ad{&nb_eﬂi iiiiG)
rlangles) 1) (dlamond.-%) (sgea), an d Seyfried et al

) (circles).

The simulated results in Fig._7.6 fit reasonably well with éxperimental data. This is par-
ticularly true for the simulations with 60 agents. When thenber of agents in the crowd is
reduced, the free surface effect becomes stronger andsagemnto a larger degree slowed down
before reaching the bottleneck. The difference betweerexperimental and simulated results
therefore increase with increasing bottleneck width, eislg for the case with only 20 agents.
Another point worth mentioning, is the low specific flow foe= 0.6 m compared to the exper-
iments. Studying this in more detail, we identify an issuatesl to flow through very narrow
bottlenecks. If the flow upstream from the bottleneck is ljiglymmetric and the bottleneck is
sufficiently narrow so that only one agent at the time canrethie bottleneck, then a gridlock
can occur. This means, that forces are so well balanced ffhambgement in front of the bot-
tleneck becomes negligible. This state of gridlock canflasup to 10 s in some cases, before
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small asymmetries eventually have grown sufficiently tobémane agent to get to the bottle-
neck opening at the expense of the other agents. In expaspgnidiocks of this type is only
likely to occur if the crowd density is very high, and evenrththe time span of the gridlock

is presumably much less than 10 s. Artificial gridlocking iscdssed in more detail in section
[8. In conclusion, the simulated results fit well with the expental data, when the free surface
effect and artificial gridlocking is negligible.

7.4 Evacuation from a building

The study of evacuation dynamics, for instance in conneatigh fire alarms, is an important
application of crowd modelling. The final test case preskirtethis report describes a scen-
ario where agents need to evacuate a 1-storey building. We gexrformed 7 separate tests
where the level of urgency or panic in the crowd is increasifigis has been done by increas-
ing the average optimal speedof the agents, from 1.5 m/s to 7.5 m/s. Apart from this, the
agents have the same statistical properties used in thepsetwo test cases. The building
being evacuated has 4 rooms, varying in size f2sm? (bottom left room) t042.5 m?(top

right room). The corridors and doorways are 1.5 m and 0.8 newielspectively. There are

two exits, one in each end of the vertical corridor. The nunmddeagents in each room is 56
(bottom left), 68 (bottom right), 21 (top right), and 28 (ttgft), which results in an average
initial crowd density in each room &.0 m~2, 2.0 m~2, 0.5 m~2, and0.8 m~2, respectively.
The layout of the building and distribution of agents at &nte0 s, 10 s, 30 s, and 50 s, can be
seen in paned, b, ¢, andd, respectively, of Fig_7]7. The optimal speed is set to 3.8 imthis
particular case. The colours of the filled circles indicdte trowd density experienced by each
agent at that particular point in time. Similarly, the difen and colour of the arrows visualize
the instantaneous agent velocity vectors.

This test is a good example of how the automatic path finderitihgn described i Appendix|B
works. The agents are initially instructed to move to therggction between the horizontal and
vertical corridors. Once they reach this area, the agesmtsnatructed to leave the building by
the nearest exit. The path finder algorithm enables the aderitdentify boundaries that are
obstructing the way to the destination, find the doorways, modify the desired direction of
movement accordingly. Pandbsandc of Fig.[Z.1 show clearly how the agents in the more
densely populated rooms spread out in a characteristictiauctisre near the doorways inside
the rooms. When an agent has exited the room, the movememededl towards the central
corridor intersection. Having entered the corridor, annagan typically increase the speed
somewhat, although clogging near the exits eventually tnesoa problem. Notice how the
typical speeds are well below the average optimal speedsomas.

The average optimal speed)(is regarded as an indication of the level of urgency or panic
in the crowd. To see how this affects the efficiency of the eation, we have analysed the
simulation results in more detail. The results of this asialys summarized in Fig. 7.8. Panel
a shows how the time required for the entire crowd to evacugig)(varies with increasing
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Figure 7.7 Snapshots of the agent distribution in the evAonaimulation for the case of
optimal speed«) equal to 3.5 m/s at t=0 s, 10 s p), 30 s €), and 50 s¢). The
colours of the filled circles indicate crowd density, whie direction and colours of
the arrows visualize the agent velocity vectors.
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Figure 7.8 Evacuation characteristics as functions of thkerage optimal speed.). The 4
panels show the total evacuation tina, (the average, specific flow through the
bottom (solid line) and top (dashed line) exity,(the maximum 10-second (solid
line) and 1-second (dashed line) averaged acceleratiprafhd the maximum
10-second averaged crowd density.

