
Crowds2D – a new, robust crowd dynamics 
simulation model

FFI-rapport 2015/01750

Steinar Børve

Forsvarets
forskningsinstituttFFI

N o r w e g i a n  D e f e n c e  R e s e a r c h  E s t a b l i s h m e n t





 
FFI-rapport 2015/01750  
  
  
 

  
 

 
 
 

Crowds2D – a new, robust crowd dynamics simulation model 

Steinar Børve 

Norwegian Defence Research Establishment (FFI) 

13 January 2016 

 

  
  



 
  
  
 

 2 FFI-rapport 2015/01750 

 

FFI-rapport 2015/01750 

1255 

 
P: ISBN 978-82-464-2638-9 
E: ISBN 978-82-464-2639-6 

 

Keywords 

Gruppedynamikk 

Numeriske metoder 

Modellering og simulering 

Menneskelig atferd 

 

 

 

 

Approved by 

Eirik Svinsås Research Manager 

Jon E. Skjervold Director 

  
  
 
 
 



 
  
  

 

FFI-rapport 2015/01750 3   
 

English summary 
The Norwegian Armed Forces have over the last few years given priority to the procurement of 
less-lethal weapons (LLW) for use in certain scenarios. The purpose of FFI project 1255 has 
therefore been to support the armed forces in choosing the right means for different tactical 
scenarios and in a rapidly evolving marked. One class of scenarios where LLW can be a relevant 
tool involves human crowds. Choosing the right tool in such a scenario requires insight into the 
behaviour of human crowds. 
 
The collective behaviour of human crowds is of interest not only to the armed forces, but also in 
civil applications such as pedestrian traffic studies, security planning of events involving large 
crowds, and police crowd management during political demonstrations and riots. The latter 
scenario is also relevant for the armed forces in operations abroad where peace-keeping and law-
enforcement is an important part of the assigned task. In situations where law-enforces confront a 
crowd which include hostile or even violent individuals, one must decide whether or not to utilize 
LLW to control the crowd. The important question then is what can be achieved in a given 
scenario in terms of crowd management depending on whether LLWs are applied or not. 
 
This report describes a new, robust crowd dynamics simulation model capable of simulating a 
wide range human crowd behaviour. It is a technical report and documents the important first 
steps towards a potentially useful tool in the analysis of LLW-related operations. This includes 
not only normal pedestrian traffic, but also scenarios such as evacuation or riots which might 
involve running agents. The model relies on a number of model parameters. Default values of 
these parameters have been determined on the basis of fundamental properties of the human body, 
semi-analytical models of fundamental crowd behaviour, and simplified crowd test simulations. 
 
The new model not only captures crowd movement well, it also provide information on force 
levels which in turn can be used to assess the risk of injuries and deaths. 
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Sammendrag 
Forsvaret har dei siste åra lagt vekt på å kjøpe inn Mindre-dødelege våpen (MDV) for å kunne 
handtere visse situasjonar. FFI-prosjekt 1255 har hatt som formål å hjelpe Forsvaret med å velge 
riktige verkemiddel under ulike taktiske situasjonar og i ein marknad som er i rask utvikling. Ein 
klasse av situasjonar der MDV kan vere eit aktuelt verkemiddel involverer større 
menneskemengder. Å kunne velge riktig verkemiddel i ein slik situasjon krev at ein har innsikt i 
korleis menneskemengder kan opptre. 
 
Kunnskap om dynamikken til menneskemengder er av interesse ikkje berre for Forsvaret, men 
kan óg komme til nytte innanfor sivile bruksområde som t.d. studiar av fotgjengartrafikk, 
planlegging av sikringstiltak rundt arrangement som involverar store menneskemengder og 
planlegging av politiaksjonar ved politiske demonstrasjonar og opptøyar. Det siste scenarioet er 
òg relevant for Forsvaret i utanlandsoperasjonar der fredsbevaring og arbeidsoppgåver knytta til 
lov-og-orden er ein viktig del av oppdraget. I situasjonar der ein som ordensmakt skal konfrontere 
ei menneskemengd som inneheld fiendtleg innstilte eller til og med valdelege enkeltindivid, må 
ein vurdere kor vidt ein skal ta i bruk MDV for å halde kontroll på menneskemengda. Det viktige 
spørsmålet er i så fall i kva grad ein kan påverke dynamikken til menneskemengda, med eller utan 
bruk av MDV. 
 
Denne rapporten skildrar ein ny, robust simuleringsmodell for studiar av dynamikken til ei 
menneskemengd. Han er av teknisk karakter og dokumenterar viktige fyrste steg på vegen mot eit 
potensielt nyttig verkty i analysen av MDV-relevante operasjonar. Modellen er ikkje berre i stand 
til å simulera normal fotgjengartrafikk, men òg scenaria knytt til evakuering eller opptøyer som 
kan involvere springande personar. Modellen bygger på ei rad modelparametrar. Standardverdiar 
for desse parametrane har blitt bestemt på bakgrunn av grunnleggande eigenskapar ved 
menneskekroppen, semianalytiske modellar av fundamental dynamikk i menneskemengder og 
foreinkla simuleringar av menneskemengder. Den nye modellen skildrar ikkje berre rørsla i ei 
menneskemengde på ein god måte. Han gjev i tillegg informasjon om storleiken på kreftene som 
verkar i menneskemengda. Dette er informasjon som kan vere nyttig i vurderinga av risikoen for 
personskader og dødsfall grunna uheldig dynamikk i menneskemengder.  
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1 Introduction

The collective behaviour of human crowds is of interest in civil applications such as pedestrian

traffic studies, security planning of events involving large crowds, and police crowd manage-

ment during political demonstrations and riots. The latterscenario is also relevant for the armed

forces in operations abroad where peace-keeping and law-enforcement is an important part of

the assigned task. In situations where law-enforces confront a crowd which include hostile or

even violent individuals, one must decide whether or not to utilize less-lethal weapons (LLW)

to control the crowd. The important question then, is what can be achieved in a given scenario

in terms of crowd management depending on whether LLWs are applied or not.

Crowd modelling has in recent years become an important toolin studying the dynamics of

human crowds (see Zhou et al. (2010) for a review), in applications ranging from military simu-

lation, safety engineering, architectural design, and digital entertainment. Most of these models

are developed with a typical pedestrian type crowd in mind. This implies that the models are

tested for moderate and high crowd densities, and moderate human velocities (walking). This

report documents the development of a new numerical crowd dynamics model. The model is

designed to be a robust simulation tool capable of handling both normal pedestrian scenarios as

well as more extreme scenarios like a riot. This means that the model must be able to handle

widely different human crowds, both in terms of crowd density and in terms of human velo-

cities. The size of the simulated crowd could range from a fewtens (or smaller in validation

tests) to a few thousand people, and the time scale of the scenarios could vary from a fraction

of a minute to hours. Ultimately, the model is meant to becomea supplement to the purely phe-

nomenological descriptions in the study of crowd events where LLWs are relevant. To achieve

this, we will in future have to extend the basic crowd model described in this work with models

of different LLWs, as well as more advanced models for decision-making and human motiva-

tion.

In the current work, we focus on the development of a numerical model for the simulation

of human crowds based on the agent force modelling concept (Helbing & Molnár, 1995). An

important issue is finding the right level of complexity in the model, and this means minimizing

the number of free parameters as much as possible without neglecting important aspects of

crowd behaviour. The basic assumption for the model is that as density in a human crowd

increases, so do the limitations on the movement of individuals. The human body itself has

certain characteristics when it comes to compressibility,constitutive properties, speed limitations

and so forth. Furthermore, we need to take into account that solid obstacles will prevent or

at least slow down the crowd flow. From these observations, wecan formulate a set of basic

forces that in principle can have great effect on human behaviour. Next, it is a fair assumption

that humans manage to optimize their body movement with respect to the object or goal of

the individual. Obviously, it is beyond the scope of the model to describe in detail the vast

number of forces involved in reproducing optimised body movements. However, we can provide

simplified force models to make individuals capable of avoiding solid obstacles and maintaining
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a moderate speed when moving unhindered.

So what about less easily quantifiable effects from for instance psychological and social factors?

Obviously, these effects will in many cases be very important in order to accurately predict the

effectiveness of LLWs. Decision-making by individuals in acrowd, in particular individuals

with a leading role in a group, can have a substantial effect on the overall outcome of e.g. a

crisis. Models failing to take these effects into account will in certain scenarios fail at providing

adequate predictions. Still, a simplified model can nevertheless provide us with important

information. In this work, the strategy is to start out with asimple model where psychological

and social factors are kept to a minimum. Well aware of the limitations of such a model, the

plan is in future to gradually extend the applicability of the model by including additional

non-physical effects.

This report is organized as follows: Section 2 reviews observational data on the biomechanical

properties of the human body which are important when simulating human crowds. It also gives

an overview of the equations of motion and explains how we canestimate crowd density and

calculate the interaction range. In section 3, we look at theinternal forces that represent desired

movements, capabilities and limitations associated with each individual agent. The inter-agent

forces are responsible for trying to keep individual agentsseparated at distances larger than

some reasonable minimum distance. These forces are described in section 4. Similar forces

associated with the agents interactions with solid boundaries are covered in section 5. Important

model parameters not specified earlier, are determined in section 6 on the basis of simplified

simulations and semi-analytic models. Full-scale simulations on a selection of more or less

well-known crowd dynamics tests are presented in section 7 and compared with results from

literature. A conclusion is provided in section 8. More in-depth information on aspects of the

boundary interaction is provided in Appendix A and AppendixB.

2 Simulation model overview

This section serves several purposes. First, we establish an experimental framework in which

the simulation model should fit. Next, the overall equationsof motion are formulated and a

suitable expression for the crowd number density is found. The last part of this section deals

with interactions at a distance. This is relevant both for inter-agent and boundary forces. How

the strength of such interactions will depend upon the choice of spatial interaction function, is

described. The concepts of obstacle avoidance and crowd repulsion are also introduced, and

variable interaction range is discussed.

2.1 Observations regarding human anatomy and behaviour

It is of vital importance for any numerical model to be given afirm analytic and/or experi-

mental basis. A human crowd model should be no different. Some aspects of a crowd’s be-

haviour could be described quite well by a fluid model. Other aspects are more likely to be
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assicated with the granular nature of a human crowd. And yet again other aspects can only be

described when considering the full psycho-social characteristics of individuals in the crowd.

2.1.1 Biomechanical properties of the human body

Although it has been a goal to minimize the number of free parameters by neglecting many of

the psycho-social factors, the model will still rely on a fairly large number of parameters. Some

of these parameters will have to be determined by fitting simulation results to observations of

key crowd behaviour. However, many parameters can be determined, directly or indirectly, on

the basis of biomechanical properties of the human body. Table 2.1 gives an overview of some

important properties relevant in this work and references where this is applicable. The values

refers to an adult human1.

Parameter Observed value Reference

Shoulder width 0.4-0.5 m Weidmann (1992)

The anteroposterior size 0.25-0.3 m Weidmann (1992)

Shoe size 0.25-0.3 m Weidmann (1992)

Mass 50-100 kg —

Pedestrian walking speed 1.34m/s± 0.26m/s Weidmann (1992)

Fast running speed 6.0-8.0 m/s Novacheck (1998)

Typical whole-body acceleration 0.1g Kavanagh & Menz (2008)

Maximum muscle-driven acceleration 0.5-0.8g Kugler & Janshen (2010)

Chest (low speed) spring force 300-1000 N/cm Viano & King (2000)

Max. chest compression before injury 20%-40% Viano & King (2000)

Critical 1-minute force asphyxia limit 1000 N Fruin (1993)

Critical 10-second force asphyxia limit 6000 N Fruin (1993)

Max. manual force on structures 30-75% of weight Fruin (1993)

Min. distance to obstacles 0.75-1.50 m Weidmann (1992)

Table 2.1 Biomechanical properties of the human body with typical values as derived from

various empirical studies.

On the basis of the order of magnitude estimate of whole-bodyacceleration given in table 2.1,

we can use a simple analysis to determine roughly at what range the interactions must become

effective if collisions with obstacles in the flow path are tobe avoided. If we assume an initial

velocity v0 and a mean acceleration̄a, the minimum effective range for the interaction must be

smin = v20/(2ā). (2.1)

We see that the required range is highly dependent on the relative velocity between the agent

and the obstacle. If the obstacle also is a moving agent, bothv0 and ā will be twice as large. If

1The current simulation model makes the simplifying assumption of a circular human cross-section, typically with

an effective diameter of 0.3-0.4 m.
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both agents are running towards each other at a speed of 5-6 m/s, and we assume a mean accel-

eration of around 0.1g, then the interaction between the twoshould have a range of roughly 30

m. This will ensure that a direct collision is avoided with a reasonable acceleration magnitude.

2.1.2 Assumptions regarding fundamental human behaviour in crowds

A crowd model cannot be constructed using biomechanical properties and mathematics alone.

The development must also be guided by observations and assumptions regarding human beha-

viour in a crowd. In this section, I have tried to list the mainassumptions used in developing

the current model.

1. Local density is the primary parameter in determining thedynamics of a crowd.

2. Isolated agents have a large interaction range. This interaction range decreases with

increasing density.

3. Agents optimize their movements so as to minimize energy consumption and maximize

efficiency.

4. Agents will try to navigate around limited-sized obstacles. Body forces are adjusted

according to velocity so that the minimum distance to obstacles and other agents becomes

only weakly dependent on the original velocity.

5. A pair of agents in a crowd experience a mutual repulsive effect if they are not familiar

with each other. This holds even though the two agents are notin danger of colliding.

However, the repulsion is anisotropic so that a net posterior repulsion is experienced in a

uniform crowd causing the average velocity in the crowd to drop with increasing crowd

density.

6. In low density crowds, agents can easily maintain their preferred speed.

7. In high density crowds, agents will resort to moderate levels of pushing in order to try

maintaining a non-zero velocity.

8. As an agent approaches the preferred location, the associated preferred speed drops to 0.

How accurately the agent defines the preferred location is scenario dependent.

Some assumptions are trivial, while others are made from experimental work (Older, 1968;

Parisi et al., 2009; Seyfried et al., 2009; Still, 2000; Weidmann, 1992). Some assumptions
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have even come about simply as a result of the numerical challenges met in this work. The

assumptions made will always have great impact on the model.If simulation results do not fit

sufficiently well with observations, this could be an indication that the list of assumptions needs

revising.

2.2 Introduction to the agent-based force model

In the choice between different modelling approaches, the agent-based, social force approach

introduced by Prof. Dirk Helbing and his collaborators almost 20 years ago (Helbing & Molnár,

1995) was preferred. The idea behind the Helbing force modelis to model crowd behaviour

by formulating forces which describe interaction between pairs of persons, interaction between

a person and a solid wall, and the self-propelling force which represents the own will of the

person to move in a certain way. Each person (hereafter referred to as agent)a has attributes

such as mass (ma), physical diameter (da), position (ra), and velocity (va). The basic equations

of motion are:

dra
dt

= va (2.2)

and

ma
dva

dt
= F

I
a +

∑

b∈A

F
A
ab +

∑

b∈B

F
B
ab. (2.3)

The forces acting on agenta in the basic model are divided into 3 parts based on the objectof

interaction:FI
a indicates the internal forces (often referred to as the willforce),FA

ab represents

interactions with neighbouring agentb (whereA is the set of all agents), andFB
ab denotes in-

teractions with solid boundary elementb (whereB is the set of all boundary elements). Each

of the three groups of forces can be split up according to the characteristics of the interaction.

This is illustrated in Fig. 2.1. The internal forces are split up into a displacement force depend-

ent on the agent’s position, a flow force dependent on the agent’s velocity relative to the desired

velocity, and a strain force dependent on the agent’s velocity relative to a upper velocity limit.

The inter-agent forces are either long-range social forcesor contact forces. The former type of

interactions include obstacle avoidance and crowd repulsion, while the latter type of interactions

deals with direct physical contact and typically has both a normal and a transversal component.

The boundary forces are formulated so as to match the inter-agent forces.

Local density is an important property when describing a crowd. Still, density is not included

as a variable in the original Helbing model (Helbing, Farkas& Vicsek, 2000). Instead the

model focuses to a large extent on close-range interactions, thereby making the model less

suited for modelling low and moderate density crowds. Laterattempts to correct this, utilized

a crude density estimate (Lakoba, Kaup & Finkelstein, 2005). More recently, the link between

crowd modelling and a fluid method known as Smoothed ParticleHydrodynamics (SPH) (see

review in Monaghan (2005)) was pointed out by Vetter et al. (2011). According to this method,
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Figure 2.1 Forces in the basic agent model are sorted in 3 groups according to the object of

interaction.

the density at the position of an agenta, denotedρa, is calculated as

ρa =
∑

b

Wab. (2.4)

whereWab ≡ W(rab/hab, hab) is a smoothing kernel. The kernel is dependent onrab, the

distance between agentsa andb, and the characteristic scale lengthhab, often referred to as the

smoothing length, wherehab is found as the mean smoothing length of the two agents. In this

work, the chosen kernel is taken from Wendland (1995):

W(ν, h) =
7

64πh2







(2− ν)4(1 + 2ν) if 0 ≤ ν ≤ 2;

0 otherwise.
(2.5)

The smoohting length,ha, is itself dependent onρa, so that Eq. 2.4 in reality is a non-linear

equation (see section 2.5.3 for details). Note also that thedensity at the location of an agent

a will never be zero because the agent itself contributes to the sum in Eq. 2.4 by the amount

W(0, ha).

2.3 Spatial interaction function

A main challenge in developing a robust crowd model is to describe human movement with

sufficient degree of accuracy both in low and high density scenarios. In low density crowds,

agents should make appropriate modifications to their path based on the location and relative

speed of any obstacles, even when these obstacles are still far from the agent. In high density

crowds, the interactions should in general be restricted toa much smaller region. In order to

improve efficiency and accuracy, the range of the inter-agent and boundary forces should be

12 FFI-rapport 2015/01750



linked to the local crowd number density. The effective interaction range will depend both on

the shape of the spatial interaction function and the scale length.