average optimal speed. With= 1.5 m/s, T,,.. becomes 83 s which corresponds to an effective
distance of movement of about 125 m. Increasintp 2.5 m/s should result iff,,.. becoming
roughly equal to 50 s, if the agents were free to move withrtbpitimal speed. In reality,

we see thafl,,.. ~ 77 s whenu = 2.5 m/s. This indicates that the agents are slowed down
substantially by the presence of the other agents. Theresiisadl but still noticeable decrease
in T...c asu is increased ta. = 4.5 m/s. Increasing: further, can cause the evacuation time to
increase rather than decrease. In other words, there isitatdirhow fast the particular crowd
distribution used in these tests can be evacuated from titgirtgy This limit seems to be

about 69 s. Pandd, which shows the specific flow through each of the two exitsifioms the
picture. The solid and dashed lines correspond to the bodtiodntop exit, respectively. Both
curves show a distinct flattening far > 4.5 m/s. The difference between the two curves are
also interesting. More than 70% of the agents are origiflalbated in the bottom two rooms,
yet the specific flow is larger through the top exit than thiotige bottom exit. The only
exception seems to be for the largest simulated optimaldspéekhis indicates the presence of
turbulent behaviour which causes flow efficiency to be redusih increasing local density.

Another interesting point in connection with dense crowts tmay or may not be in a state
panic, is to what extent large forces are present in the ciwhidh might cause injuries and, in
worst case, deaths. Taljle 2.1 lists estimated force thidsstiar asphyxia which are in the order
of 1000 N (1-minute averaged force) and 6000 N (10-secondcaged force). For a typical
agent of around 75 kg, this corresponds accelerations oidrd.4g and 8.2g, respectively.
However, these limits are mostly relevant in scenariosluing nearly static crowds with very
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high densities. In an evacuation scenario, the danger ismobuch asphyxiation, but rather

that people can be knocked over and trampled on. From limsrehjuntgr, Marshall & MQNalir,
|;0_0_$; Kugler & Jansh&rh, 2d10) we know that horizontal mawmeeéorces rarely exceed the

gravitational force of the body. Agent accelerations laipan g is therefore likely to result

in agents being knocked over, possibly becoming injured, a&rleast creating extra obstacles
which hinders the local crowd flow. We are interested in agiaty the evacuation data in search
of indications of agent injuries. This is particularly ned@t since we are simulating crowds
with high average optimal speeds (up to 7.5 m/s). Only théamrforces are relevant when
considering injuries, but unfortunately the current vaemsof the simulation software does not
store information about the contact forces directly. ladteve have to look at the acceleration.
In situations with substantial physical contact, the confarces will typically dominate over

the other forces. And if the crowd is not highly uniform, thet mcceleration should give a
good indication of the level of contact forces.

To analyse the agent acceleration levels in the evacuaitionlaions, we calculate the 10-
second and 1-second time averaged accelerations for eaoh &ased on the averaged values,
we find the maximum experienced acceleration by any ageradh ef the simulations. Panel

¢ shows the results as a function @f The solid line shows the maximum 10-second averaged
acceleration, while the dashed line shows the correspgntlisecond averaged acceleration.
We see that the 10-second average acceleration only showslaincrease with increasing

u and never becomes large enough for there to be asphyxiaddi@alth problems. The 1-
second averaged acceleration on the other hand, has a strwagse with increasing, with

a maximum of 2.2g for, = 6.5 m/s. This indicates that problems of people being knocked
over and possibly becoming injured could be expected fan@btspeeds larger than 3-4 m/s.
However, the current crowd model does not take into accdattagents might lose their
balance and perhaps become injured. Such a model shoulihtakaccount that agents cannot
move much if they do not stand on their feet and that nearbwtageill also be slowed down
by the immobile agents. If such a model had been includeddretlacuation simulations, it is
likely that the evacuation time would increase for averagenmal speeds larger than 3-4 m/s.

The final panel in Fig_718, panel, shows the maximum 10-second averaged crowd density
in the simulations. The maximum density increases witheasingu, despite the fact that

the number of agents in all simulations is the same. This céynrmean that there is a larger
degree of clustering when the average optimal speed isrldmgéurn, this means that more

of the available space is empty. Crowd flow thus becomes Fsgept, and the agents must
compensate by using a larger net will force.

8 Conclusion

This report describes a new, robust crowd dynamics sinmmlatiodel capable of simulating
a wide range of human crowd behaviour with a reasonable deaxfraccuracy. This includes
not only normal pedestrian traffic, but also scenarios s@chvacuation or riots which might
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involve running agents. The model relies on a number of mpdedmeters. Default values of
these parameters have been determined on the basis of fantédmroperties of the human
body, semi-analytical models of fundamental crowd behayior simplified crowd test simula-
tions. A summary of the most important model parameters hail tlefault values are given in
Table[8.1. A list of the forces acting on individual agentghe crowd is reproduced in Table

B.2.

Parameted Physical interpretation Default value ‘ Section
bao Zero-density obstacle avoidance scale length 20m 251
bco Zero-density crowd repulsion scale length 1.0m 252
AL, Flow will acceleration amplitude 0.25g Z13
Al Displacement will acceleration amplitude 0.25¢g 6.5

O min Displacement will force scale length 4.0m 6.5
As Velocity strain acceleration amplitude 1.5¢ 211
Viim,0 Activation threshold for velocity strain 6.0 m/s 213
OVjim Velocity strain width 3.0m/s 213
im0 Activation threshold for acceleration strain 0.5g 2113
0 fim Acceleration strain width 0.5g 213
Ky Radial contact force amplitude 5.0-10%s2 |42
Kt Tangential contact force amplitude 2.5-10%(ms) ™! | &2
Arond Crowd repulsion acceleration amplitude 1.59 6.7
By Crowd repulsion anisotropy level 0.3
Al Radial obstacle avoidance acceleration amplitude 0.225¢g
Al Deflection obstacle avoidance acceleration amplitude ~ 0.225g
Cavoid Maximum density-dependent deflection increase 9.2 6.4
Davoid Reference density in density-dependent deflection inereas 1.1
Cg Boundary avoidance enhancement factor 2.5
qB Boundary avoidance velocity exponent factor 6.0
DB Boundary avoidance density exponent factor 2.0 6.1

Table 8.1 Summary of important numerical parameters in thg ©alibrated crowd dynamics
model.

The new model not only captures crowd movement well, it alswides reliable informa-

tion regarding force levels which in turn can be used to as#es risk of injuries and deaths.
Possible improvements to the present model include ageatneders to monitor the possible
development of injuries and the effect this has on the crowthrhics, as well as include mo-
tivation as an important factor in determining the behawiolindividual agents. Motivation

is a psychological and not a physical property. Nevertiseldg idea is to link motivation to
the concept of internal energy. Reduced motivation measssitgernal energy which results in
weakened will force. Experimental data exist which showehergy consumption of a human
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Force group Force name ‘ Equation‘ Relevant parameters

Internal Displacement 31 Al Omin

Internal Flow will 3.3 Al

Internal Velocity strain B9 AE s Vim,0Vim,05 OViim
Internal Acceleration strain Sim, 01 0 fiim

Inter-agent | Obstacle avoidance [4.7 ba0y Aliar Aﬁvoid, Cavoids Pavoid
Inter-agent Crowd repulsion 43 bc .0, Actowas o

Inter-agent Contact 410 Ky, Kt

Boundary Boundary avoidance bao, Ag‘vcid, Cg, 98, PB
Boundary Wall repulsion bc,0, Acrowa 0o

Table 8.2 Summary of forces included in the model, the cooreding equations in this report,
and which parameters from Talile B.1 are associated with éarcle.

body when performing various activities such as walking emthing. Using this information,
one could construct a basic model for temporal changes intkenal energy. Such a model
should include energy consumption related to work done bywilll force of an agent on its
surroundings.