In the Helbing model, the spatial interaction function usedfor social forces is exponentially

decaying with the normalized distance from the physical radius of the agent. The blue curve in

Fig. 2.2 shows this function in a logarithmic plot. Because of the chosen functional form, the

interaction strength will drop off quickly with normalizeddistance. Increasing the scale length

will only to a limited degree help avoiding dynamical effects that resemble colliding billiard

balls. Note that this refers to the interaction strength fora single pair of interacting agents. If

we assume a uniform crowd, the relative interaction strength from all agents at a given distance

can be found by multiplying the curves in Fig. 2.2 with the distance. Even so, the interaction

force in the original Helbing model drops off very quickly with normalized distance.

0 5 10 15
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0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

0 5 10 15
z

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

f(
z)

Figure 2.2 Comparison of different spatial interaction functions as functions of the normalized

distance from the chosen origin. The blue, red, orange and green curves correspond

to the exponential function, the Coloumb function, the tapered Coloumb function, and

the tapered and softened Coloumb function.

Drawing parallels to systems governed by electrostatic or gravitational forces, a new spatial

interaction function, referred to as a Coloumb function, isproposed. This function will in its

original form be written as

Φ0(z, ǫ) =
1

z2 + ǫ2
, (2.6)

whereǫ is an optional softening parameter to avoid the singularityat z = 0. The case withǫ =

0 is illustrated in Fig. 2.2 by the red curve. Notably different than the exponential function, the

Coloumb function goes to infinite atz = 0 and drops off very slowly for large values ofz. The

latter behaviour could lead to a very large effective interaction range. However, this is avoided

by adding a taper functionΨ at an appropriate distance. Apart from the functional form,in this

work chosen to be equal to the smoothing kernel defined in Eq. 2.5, Ψ is characterized by the

taper start distance, z0, and thetaper half width , zw. These two parameters defines the taper
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variableξ = (z − z0)/zw. The taper function itself can then be written as

Ψ(ξ) =



















1 if ξ ≤ 0;

1
16(2− ξ)4(1 + 2ξ) if 0 < ξ ≤ 2;

0 otherwise,

(2.7)

By multiplying the original Coloumb functionΦ0 with the taper functionΨ, we get acom-

pactly supported interaction function

Φ(z, ǫ) = Φ0(z, ǫ)Ψ

(

z − z0
zw

)

, (2.8)

which means thatΦ(z, ǫ) is exactly zero beyond the cut-off distancezmax = z0 + 2zw. The

orange curve in Fig. 2.2, shows the Coloumb function multiplied by the taper function with

z0 = 10 andzw = 2. The green curve in Fig. 2.2 shows the corresponding Coloumbfunction

with a softening parameter equal to 1.

2.4 Obstacle avoidance and crowd repulsion

Based on assumptions 4 and 5 listed in section 2.1.2, it is reasonable to divide the social in-

teraction forces described in sections 4 and 5 into two separate effects: Agents need to be able

to navigate in between nearby obstacles, whether it be otheragents or solid barriers. At the

same time, agents will interact with a neighbouring crowd ofpeople if the crowd density is

non-negligible. The former type of interaction, which we will refer to asobstacle avoidance,

is in nature a point-point interaction. The latter type of interaction, which we will callcrowd

repulsion, could be considered more of a fluid type force.

Obstacle avoidance, or simply avoidance, deals with how agents avoids isolated obstacles in

the preferred path. This is usually important in low densityregions where the concept of a

crowd is somewhat misleading, or simply when the distance toa single obstacle/neighbouring

agent is considerably smaller than the typical agent separation. The number of neighbouring

agents which gives rise to a non-zero avoidance interactionshould therefore be more or less

independent of density with a relative strong emphasis on the nearest obstacles/neighbouring

agents. The tapered Coloumb function with zero softening (corresponding to the orange curve

in Fig. 2.2) could be well suited for describing the avoidance effect. Since the contact force

between two agents becomes non-zero for distances less thanthe mean agent diameter,d,

we require the normalized avoidance distance at the agent diameter to be equal to unity. For

distances larger than the agent diameter, the avoidance distance is normalized by the avoidance

scale length,bA.

The crowd repulsion on the other hand, describes the almost pressure-like forces that an agent

experiences from a larger crowd or boundary structure. A fluid description could therefore

be considered more appropriate in describing this type of interaction (Vetter et al., 2011).

However, it is beyond the scope of the current work to explorethis possibility. Instead of a
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fluid formulation, crowd repulsion is described with a formulation similar to that used for

obstacle avoidance, although with some important differences. Because of its nature, the crowd

repulsion should become gradually more important as the density is increased. This implies that

the number of crowd interactions should be zero when the density is very low, and gradually

increase as density increases. This type of interaction should not put a very strong emphasis

on single obstacles/neighbouring agents. But just as with avoidance interaction, it is practical

to have an interaction function with compact support (finiteinteraction range). The tapered

Coloumb interaction function with the softening parameterequal to 1 is a suitable starting point

for the crowd repulsion model. Distance will be normalized by the corresponding scale length,

referred to asbC .

2.5 Variable interaction range

The number of interactions per agent,Nb, in a uniform crowd is dependent on the interaction

rangeR and the densityρ, and is given asNb = πR2ρ. If R was to be constant, thenNb

would increase too rapidly for an efficient and accurate description to be achieved both in

high and low density crowds. If, on the other hand, we letR ∝ ρ−1/2, this would lead to

a roughly constantNb. This would fit the description of the obstacle avoidance, but would

not enable us to model density dependent crowd phenomena like the fundamental diagram

(Schadschneider et al., 2009). For the modelling of the crowd repulsion, a weaker dependence

of R on ρ is required, e.g.R ∝ ρ−1/4. In this section, the algorithms for determining the scale

lengths,bA andbC , as functions of density will be presented.

2.5.1 Obstacle avoidance scale length

Based on the description of obstacle avoidance given in section 2.4, we find that the avoidance

interaction range,RA, depends on the corresponding scale length (bA), the normalized cutoff

distance for the tapered Coloumb function (zmax), and the agent diameter (d) as

RA = (zmax − 1)bA + d. (2.9)

As already mentioned,RA ∝ ρ−1/2 would imply a roughly constant number of avoidance

interactions which could be expressed as

NA = πR2
Aρ ≡ πR2

A,refρref. (2.10)

SinceNA is independent of density, we can safely expressNA using a reference density,ρref,

and a reference interaction range,RA,ref. Combining Eqs. 2.9 and 2.10, we can get an expres-

sion for the reference scale length,bA,ref as

bA,ref =
1

zmax − 1

[

(

NA

πρref

)1/2

− d

]

. (2.11)

In order to avoid a singularity atρ = 0, we allow the scale length to deviate from a strict
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ρ−1/2-dependence and choose the following dependence on density:

bA = bA,ref

(

ρref + ρA,min

ρ+ ρA,min

)1/2

. (2.12)

The additional parameterρA,min is chosen so thatbA = bA,0 if ρ = 0. This implies thatρA,min

can be written as

ρA,min =
ρref

(bA,0/bA,ref)
2 − 1

. (2.13)

To summarize, obstacle avoidance is characterized by the maximum scale length,bA,0, the

typical number of interactions,NA, and to a much lesser degree onρref. From the discussion

in section 2.1.1, we have that the interaction range should be as large as around 30 m to avoid

collisions with other agents if both agents are running. Ifzmax = 14 as shown in Fig. 2.2, this

implies thatbA,0 ≈ 2 m is a good choice. A suitable choice forNA might be 5. The reference

density,ρref, should be small compared to relevant levels of crowd density, which is on the order

of unity. We will setρref = 0.1 m−2. If d is roughly 0.5 m as indicated in Table 2.1, thenbA,ref

andρA,min become roughly 0.29 m and1.8 · 10−3 m−2, respectively.

2.5.2 Crowd repulsion scale length

A similar discussion can be presented when it comes to crowd repulsion. The relation between

the interaction rangeRC and the scale lengthbC is

RC = zmaxbC . (2.14)

The number of crowd interactions,NC , is not in this case independent of density. Instead, we

specify an optimal number of interactionsNC,max at a given large densityρmax. Note that we are

completely free in choosing the value ofρmax. We can e.g. setρmax equal to a realistic maximum

crowd density value. The correspondingNC,max will then indicate an upper limit to the number

of crowd interactions per agent. This number is expressed as:

NC,max = πR2
Cρmax ≡ πz2maxb

2
C,maxρmax. (2.15)

Choosing the crowd interaction range to be proportional toρ−1/4, we can formulate the crowd

scale length,bC , in a similar way as we did withbA in Eq. 2.12 as

bC = bC,ref

(

ρref + ρC,min

ρ+ ρC,min

)1/4

. (2.16)

By combining Eq. 2.15 and 2.16 withρ = ρmax, and assumingρmax ≫ ρC,min, we find thatbC,ref

can be expressed as

bC,ref =

[

NC,max

πz2maxρ
1/2
max (ρref + ρmin)

1/2

]1/2

. (2.17)

We use the same reference density as in the case of obstacle avoidance, and again, we link the

density parameterρC,min to a maximum scale lengthbC,0 which corresponds to the caseρ = 0.
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So by combining Eq. 2.17 and Eq. 2.16 withρ = 0, we get

ρC,min =
N2

C,max

π2z4maxb
4
C,0ρmax

. (2.18)

Since crowd repulsion is considered a fluid-like effect in this model, the number of interactions

per agent should be substantially larger than what was the case for the obstacle avoidance

in crowds of medium and high densities. At the same, we must consider the computational

expense of having a large number of interactions per agent. Since the crowd repulsion scale

length has a weaker dependence on the density than the avoidance scale length, a smaller

maximum scale length must be chosen in this case. A suitable choice could bebC,0 = bA,0/2 =

1.0 m. Forρmax = 6 m−2, an acceptable number of interactions, both with regards toaccuracy

and efficiency, would beNC,max ∼ 50. From Eq. 2.18, we then calculateρC,min to be equal to

1.1 · 10−3 m−2. And finally, we findbC,ref = 0.32 m from using Eq. 2.18.

2.5.3 Comparison of scale lengths and robust calculation of smoohting length

The solid and dashed lines in Fig. 2.3 illustrate how the characteristics of the obstacle avoid-

ance and crowd repulsion, respectively, change with changing density. In the left panel, the

avoidance scale length is seen to drop quickly as the densityincreases from 0 to the reference

density at0.1 m−2. The crowd scale length is a factor of two smaller than the avoidance scale

length at zero density, but drops more slowly than the latter. So forρ larger than roughlyρref/2,

the crowd scale length is larger than the avoidance scale length. The grey, dashed line in the

same panel shows the mean agent separation divided by the normalized cut-off distancezmax.

By comparing this curve with the other two curves, we can conclude that in a uniform crowd,

the obstacle avoidance range will never be much larger than the agent separation whereas the

crowd repulsion range becomes significantly larger than theagent separation for large densities.

The middle panel illustrates how the interaction strength at 3 different distances vary with

density. Assuming a uniform crowd, the average inter-agentseparation∆ is roughly given as

∆ = ρ−1/2. The red, green, and blue lines in the middle panel correspond to the density-

dependent distances∆/2, ∆, 2∆. The first case corresponds to a particularly close-by neigh-

bour. In accordance with the general description in section2.4, the obstacle avoidance dom-

inates over the crowd repulsion for all densities except in the intermediate density range of

roughly 0.01 − 1 m−2. The second case represents the normal minimum distance to neighbours.

Here, the intermediate density range where crowd repulsiondominates has been extend up to

ρ ≈ 3 m−2. The third case corresponds to a neighbour which is not amongthe nearest neigh-

bours. In this case, the interaction strength is small everywhere except for the crowd repulsion

in high density regions.

The right hand panel of Fig. 2.3 shows how the number of interactions per agent changes

with density. In the avoidance case, the number of interactions is more or less constant as

expected. Only at very low densities does the number of interactions drop. In the crowd case,

the number of interactions has a very different density variation: The increase is small for very
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low densities. For densities above the reference density, the number of interactions increases

very rapidly. As specified by the input parameters, 50 interactions per agent are found atρ =

6 m−2.
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Figure 2.3 Characteristics of the obstacle avoidance (solid lines) and crowd repulsion (dashed

lines) as functions of crowd density. The left, middle, and right panels show the scale

length, the normalized interaction strength, and the number of interactions. The grey

curve in the left hand plot shows∆/zmax, where∆ = ρ−1/2. The red, green, and blue

curves in the middle panel correspond to interaction distances∆/2, ∆, and2∆.

Now, let us return to the question of how the density is calculated. Eq. 2.4 described how

this is done by adding weighted contribution from agents within a certain interaction range.

From the expression of the weight function given in Eq. 2.5, we see that the interaction range

in this case is given as2h, whereh was referred to as the smoothing length. The smoothing

length should in itself be dependent on density, much as the avoidance and crowd scale lengths,

and this makes Eq. 2.4 non-linear. To achieve accurate but also smoothly varying density

estimates, the range of the weight function is made equal to the range of the crowd repulsion.

This implies thath can be expressed as

h =
zmax

2
bC . (2.19)

The non-linear nature of Eq. 2.4 needs special considerations. If the initial density is very

low, we know from the right-hand panel of Fig. 2.3 that the number of crowd interactions is

small. As a consequence, the density estimate can fluctuate substantially, especially since the

distribution of agents often are highly inhomogeneous in low density regions. Also in such

cases, the contribution from an agenta to its own density, hereafter referred to as the density
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self-contribution, is important. It is equal toW(0, ha) which is proportional toh−2
a . This means

that a small increase in density, which in turn leads to a decrease inha, can have a potential

feedback effect on the density estimate causing the densityto increase even further. In fact, if

we assume the total density is dominated by self-contribution, then it can be easily shown that

there exists an equilibrium value of the crowd scale length,bC , which is about 70% smaller

thanbC,0, the maximum value ofbC , given as input in section 2.5.2. For the avoidance scale

length,bA, the difference betweenbA,0 and the maximum scale length in real simulations

becomes even larger.

0 5 10 15 20 25 30
r (m)

0.00

0.05

0.10

0.15

0.20

0.25

ρ

0 5 10 15 20 25 30
r (m)

0.0

0.5

1.0

1.5

2.0

b 
(m

)

0 5 10 15 20 25 30
r (m)

0.001

0.010

0.100

1.000

f/f
0

Figure 2.4 Characteristics of the interaction between two agents as functions of separation. The

solid line in the left panel shows the total density in a two-agent system, while the

dashed line in the same panel shows the corresponding density self-contribution. The

middle and right-hand panels show the scale length and normalized interaction

strength, respectively. Obstacle avoidance and crowd repulsion are indicated by red

and blue curves, respectively, while the black curve in the latter panel indicates the

total interaction strength.

To avoid this problem, it is proposed to calculate the scale lengths by replacingρ in the de-

nominators of Eqs. 2.12 and 2.16 withρ⋆ = ρ − W(0, h), the density without the density

self-contribution. The strength of the non-linear coupling betweenh andρ in the low-density

regime is thus weakened substantially. This makes it easierto achieve a robust algorithm for

calculating the interaction scale lengths. Nevertheless,the non-linearity of Eq. 2.4 can give rise

to temporal oscillations in the scale lengths. To avoid this, we calculated the crowd scale length

at time stept as

btC =
1

2
[bt−1
c + b̂tc], (2.20)
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wherebt−1
c is the scale length from the previous time step andb̂tc is calculated by Eq. 2.16 with

ρ = ρt−1, the density estimate from the previous time step.

To illustrate the change in interaction scale lengths in thelow density regime, we take a look

at a simple case where two isolated agents approach each other. We assume standard input

parameters as described in sections 2.5.1 and 2.5.2. Characteristics of the interaction between

the two agents as functions of separation are shown in Fig. 2.4. The left-hand panel shows

the density (solid line) and density self-contribution (dashed line). We see that the density

can become as large as0.2 m−2 if the agents come sufficiently close. This corresponds to

the density of a uniform crowd where the typical separation is around 2.2 m. The dashed line

indicates that the self-contribution also increases as thetwo agents approach each other. The

middle panel illustrates how the obstacle avoidance (red curve) and crowd repulsion (blue

curve) scale lengths drop as the separation between the two agents is reduced. Note that the

latter scale length is only bigger than the former when the separation is smaller than about 1.5

m. The right-hand panel shows the corresponding interaction strength for the two interaction

types together with the total interaction strength (black curve). Obstacle avoidance becomes

significant already at 15-20 m, while crowd repulsion gives negligible contribution to the total

interaction for separations larger than 10 m or so.

3 Internal forces

Internal forces are introduced to model the fundamental ability of agents to make choices

regarding their own movement. Such a description should include any limitations of this ability

dictated by the human body. The classic model incorporates awill force, as it is often referred

to, in a simple manner by having a force which depends exclusively on the difference between

the preferred and actual velocity (Helbing, Farkas & Vicsek, 2000). The preferred velocity itself

(denoted byua) can vary in time and be related to the displacement from the preferred location

(denoted byza). If the applications are restricted to cases where all agents move at roughly the

same, moderate speed, this formulation gives satisfactoryresults. However, we want to consider

applications where agents might have widely different (preferred) velocities. We also have to

take into account that the preferred locations are defined with varying degrees of accuracy. And

finally, we must consider the possibility that different forces acting constructively might result

in unrealistically large accelerations or might accelerate agents to unrealistically large velocities.

With this in mind, we formulate an internal force containingthree components, a displacement

force, a flow will force, and a strain force:FI
a = R

I
a + V

I
a + S

I
a .

3.1 Displacement force

The first component (RI
a ) is directly dependent on the displacementδza = za − ra from the

preferred location. Letσa denote a scale length that indicates how accurately agenta targets the

preferred location. Out of convenience, we also defineσ̃a = σa/ ln 2. The force attracting the
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agent to the preferred location is then defined as

R
I
a = maA

r
will

{

exp

(

−δza
σ̃a

)

− exp

(

−2δza
σ̃a

)}

δza

‖δza‖
. (3.1)

The attraction to the preferred location is at its largest ata distance ofσa, and the constant

Ar
will determines the maximum strength of the displacement force.Although σa is a problem-

dependent parameter, we will assume thatσa ≥ σmin, σmin is a model constant to be determined

later. It is also reasonable to include a damping force acting on agents when they are close

to their preferred location. The damping force can be formulated as an additional term in the

momentum equation which is proportional to both the velocity (Monaghan, 2005) and the

spatial weight factorexp(−δza/σa).