Also, one could try to address the two issues mentioned itiosd€.3. First, it was noted

that agents moving at the back of a group will experience gefanet crowd repulsion than

the agents moving at the front of the group. The most stritighiard method to reduce this
problem is to update the position of agents using the seaalISPH-formulation. It was first
proposed to reduce problems with particle penetration inathed particle hydrodynamics
simulations of shock Wavels (MQnaghmgw). It has latentapplied in a modified form to
crowd modelling |(Vetter et $IL;Q|11). The idea of the meti®dake sure that particles (or

in this case, agents) move at a velocity closer to the locatame velocity. This would reduce
the difference in velocity between agents located at thé& b&d@ group compared to the agents
located in the front of the group. In addition, it will helpas direct collisions between agents
and could possibly also help in lane formation. The XSPH idation is implemented by
replacing the standard equation of movement (seé¢ Efj. 21R) wi

dr, .
= as 81
il (8.1)

wherev, is given as
Vp — Vg

Vg = Vg + 6XSPHZ M Wab- (8.2)

b Pab
In its original form eyspy IS constant, with a typical value of around 0.5, but in theactanodel
of|Me11er_e1_aJ. [(2QJJ1)¢XSPH is function of velocity and crowd densty. A problem with the
XSPH-formulation is that it becomes more difficult for siagigents to move in a static back-
ground population, such as shown in the crowd navigatioibredion test in sectioh 6.4. More
work is therefore needed before we can formulate a satisfa@(SPH-formulation for use in
crowd simulations.
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The second issue identified in sectlon] 7.3 was artificiallgeking in front of narrow bottle-
necks. This occurs if the agent distribution in front of ttesgage is highly symmetric. Then,
for a substantial period of time (for instance up to 10 s),eohthe agents are able to enter
the passage due to a balance between will forces, soci@d@ed boundary forces. If a similar
situation were to occur in real life, individuals in the cmbwvould normal take an initiative to
solve the problem, either by taking the lead or by making wayothers. How people react in
these situations probably dependence on small detailseisithation at hand but also on the
psychological properties of each individual involved. Theestion is how this can be solved

in a computer simulation. One solution could possibly bentooduce a random generated
parameter, let us for now call it leadership, which indisatew likely a person is to take the
lead in a gridlocked situation. The parameter could be usetdnew inter-agent force which
only becomes important when the velocity is much smallen tharmal walking speed. Agents
with a small leadership value will give way to agents with ghar leadership value. The same
parameter could be used when modelling herding, the obdgrfrenomena that some agents
are more likely to follow other agents rather than choosingraividual path. This effect is
particularly strong in situation where agents feel unseaurlack detailed information about
their route.
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Appendix A Calculating the wall repulsion integral, e

In this appendix we want to derive an approximation to thegral 77" used in EqL5.11 to
describe the strength of the wall repulsion experiencedrbgigenta from a nearby boundary
segment. The wall repulsion exerted omfrom b is defined as the total crowd repulsion force
on the agent: from the imaginary mirror agents that would fit in the exteiliicteraction region
associated with boundary segmentrirst, we derive the wall repulsion for a finite-sized but
isolated, straight boundary segment where we assume ttar $iees to be normal to the seg-
ment tangent. Then, the result is extended to take into atdbe fact that boundary segments
can be connected to other segments by having common end @widtthat the corresponding
sector lines will typically not be normal to the boundary reegt tangent. Finally, we discuss
how the results are generalized to curved boundaries.

A.1 Approximationto I'?" with normal sector lines

Let the boundary segmentbe defined by the two boundary poinis and p,. We want to
estimate the wall repulsion force on a given agentocated atr,. To arrive at this first ap-
proximation to the wall repulsion, we assume that the sdites are normal to the tangent
of b (as illustrated in Figl_5l1). The projection afonto b, the boundary interaction point, de-
notedp,, is assumed to lie somewhere between the two end points sptlEplits b into a
left- and a right-hand boundary section (indicated by tlieard blue colours, respectively, in
Fig.[51). The integration over the exterior interactiogioa is similarly split up into two. In
the following discussion we focus on the right-hand intégravering the boundary from the
boundary interaction point tp;. Normalized by the interaction scale length, simply deddte
in this case, the distance betweemndp, is z4, the distance betweem, andp, is z; 2, and the
interaction range ig,... We define

Zh = \) 22— 22 (A1)
as the maximum distance from, along! where the interaction witlk is non-zero. The smaller
distance ofz; » and z;, is denotedy;. The boundary normal at, in the exterior interaction
region (indicated by the right-hand, dotted line in Fig.)Sritersects the interaction circle (the
dashed circle in Fid. Bl1) at the poiat The angle between the boundary normal and the vector
betweena andc is denotedd and given as

0 = sin_li. (A.2)

Zmax

It is also useful to define the distances

Ze = A /23 + Zl2 (A3)

zs = zgtand. (A.4)

and

Starting with the inter-agent crowd repulsion force, giverEq.[4.9, with the simplifying as-
sumption that the angular dependent factor defined by Etjs4s8t to unity, the wall repulsion
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force on agent: from the right-hand section of boundary segmémian be estimated by