3.2 Flow will force

The second component (V
W
a ) depends primarily on the difference in preferred and actual

velocity. However, according to assumption 8 in section 2.1.2, there should also be a natural

softening of the force when the agent comes within the preferred location rangeσa. First, let us

define the softening parameterγa as

γa =







δza
σa

if 0 ≤ δza < σa;

1 otherwise.
(3.2)

The softened preferred velocity is defined as

ua = ũaγa
δza

‖δza‖
, (3.3)

whereũa > 0 is the unsoftened preferred speed during movement. It is also convenient to

define the normalized preferred velocity vectorûa = ua

ũa
, and it is trivial to see that‖ûa‖ =

γa ≤ 1.

The flow will force is divided into two parts. The first part is adriving force term in the direc-

tion of the preferred velocity, while the second force term dampens movement perpendicular to

the preferred velocity. First, we define the parallel and perpendicular velocity components,

v‖,a = va · ûa (3.4)

and

v⊥,a = γava − v‖,aûa, (3.5)

respectively. Then, we define the corresponding normalizedvelocity deviations from preferred

velocity:

x‖,a =
‖ua‖ − v‖,a

ũa
(3.6)

and

x⊥,a = −v ⊥,a

ũa
. (3.7)
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The flow will force,VI
a , can then be written as

V
I
a = maA

v
will [Γ(x‖,a)ûa + x⊥,a], (3.8)

whereAv
will is the flow will acceleration amplitude andΓ(x) is a non-linear force amplifier.

3.2.1 Non-linear flow will

The original flow will force formulation is a strictly linearfunction of velocity

(Helbing, Farkas & Vicsek, 2000). It is meant to describe thetendency of an agent to try

maintain the preferred velocity in spite of external forcesacting on the agent. Linear models are

often considered first order approximations to more complexprocesses. For instance, are linear

models often valid only under the assumption of small deviations from an equilibrium state. In

the case of the flow will force, assumptions 6 and 7 listed in section 2.1.2 lead us to identify 2

regimes, forx ≪ 1 andx ∼ 1, where a non-linear flow will behaviour might be appropriate.

In situations where a weak but nearly static external force acts on an agent, the deviation from

the preferred velocity should be almost negligible. This isbecause the agent can easily balance

the external forces with a moderate will force. Compared to the velocity deviation, though, the

required will force might be superlinear. In situations where the external forces are large, the

agent might nearly stop or even move in the opposite direction relative to the preferred velocity.

If this is the case, it is likely that the agent will exhibit enhanced determination or even resort

to pushing to secure a minimum of movement in the correct direction. To model this behaviour

appropriately, a non-linear force is also required.

The force amplifierΓ(x) is defined as:

Γ(x) =































b0x
2 + c0x if 0 ≤ x < x0;

b1x
2 + c1x+ d1 if x0 ≤ x < x1;

x if x1 ≤ x ≤ x2;

a2x
3 + b2x

2 + c2x+ d2 otherwise.

(3.9)

The coefficients can be determined by requiringΓ(x) and its first derivative to be continuous in

the interval0 < x < 1 and the second derivative to be continuous in the intervalx1 < x < 1.

The amplification atx = x0 is equal tox1/2 = (x0 + x1)/2. The amplification atx = x2, Γ2 is
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a free parameter. The force amplification coefficients are then given as

b0 = −
x1/2

x20
, (3.10)

c0 = 2
x1/2

x0
, (3.11)

b1 =
1

2(x1 − x0)
, (3.12)

c1 = − x0
x1 − x0

, (3.13)

d1 =
x21

2(x1 − x0)
, (3.14)

a2 = (Γ2 − 1)/(1 − 3x2 + 3x22 − x32), (3.15)

b2 = −3a2x2, (3.16)

c2 = 1 + 3a2x
2
2, (3.17)

and

d2 = −a2x
3
2. (3.18)

The shape of the amplifier is shown in Fig. 3.1 forΓ2 = 2. Although the parametersx0 − x2

can be set independent of each other, the plot only shows 3 choices of(x0, x1, x2), namely

(0.05, 0.1, 0.5) (solid curve),(0.05, 0.2, 0.7) (dotted curve), and(0.05, 0.4, 0.9) (dashed curve).
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Figure 3.1 Non-linear will force amplifierΓ(x) with Γ2 = 2. The solid, dotted, and dashed lines

correspond to(x0, x1, x2) = (0.05, 0.3, 0.7), (x0, x1, x2) = (0.05, 0.4, 0.8), and

(x0, x1, x2) = (0.05, 0.5, 0.9), respectively.
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3.3 Strain force

External forces acting on an agent can be sorted into 2 fundamental categories. Contact forces

are real forces that in extreme cases can give rise to sudden changes in the dynamics of agents,

potentially leading to physical injury. Most other forces in a crowd model are pseudo forces.

Although some of these forces are described as interactionswith external entities, they are in

reality caused by the agents’ own bodies in response to decisions made by the agents. The

strain force should reflect the physical limitations of the human body. For instance, the model

should make sure that the magnitude of the total pseudo forcedoes not become too large.

Also, an agent should not be accelerated to unrealisticallyhigh velocities. In principle, the

limitations on the human body could be time-dependent, representing the current physical (and

psychological) state of individual agents. For now, we willrestrict the strain force model to be

universal and time-independent.

First, we deal with the limitation on velocity. Letvlim,0 denote the speed at which the straining

force becomes non-zero, for instance 6 m/s. For speeds larger thanvlim,0 + δvlim, for instance

9 m/s, the straining force should quickly become very large and strong damping occurs. To

achieve this, we can define thevelocity strain force for agenta as

S
I
1,a = −maA

s
will







(

‖va‖−vlim,0

δvlim

)3
v̂a if ‖va‖ > vlim,0;

0 otherwise,
(3.19)

wherev̂a is the unity vector in the flow direction of agenta andAs
will is the velocity strain

acceleration amplitude.

We also want to put restrictions on the pseudo forces acting on an agent by introducing what

we call theacceleration strain force. First we need to defined the pseudo force acceleration of

agenta as
dvp

a

dt
=

dva

dt
− dvc

a

dt
, (3.20)

where dvc
a

dt is the corresponding acceleration due to contact force interactions. The magnitude of

the pseudo force acceleration is writtenfp
a for short. Letflim,0 denote the acceleration at which

the straining force becomes non-zero, for instance 0.5g, and let the upper limit to the pseudo

forces be defined asflim,0+δflim, for instance 1.0g. A normalized variable,η = (fp
a−flim,0)/δflim ,

is then introduced. Ifη ≤ 0, the pseudo force should not be reduced and the accelerationstrain

force becomes 0. However, ifη > 0, the modified pseudo force magnitude is found as

f̂p
a = flim,0 + δflim tanh(η). (3.21)

The effective acceleration strain force then becomes

S
I
2,a = −

(

1− f̂p
a

fp
a

)

ma
dvp

a

dt
. (3.22)

The total strain force is given asSI
a = S

I
1,a + S

I
2,a.
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4 Inter-agent forces

The interaction between agents is formulated as a sum of interactions between pairs of agents.

For each pair of agents, the interactionFA
ab can be separated into a relatively long-range,

social force (denotedSA
ab) and a short-range contact force (denotedC

A
ab). The role ofSA

ab is

to maintain a reasonable distance between adjacent agents under normal conditions, whileCA
ab

accounts for the additional forces associated with direct,physical contact. When describing

agent-agent interaction, it is useful to define the separation vector,rab = rb − ra, the relative

velocity, vab = vb − va, and the mean mass,mab = (ma +mb)/2.

4.1 Social force

The concept of a social force was originally presented in Helbing & Molnár (1995) and the

most common approach has been to use a force which is strictlyradial, anisotropic, but in-

dependent of velocity. In this section, we will look at the social force model adopted in the

current work. As described in section 2.4, the social force is split into 2 types of interactions:

obstacle avoidance and crowd repulsion. The social force onagenta from agentb is therefore

written as

S
A
ab = S

A
1,ab + S

A
2,ab, (4.1)

where the indices 1 and 2 refer to obstacle avoidance and crowd repulsion, respectively. The

corresponding interaction scale lengths for the two types of interactions were found in sec-

tions 2.5.1 and 2.5.2. In this section, we will take a closer look at how these interactions are

formulated.

4.1.1 Obstacle avoidance interaction

The construction of the obstacle avoidance formulation is primarily guided by assumptions 3

and 4 listed in section 2.1.2. For this reason, the interaction is dependent on both the separation

and the velocity difference between the two agents, and the force includes both a radial com-

ponent and a normal component. While the first component can be seen as being analogous to

the electrostatic force, the second component resembles the magnetic force (Yu et al., 2005).

First, let us consider the radial force component for a pair of agentsa andb. The velocity

dependence of the component, formulated as a function of therelative, radial velocity, is de-

termined by a simple linear function, denotedΥ(vab,r), defined as

Υ(vab,r) ≡ Υab =







vab,r
vref+vab

if vab,r ≥ 0;

0 otherwise,
(4.2)

wherevref represents normal walking speeds,1.0 − 1.5 m/s.

While the radial component is effective in slowing agents down when approaching other agents,

the second component improves the ability of the agents to move around obstacles. This is

achieved by a force, which we will refer to as thedeflection force, that is perpendicular to the
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relative velocity. In formulating the deflection force, we first need to define the scalar

Ωv(r̂ab,vab) ≡ Ωv,ab = (vab × r̂ab) · ẑ, (4.3)

whereẑ is the unity vector in the direction out of the computationalplane. The sign ofΩv,ab

indicates which way around an obstacle is more natural for anagent to move. If|Ωv,ab| > ǫv,

whereǫv is a small constant e.g. 0.01, we can defineΣv,ab as

Σv,ab = Ωv,ab/|Ωv,ab|. (4.4)

If not, Σv,ab is set equal to 1 or -1 based on either agent preferences (agents preferring to move

either to the right or to the left) or based on random choice. Next, we need to determine to

what extent the two agents are on collision course. This is done by the function

Πv(vab,r, vab) ≡ Πv,ab =







vab,r
vab

if vab > ǫv;
vab,r
ǫv

otherwise.
(4.5)

In crowds where the density is small or medium, agents are likely to navigate around neigh-

bouring agents as if they were isolated obstacles. And sincethe inter-agent separation decreases

with increasing density, the deflection force must increasewith increasing density to prevent

collisions with other agents. For larger crowd densities, deflective motion around individual

neighbours becomes less effective. In this regime, increasing the deflection force further will

contribute to increased flow in the crowd. Based on this argument, we propose a density-

dependent ehancement of the deflection force,Davoid, which we simply formulate as

Davoid(ρ) = 1 + eavoid

ρ

ρ+ ρavoid

, (4.6)

whereeavoid andρavoid are constants that need to be determined.

Finally, we can formulate the full obstacle avoidance forceon agenta from agentb as

S
A
1,ab = −mabΦ(rab/bA,ab, 0)

{

Ar
avoidΥabr̂ab +Ad

avoidDavoid(ρab)Σv,abΠv,ab
vab × ẑ

vref

}

, (4.7)

wherezab = rab/bA,ab is normalized distance,bA,ab = (bA,a + bA,b)/2 is the mean avoidance

scale length, andAr
avoid andAd

avoid are yet to be determined force constants.

4.1.2 Crowd repulsion

In contrast to obstacle avoidance, crowd repulsion only consists of a radial component. Com-

pared with the radial component of the avoidance interaction, the velocity dependent factorΥab

is replaced by a angular dependent factorΘab defined as

Θab = θ0 + (1− θ0)
1 + v̂a · r̂ab

2
, (4.8)

where the parameter0 ≤ θ0 ≤ 1 determines the level of anisotropy in the crowd repulsion.

The actual value ofθ0 is yet to be determined, but generally, one can say that a smaller θ0 will
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result in increased anisotropy which in turn means reduced flow speed in a uniform crowd. On

the other hand,θ0 = 1, will result in a completely isotropic force and therefore zero net crowd

repulsion in a uniform crowd. The crowd repulsion force on agent a from agentb is

S
A
2,ab = −mabAcrowdΦ(rab/bC,ab, 1)Θabr̂ab, (4.9)

whereAcrowd is the crowd repulsion force amplitude.

4.2 Contact force

The contact force is very similar to the classic model by Helbing, Farkas & Vicsek (2000).

The force between two agents during physical contact is split up into a radial component; only

dependent on the separation, and a transversal component; dependent on both the separation and

the transversal velocity difference. The full contact force exerted on agenta by agentb is

C
A
ab = (2mb −ma)[κrr̂ab + κt(vab · t̂ab)t̂ab]∆(rab − dab), (4.10)

where

∆(x) =







x if x < 0;

0 otherwise
(4.11)

anddab is the mean agent diameter. Note that the mean mass,mab, has been replaced by the

asymmetric expression2mb − ma. This is done to ensure that the more massive agent is

favoured in a situation with direct contact. This is important in order to reduce the probability

of mutual blocking (see section 7.3). In the original model,κr = 1.6 · 103s−2 andκt =

3.2 · 103(ms)−1 (for 75 kg agents). Since our agents are assumed to have a circular (and not

elliptical) shape, and because we assume the agents wear clothes that add a certain level of

compressibility, we chooseκr = 5.0 · 102s−2 andκt = 2.5 · 103(ms)−1. This corresponds

to a radial force of around 0.5g per centimetre compression.If we neglect the effect of the

social force, we can estimate the total compression experienced by each of the two agents to

be around 2.2 cm times the velocity difference (in m/s) at first contact. Even with a velocity

difference of 2 m/s at first contact, the compression will notexceed the 20% injury limit found

experimentally (Viano & King, 2000). For more robust handling of physical contact forces, the

spring force should increase when the compression increases above a certain limit.

5 Solid boundary interaction

Complex geometrical structures in two dimensions can be constructed by combining points,

straight lines, and curves with constant curvature, and in the model, we have chosen to build

solid boundaries by combining one or more instances of thesebasic structures. We will refer

to the basic structures used in a given model asboundary segments. The boundary prevents

an agent from being influenced by anything located on the other side of the boundary. In other

words, an agenta does not interact with a neighbouring agentb if the two are separated by a

boundary segment. Boundaries can thus effectively limit the interaction region of nearby agents.
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If boundary related corrections were not introduced, agents located near boundaries would

therefore experience both an artificial drop in the crowd density as well as an imbalance in the

crowd forces.

To achieve a realistic crowd behaviour near boundaries, thecurrent crowd model incorporates

three boundary related correction mechanisms. First, the density is corrected when boundaries

come within the interaction range to compensate for the reduction in effective interaction area.

Secondly, agents interact with individual boundary segments in order to balance the inter-agent

forces and thereby to avoid collisions with the boundaries.It is particularly important when

modelling dense crowds that the boundary forces match the inter-agent forces as closely as

possible. Just as for the inter-agent force, the boundary forceF
B
ab acting on agenta due to

boundary segmentb is separated into a social force (denotedS
B
ab) and a contact force (denoted

C
B
ab). Finally, the preferred location and velocity is temporarily modified to take into account

boundaries that prevent the agent from taking the direct route to the preferred location.

Sufficiently close to boundaries, the simulation area is separated intoboundary interaction

sectors, one on either side of each two-dimensional boundary segment b (lines or curves).

Every sector is restricted by the associated boundary segment and straight lines, calledsector

lines, starting at the corresponding end points. Just as a boundary segment will have exactly

two end points, does it also have two interaction sectors andtwo sector lines per end point

(so four in all). If an end point is not shared with any other boundary segment, then the two

associated sector lines are identical and parallel to the boundary tangent (directed away from

the segment midpoint). If exactly two boundary segments share the same end point, the two

associated sector lines are given by the bisector of the two angles formed by the two connected

segments. The two sector lines are in this case parallel but opposite and the sum of the two

angles is2π. Fig. A.2 shows an example where to boundary segments, marked A andB,

share an end point, markedV1. The dashed red line throughV1 marks the exterior and interior

(relative to the segment normal vector) sector lines. If more than two boundary segments share

an end pointp, then the two sector lines associated with boundary segmentb at pointp is equal

to the bisector to the angles betweenb and the closest boundary segments on either side ofb.

Fig. A.3 shows an example where 3 segments, markedA, B, andC, share the end pointV1.

Again, sector lines are indicated by dashed coloured lines.The red sector line is shared by

segmentsA andB, the green line is shared by segmentsA andC, while the blue line is shared

by segmentsB andC.

The interaction between an agenta and a boundary segmentb can be described as an approx-

imation to the interaction betweena and imaginary agents outsideb (as viewed bya). For now,

let us define theinsideandoutsideof segmentb such that agenta is located on the inside of

b. The imaginary agents are then assumed to fill theouter interaction sector so that agenta is

separated from the imaginary agents by segmentb. The imaginary agents are assumed to be

uniformly distributed in the outer interaction sector withan agent separation which is consistent

with the density of agenta. Just as in the inter-agent case, the social boundary forcesdepend
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on a spatial separation vector. In the current context, thisvector is defined as the vector from

agenta to its mirror image with respect tob. If the separation vector intersects the boundary

segment, we refer to the intersection as theboundary interaction point . In this case, the separ-

ation vector will be normal to the boundary segment (if a lineor curve segment). In the event

that the separation vector does not intersect the boundary segment, the separation vector is

defined by mirroring the agent about the nearest boundary segment end point.

Before we can discuss the social boundary forces in more detail, we need to look at the bound-

ary interaction scale lengths and how the calculated density is corrected near boundary seg-

ments. Then, the contact boundary force is briefly discussed.

5.1 Boundary interaction scale length

The interaction scale lengths of boundary interaction should be comparable to the correspond-

ing scale lengths of inter-agent interaction. This means that the scale lengths should be large

when the crowd density is close to zero and decrease as the density increases. Fig. 5.1 depicts

a uniform crowd below a boundary segment defined by the pointsp1 andp2. It shows the dis-

tribution of agents (circles with black filling) and the corresponding imaginary mirror agents

(circles with grey filling). In this case, one has made the simplifying assumption that the relev-

ant sector lines are normal to boundary segment. It also shows the crowd repulsion interaction

range and the projected position onto the boundary of agenta.

      
 

 

 

 

 

 

      
 

 

 

 

 

 

a
p1 p2

b

c

θ

Figure 5.1 A uniform crowd (black dots) and the corresponding mirror agents (grey dots) located

below and above, respectively, of a boundary defined by the points p1 andp2. The

dashed circle indicates the wall repulsion interaction range. See main text for further

details.

The boundary forces should match the inter-agent forces, and this is particularly important

when it comes to wall repulsion which should balance crowd repulsion, the dominant force in
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dense crowds with small relative velocities. The obvious choice would therefore be to let the

boundary scale lengths be equal to the inter-agent scale lengths, as given by Eqs. 2.12 and 2.16.

So, we choose the wall repulsion interaction scale length for the interaction between agenta

and boundary segmentb, bC,ab to be equal tobC,a, the crowd repulsion scale length of agent

a. In the case of obstacle avoidance, on the other hand, we needto make sure that we get an

efficient agent interaction with isolated, static obstacles. In order to achieve this, it is important

that the interaction scale length is sufficient large.

Fig. 2.3 showed that even a very modest crowd density of0.01 m−2 will cause the avoidance

scale length to be reduced by more than a factor of 2 relative to its maximum value. At the

same time, boundary tests have revealed that a rapid decrease in the boundary scale length

can cause agents to make unrealistically sudden movements near boundaries. To avoid this

model deficiency, the scale lengths should have a relativelylow dependence on density when

the density is much smaller than the reference density. For higher levels of density, the obstacle

avoidance boundary scale length should approach the corresponding inter-agent scale length. To

achieve this, we first define the density weight factor for agent a, ςa, as

ςa =
ρa

ρa + ρref

. (5.1)

The obstacle avoidance scale length for the interaction between agenta and boundary segment

b, bA,ab can then be formulated as a weighted sum of the avoidance scale length of agenta and

the maximum avoidance scale length:

bA,ab = ςabA,a + (1− ςa)bA,0. (5.2)

With ρref andbA,0 as defined in section 2.5.1, the boundary avoidance scale length becomes

roughly 95% of its maximum value when the crowd density is equal to 0.01 m−2.

5.2 Density correction

Crowd density is computed as a weighted sum over neighbouring agents within a circular

interaction region (see Eq. 2.4). Because nearby boundaries can represent a truncation of this

interaction region, an artificial drop in density would typically be observed if the estimated

density is not properly corrected. Referring to the exampleshown in Fig. 5.1, only agents found

below the line fromp1 to p2 are included when calculating the density of e.g. agenta. It is

not practical to include the contribution from the imaginary mirror particles indicated above the

p1 − p2 line. As a result, the computed density will not be consistent with the typical agent

separation. Therefore, we want to correct the computed density by renormalizing the weight

function,Wab, defined in Eq. 2.5. First, we approximateWab by a step function where all

agents within interaction range is given the same weight. The effective interaction range with

this simplified weight function isRρ,a = κρha, where

κρ =
1

√

πh2W(0, h)
=

2√
7
. (5.3)
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Using this simplified weight function, and assuming a continuous rather than a discrete agent

distribution, we can estimate the reduction in calculated density for agenta when we know the

fractional reduction in the associated interaction area due to nearby boundaries.

Another simplification we will make when deriving the density correction is related to how

we treat information regarding the coupling of boundary segments. To accurately calculate

the fractional reduction in the interaction area of agenta we would need information not only

on the location of individual boundary segments, but also onhow these boundary segments

are connected (as seen in Fig. 5.1). This could lead to quite time-consuming computations

which, in the current context, is not strictly necessary in order to obtain adequate accuracy. To

simplify the problem, we try to calculate the reduction in interaction area due to each nearby

boundary segment separately without considering how segments are connected. Referring to the

discussion in section 5 regarding sectors and sector lines,this means not calculating the exact

interaction sectors. What we do need to take into account, isthe possibility that one boundary

segment might be partially hidden behind other boundary segments. Therefore, before accepting

the interaction area reduction caused by a boundary segmentb, a test is performed to check ifb

is visible to agenta or hidden behind other, closer boundaries. Now, we are readyto describe

the density correcting algorithm in more detail.

Let us first assume that boundary segmentb is a straight line, for instance as shown in Fig. 5.1.

If an agenta is within interaction rangeRa of an infinite straight line, the circle with radius

Ra and the line will have exactly two intersections. Since the boundary segmentb is of finite

length, we have to consider the possibility thatb has only one or even no intersection with the

interaction circle ofa, even thoughb is within interaction range ofa. That part of boundary

segmentb which is inside the interaction region ofa will be referred to as the boundary seg-

mentb inside agenta. We will denote the end points of the segment ofb insidea by c1 andc2
and the distance between these two points bylab. In order for boundary segmentb to be relev-

ant in this context, the midpoint betweenc1 andc2 must be visible to agenta (and not hidden

behind other boundary segments). Assuming this is the case,we can calculate the reduction

in the interaction area ofa by b, δAb
a, as follows: Let the distance from agenta to boundary

segmentb be given assab, and the angle between the two vectors from the position ofa to the

end pointsc1 andc2 be referred to asχab. Then,δAb
a can then be estimated as

δAb
a =

1

2
(χabR

2
a − sablab). (5.4)

If boundary segmentb is a curve with radiusRb, the reduction in the interaction area ofa due

to b can be calculated in a similar fashion. Once again,c1 andc2 denote the end points ofb

insidea, and the distance betweenc1 andc2 is given bylab. As before,sab is the distance

from the agent to the straight line betweenc1 andc2, andχab is the angle between the two

vectors from the position ofa to c1 andc2, respectively. In addition, we need to calculatescb,

the distance from the curve origin to the straight line between c1 andc2, andχab, the angle

between the two vectors from the curve origin toc1 andc2, respectively. With these additional

FFI-rapport 2015/01750 31



parameters, we find the estimated reduction in the interaction area ofa due to the curved

boundary segmentb, δAb
a, to be given as

δAb
a =

1

2
[χabR

2
a ± χcbR

2
b − (sab − scb)lab], (5.5)

where the correct sign to use for the second term is found as follows: A closed regionSab is

defined by the curveb and the straight lines from the end points ofb and the position of agent

a. If Sab is convex, then the second term in Eq. 5.5 should be positive.Alternatively, if Sab is

concave (non-convex), then the second term in Eq. 5.5 shouldbe negative.

The normalized reduction in the interaction area of agenta due to all visible boundary seg-

ments within interaction range,δYa, is estimated by adding the reduction found for each bound-

ary segment and divide by the full interaction area for the simplified weight function

δYa =

∑

b δA
b
a

πR2
ρ,a

. (5.6)

If accurately calculated,δYa < 1 and the density correction of agenta, Cρ,a should then be

given as

Cρ,a =
1

1− δYa
. (5.7)

However, we have to take into account thatδAb
a was estimated without properly taking into

account the connection between different boundary segments. For this reason,δYa could in

special cases become larger than unity. If this is the case, Eq. 5.7 could causeCρ,a to become

infinite and possibly negative. To get a more robust algorithm, we first ensure thatδYa ≤ 1.

Then, to avoid an infintely large density correction, we calculate the correction factor by this

modified expression:

Cρ,a =
1

1− δYa + ǫY δY 2
a

, (5.8)

whereǫY typically would be around 0.1. This would ensure thatCρ,a ≤ 10.

5.3 Social boundary force

Just as agents have a tendency of maintaining a reasonable distance to neighbouring agents if

possible, so will agents also try to keep away from solid boundaries. The term “social boundary

force” refers to boundary-agent forces which act on a distance and are analogous to the social

inter-agent forces described in section 4.1. As in the inter-agent case, the social forces are

sorted into boundary avoidance and wall repulsion. The social force on agenta from boundary

segmentb is therefore written as

S
B
ab = S

B
1,ab + S

B
2,ab, (5.9)

where the indices 1 and 2 refer to obstacle avoidance and wallrepulsion, respectively. The

corresponding interaction scale lengths for the two types of interactions are given by Eqs. 5.2

and 2.16, respectively.
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5.3.1 Boundary avoidance interaction

The boundary avoidance interaction is a relatively short-range force, and we can therefore

safely assume that an agenta in this case only interacts with at most one mirror agent per

boundary segmentb. This means that the interaction with the mirror agent population can easily

be approximated by a single interaction withb. The only requirement for such an interaction, is

that b is inside the interaction range ofa and that the separation vector betweena andb is not

intersected by other boundary segments.

The obstacle avoidance formulation presented in Eq. 4.7 forthe inter-agent case, is the starting

point for the formulation used in the case of boundary interaction. There are however a few

modifications introduced: The deflection force, represented by the second term of Eq. 4.7,

describes the ability of the agent to navigate around relatively small obstacles. Solid boundaries,

such as walls, are normally quite large in comparison and noteasily navigated around. The

deflection force is therefore not applicable in this case andshould not be included. In order

to maintain a good balance between inter-agent forces and boundary forces, it is reasonable to

compensate for this omission by increasing the radial component of the boundary avoidance

force. We also want the boundary avoidance interaction to increase with increasing crowd

density and to be much smaller when an agent is not heading directly towards a boundary. With

these modifications, the boundary obstacle avoidance forceon agenta from boundary segmentb

can be formulated as

S
B
1,ab = −maΦ(rab/bA,ab, 0)CBA

r
avoidΥ

qB
ab

(

ρ+ ρref

ρref

)pB

r̂ab, (5.10)

whereΥab is defined by Eq. 4.2,ρref is the same reference density used in section 2.5.1,zab =

rab/bA,ab is normalized separation distance,bA,ab is the boundary avoidance scale length,Ar
avoid

is the force constant introduced in section 4.1.1. The free parametersCB > 1, qB > 1, and

pB > 1 are the yet to be determined through calibration tests.

5.3.2 Wall repulsion interaction

Wall repulsion, which is the boundary force equivalent to crowd repulsion, has a longer in-

teraction range in medium and high density crowds than the boundary avoidance force. As a

consequence, the single interaction point approximation is not sufficiently accurate in describ-

ing this type of boundary interaction. An exception to this rule is if the boundary segment is a

point. Then, the formulation from the inter-agent model, given in Eq. 4.9, can be applied dir-

ectly to the agent-mirror agent interaction. If on the otherhand, the boundary segment is a line

or a curve, the wall repulsion acting on agenta from boundary segmentb should ideally equal

the total crowd repulsion force ona from all mirror agents which fit inside the appropriate in-

teraction sector associated withb. In Appendix A we try to estimate the wall repulsion ona by

calculating the effect of the mirror agent distribution. This can be done by integrating the wall

repulsion force over the appropriate interaction sector. In Fig. 5.1, the red and blue coloured

regions indicate that part of the interaction sector of the boundary segment fromp1 to p2 which

is inside the interaction range of agenta. Note that in this case, we have simplified the problem
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by assuming the sector lines (indicated by dotted lines) arenormal to the boundary segment.

This assumption is used in the first approximation to the wallrepulsion, discussed in section

A.1.

We also assume that the wall repulsion, just as the boundary avoidance force, is normal to

boundary segmentb. In addition, wall repulsion will be proportional to the crowd density of

agenta, ρa. If zab = rab/bC,a is the normalized distance from agenta to the mirror image of

a about the boundary segmentb, the contribution to the wall repulsion force on agenta from

boundary segmentb can be written as

S
B
2,ab = −maAcrowdΘabρab

2
C,aI

wall
ab (zab)r̂ab, (5.11)

whereΘab is defined by Eq. 4.8 andIwall
ab (zab), derived in Appendix A, is given by Eq. A.28.

It remains to be seen how accurate the new model of wall repulsion is. As a simple test, we

want to calculate the wall repulsion on an agenta for the cases of two different, straight bound-

aries. The first boundary is sufficiently large so that the endpoints are located outside the range

of the agent-boundary interaction. The second boundary, onthe other hand, has a total length

which is identical to the interaction radius. This means that the boundary end points will be

inside the interaction range if the agent is sufficiently close to the boundary. We assume a uni-

form crowd density. Agenta is placed on the boundary symmetry line, but the distance from

the boundary vary. First, we calculate the boundary force byexplicitly generating mirror agents

on the outside of the boundary and directly calculating the total inter-agent crowd repulsion

force on agenta from all the mirror agents. This is the reference result. Then, we calculated

the wall repulsion force using Eq. 5.11. In Fig. 5.2 we compare the calculated force for the

two boundaries in question as a function of normalized agent-boundary separation. The solid

lines refer to the direct interaction with mirror agents, while the dashed lines are made from

using the approximation given by Eq. 5.11. The colours indicate the crowd density, in the range

1 − 6 m−2. The dotted curve in both panels shows the wall repulsion if the boundary segment

is a point and the wall repulsion therefore is modelled as a single interaction between the agent

in question and its corresponding mirror agent.

Both panels of Fig. 5.2 reveal a good match between the wall force calculated by direct sum-

mation and using the integral approximation. As expected, the dashed curves representing the

integral approximation show none of the smaller scale variations found in the solid curves rep-

resenting summation over discrete mirror agents. We also note that the integral approximation

slightly overestimates the force at larger distances, in particular when the density is moderate.

This is reasonable since the mirror agent spacing is quite large relative to the interaction scale

length, ranging from about5bC at ρ = 1 to about4bC at ρ = 6.

To illustrate the effect of introducing both the density correction described in section 5.2 and

the wall repulsion force described here, we have constructed two examples which involve a

static crowd in a complex, closed boundary. The agents are spread out evenly and the average

density of the crowd is 2 agents per square meter. The only forces included are the crowd
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Figure 5.2 Normalized wall repulsion force as a function of normalized distance from a

boundary calculated using mirror agents (solid lines) and the new wall repulsion

approximation (dashed lines). The colour indicates the crowd density. Panela

corresponds to a straight boundary where the size is larger than the interaction

diameter, whereas panelb shows the case where the length of the boundary is equal

to the interaction radius. The dotted line indicates the force in the case of a boundary

point.

repulsion and wall repulsion forces. In the first example, the boundary is built using only line

segments. In Fig. 5.3, the boundary is indicated by the solid, black lines. It can be seen that

the boundary exhibits both convex and concave angles, in addition to line segments that are

only connected to other segments at one of the two end points.Each agent in the crowd is

represented by a filled circle with an outer ring. The colour of the circle indicates the norm

of the total force, while the colour of the ring corresponds to the estimated crowd density,ρ.

For agents with a sufficiently large force strength, a red arrow starting at the agent’s position

indicates the direction of the total force.

Sufficiently far from the boundary, we see that the description is satisfactory. However, the un-

corrected crowd density is seen to drop for agents located nearer to the boundary. As expected,

the estimated density is at its lowest where the interior angle is at its smallest. For instance,

the density drops to about 1.2 near corners where 3 lines intersect. Coinciding with the drop in

estimated density, is the force imbalance. The force is always pointing towards the boundary

and the force strength can reach 10-20% of the gravitationalforce. This is comparable to what

is a reasonable upper limit to forces acting on agents duringmovement. Therefore, it represents

an unacceptably high level of noise in a static or semi-static crowd. Fig. 5.4 shows the corres-

ponding results when the density correction and wall repulsion are used. First, we see that the

density near the boundary never drops below 1.7-1.8. Secondly, the force strength is less than

1% of the gravitational force and therefore negligible for most agents. A few agents, such as
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Figure 5.3 Snapshot of a static crowd inside a closed boundary of line segments when no specific

boundary handling is applied. The colour of the filled circles and outer rings indicate

the acceleration norm and the calculated desnity, respectively. Red arrows show the

direction of the acceleration vector.
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Figure 5.4 Snapshot of a static crowd inside a closed boundary of line segments when density

correction and wall repulsion are applied. The colour of thefilled circles and outer

rings indicate the acceleration norm and the calculated desnity, respectively. Red

arrows show the direction of the acceleration vector.
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the agent located roughly atx = 9.7 andy = 1.7, still show a noticeable force imbalance but

this is due to a slightly inhomogeneous crowd distribution rather than errors in the boundary

treatment.

As an additional test, we modify the boundary used in the previous two tests. This time we

introduce curved segments at two places in the upper part of the boundary. The right-most

curve has positive curvature, while the left-most curve hasnegative curvature. Despite the

change in the shape of the two boundary segments, Fig. 5.5 shows little change in the boundary

related errors when no boundary corrections are applied. Fig. 5.6 shows the corresponding

results when estimated density is corrected and wall repulsion is included. Again, we see that

the boundary corrections remove much of the variation in density and the force imbalance. We

also see that the level of errors near the curved boundary segments is roughly the same as the

corresponding error level near any of the line boundary segments.
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Figure 5.5 Snapshot of a static crowd inside a closed boundary of both line and curve segments

when no specific boundary handling is applied. The colour of the filled circles and

outer rings indicate the acceleration norm and the calculated desnity, respectively.

Red arrows show the direction of the acceleration vector.

5.4 Contact boundary force

Contact boundary forces are treated completely analogous to the inter-agent contact forces.

Again, the separation vector is defined as the vector from theagent in question and its mirror

image with respect to the boundary segment. The mirror agentis assume to have the same

physical properties as the parent agent, and the velocity vector of the mirror agent is a mirror

image of the velocity of the parent agent with respect to the boundary. With these boundary

properties, the contact boundary force between a boundary elementb and an agenta will take

the form given in Eq. 4.10.
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Figure 5.6 Snapshot of a static crowd inside a closed boundary of both line and curve segments

when density correction and wall repulsion are applied. Thecolour of the filled

circles and outer rings indicate the acceleration norm and the calculated desnity,

respectively. Red arrows show the direction of the acceleration vector.

5.5 Automatic path finder

We want agenta to automatically consider solid boundaries when trying to reach the preferred

locationza. If a boundary obstructs the direct path toza, then the agent should choose a

preferred velocity which would correspond to moving aroundthe boundary. Since a boundary

typically has a substantial size relative to the size of a single agent, a simple deflection force

(see section 4.1.1) will not be sufficient. Instead, we introduce an algorithm which allows the

preferred velocity to be modified by nearby boundaries. The automatic path finder considers

both boundary segments and individual vertices. The algorithm used is described in detail in

Appendix B.

6 Model calibration

In formulating the basic crowd model, we have introduced a number of free parameters that

influence the behaviour of the model. Some of these parameters were determined already in

section 2 based on fundamental observations and assumptions regarding the human body and

human motion. Still, there are other parameters, such as theforce amplitudesAv
will , Acrowd,

Ar
avoid, andAd

avoid, that need to be determined before applying the model to morecomplex test

problems. This model calibration is achieved by using the model to solve simplified problems

and comparing the results to observational data. Starting with the most fundamental parameters

and gradually extending the model to more complec problems,we can determine the remaining

parameters, one at the time. In this section, we describe thecalibration of the current crowd

model
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6.1 Uni-directional, homogeneous flow ( Acrowd /A
v
will and θ0)

The fundamental diagram for pedestrian motion is a cornerstone in pedestrian traffic planning.