Zmax @m (2)
SQB,ab = _maAcrowdpab%'f‘ab / / ®(z,1)z cos adzda. (A.5)
2d o
We have assumed the force is strictly normal to the boundirg. radial distance from agent

a is given bybcz, while the angular position relative to the boundary northabughr, is
denoteda. The upper limit of the angular integration,,,, depends on in that

am.1(z) = sin™! <\/1—z§/2’2) if zqg <2<z (A.6)

am2(z) = si -1 (%) if 2. <2< Zmax

am(z) =

=

Performing the angular integration of Hg. A.5, we then get

Zec Zmax
Sg,ab = —maAcrowdpb%fab /<I>(z, 1)z sin a1 (2)dz + / O(z,1)zsinay,2(2)dz p . (A7)
Zd Zc

Using Eq[A.6, we rewrite Eq_AL7 as

Sgab = — Mg AgonaPbePap /CI)(Z, 1)zy/1 — 22/2%dz + / O(2,1)zdz o . (A.8)

Zd

Before we can perform the radial integration, we need to menoiurselves of what the spatial
interaction function®(z, 1), looks like. From Eq[“2]8 we know that

D(z,1) = Do(z,1)T (Z - ZO) , (A.9)

Zw

where®(z,1) = 1/(z2 + 1) and ¥ is a taper function which secures compact support. In
order to simplify the evaluation of EQ."A.8, we will repladg¢) (given in Eq[2.Y) by a step
function, \if(g), which is equal to 1 fog < &, and otherwise equal to 0. The parameiglis
found as

2
e — / w()de, (A.10)
0

which is easily found to be 2/3. The effect of repacifignith U as the taper function is simply
to replacezmay bY Zma = 20 + En2wie IN EQ.[A8.
The first integral on the right-hand side of Eg. JA.8 can now lriten as

) )22 — 22
[l z) = | Yo a2, (A.11)
24

2241

This integral can be solved analytically, but in practigeyill be more efficient to solve the
integral numerically. Sincé < z; < z. < Z.. the integral can be solved once with satisfactory
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resolution for different values of; and z,,..,, stored in a look-up table and reused whenever
needed. The second integral in EQ.JA.8 is easier to handbe sircan be written as

5max

L5 (zq,2¢) = 2 /

Zc

1
2241

1z). (A.12)

dz = 7 (tan*1 Zmax — tan
Although this is easily treated analytically, the most édfit and consistent approach would be
to include this term in the look-up table already requiredthy first term. Combining integrals
I7 and I; gives us the complete contribution to the wall repulsiorcéostrength from the right-
hand side of the interaction sector under the assumptiorohal sector lines (blue region in
Fig.[51):

I' (24, zc) = 11 (24, zc) + 15 (24, 2c)- (A.13)

Following the same approach, we can determine the integfad®id I} which combined gives
us Ii, the contribution from the left-hand side of the interatisactor (red region in Fig. 5.1).

A.2 Modificationsto I due to boundary segment intersections

So far, we have looked at isolated boundary segmemiith normal sector lines. In addition,
we have assumed that a boundary interaction point for tlegdation between agentand
segment can be found. (In sectidd 5, the boundary interaction poias wefined as the in-
tersection between the boundary segmeand the separation vector between ageand its
mirror image across). In this section, we generalize the results in sedfiod A.brder to take
into account the effect of connected boundary segments. I$evaant to be able to handle
situations where no interaction point can be found. Theiredumodifications represent rough
estimates of the real solutions, and the primary aim is téeaehrobust and smoothly behaving
numerical solutions with a reasonable degree of accuracy.

A.2.1 End point related coordinates

First, we need to define coordinate systems associated withdary segment end points.
These coordinates are used to specify positions relatiteet@nd points and angles relative to
the segment normal vectors. Then, we define an angular wiigtdr which will be used in the
final wall repulsion expression.