It describes the empirical relation between crowd densityρ and the flow speedv (or eqivalently

the specific flow rateJ). Despite the fact that there is a fairly large spread in the empirical data

(Fruin, 1971; Helbing, Johansson & Al-Abideen, 2007; Older, 1968; Predtechenskii & Milinskii,

1978; Still, 2000; Weidmann, 1992), the fundamental diagram is widely used as a quantitative

benchmark for crowd models (Daamen et al., 2002; Parisi et al., 2009; Seyfried et al., 2006).

In the current work, we start by looking at steady-state, uni-directional flow in a homogeneous

and infinitely large crowd where the agents are placed in a rectangular grid formation. We neg-

lect contact force which should reduce the flow speed furtherwhen the agent spacing becomes

smaller than the agent diameter atρ ∼ 5. Initially, we also assume the flow will force to be lin-

ear, that isΓ(x) in Eq. 3.8 is identical tox for all x. Later, we will look at the effect of having

a non-linear will force.

As a result of these assumptions, the crowd model can be reduced to a semi-analytic calcu-

lation where the only free parameters are the force amplitude ratio,Acrowd/A
v
will , and the level

of isotropy,θ0. The former parameter scales the strength of each individual crowd repulsion

interaction relative to the flow will force. The latter parameter determines the level of the net

crowd force in a uniform crowd. The two parameters are linkedand must therefore be con-

sidered together. The original social force model of Helbing is typical used with parameters that

correspond toAcrowd/A
v
will ∼ 10 andθ0 ∼ 0.3 − 0.8 (Vetter et al., 2011). In the current model,

the range of the social force is larger. It is therefore reasonable that a slightly smaller value of

Acrowd/A
v
will is appropriate in this case.

6.1.1 Results with a linear will force

Fig. 6.1 shows the results of the analysis forAcrowd/A
v
will = 6 and a preferred velocity of 1.4

m/s. The left- and right-hand panel show the flow speed (v) and flow rate (J), respectively, as

a function of crowd density (ρ). The red, green, olive, bright blue, and dark blue curves corres-

pond toθ0 = 0.1, 0.2, 0.3, 0.4, and0.5, respectively. For comparison, we have included data

from two empirical studies. The dashed curves represent theWeidmann model constructed on

the basis of numerous data sets, many of which are multi-directional rather than uni-directional

(Weidmann, 1992). According to this model, the flow speed is given as

v = u

(

1− exp

[

−γW

(

1

ρ
− 1

ρmax

)])

, (6.1)

whereu = 1.34 m/s,ρmax = 5.4 agents/m2, andγW = 1.913 agents/m2. The open circles in Fig.

6.1 are taken from an empirical study of pedestrian flow across the Jamarat Bridge in Makkah

(Helbing, Johansson & Al-Abideen, 2007). Although the empirical data agree qualitatively,

there is substantial difference quantitatively. This could partly be because the Weidmann model

also relies on data from multi-directional flow. Also, social and physical characteristics of the

crowds are factors that are likely to play a role.
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Figure 6.1 Fundamental diagrams for uni-directional pedestrian flow. The left- and right-hand

panels show the flow speed (v) and flow rate (J), respectively, as a function of crowd

density (ρ). The semi-analytical results with linear will force forAcrowd/A
v
will = 6 and

θ0 ranging from 0.1 (red) to 0.5 (dark blue) are compared to the Weidmann model

(Weidmann, 1992) (dashed line) and empirical data from

Helbing, Johansson & Al-Abideen (2007) (open circles).

First, we notice that the flow speed drops too quickly for small, but non-zero density levels.

This regime will be addressed by the non-linear will force amplifier. For larger densities, the

solid lines show that the new crowd model withAcrowd/A
v
will = 6 fits reasonably well to the

empirical data. The model fits nicely with the Jamarat Bridgedata if θ0 = 0.3 is chosen. If

on the other handθ0 = 0.4 − 0.5 is chosen, the resulting fundamental diagram fits well with

the Weidmann model. If the ratioAcrowd/A
v
will is increased, the isotropy parameterθ0 must be

decreased in order to maintain roughly the same curves in thefundamental diagram, and vice

versa. In fact, the fundamental curves appear in this case tobe defined by a single variable

roughly equal toAcrowd/A
v
will + 10θ0 = 9. We chooseAcrowd/A

v
will = 6 andθ0 = 0.3 as default

values for the new crowd model.

6.1.2 Results with a non-linear will force

To achieve a better fit with the empirical data forρ < 1, we want to use the non-linear will

force as determined by the will force amplifier (see Eq. 3.8).The amplifier is characterized by

the parametersx0, x1, x2, andΓ2. We need strong relative amplification forρ ≪ 1 sox0 ≪ 1,

for instancex0 = 0.05. The last two parameters,x2 andΓ2, is related to when and how strong

the amplification is when the flow speed is relatively small, corresponding to relatively high

density. These parameters cannot be properly determined without including contact forces. For

now, we assumex2 = 0.9 andΓ2 = 2. We are left with determiningx1, for which we have

x0 < x1 < x2. In the following test, we considerx1 in the range0.2 − 0.5. The results are
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shown in Fig. 6.2 and once again compared to the Weidmann model (Weidmann, 1992) and the

Jamarat Bridge data (Helbing, Johansson & Al-Abideen, 2007). It is clear that the non-linear
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Figure 6.2 Fundamental diagrams for uni-directional pedestrian flow. The left- and right-hand

panels show the flow speed (v) and flow rate (J), respectively, as a function of crowd

density (ρ). The semi-analytical results with a non-linear will forcefor

Acrowd/A
v
will = 6, θ0 = 0.3, andx1 ranging from 0.2 (blue) to 0.5 (yellow) are

compared to the Weidmann model (Weidmann, 1992) (dashed line) and empirical

data from Helbing, Johansson & Al-Abideen (2007) (open circles).

amplfier gives a better fit to the empirical data in the low density regime. At larger densities,

the effect is negligible. Compared to the Weidmann model,x1 = 0.4 − 0.5, should be a suitable

choice. Subsequent tests of multi-direction flow indicate that x1 = 0.5 is close to the optimal

value. Therefore, we choosex1 = 0.5 as the default value.

6.2 Multi-directional, homogeneous flow ( Ar
avoid /Acrowd )

It is still open for debate how the fundamental diagram for a multi-directional case should differ

from the corresponding uni-directional case. However, Schadschneider et al. (2009) points to

flow direction as possibly the most important factor in explaining differences in the fundamental

diagram obtained with different experimental data. In support of this view, experimental data

exist where a reduction in flow speed with increased direction imbalance has been observed

(Navin & Wheeler, 1969). We will look at a multi-directionalproblem very similar to the uni-

directional problem described in section 6.1. Agents are initially placed as in the uni-directional

case, in a homogeneous, infinite crowd on a rectangular grid formation. A single lane of agents

move at a constant speed, while all other agents are assumed to be static. Since the agents

in the lane move relative to the agents in the surrounding crowd, the crowd is not strictly

homogeneous with a time-independent state unless we average over a suitable time period. This

is solved by averaging over a sufficiently large number of different configuration where the
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position of agents in the lane is shifted relative to the position of the other agents. Note that

this averaging will in itself cause a slight decrease in flow speed relative to that found in the

uni-directional case.

Since this problem involves velocity differences between interacting agents, the obstacle avoid-

ance force will be non-zero. However, symmetry causes the deflection force to be zero. The

only parameter is thereforeAr
avoid, the radial component of the avoidance force. It is this para-

meter that determines the difference between the uni-directional case and the multi-directional

case. Using the same semi-analytical approach used in section 6.1, we want to investigate ex-

actly how large the reduction in flow speed is for a given valueof Ar
avoid. In Fig. 6.3, we see the

fundamental diagram in the multi-directional case for 5 different values of the ratioAr
avoid/Acrowd,

ranging from 0.0 (dark blue) to 0.4 (red).
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Figure 6.3 Fundamental diagrams for pedestrian flow in a static background crowd. The left-

and right-hand panels show the flow speed (v) and flow rate (J), respectively, as a

function of crowd density (ρ). The semi-analytical results with a non-linear will force

for Acrowd/A
v
will = 6, θ0 = 0.3, andAr

avoid/Acrowd ranging from 0.0 (dark blue) to 0.4

(red) are compared to the Weidmann model (Weidmann, 1992) (dashed line) and

empirical data from Helbing, Johansson & Al-Abideen (2007)(open circles).

Let us assume that the Jamarat Bridge data (Helbing, Johansson & Al-Abideen, 2007) repres-

ents a more or less uni-directional case, and the Weidmann model represents a multi-directional

case. If so, the ratioAr
avoid/Acrowd should be chosen so that the resulting fundamental diagram

fits roughly with the Weidmann model. As before, the flattening of the fundamental curves in

Fig. 6.3 for densities larger than roughly4 agents/m2 is caused by the non-linear will force

and the fact that contact forces are not included in the semi-analytic model. Apart from this

apparent flaw in the new model, we see thatAr
avoid/Acrowd ≈ 0.2 gives a quite good fit with the

Weidmann model. However, there are at least two factors to consider before concluding. First,
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the semi-analytic analysis was based on a lane of agents moving in a static crowd. If we in-

stead had considered a truly two-way flow, the relative velocity difference between agents of

adjacent lanes would be twice the flow speed. According to Eq.4.2, the radial avoidance force

would then be upto a factor two larger (for relative velocities much smaller than the reference

velocity). This would result in a smaller equilibrium flow speed relative to that shown in Fig.

6.3, in particular where the flow speed is much smaller than the reference velocity. The second

factor to bear in mind, is that the Weidman model is constructed on the basis of data that also

include uni-directional streams. This could imply that truly multi-directional streams should

result in flow speeds that lie slightly below that of the Weidmann model. All in all, it would be

reasonable to conclude thatAr
avoid/Acrowd should be in the range 0.1 to 0.3. We will for now keep

Ar
avoid/Acrowd = 0.15 as a default value.

6.3 Agent meeting ( Ad
avoid /Acrowd )

In order to determine the appropriate level of the obstacle avoidance deflection force, we look

at a simple system describing the close-up meeting of two agents. Since only two agents are

involved, we assume thatDavoid (defined in Eq. 4.6) is roughly 1. First, we concentrate on the

case where only one of the agents is moving. Afterwards, we look at the more realistic case

where both agents are moving. In both cases, preferred locations are defined so that a nearly

head-on collision between the two agents would occur if motion was governed by the flow will

force alone. In the absence of a deflection force, the interaction between the two agents would

be strictly radial. Although effective at slowing down moving agents, a radial force would in

this case contribute very little to deflecting agents from a straight line. As a consequence, the

two agents will either collide or, at best, make a sharp turn once the separation between the two

agents have become sufficiently small. To achieve a much morerealistic movement past the

static agent, we need to include a non-zero deflection force.

6.3.1 Asymmetric meeting

In this test problem only one of the agents is moving. The static agent is located at origin. The

moving agent starts at the positionr0 = (−30 m,−0.05 m) with a preferred location atr1 =

(30 m,−0.05 m). The distance between the static agent and the straight linebetweenr0 andr1
is therefore only5 cm, which corresponds to roughly 25% of the agent radius. However, with

the inclusion of a non-zero deflection force, the moving agent will deviate from the straight

line in such a way that the minimum separation between the twoagents becomes larger than

5 cm. Fig. 6.4 shows how the minimum separation between the agents (δrmin) and the maximum

acceleration (amax) on the moving agent varies with varying preferred speed anddeflection force

amplitude. The blue, green, red, and yellow curves correspond to a preferred speed of 1 m/s,

3 m/s, 5 m/s, and 7 m/s. First, we notice the steady increase inthe minimum separation with

increasing deflection force. WhenAd
avoid/Acrowd = 0.1, the minimum separation is around 1 m

for all preferred speeds. ForAd
avoid/Acrowd = 0.5, the minimum separation has increased to 2-

3 m. The other important result to note, is the sharp increasein maximum acceleration with
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increasing preferred speed whenAd
avoid/Acrowd is around 0.1 or less. Note also that there is a

minimum in the recorded maximum acceleration forAd
avoid/Acrowd ≈ 0.15
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Figure 6.4 Simulation of a moving agent originally on an almost head-on collision course with a

static agent. Top and bottom panels show the minimum separation (in metres) and

maximum acceleration (in percentage ofg), respectively, as functions of the ratio

Ad
avoid/Acrowd. The preferred speed of the moving agent is 1 m/s (blue), 3 m/s(green), 5

m/s (red), and 7 m/s (yellow).

Observational data should determine what is a realistically minimum separation between a

moving and a static agent. For now, we assume that 1.5-2.5 m isreasonable. If we in addition

aim at minimizing the recorded acceleration, we can conclude that the results in Fig. 6.4 point

towards an optimal value ofAd
avoid/Acrowd of around 0.15. This also implies thatAd

avoid andAr
avoid

are comparable in size. In Fig. 6.5, we have plotted the path of the moving agents for the 4

different choices of preferred speed withAd
avoid/Acrowd = 0.15. The colour of the different curves

indicates the agent speed, while the colour of the filled circles shows the acceleration mag-

nitude. We see that there are relatively small variations inthe flow path for different preferred

speeds. Also, there are no sharp changes of direction, whichis consistent with a moderate

acceleration.

6.3.2 Symmetric meeting

Now, we look at the case where both agents are moving. One agent is original placed atra,0 =

(−15 m,−0.025 m) with a preferred location atra,1 = (30 m,−0.025 m). The other agent is

original placed atrb,0 = (15 m, 0.025 m) with a preferred location atrb,1 = (−30 m, 0.025 m).

Just as in the previous test case, the minimum separation between the two agents would only be

about 25% of the agent radius if the agents had moved in straight lines between their respective

original and preferred locations.

44 FFI-rapport 2015/01750



−10 −5 0 5 10 15
−6

−4

−2

0

2

4

−10 −5 0 5 10 15
x

−6

−4

−2

0

2

4

y

0.00

0.05

0.10

0.15

a/
g

1 2 3 4 5 6 7

v(m/s)

Figure 6.5 Flow pattern of a single agent originally on an almost head-on collision course with

a static agent. The deflection ratio,Ad
avoid/Acrowd, is equal to 0.15. The colour of the

different curves indicates the agent speed, while the colour of the filled circles shows

the acceleration magnitude.

Figs. 6.6 and 6.7 show the simulation results correspondingto Fig. 6.4 and 6.5, respectively.

The level of the maximum acceleration has increased for highpreferred speeds relative to

the asymmetric case. This is reasonable since the relative velocity between the two agents

is doubled from the asymmetric to the symmetric case. Other than that, Fig. 6.6 confirms

the result found in the simulation of the asymmetric meetingthat the maximum acceleration

experienced by the agents is at its lowest forAd
avoid/Acrowd around 0.15. The flow pattern in Fig.

6.7 is just as smooth as the one seen in Fig. 6.5. Both figures also reveal a generic weakness

in crowd force models: It takes a certain time, due to inertia, from a moderately strong force

starts to act until the accumulated effect on the velocity isnoticeable. As a consequence, the

greatest effect on the trajectories of the agents seen in Figs. 6.5 and 6.7 are after the agents

have passed each other. In reality, a human would act earlierto produce a trajectory which is

roughly symmetric about the point of meeting (Moussaïd, Helbing & Theraulaz, 2011).

6.4 Crowd naviagtion ( eavoid and ρavoid )

In section 6.3, we determined an appropriate deflection force level in low density situations

where the velocities can be relatively large. We know from experience that the deflection force

should increase with increasing density until it reaches some, not too large, upper limit. For this

reason, we introduced the deflection factorDavoid(ρ) ≥ 1 (defined in Eq. 4.6) in the expression

for the deflection force (see Eq. 4.7). Now, we need to find appropriate values for the two

parameterseavoid andρavoid which, together with the local density, gives usDavoid(ρ).

To calibrate the parameters, we study a problem where a single agenta is to navigate through
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Figure 6.6 Simulation of two agents originally on an almost head-on collision course. Top and

bottom panels show the minimum separation (in metres) and maximum acceleration

(in percentage ofg), respectively, as functions of the ratioAd
avoid/Acrowd. The preferred

speed of the agents is 1 m/s (blue), 3 m/s (green), 5 m/s (red),and 7 m/s (yellow).
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Figure 6.7 Flow pattern of two agents originally on an almosthead-on collision course. The

deflection ratio,Ad
avoid/Acrowd, is equal to 0.15. The colour of the different curves

indicates the agents speed, while the colour of the filled circles shows the acceleration

magnitude.
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static crowds of different densities. The position of the agents in the crowd follow roughly

a grid configurations, although with substantial random noise superimposed. Agenta is to

navigate the crowd at an optimal angle of 34 degrees relativeto the axis, at a desired speed

of 1.4 m/s. Each simulation is run for 30 s, or until agenta has moved 15 m in the preferred

direction. We perform simulations with crowd density varying between0.36 m−2 and2.4 m−2

andDavoid ranging from 1 to 10 with 25 unique simulation setups in all. To minimize the effects

of stochastic noise, all 25 setups are simulated 5 times withdifferent starting seed for the

random number generator. This means a total of 125 individual simulations. Fig. 6.8 illustrates

the obtained trajectories of agenta for one particular starting seed. The colour of each of the

trajectories indicate the chosen value ofDavoid, ranging from 1 (black) to 10 (yellow). The

arrows show the instantaneous velocity ofa where the colour of the arrows becomes darker as

the velocity decreases.
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Figure 6.8 Trajectories of agenta navigating through a crowd where the density is

approximately1.2 m−2. The deflection factor (Davoid) is set to 1 (black), 2 (blue), 4

(green), 6 (olive), 8 (red), and 10 (yellow), and the arrows indicate the instantaneous

velocity (darker arrows correspond to lower velocities).

We immediately see that the black trajectory, corresponding no increase in the deflection force

amplitude relative to the low density limit, exhibits several sharp bends and ends well before

the agent has moved 15 m. The corresponding velocities are small. The blue trajectory corres-

ponds toDavoid = 2. Again, the trajectory has sharp bends with corresponding low velocities.

For larger values ofDavoid, the trajectories become much more smooth with corresponding larger

velocities. We note that the difference betweenDavoid = 4 (green curve) andDavoid = 6 (olive

curve) is negligible. In both cases, the agent has moved the specified distance of 15 m in less

than 30 s. The trajectories ofDavoid = 8 (red curve) andDavoid = 10 (yellow curve) do not ex-

tend as far as 15 m from the starting point. This indicates that Davoid has become too large and

that the optimal value ofDavoid lies in the range 4-6.
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To further investigate how the motion of agenta depends onDavoid for different crowd densities,

we construct the time integrated quantityLa defined as

La =
∑

i

δti
|dva,i/dt|

v̂a,i
, (6.2)

whereδti is the time between snapshotsi and i−1, |dva,i/dt| is the norm of the acceleration of

a at snapshoti, and v̂a,i indicates how large the velocity component parallel to the normalized

preferred velocity (̂ua) is:

v̂a,i =







va · ûa + 10−4m/s if va · ûa > 0;

10−4m/s otherwise.
(6.3)

In general, we are interested in identifying a model where the acceleration is relatively small,

while the velocity is relatively large. In other words, smaller values ofLa indicate better mod-

els.
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Figure 6.9 Time-integrated quantityLa for agenta plotted as function of the deflection factor

Davoid (left-hand panel) and optimal deflection factor as a function of density

(right-hand panel). The curves in the left-hand panels correspond to average crowd

density equal to0.36 m−2 (black),0.6 m−2 (blue),1.2 m−2 (green),1.8 m−2 (red),

and1.8 m−2 (yellow). The dotted and solid curves in the right-hand panel show the

numerical results and the analytical results given by Eq. 4.6 witheavoid = 9.2 and

ρavoid = 1.1 m−2.

We calculateLa for all simulations, and we average over the 5 simulations with identical model

parameters. The results are plotted in the left-hand panel of Fig. 6.9 where the time-integrated

La is plotted as function of the deflection factor,Davoid. The curves correspond to average crowd

density equal to0.25 m−2 (black), 0.36 m−2 (blue), 0.60 m−2 (green),1.2 m−2 (red), and

2.4 m−2 (yellow), and the filled circles correspond to the simulatedvalues ofDavoid. For all but
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the smallest simulated density level, we see thatLa is much larger than unity whenDavoid = 1.

WhenDavoid is increased, we see thatLa at first decreases for all simulated density levels. When

Davoid is increased above a certain value,La starts to increase. Depending on density, we can

therefore identify an optimal value ofDavoid. The dotted line in the right-hand panel of Fig. 6.9

shows the optimal value ofDavoid found in the crowd navigation tests as a function of density.

Now we can fit the deflection parameterseavoid andρavoid to best fit the simulated data just de-

scribed. The simplified model for the deflection factor (Davoid) can fit the numerical data with

sufficiently high accuracy. if we chooseeavoid = 9.2 andρavoid = 1.1 m−2. The solid line

in the right-hand panel of Fig. 6.9 shows howDavoid will vary whenDavoid no longer is a free

parameter but rather a function ofeavoid andρavoid as given by Eq. 4.6.

6.5 Agent pair equilibrium ( Ar
will /A

v
will and σmin )

The next model constants to be determined areAr
will andσmin, parameters associated with the

displacement will force defined in section 3.1. To determinethe effects of these parameters, we

set up a test involving two identical agents who share the same preferred location. We assume

a quasi-static situation where agent velocities are negligible compared to the preferred speed.

The displacement and flow will forces will draw the agents towards the preferred location,

while the mutual crowd repulsion will prevent the two agentsfrom colliding. For a given

choice ofAr
will andσmin, force equilibrium is achieved at a given distanceδz from the preferred

location. As before, we assumeAcrowd/A
v
will = 6. Fig. 6.10 shows at what distance the two

agents experience force equilibrium as a function of the ratio between the displacement will

force amplitude and the flow will force amplitude. The effectof varying σ, the scale length of

the displacement, in increments of 1.0 m is illustrated by the different curves in the plot. The

grey curve corresponds toσ = 1.0 m, while in the other end of the scale, the results forσ =

8.0 m are represented by the yellow curve. It is a reasonable requirement that the permanent

separation between the two agents should not be less than around 1.0 m. This corresponds to

δz ≥ 0.5 m. From inspecting Fig. 6.10, we see thatAr
will = Av

will andσ = 4.0 m will result in

δz ≈ 0.6, which corresponds to a inter-agent separation of 1.2 m. As default values, we choose

Ar
will = Av

will andσmin = 4.0 m.

6.6 Single agent boundary avoidance ( CB and qB)

The boundary avoidance model described in section 5.3.1 relies on 3 not yet determined para-

meters,CB, qB, andpB. The parameters are coupled in a non-linear way which makes it dif-

ficult to determine one parameter at the time. First, we focuson two single agent scenarios

where the crowd density is negligible. In this case,pB is not an important parameter. In the first

scenario, the agent moves from a start location roughly 20 m from a straight wall, towards a

target location 1 m in front of the wall. In the second scenario, we make a 1 m wide opening

in the wall and specify that the agent should move through thepassage towards a target location

on the far side of the wall. A large set of simulations is performed, varyingCB between 1.6
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v
will , when two isolated agents

share the same preferred location. The scale length of the displacement force,σ,

range from 1 m (grey) to 8 m (yellow).

and 2.8,qB between 3.0 and 6.0, with the optimal speed of the agent,ua chosen between 1.0

m/s and 8.0 m/s.

The aim is to arrive at a model where the agent stops close to the target location without hitting

the wall and with a mean speed which is reasonably close to theoptimal speed. To assess the

outcome of the simulations, we define 3 observable quantities amax, δv, andδr. The first observ-

able represents the maximum acceleration experienced by the agent. The second observable is

found as the difference between the optimal speed and the time-averaged speed of the agent,

normalized by the optimal speed. The last observable is defined as the distance from the agent

to the target location at the point of closest encounter withthe wall. Better models result in

overall smaller values of the three observables. Therefore, we define an upper acceptance limit

associated with each of the 3 observables. The criteria for accepting the model is that each of

the 3 observables are smaller than the corresponding limitsalim, δvlim, andδrlim . Dividing the

observables by the corresponding limits, give us the ratios:

Ra =
amax

alim

, (6.4)

Rv =
δv

δvlim

(6.5)

and

Rr =
δr

δrlim

, (6.6)

which can be combined into a single scalar quantity

Rwall = RaRvRr. (6.7)
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For the first scenario, we have chosenalim = g, δvlim = 0.3, andδrlim = 0.5 m. For each combin-
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Figure 6.11 Parametric study of a single agent moving towards a straight wall. The colour

indicates the range of optimal speed which resulted in observables below the

acceptance limits. The contour lines indicate the value ofRwall(CB, qB).

ation of selected values ofCB, qB andua, a simulation is run andRwall is calculated. IfRa < 1,

Rv < 1, andRr < 1, the particular pair of model parameters(CB, qB) is accepted asvalid for

a given optimal speedua. Alternatively, the model is said tofail for the current optimal speed.

Let Rwall(CB, qB, ua) denote the calculated value ofRwall for the selected parameter valuesCB,

qB andua, and letR̄wall(CB, qB) denote the average ofRwall over allua where the given model

is valid.

Fig. 6.11 summarizes the results of more than 2500 simulations of the first scenario in a

(CB, qB)-diagram. The colours show the range of the optimal speed in which a specific model

is valid. The red areas indicate the models which are valid for all tested optimal speed val-

ues, corresponding to a range of 7 m/s. The turquoise areas onthe other hand, indicate models

which are valid only in about half the testedua range. The contour lines show̄Rwall(CB, qB). A

smaller contour line value indicates a better description of the problem within the valid optimal

speed range. When looking for the optimal choice forCB andqB, we need to identify a model

which provide both a large range of validua and a small average value of̄Rwall(CB, qB) among

the valid simulations. We see from Fig. 6.11 that the two model parameters are coupled so

that there are several unique pairs of parameters that give roughly the same result. The models

which are valid in the full optimal speed range is found loosely by the line4.3CB + 5 = qB.

The contour lines of Fig. 6.11 seem to indicate that choosingsmaller values ofCB andqB
are better. Remember thatqB determines how sensitive the boundary avoidance force is to

the angle between the direction of movement and the relativeposition of the boundary. In

the first scenario, the wall was directly in front of the agentand the angle in question was
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Figure 6.12 Parametric study of a single agent moving through a 1-m wide passage in a straight

wall. The colour represents the range of optimal speed whichresulted in agent

dynamics within the defined limits. The contour lines indicates the value of

R̄wall(CB, qB).

therefore zero throughout the simulation. As a consequence, the simulation results were not

very sensitive to the choice ofqB. In the second scenario, on the other hand, the agent is going

to pass through a 1-m wide passage. In the beginning, the situation is very similar to the first

simulation because the walls are almost directly in front ofthe agent. But when the agent is

close to the passage, the angle between the direction of movement and the relative position of

the boundaries increases. A higher value ofqB, results in a stronger decrease in the boundary

avoidance force as the angle increases, which in turn means the agent can pass through the

passage more easily. Fig. 6.12 shows a plot similar to that ofFig. 6.11, but this time for the

scenario with a passage. In this case, the agent goes throughthe passage and does not stop

in front of the wall. The observableRr is therefore not relevant in this case and is therefore

assumed to be 1. For the two remaining observables,Ra andRv, the limits are this timealim =

g andδvlim = 0.8, respectively. From Fig. 6.12, we see that the performance of the models

is now highly dependent onqB and only weakly dependent onCB. To ensure that we have a

model which is valid for both scenarios for the full range ofua, we should chooseqB > 5 and

CB ≈ 2.5. Based on this analysis, we chooseqB = 6 andCB = 2.5 as default values.

6.7 Homogeneous crowd stopping near boundary ( pB)

Having determinedCB andqB, we are left with only one undetermined boundary avoidance

parameter, namelypB. Since this parameter controls how much the boundary avoidance force

increases with increasing crowd density, we formulate a scenario involving a uniform crowd.

The agents in the crowd are identical and placed in a lattice configuration. Just as in the first

of the two single agent scenarios in section 6.6, the agents move towards a straight wall. The
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target location of each agent is chosen so that the entire crowd should move in an almost fixed

formation towards the wall, stopping 1 m in front of the wall.This test is far more challenging

than the corresponding single agent test, especially for higher optimal velocities. This is be-

cause the boundary avoidance force acts primarily on the agents closest to the boundary and not

so much on the agents further away from the boundary. As the agents closest to the boundary

have started to slow down due to the repulsive force of the boundary, the agents further away

from the boundary are still moving forward at more or less full speed. As a consequence, the

first line of agents will be pushed up against the boundary. Weanalyse the dynamics of the

agents closest to the boundary just as we did with the single agent in the first scenario in sec-

tion 6.6, this time withalim = g, δvlim = 0.8, andδrlim = 0.8 m. If we change the parameterpB,

the optimal speed in the crowd (u), or the crowd density (ρ), the observedRwall, given by Eqs.

6.7, will change. Indirectly, we can therefore regardRwall to be a function ofpB, u, andρ. To

assess the results, we define a new quantityPsum(pB) which is derived fromRwall as

Psum(pB) =





1

NuNρ

Nu
∑

k

Nρ
∑

l

Rwall(pB, uk, ρl)





1/3

, (6.8)

whereNu = 5 andNρ = 4 is the number of simulated values ofu andρ, respectively. The

simulated values ofu is in the range 1.0-5.0 m/s, whileρ is chosen to be in the range 0.1-

1.0 m−2. Note also thatPsum is a sum over all simulations of the crowd scenarios and not only

those where the observables are below the defined limits. Fig. 6.13 showsPsum as a function

of pB. Just as in the case with the single agent scenarios, the colours indicate the size of the

range ofu where the results are valid. (The colour coding is similar tothat used in Figs. 6.11

and 6.12.) We see that the lowest value ofPsum is found forpB = 4. But we also see that the

largest valid optimal speed range is obtained withpB = 2. When we also take into account cpu

efficiency, we conclude that 2 is a suitable default value forthe parameterpB.

7 Crowd tests

In the previous section, we calibrated the new crowd dynamics model, one or two parameters at

the time using simplified analysis, both semi-analytical and numerical. In this section, we apply

the new simulation model to full-scale applications. Wherepossible, we compare the obtained

results with corresponding results from the literature. The first 3 tests deal with basic pedestrian

traffic, while the last test cover a scenario more relevant toevacuation and riot management.

7.1 Full-scale simulation of uni-directional flow

The first test simply re-visits the problem of uni-directional flow, described in section 6.1. This

time, the problem is formulated as a full-scale simulation in a channel which is 20 m long

and 10 m wide. Solid walls limits the channel width and a periodic boundary condition causes

agents leaving the right-hand boundary to re-enter at the left-hand boundary. Properties of the

agents are randomly chosen according to typical distributions described in Weidmann (1992).
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Figure 6.13 Summary of parametric study of a crowd moving towards a straight wall. The colour

indicates the range of optimal speed (u) which resulted in agent dynamics within the

defined limits. The ratio of validu range to testedu range, was (for increasing

values ofpB) 0.75, 0.94, 0.69, 0.69, 0.75, and 0.19.

Average mass, body-mass index (BMI), radius, and preferredspeed is 70 kg, 24, 0.25 m, and

1.34 m/s, respectively. The standard deviation of mass, BMI, and preferred speed is 15 kg, 5,

and 0.26 m/s, respectively. Maximum allowed deviation is set to 2 times the standard deviation

for all 3 quantities.

In all, 7 simulations were performed with crowd density ranging from 0.5 m−2 to 6 m−2. The

simulations were terminated once a static solution had beenobtained. Based on the observed

average flow speeds of agents, the fundamental diagrams can be constructed similar to that

shown in Figs. 6.1 and 6.2. Flow speed (v) and flow rate (J), respectively, as a functions

of crowd density (ρ) are shown in the left- and right-hand panels of Fig. 7.1. Thesimulated

results, represented by filled squares, are compared with the parametric model of Weidmann

(Weidmann, 1992) (dashed line) and empirical data from Helbing, Johansson & Al-Abideen

(2007) (open circles). Just as the semi-analytical model described in section 6.1, the simulated

results fit well with the empirical data. The Weidmann model is partly based on data from

multi-directional flow and exhibits a stronger drop in flow speed with increasing density. In

conclusion, the full-scale simulation behaves as expectedwith the currently chosen model

parameters.

7.2 Bi-directional flow in a torus-shaped channel

The second test is taken from Moussaïd et al. (2012) where it was studied both experimentally

as well as numerically. The test describes a torus-shaped channel with an inner radius of 2 m

and an outer radius of 4.5 m. The agents are initially placed randomly, at rest, inside the torus.
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Figure 7.1 Fundamental diagrams for uni-directional pedestrian flow. The left- and right-hand

panels show the flow speed (v) and flow rate (J), respectively, as a function of crowd

density (ρ). The simulated results (black squares) are compared to theWeidmann

model (Weidmann, 1992) (dashed line) and empirical data from

Helbing, Johansson & Al-Abideen (2007) (open circles).

At the start of the test, the agents start to walk in a pre-selected, randomly chosen walking

direction so that half of the agents walk clockwise, while the other half of the agents walk anti-

clockwise, relative to the torus centre. All tests lasted for 60 s. In addition to numerical results,

experimental trials with 30, 50, and 60 agents, corresponding to an average crowd density of

0.59 m−2, 0.98 m−2, and1.18 m−2, respectively, are described in Moussaïd et al. (2012). The

distribution of preferred velocities inside the torus, determined by single-agent experiments,

is characterized by an average preferred speed of 1.2 m/s andstandard deviation of 0.16 m/s.

Moussaïd et al. (2012) reported both the formation of lanes as well as instabilities due to inter-

individual variability.

In this section, we report on simulations corresponding to the experimental setup described by

Moussaïd et al. (2012). Fig. 7.2 shows two snapshots for eachof the 3 simulations, taken after

30 s (top row) and 60 s (bottom row). Panels markeda andb, c andd, ande and f are taken

from the simulations with 30, 50, and 60 agents, respectively. Each agent is represented by a

filled circle and the colour of the circle indicates whether aparticular agent moves clockwise

(blue) or anti-clockwise (red). The coloured arrows visualize the velocity of the agents. With

30 agents, we see very clearly from panelsa andb that a sorting has taken place: the agents

moving clockwise are typically found at lower radial distances than the agents moving anti-

clockwise. This is an example of lane formation and the lanesseem to be highly stable. Note

that in Moussaïd et al. (2012), the lanes were found to be weakly unstable even in the case of

just 30 agents. With 50 agents, we still typically get a two-lane structure, but this time the lanes

are less stable, as can be seen in panelsc andd. When 60 agents are used in the test, we see
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Figure 7.2 Simulation snapshots of bi-directional flow in a torus-shaped channel. The blue and

red dots indicate the instantaneous location of agents moving clockwise and

anti-clockwise, respectively. Corresponding velocitiesare shown by the coloured

arrows. Panel pairsa andb, c andd, andeand f show the agent distribution for the

case with 30, 50, and 60 agents, respectively, after 30 s (toprow) and 60 s (bottom

row).
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from panelse and f that we at 30 s have a slightly disordered two-lane structure. At 60 s, this

has evolved into a more well-defined three-lane structure: two lanes moving anti-clockwise and

one lane moving clockwise.
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Figure 7.3 Average radial position and corresponding standard deviation for agents moving

clockwise (blue) and anti-clockwise (red) as a function of time. The top, middle, and

bottom panels show the results for the case of 30, 50, and 60 agents, respectively.

Two different ways of summarizing the data is shown in Figs. 7.3 and 7.4. In the first case,

the blue and red lines indicate the average radial position for agents moving clockwise and

anti-clockwise, respectively. The semi-transparent, blue or red zone around each line is the

corresponding standard deviation. The top panel shows the results from the simulation with

30 agents. We see that it takes nearly 30 s before the clearly defined, two-lane structure has

been established. This impression is confirmed by looking atthe actual crowd distribution at

different points in time during the first 30 s of the simulation. After 30 s, two lanes at radial

positions 3 m and 4 m have formed with negligible deviation. The middle panel of Fig. 7.3,

which corresponds to 50 agents, indicates a true lane formation only for a brief period around

30 s. This is only partially true, as can be seen by investigating the detailed agent distribution.