Fig.[A.d shows a boundary lind which is defined by the two end point§ andV;. The
segment tangent,, is directed fromV; to V;. The segment normaf 4, is directed so that
t4 x fuy points into the simulation plain, as shown in Aig.JA.1. Fockeaf the two end points
k, we introduce two coordinates,;, and 8;. The former variable is defined as

age = (r —ry) - tag, (A.14)

wherer;, is the position of end point andfsg = t4 andts; = —#4. As illustrated in
Fig.[Ad, as is negative to the left of[y and positive elsewhere, whilg; is negative to the
right of V; and positive elsewhere. The second variaBlg,represents the smallest angle that a
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Figure A.1 Line segment defined by end pointig; and ;. The tangent and normal unity
vector associated with the segment is dendtednd 4, respectively. The sign of
the end point specific coordinates,, and 3, are indicated by the annotation.

positional vector forms with an infinite line normal to theunolary segment through end point
k. If we define the distance to the boundary segment,as distance to the line in the light
grey region of FigCAIL and as the distance to the nearest eimd im the dark grey regions of
Fig.[A], theng, can be expressed as

tan~! <”2;”) -5 ifay >0
B = { tant (Le=l) 12 if ay, < 0; (A.15)
0 otherwise

Fig.[Ad illustrates the fact that, and 3, are negative between the two end points and that
they change sign dty and V;, respectively. It should also be noted that/2 < 5 < 7/2.

For the remaining part of this appendix, we define exterial iaterior regions so that the
segment normal vector points towards the exterior regiamceSs, is symmetric about the
segment tangent, we always need to specify whether an angbddrior or interior. In this
context, agents might be located both in the interior andettierior regions. The regions which
contains a specific agent will be referred to as dlgent sideof a boundary segment. The
region on the other side of the boundary segment will be medeto as themirror agent side.

For later use, we define the angular weight fagto#) as

1 if —7/2<B<0;
9(B) = s (A.16)

If we assumes = [y, then EqLA.IB shows that = 0 along the line which is parallel to the
boundary segment and which extends to the left/of To the right ofl;, g = 1. If we instead
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assumesd = 34, theng is mirrored about the segment midpoint.

A.2.2 Boundary segment intersections

So far, we have only looked at isolated boundary segmentsb&ore formulating the modi-
fied wall repulsion integral, we should take a closer lookegnsent intersections. We assume
that two or more boundary segments can only intersect byirgharcommon end point. In this
section, we characterize a boundary segment intersecyiodentifying angles in the end point
coordinate systems which are used in formulating the génedawall repulsion integral.

Figure A.2 Intersection between lingsand B at end pointl; with sector line angles
Py = Py = —0%, = —0F, < 0. Maximum angles of visibility are
correspondinglyy; = ', < /2, %y = ¢%, + 0%, + 0%, = 7/2,
andafy, = 0% + 0%, + 0a%, = o, = 7/2.

Fig.[A.2 is a sketch of the intersection between to line segmel and B. The two segments
share a common end poirit;, but we still use two different coordinate systems, one used
line A and one used by lin@. Although not parallel, the line normal vectors are cowesity
defined. We therefore refer to the region above lihand to the left of lineB as the interior
region and the region below ling or to the right of lineB as the exterior region. We note that
the interior angle A¢" 5, between the two lines is convex, while the correspondirtgret
angle,A¢% 5, is concave. The bisectors of the two angles are indicatexkdhydashed lines in
Fig.[A.2. These are the sector lines which up until now hawenkessumed to be normal to the
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associated boundary segments. The segment normal veotoirsdacated by black, dashed lines
on either side of the sector lines. The angle that the intesggtor line forms with the normal
of line A is marked¢";, and indicated by the dark blue sector in Hig.JA.2. The cowadmg
angle associated with lin8 is ¢';, and indicated by the red sector in Hig._A.2. We note that

P = Pho = (A¢hp —m)/2 < 0. (A.17)
If only two segments intersect at the end point in questienisahe case in Fig._Al2, then we
know that¢%, = ¢%, = —¢",. Note also that if an end poirit associated with boundary

segment is not shared with any other segment, then we assgifne- ¢5; = /2.

In addition to modifying the sector line directions, an msexting boundary segment can further
limit the view of agents relative to that found for isolatezfyments. An example taken from
Fig.[A.2, agents located above linkand to the right of lineB will only see B and notA.

Agents below lined and sufficiently far to the left of ling3 will similarly not seeB. Gen-

erally, corresponding to each sector line angfe of end pointk associated with boundary
segment in regiono (interior or exterior), there exists a maximum angle of bildy, o7,

defined as

+ 207, it =5 < ¢p. <O0;

2 (A.18)
5 otherwise.

aj =
From Fig.[A2, we see that"},, indicated by the bright green sector, is the angle from the
interior normal ofA to B. Correspondinglyn’y,,, indicated by the orange sector, is the angle
from the interior normal ofB to A. In the exterior regiongsy; = ¢%; + 0%, + 0a%; = 7/2. In
the same wayp, = ¢%, + ¢%, + da%, = 7/2.

Fig.[A.3 shows the slightly more complicated case of seveoaindary segments sharing a
common end point. The 3 sector lines are indicated by dasiwolred lines. Lined connects

to line B in the interior (relative to its own normal vector) and liGein the exterior. LineB

also connects to lin€’' in the exterior. It should be pointed out that generalfy # ¢y, for

end pointk associated with boundary segménvhen more than 2 boundary segments intersect
at the end point. Other than that, the generalization from tovseveral intersecting boundary
segments is straightforward.

A.2.3 Modified wall repulsion integration

In sectionA.1, an expression for the wall repulsion strengy;", in the case of isolated bound-
ary segments with normal sector lines was derived. Now, wereaidy to formulate a modified
expression which represents a better approximation imsteascenarios with connected bound-
ary segments.

We want to determine the strength of the wall repulsion erpeed by agent from boundary
segmenb. Just as in section A.1, we divided the expression into a &ftl right-hand integral.
So, let us focus on the right-hand integral correspondinti¢oright-hand end point df. The
position of agent: relative to the right-hand end point is given by the tanggrtbordinate
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Figure A.3 Intersection between lings B, andC at end pointl; with sector line angles at
P, = @'y, (redline),¢p, = ¢%, (green line), andvy, = ¢%, (blue line).

atq, Normal coordinates, ,, and angular coordinaté, (according to definitions in section
[A2.7). Normalized parameters are
a
2qg = 2, (A.19)
bC,a

0 if a;q > 0;
Zl,min — 7 (AZO)
—atq/bcq Otherwise
and
2l max = MiN (At q/bC a; Zmax)- (A.21)

Based orz; i, and z; ., We also define

Zejo = \/23 + le,min (A.22)
Zew =1/ 23 + 212,max (A.23)

The outer sector line angle (as viewed by the agend),jswhile the inner maximum angle
of visibility is a,.. If 8, < «a, andzy < Zn.e then agent will get a contribution to the
wall repulsion strength from the right-hand integral. Eimge introduce the following integral
notation:

and

Iy = I'(24,%0), (A.24)

Ii = T (zd zem)s (A.25)
and

I = I'1(2d; Zma)- (A.26)
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Then, we can write the right-hand wall repulsion integral as

sy (I7 — I if ¢, <0;
IT — g(ﬁa) C05¢ ( hi Io) ¢ . (A27)
cos ¢p (I — I)) + (1 — cos ¢, ) I, otherwise

The corresponding integral for the left-hand end point isoded I, so that the full strength of
the wall repulsion on agent from boundary segmeritcan be written as

e =4 I, (A.28)

A.3 Wall repulsion from curved boundaries

So far, we have assumed the boundary segment to be a line.vidowijll extend the descrip-
tion of wall repulsion to curved boundary segments. We wdlltHis by applying assumptions
and approximations which allows us to reuse much of the te$tdm section§ All and A.2.3
while still maintaining an acceptable level of accuracy. ghsequence of these additional as-
sumptions is that higher accuracy might be achieved if [&@endary segments with strong
curvature are split up into smaller segments with identozalature. For example, to represent
a boundary which is a full circle, it is advisable to split theundary into at least 4 segments,
each covering angles of at masf2.

Fig.[A.4 shows a sketch of a curved segméntlefined by end point$, and V7, origin O,

and curvatureR 4. The angle between to the vectors from the curve origin td ediche two
end points, the curve angle, is denotedWe will also refer to theequivalent line segment
which is straight line between the two end points. Tangeuntrzarmal vectors can be related
to the curved or equivalent straight boundary. When it cotoebe former vector, we use

the equivalent curve tangerit,, which is a constant vector defined using the equivalent line
segment. When it comes to the normal vector, we will need ¢othis actual curve normal,
7.4, Which varies in direction along the curve. In Hig._ A#, is shown for the two end points
and for the midpoint. Note that at the midpoint, the tangemt aormal vectors of the curved
and equivalent straight boundary are identical. If an ageistlocated inside the sector defined
by the curve angle (light grey region in FigCA.#), then a boundary interactipnint on the
curve can be found and the separation vector is normal touhee cAlternatively, if agent: is
located within interaction range of one of end points (damygsemi-circles) at a valid angle,
the corresponding end point is used as the interaction pathta separation vector which
reflects a mirroring about the end point.