It takes some time before a clear structure has been developed, but after around 12-13 s, we

can identify 3-4 lanes. However, this is not a very stable configuration. Instabilities, as reported
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in Moussaïd et al. (2012), causes the first structure to be broken. Around 30 s, a new two-lane

structure has emerged. In turn, this structure gradually deteriorates towards the end of the sim-

ulation. In the case with 60 agents, there are several interesting observations that can be made

on the basis of Fig. 7.3 (bottom panel). First, the separation into a two-lane structure is clearly

visible only for a short period of time around 24 s. Furthermore, the clockwise distribution

appears to become gradually more centred around the averagevalue, which at the end of the

simulation is around 3.3 m. The anti-clockwise distribution also ends up with a very similar

average radial position, roughly 3.5 m, but in contrast to the clockwise distribution, the standard

deviation of the anti-clockwise distribution increases with time. The reason for this, as we saw

in panelf of Fig. 7.2, is that the anti-clockwise distribution has split up into two lanes, an inner

lane at a radial position of roughly 2.2 m and an outer lane at aradial position of about 4 m.
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Figure 7.4 Crowd density (left panel) and radial velocity (right panel) as functions of time and

angular position. The density is given in agents/m2, while velocity is given in m/s.

Finally, we look at how density fluctuations and radial movement are distributed in time and

angular position for the three simulations. This is shown inFig. 7.4 where the panels in the

left and right columns show the density and radial velocity distributions, respectively. Again,

the top, middle, and bottom rows correspond to the simulations with 30, 50, and 60 agents, re-

spectively. For both quantities, we can see traces of compression waves, although not as clearly

defined as that found in Moussaïd et al. (2012). In the 30 agentcase, the waves travel more or

less unhindered. With 50 or 60 agents, stronger clustering of agents occur which can lead to

temporary congestion. This is indicated by dark red regionswhich lie almost horizontally. This

is not found to the same extent in Moussaïd et al. (2012). A feature which the current results

have in common with the results in Moussaïd et al. (2012), is the observed correlation between

local radial speed and density gaps.
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7.3 Pedestrian flow through bottlenecks

Another fundamental crowd dynamics test is the problem of pedestrian flow through bottle-

necks, and numerous experiments focusing on this topic has been performed

(Kretz, Grünebohm & Schreckenberg, 2006; Muir, 1996; Müller, 1981; Seyfried et al., 2009).

The setups might be slightly different from experiment to experiment, but the essential com-

ponent is crowd flow through a corridor where the width suddenly is reduced. This creates a

bottleneck, a point where a certain level of congestian is created. The aim of studies of this

type is to determine how the specific flow through the bottlenecks changes with changing bot-

tleneck width. In this work, we follow the setup proposed in Seyfried et al. (2009) and which

is shown in Fig. 7.5: The upstream width of the corridor is 4 m.The agents are initially placed

randomly in a start region which covers the full width of the corridor and which starts 3 m

away from the bottleneck. The length of the region is adjusted so that the mean initial crowd

density is 3.3 agents/m2. The agents are initially at rest. We have performed simulations with

20, 40, and 60 agents. The properties of the agents are the same as that used in section 7.2,

with the exception that the mean optimal speed is set to the more standard value of 1.4 m/s.

The bottleneck width is varied from 0.6 m to 1.4 m and the totallength of the bottleneck is

2.8 m. The initial position of the agents within the start region are drawn using a random num-

ber generator. However, the same seed has been used in all simulations. This means the initial

positions are identical for all simulations with the same number of agents.
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Figure 7.5 Layout of the bottleneck test together with the initial agent distribution for the case

with 60 agents. The agents start to move to the right, throughthe bottleneck.

In Fig. 7.6 we have plotted the mean specific flow for the case with 20 (blue line), 40 (green

line), and 60 (red line) agents as a function of bottleneck width (b). The simulated results are

compared with experimental results taken from Kretz, Grünebohm & Schreckenberg (2006) (tri-

angles), Müller (1981) (diamonds), Muir (1996) (squares),and Seyfried et al. (2009) (circles).
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When simulating this problem, we noticed that agents at the back of the crowd typically lag

slightly behind compared to the rest of the agents. This is because the repulsive force due to

nearby agents in front of them is not balanced by an oppositely directed repulsive force from

agents behind them. As a result, the net crowd repulsion willbe larger on agents at the back of

the crowd and the last group of agents to pass through the bottleneck will lag slightly behind

compared to the rest of the agents. If we calculate the mean specific flow based on all agents in

the crowd, we will therefore get somewhat lower values than if we calculate the mean specific

flow based on half the crowd, those agents starting off closest to the bottleneck. By choosing

the latter approach, as we have done, we avoid including whatis really a free surface effect.

The free surface effect is discussed in more detail in section 8.
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Figure 7.6 Mean specific flow as a function of bottleneck width(b) for the case with 20 (blue

line), 40 (green line), and 60 (red line) agents. The simulated results are compared

with experimental results taken from Kretz, Grünebohm & Schreckenberg (2006)

(triangles), Müller (1981) (diamonds), Muir (1996) (squares), and Seyfried et al.

(2009) (circles).

The simulated results in Fig. 7.6 fit reasonably well with theexperimental data. This is par-

ticularly true for the simulations with 60 agents. When the number of agents in the crowd is

reduced, the free surface effect becomes stronger and agents are to a larger degree slowed down

before reaching the bottleneck. The difference between theexperimental and simulated results

therefore increase with increasing bottleneck width, especially for the case with only 20 agents.

Another point worth mentioning, is the low specific flow forb = 0.6 m compared to the exper-

iments. Studying this in more detail, we identify an issue related to flow through very narrow

bottlenecks. If the flow upstream from the bottleneck is highly symmetric and the bottleneck is

sufficiently narrow so that only one agent at the time can enter the bottleneck, then a gridlock

can occur. This means, that forces are so well balanced that all movement in front of the bot-

tleneck becomes negligible. This state of gridlock can lastfor up to 10 s in some cases, before
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small asymmetries eventually have grown sufficiently to enable one agent to get to the bottle-

neck opening at the expense of the other agents. In experiments, gridlocks of this type is only

likely to occur if the crowd density is very high, and even then, the time span of the gridlock

is presumably much less than 10 s. Artificial gridlocking is discussed in more detail in section

8. In conclusion, the simulated results fit well with the experimental data, when the free surface

effect and artificial gridlocking is negligible.

7.4 Evacuation from a building

The study of evacuation dynamics, for instance in connection with fire alarms, is an important

application of crowd modelling. The final test case presented in this report describes a scen-

ario where agents need to evacuate a 1-storey building. We have performed 7 separate tests

where the level of urgency or panic in the crowd is increasing. This has been done by increas-

ing the average optimal speedu of the agents, from 1.5 m/s to 7.5 m/s. Apart from this, the

agents have the same statistical properties used in the previous two test cases. The building

being evacuated has 4 rooms, varying in size from28 m2 (bottom left room) to42.5 m2(top

right room). The corridors and doorways are 1.5 m and 0.8 m wide, respectively. There are

two exits, one in each end of the vertical corridor. The number of agents in each room is 56

(bottom left), 68 (bottom right), 21 (top right), and 28 (topleft), which results in an average

initial crowd density in each room of2.0 m−2, 2.0 m−2, 0.5 m−2, and0.8 m−2, respectively.

The layout of the building and distribution of agents at times t=0 s, 10 s, 30 s, and 50 s, can be

seen in panela, b, c, andd, respectively, of Fig. 7.7. The optimal speed is set to 3.5 m/s in this

particular case. The colours of the filled circles indicate the crowd density experienced by each

agent at that particular point in time. Similarly, the direction and colour of the arrows visualize

the instantaneous agent velocity vectors.

This test is a good example of how the automatic path finder algorithm described in Appendix B

works. The agents are initially instructed to move to the intersection between the horizontal and

vertical corridors. Once they reach this area, the agents are instructed to leave the building by

the nearest exit. The path finder algorithm enables the agents to identify boundaries that are

obstructing the way to the destination, find the doorways, and modify the desired direction of

movement accordingly. Panelsb andc of Fig. 7.7 show clearly how the agents in the more

densely populated rooms spread out in a characteristic arc structure near the doorways inside

the rooms. When an agent has exited the room, the movement is directed towards the central

corridor intersection. Having entered the corridor, an agent can typically increase the speed

somewhat, although clogging near the exits eventually becomes a problem. Notice how the

typical speeds are well below the average optimal speed of 3.5 m/s.

The average optimal speed (u) is regarded as an indication of the level of urgency or panic

in the crowd. To see how this affects the efficiency of the evacuation, we have analysed the

simulation results in more detail. The results of this analysis is summarized in Fig. 7.8. Panel

a shows how the time required for the entire crowd to evacuate (Tevac) varies with increasing
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Figure 7.7 Snapshots of the agent distribution in the evacuation simulation for the case of

optimal speed (u) equal to 3.5 m/s at t=0 s (a), 10 s (b), 30 s (c), and 50 s (d). The

colours of the filled circles indicate crowd density, while the direction and colours of

the arrows visualize the agent velocity vectors.
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Figure 7.8 Evacuation characteristics as functions of the average optimal speed (u). The 4

panels show the total evacuation time (a), the average, specific flow through the

bottom (solid line) and top (dashed line) exits (b), the maximum 10-second (solid

line) and 1-second (dashed line) averaged acceleration (c), and the maximum

10-second averaged crowd density.

average optimal speed. Withu = 1.5 m/s,Tevac becomes 83 s which corresponds to an effective

distance of movement of about 125 m. Increasingu to 2.5 m/s should result inTevac becoming

roughly equal to 50 s, if the agents were free to move with their optimal speed. In reality,

we see thatTevac ≈ 77 s whenu = 2.5 m/s. This indicates that the agents are slowed down

substantially by the presence of the other agents. There is asmall but still noticeable decrease

in Tevac asu is increased tou = 4.5 m/s. Increasingu further, can cause the evacuation time to

increase rather than decrease. In other words, there is a limit to how fast the particular crowd

distribution used in these tests can be evacuated from the building. This limit seems to be

about 69 s. Panelb, which shows the specific flow through each of the two exits, confirms the

picture. The solid and dashed lines correspond to the bottomand top exit, respectively. Both

curves show a distinct flattening foru > 4.5 m/s. The difference between the two curves are

also interesting. More than 70% of the agents are originallylocated in the bottom two rooms,

yet the specific flow is larger through the top exit than through the bottom exit. The only

exception seems to be for the largest simulated optimal speeds. This indicates the presence of

turbulent behaviour which causes flow efficiency to be reduced with increasing local density.

Another interesting point in connection with dense crowds that may or may not be in a state

panic, is to what extent large forces are present in the crowdwhich might cause injuries and, in

worst case, deaths. Table 2.1 lists estimated force thresholds for asphyxia which are in the order

of 1000 N (1-minute averaged force) and 6000 N (10-second averaged force). For a typical

agent of around 75 kg, this corresponds accelerations of around 1.4g and 8.2g, respectively.

However, these limits are mostly relevant in scenarios involving nearly static crowds with very
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high densities. In an evacuation scenario, the danger is notso much asphyxiation, but rather

that people can be knocked over and trampled on. From literature (Hunter, Marshall & McNair,

2005; Kugler & Janshen, 2010) we know that horizontal manoeuvre forces rarely exceed the

gravitational force of the body. Agent accelerations larger than g is therefore likely to result

in agents being knocked over, possibly becoming injured, and at least creating extra obstacles

which hinders the local crowd flow. We are interested in analysing the evacuation data in search

of indications of agent injuries. This is particularly relevant since we are simulating crowds

with high average optimal speeds (up to 7.5 m/s). Only the contact forces are relevant when

considering injuries, but unfortunately the current version of the simulation software does not

store information about the contact forces directly. Instead, we have to look at the acceleration.

In situations with substantial physical contact, the contact forces will typically dominate over

the other forces. And if the crowd is not highly uniform, the net acceleration should give a

good indication of the level of contact forces.

To analyse the agent acceleration levels in the evacuation simulations, we calculate the 10-

second and 1-second time averaged accelerations for each agent. Based on the averaged values,

we find the maximum experienced acceleration by any agent in each of the simulations. Panel

c shows the results as a function ofu. The solid line shows the maximum 10-second averaged

acceleration, while the dashed line shows the corresponding 1-second averaged acceleration.

We see that the 10-second average acceleration only shows a weak increase with increasing

u and never becomes large enough for there to be asphyxia-related health problems. The 1-

second averaged acceleration on the other hand, has a strongincrease with increasingu, with

a maximum of 2.2g foru = 6.5 m/s. This indicates that problems of people being knocked

over and possibly becoming injured could be expected for optimal speeds larger than 3-4 m/s.

However, the current crowd model does not take into account that agents might lose their

balance and perhaps become injured. Such a model should takeinto account that agents cannot

move much if they do not stand on their feet and that nearby agents will also be slowed down

by the immobile agents. If such a model had been included in the evacuation simulations, it is

likely that the evacuation time would increase for average optimal speeds larger than 3-4 m/s.

The final panel in Fig. 7.8, paneld, shows the maximum 10-second averaged crowd density

in the simulations. The maximum density increases with increasingu, despite the fact that

the number of agents in all simulations is the same. This can only mean that there is a larger

degree of clustering when the average optimal speed is larger. In turn, this means that more

of the available space is empty. Crowd flow thus becomes less efficient, and the agents must

compensate by using a larger net will force.

8 Conclusion

This report describes a new, robust crowd dynamics simulation model capable of simulating

a wide range of human crowd behaviour with a reasonable degree of accuracy. This includes

not only normal pedestrian traffic, but also scenarios such as evacuation or riots which might
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involve running agents. The model relies on a number of modelparameters. Default values of

these parameters have been determined on the basis of fundamental properties of the human

body, semi-analytical models of fundamental crowd behaviour, or simplified crowd test simula-

tions. A summary of the most important model parameters and their default values are given in

Table 8.1. A list of the forces acting on individual agents inthe crowd is reproduced in Table

8.2.

Parameter Physical interpretation Default value Section

bA,0 Zero-density obstacle avoidance scale length 2.0 m 2.5.1

bC,0 Zero-density crowd repulsion scale length 1.0 m 2.5.2

Av
will Flow will acceleration amplitude 0.25g 2.1.1

Ar
will Displacement will acceleration amplitude 0.25g 6.5

σmin Displacement will force scale length 4.0 m 6.5

As
will Velocity strain acceleration amplitude 1.5g 2.1.1

vlim,0 Activation threshold for velocity strain 6.0 m/s 2.1.1

δvlim Velocity strain width 3.0 m/s 2.1.1

flim,0 Activation threshold for acceleration strain 0.5g 2.1.1

δflim Acceleration strain width 0.5g 2.1.1

κr Radial contact force amplitude 5.0 · 102s−2 4.2

κt Tangential contact force amplitude 2.5 · 103(ms)−1 4.2

Acrowd Crowd repulsion acceleration amplitude 1.5g 6.1

θ0 Crowd repulsion anisotropy level 0.3 6.1

Ar
avoid Radial obstacle avoidance acceleration amplitude 0.225g 6.2

Ad
avoid Deflection obstacle avoidance acceleration amplitude 0.225g 6.3

eavoid Maximum density-dependent deflection increase 9.2 6.4

ρavoid Reference density in density-dependent deflection increase 1.1 6.4

CB Boundary avoidance enhancement factor 2.5 6.6

qB Boundary avoidance velocity exponent factor 6.0 6.6

pB Boundary avoidance density exponent factor 2.0 6.7

Table 8.1 Summary of important numerical parameters in the new, calibrated crowd dynamics

model.

The new model not only captures crowd movement well, it also provides reliable informa-

tion regarding force levels which in turn can be used to assess the risk of injuries and deaths.

Possible improvements to the present model include agent parameters to monitor the possible

development of injuries and the effect this has on the crowd dynamics, as well as include mo-

tivation as an important factor in determining the behaviour of individual agents. Motivation

is a psychological and not a physical property. Nevertheless, the idea is to link motivation to

the concept of internal energy. Reduced motivation means less internal energy which results in

weakened will force. Experimental data exist which show theenergy consumption of a human
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Force group Force name Equation Relevant parameters

Internal Displacement 3.1 Ar
will , σmin

Internal Flow will 3.8 Av
will

Internal Velocity strain 3.19 As
will , vlim,0vlim,0, δvlim

Internal Acceleration strain 3.22 flim,0, δflim

Inter-agent Obstacle avoidance 4.7 bA,0, Ar
avoid, A

d
avoid, eavoid, ρavoid

Inter-agent Crowd repulsion 4.9 bC,0, Acrowd, θ0
Inter-agent Contact 4.10 κr, κt
Boundary Boundary avoidance 5.10 bA,0, Ad

avoid, CB, qB, pB
Boundary Wall repulsion 5.11 bC,0, Acrowd, θ0

Table 8.2 Summary of forces included in the model, the corresponding equations in this report,

and which parameters from Table 8.1 are associated with eachforce.

body when performing various activities such as walking andrunning. Using this information,

one could construct a basic model for temporal changes in theinternal energy. Such a model

should include energy consumption related to work done by the will force of an agent on its

surroundings.