The computation of the wall repulsion strength for curvedrmtary segments is almost
identical to the algorithm described in sectlon Al2.3. Timsans neglecting some of the dif-
ferences between a curved and a straight boundary. Howteeeaccuracy is shown in section
to be comparable for both types of boundary segmemis.changes done in the wall
repulsion algorithm to handle curved boundaries are asvisll The equivalent tangent vec-
tor, t4, is used to determine the tangential positiapy, of the agent relative to the two end
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Figure A.4 Curve segment defined by end pointis; and 11, origin O, and curvatureR 4 is
plotted with a solid line. The curve angle is denotedlhe tangent vectot,, is
associated with the equivalent line segment (dashed [iff&.normal vecton 4, is
plotted for 3 different points on the curve: the end pointd #re midpoint.

points. The distance to the boundary segmepi,is defined as the distance to the curve in
the light grey region of Fig._Al4 and as the distance to theesaend point in the dark grey
regions of FigCAM. The angular coordinate relative to eactl point,3;, can be found with
Eq.[A.I5. The sector line anglesy,, and maximum angles of visibilityy,, described in sec-
tion[A.2.2, can be found in much the same way as for lines. T thing to remember is to
use the local boundary normal at the respective end poinith iese small changes, the wall
repulsion algorithm described in section Al2.2, can now &le applied to curved boundary
segments with an acceptable level of accuracy.

Appendix B Automatic path finder algorithm

The automatic path finder algorithm considers both boundagments and individual vertices.
Since boundaries are static (or move with an easily recapiézmotion), we assume the agents
can plan their route around these obstacles. Numerichlly,nhieans that the preferred direction
of motion is modified in order to try avoid physical contactiwsolid boundaries. The imple-
mented algorithm also take into account that the agents &anan-zero physical radius. This
complicates the details somewhat but does not alter the lpaisiciples of the algorithm. Here,
we describe the overall structure of the path finder algarithithout going into any details.

We look at agent:, currently at positionr, with preferred locationz, and physical diameter
d,. Primary target directiondz?, is simply given asfz? = z, — r,. We also define altern-
ative target directionizgb by rotatingézg by the anglep (where positive rotation direction is
anti-clockwise). If necessary, we will test 7 differentgat directions, all listed in th&arget
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alternative list, T, = {6z2,6z§/4,6z;”/4,6z2[/2,6z;”/2,6z§”/4,6z;3”/4}. We construct a

set B of all relevant boundary segments, that is all boundary sedgsnwithin interaction range
of the agent,R 4 45. Correspondingly, we construct a Sétof all relevant vertices. A simplified
path finder algorithm in pseudo code, can be formulated dswsi

Step 1: Define index n=0.

Step 2: If (n>6) then go to Step 10;
el se define dz,=T.[n] and L, = [rq,7e + 024).

Step 3: Let B, be a sub-set of all boundary segnents in B which agent
a Will come in direct contact with assuning a i s noving al ong
L,s. |If B, is enpty, go to Step 7.

Step 4: Find boundary segnent b€ B, which represents the nost critical
obstacl e, neani ng the segnent which requires the | argest
nodi fication in preferred direction of novenent to avoid
col l'i si on.

Step 5: Evaluate the possibility of the agent noving around one of
the two vertices associated with the obstructing boundary
segnent. If it is possible to nmove around both vertices,
the nost favourable vertex v is chosen (based on di stance,
direction, and possible connection to other boundary segnents).
If not, go to Step 8.

Step 6: Construct a nodified preferred path of novenent which, in
t he absence of other forces, will cause the agent to nove
around vertex v without coming in direction contact with the
boundary. Store this in 6z, Let 22 =0z, +7r, AND go to Step
9;

Step 7: If (n>0) then 22 =6z,+r, AND go to Step 9;

a =

el se go to Step 10.
Step 8 n =n+tl. Go to step 2.

Step 9: The current tenmporary target position candidate is accepted,

Zy = (1—wa)za+wa22, where w, is a smoothing factor to ensure
that the nodification to the preferred path gradually increases
fromzero as the agent approach the segnent frominfinity.

The direction of the preferred velocity, u, is changed to
meke w, parallel to z,—r,. Go to Step 10.

Step 10: Finish.
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