Also, one could try to address the two issues mentioned in section 7.3. First, it was noted

that agents moving at the back of a group will experience a larger net crowd repulsion than

the agents moving at the front of the group. The most straightforward method to reduce this

problem is to update the position of agents using the so-called XSPH-formulation. It was first

proposed to reduce problems with particle penetration in smoothed particle hydrodynamics

simulations of shock waves (Monaghan, 1989). It has later been applied in a modified form to

crowd modelling (Vetter et al., 2011). The idea of the methodis make sure that particles (or

in this case, agents) move at a velocity closer to the local average velocity. This would reduce

the difference in velocity between agents located at the back of a group compared to the agents

located in the front of the group. In addition, it will help avoid direct collisions between agents

and could possibly also help in lane formation. The XSPH formulation is implemented by

replacing the standard equation of movement (see Eq. 2.2) with

dra
dt

= ṽa, (8.1)

whereṽa is given as

ṽa = va + ǫXSPH

∑

b

mm
vb − va

ρab
Wab. (8.2)

In its original formǫXSPH is constant, with a typical value of around 0.5, but in the crowd model

of Vetter et al. (2011),ǫXSPH is function of velocity and crowd densty. A problem with the

XSPH-formulation is that it becomes more difficult for single agents to move in a static back-

ground population, such as shown in the crowd navigation calibration test in section 6.4. More

work is therefore needed before we can formulate a satisfactory XSPH-formulation for use in

crowd simulations.
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The second issue identified in section 7.3 was artificial gridlocking in front of narrow bottle-

necks. This occurs if the agent distribution in front of the passage is highly symmetric. Then,

for a substantial period of time (for instance up to 10 s), none of the agents are able to enter

the passage due to a balance between will forces, social forces and boundary forces. If a similar

situation were to occur in real life, individuals in the crowd would normal take an initiative to

solve the problem, either by taking the lead or by making way for others. How people react in

these situations probably dependence on small details in the situation at hand but also on the

psychological properties of each individual involved. Thequestion is how this can be solved

in a computer simulation. One solution could possibly be to introduce a random generated

parameter, let us for now call it leadership, which indicates how likely a person is to take the

lead in a gridlocked situation. The parameter could be used in a new inter-agent force which

only becomes important when the velocity is much smaller than normal walking speed. Agents

with a small leadership value will give way to agents with a higher leadership value. The same

parameter could be used when modelling herding, the observed phenomena that some agents

are more likely to follow other agents rather than choosing an individual path. This effect is

particularly strong in situation where agents feel unsecure or lack detailed information about

their route.
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Appendix A Calculating the wall repulsion integral, I
wall

ab

In this appendix we want to derive an approximation to the integral Iwall
ab used in Eq. 5.11 to

describe the strength of the wall repulsion experienced by an agenta from a nearby boundary

segmentb. The wall repulsion exerted ona from b is defined as the total crowd repulsion force

on the agenta from the imaginary mirror agents that would fit in the exterior interaction region

associated with boundary segmentb. First, we derive the wall repulsion for a finite-sized but

isolated, straight boundary segment where we assume the sector lines to be normal to the seg-

ment tangent. Then, the result is extended to take into account the fact that boundary segments

can be connected to other segments by having common end points and that the corresponding

sector lines will typically not be normal to the boundary segment tangent. Finally, we discuss

how the results are generalized to curved boundaries.

A.1 Approximation to Iwall
ab with normal sector lines

Let the boundary segmentb be defined by the two boundary pointsp1 andp2. We want to

estimate the wall repulsion force on a given agenta, located atra. To arrive at this first ap-

proximation to the wall repulsion, we assume that the sectorlines are normal to the tangent

of b (as illustrated in Fig. 5.1). The projection ofa onto b, the boundary interaction point, de-

notedpa, is assumed to lie somewhere between the two end points so that pa splits b into a

left- and a right-hand boundary section (indicated by the red and blue colours, respectively, in

Fig. 5.1). The integration over the exterior interaction region is similarly split up into two. In

the following discussion we focus on the right-hand integral, covering the boundary from the

boundary interaction point top2. Normalized by the interaction scale length, simply denoted bC

in this case, the distance betweena andpa is zd, the distance betweenpa andp2 is zl,2, and the

interaction range iszmax. We define

zh =
√

z2max − z2d (A.1)

as the maximum distance frompa along l where the interaction witha is non-zero. The smaller

distance ofzl,2 andzh is denotedzl. The boundary normal atp2 in the exterior interaction

region (indicated by the right-hand, dotted line in Fig. 5.1) intersects the interaction circle (the

dashed circle in Fig. 5.1) at the pointc. The angle between the boundary normal and the vector

betweena andc is denotedθ and given as

θ = sin−1 zl
zmax

. (A.2)

It is also useful to define the distances

zc =
√

z2d + z2l (A.3)

and

zs = zdtanθ. (A.4)

Starting with the inter-agent crowd repulsion force, givenin Eq. 4.9, with the simplifying as-

sumption that the angular dependent factor defined by Eq. 4.8is set to unity, the wall repulsion
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force on agenta from the right-hand section of boundary segmentb can be estimated by

S
B
2,ab = −maAcrowdρab

2
C r̂ab

zmax
∫

zd

αm(z)
∫

α

Φ(z, 1)z cosαdzdα. (A.5)

We have assumed the force is strictly normal to the boundary.The radial distance from agent

a is given bybCz, while the angular position relative to the boundary normalthroughra is

denotedα. The upper limit of the angular integration,αm, depends onz in that

αm(z) =







αm,1(z) = sin−1
(
√

1− z2d/z
2
)

if zd < z ≤ zc;

αm,2(z) = sin−1
(

zl
z

)

if zc < z ≤ zmax

(A.6)

Performing the angular integration of Eq. A.5, we then get

S
B
2,ab = −maAcrowdρb

2
C r̂ab







zc
∫

zd

Φ(z, 1)z sinαm,1(z)dz +

zmax
∫

zc

Φ(z, 1)z sinαm,2(z)dz







. (A.7)

Using Eq. A.6, we rewrite Eq. A.7 as

S
B
2,ab = −maAcrowdρb

2
C r̂ab







zc
∫

zd

Φ(z, 1)z
√

1− z2d/z
2dz +

zmax
∫

zc

Φ(z, 1)zldz







. (A.8)

Before we can perform the radial integration, we need to remind ourselves of what the spatial

interaction function,Φ(z, 1), looks like. From Eq. 2.8 we know that

Φ(z, 1) = Φ0(z, 1)Ψ

(

z − z0
zw

)

, (A.9)

whereΦ(z, 1) = 1/(z2 + 1) andΨ is a taper function which secures compact support. In

order to simplify the evaluation of Eq. A.8, we will replaceΨ(ξ) (given in Eq. 2.7) by a step

function, Ψ̃(ξ), which is equal to 1 forξ ≤ ξh and otherwise equal to 0. The parameterξh is

found as

ξh =

2
∫

0

Ψ(ξ)dξ, (A.10)

which is easily found to be 2/3. The effect of repacingΨ with Ψ̃ as the taper function is simply

to replacezmax by z̃max = z0 + ξhzwid in Eq. A.8.

The first integral on the right-hand side of Eq. A.8 can now be written as

Ir1(zd, zc) =

zc
∫

zd

√

z2 − z2d

z2 + 1
dz. (A.11)

This integral can be solved analytically, but in practise, it will be more efficient to solve the

integral numerically. Since0 ≤ zd ≤ zc ≤ z̃max, the integral can be solved once with satisfactory
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resolution for different values ofzd and z̃max, stored in a look-up table and reused whenever

needed. The second integral in Eq. A.8 is easier to handle since it can be written as

Ir2(zd, zc) = zl

z̃max
∫

zc

1

z2 + 1
dz = zl

(

tan−1 z̃max − tan−1 zc
)

. (A.12)

Although this is easily treated analytically, the most efficient and consistent approach would be

to include this term in the look-up table already required bythe first term. Combining integrals

Ir1 andIr2 gives us the complete contribution to the wall repulsion force strength from the right-

hand side of the interaction sector under the assumption of normal sector lines (blue region in

Fig. 5.1):

Ir⊥(zd, zc) = Ir1(zd, zc) + Ir2(zd, zc). (A.13)

Following the same approach, we can determine the integralsI l1 andI l2 which combined gives

us I l⊥, the contribution from the left-hand side of the interaciont sector (red region in Fig. 5.1).

A.2 Modifications to Iwall
ab due to boundary segment intersections

So far, we have looked at isolated boundary segmentsb with normal sector lines. In addition,

we have assumed that a boundary interaction point for the interaction between agenta and

segmentb can be found. (In section 5, the boundary interaction point was defined as the in-

tersection between the boundary segmentb and the separation vector between agenta and its

mirror image acrossb). In this section, we generalize the results in section A.1 in order to take

into account the effect of connected boundary segments. We also want to be able to handle

situations where no interaction point can be found. The required modifications represent rough

estimates of the real solutions, and the primary aim is to achieve robust and smoothly behaving

numerical solutions with a reasonable degree of accuracy.

A.2.1 End point related coordinates

First, we need to define coordinate systems associated with boundary segment end points.

These coordinates are used to specify positions relative tothe end points and angles relative to

the segment normal vectors. Then, we define an angular weightfactor which will be used in the

final wall repulsion expression.

Fig. A.1 shows a boundary lineA which is defined by the two end pointsV0 andV1. The

segment tangent,̂tA, is directed fromV0 to V1. The segment normal,̂nA, is directed so that

t̂A × n̂A points into the simulation plain, as shown in Fig. A.1. For each of the two end points

k, we introduce two coordinates,atk andβk. The former variable is defined as

atk = (r − rk) · t̂A,k, (A.14)

whererk is the position of end pointk and t̂A,0 = t̂A and t̂A,1 = −t̂A. As illustrated in

Fig. A.1, at0 is negative to the left ofV0 and positive elsewhere, whileat1 is negative to the

right of V1 and positive elsewhere. The second variable,βk, represents the smallest angle that a
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β0<0, β1<0

0<at1<L

0<at0<L

β0>0, β1<0
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β0<0, β1>0

at0>L, at1<0

^tA
^nA

Figure A.1 Line segmentA defined by end pointsV0 andV1. The tangent and normal unity

vector associated with the segment is denotedt̂A andn̂A, respectively. The sign of

the end point specific coordinates,atk andβk, are indicated by the annotation.

positional vector forms with an infinite line normal to the boundary segment through end point

k. If we define the distance to the boundary segment,an, as distance to the line in the light

grey region of Fig. A.1 and as the distance to the nearest end point in the dark grey regions of

Fig. A.1, thenβk can be expressed as

βk =



















tan−1
(

‖an‖
atk

)

− π
2 if atk > 0;

tan−1
(

‖an‖
atk

)

+ π
2 if atk < 0;

0 otherwise.

(A.15)

Fig. A.1 illustrates the fact thatβ0 andβ1 are negative between the two end points and that

they change sign atV0 andV1, respectively. It should also be noted that−π/2 ≤ β ≤ π/2.

For the remaining part of this appendix, we define exterior and interior regions so that the

segment normal vector points towards the exterior region. Since βk is symmetric about the

segment tangent, we always need to specify whether an angle is exterior or interior. In this

context, agents might be located both in the interior and theexterior regions. The regions which

contains a specific agent will be referred to as theagent sideof a boundary segment. The

region on the other side of the boundary segment will be referred to as themirror agent side.

For later use, we define the angular weight factorg(β) as

g(β) =







1 if − π/2 ≤ β ≤ 0;

1− 2β
π if 0 < β ≤ π/2.

(A.16)

If we assumeβ = β0, then Eq. A.16 shows thatg = 0 along the line which is parallel to the

boundary segment and which extends to the left ofV0. To the right ofV1, g = 1. If we instead
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assumeβ = β1, theng is mirrored about the segment midpoint.

A.2.2 Boundary segment intersections

So far, we have only looked at isolated boundary segments. But before formulating the modi-

fied wall repulsion integral, we should take a closer look at segment intersections. We assume

that two or more boundary segments can only intersect by sharing a common end point. In this

section, we characterize a boundary segment intersection by identifying angles in the end point

coordinate systems which are used in formulating the generalized wall repulsion integral.

  

 

 

  

 

 

v0 v1
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lA
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αA1

inϕA1
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ϕB0
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αB0
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δαB0
ex ϕA1
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δαA1
ex^nA

^nB

Figure A.2 Intersection between linesA andB at end pointV1 with sector line angles

φin
A1 = φin

B0 = −φex
A1 = −φex

B0 < 0. Maximum angles of visibility are

correspondinglyαin
A1 = αin

B0 < π/2, αex
A1 = φex

A1 + φex
B0 + δαex

A1 ≡ π/2,

andαex
B0 = φex

B0 + φex
A1 + δαex

B0 = αex
B0 ≡ π/2.

Fig. A.2 is a sketch of the intersection between to line segments,A andB. The two segments

share a common end point,V1, but we still use two different coordinate systems, one usedby

line A and one used by lineB. Although not parallel, the line normal vectors are consistently

defined. We therefore refer to the region above lineA and to the left of lineB as the interior

region and the region below lineA or to the right of lineB as the exterior region. We note that

the interior angle,∆φin
AB, between the two lines is convex, while the corresponding exterior

angle,∆φex
AB, is concave. The bisectors of the two angles are indicated byred, dashed lines in

Fig. A.2. These are the sector lines which up until now have been assumed to be normal to the
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associated boundary segments. The segment normal vectors are indicated by black, dashed lines

on either side of the sector lines. The angle that the interior sector line forms with the normal

of line A is markedφin
A1 and indicated by the dark blue sector in Fig. A.2. The corresponding

angle associated with lineB is φin
B0 and indicated by the red sector in Fig. A.2. We note that

φin
A1 = φin

B0 = (∆φin
AB − π)/2 < 0. (A.17)

If only two segments intersect at the end point in question, as is the case in Fig. A.2, then we

know thatφex
A1 = φex

B0 = −φin
A1. Note also that if an end pointk associated with boundary

segmentl is not shared with any other segment, then we assumeφin
lk = φex

lk = π/2.

In addition to modifying the sector line directions, an intersecting boundary segment can further

limit the view of agents relative to that found for isolated segments. An example taken from

Fig. A.2, agents located above lineA and to the right of lineB will only seeB and notA.

Agents below lineA and sufficiently far to the left of lineB will similarly not seeB. Gen-

erally, corresponding to each sector line angleφo
lk of end pointk associated with boundary

segmentl in regiono (interior or exterior), there exists a maximum angle of visibility, αo
lk,

defined as

αo
lk =







π
2 + 2φo

lk if − π
2 ≤ φo

lk < 0;

π
2 otherwise.

(A.18)

From Fig. A.2, we see thatαin
A1, indicated by the bright green sector, is the angle from the

interior normal ofA to B. Correspondingly,αin
B0, indicated by the orange sector, is the angle

from the interior normal ofB to A. In the exterior region,αex
A1 = φex

A1 + φex
B0 + δαex

A1 ≡ π/2. In

the same way,αex
B0 = φex

B0 + φex
A1 + δαex

B0 ≡ π/2.

Fig. A.3 shows the slightly more complicated case of severalboundary segments sharing a

common end point. The 3 sector lines are indicated by dashed,coloured lines. LineA connects

to line B in the interior (relative to its own normal vector) and lineC in the exterior. LineB

also connects to lineC in the exterior. It should be pointed out that generallyφex
lk 6= φin

lk for

end pointk associated with boundary segmentl when more than 2 boundary segments intersect

at the end point. Other than that, the generalization from two to several intersecting boundary

segments is straightforward.

A.2.3 Modified wall repulsion integration

In section A.1, an expression for the wall repulsion strength, Iwall
ab , in the case of isolated bound-

ary segments with normal sector lines was derived. Now, we are ready to formulate a modified

expression which represents a better approximation in realistic scenarios with connected bound-

ary segments.

We want to determine the strength of the wall repulsion experienced by agenta from boundary

segmentb. Just as in section A.1, we divided the expression into a left- and right-hand integral.

So, let us focus on the right-hand integral corresponding tothe right-hand end point ofb. The

position of agenta relative to the right-hand end point is given by the tangential coordinate
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Figure A.3 Intersection between linesA, B, andC at end pointV1 with sector line angles at

φin
A1 = φin

B0 (red line),φin
C1 = φex

A1 (green line), andφex
C1 = φex

B0 (blue line).

at,a, normal coordinatean,a, and angular coordinateβa (according to definitions in section

A.2.1). Normalized parameters are

zd =
an,a
bC,a

, (A.19)

zl,min =







0 if at,a ≥ 0;

−at,a/bC,a otherwise,
(A.20)

and

zl,max = min (at,a/bC,a, z̃max). (A.21)

Based onzl,min andzl,max, we also define

zc,lo =
√

z2d + z2l,min
(A.22)

and

zc,hi =
√

z2d + z2l,max
(A.23)

The outer sector line angle (as viewed by the agent) isφr, while the inner maximum angle

of visibility is αr. If βa < αr andzd < z̃max, then agenta will get a contribution to the

wall repulsion strength from the right-hand integral. First, we introduce the following integral

notation:

Irlo = Ir⊥(zd, zc,lo), (A.24)

Irhi = Ir⊥(zd, zc,hi), (A.25)

and

Irinf = Ir⊥(zd, z̃max). (A.26)
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Then, we can write the right-hand wall repulsion integral as

Ir = g(βa)







cosφr(I
r
hi − Irlo) if φr ≤ 0;

cosφr(I
r
hi − Irlo) + (1− cosφr)I

r
inf otherwise.

(A.27)

The corresponding integral for the left-hand end point is denotedI l, so that the full strength of

the wall repulsion on agenta from boundary segmentb can be written as

Iwall
ab = Ir + I l. (A.28)

A.3 Wall repulsion from curved boundaries

So far, we have assumed the boundary segment to be a line. Now,we will extend the descrip-

tion of wall repulsion to curved boundary segments. We will do this by applying assumptions

and approximations which allows us to reuse much of the results from sections A.1 and A.2.3

while still maintaining an acceptable level of accuracy. A consequence of these additional as-

sumptions is that higher accuracy might be achieved if largeboundary segments with strong

curvature are split up into smaller segments with identicalcurvature. For example, to represent

a boundary which is a full circle, it is advisable to split theboundary into at least 4 segments,

each covering angles of at mostπ/2.

Fig. A.4 shows a sketch of a curved segmentA defined by end pointsV0 andV1, origin O,

and curvatureRA. The angle between to the vectors from the curve origin to each of the two

end points, the curve angle, is denotedχ. We will also refer to theequivalent line segment,

which is straight line between the two end points. Tangent and normal vectors can be related

to the curved or equivalent straight boundary. When it comesto the former vector, we use

the equivalent curve tangent,t̂A, which is a constant vector defined using the equivalent line

segment. When it comes to the normal vector, we will need to use the actual curve normal,

n̂A, which varies in direction along the curve. In Fig. A.4,n̂A is shown for the two end points

and for the midpoint. Note that at the midpoint, the tangent and normal vectors of the curved

and equivalent straight boundary are identical. If an agenta is located inside the sector defined

by the curve angleχ (light grey region in Fig. A.4), then a boundary interactionpoint on the

curve can be found and the separation vector is normal to the curve. Alternatively, if agenta is

located within interaction range of one of end points (dark grey semi-circles) at a valid angle,

the corresponding end point is used as the interaction pointwith a separation vector which

reflects a mirroring about the end point.

The computation of the wall repulsion strength for curved boundary segments is almost

identical to the algorithm described in section A.2.3. Thismeans neglecting some of the dif-

ferences between a curved and a straight boundary. However,the accuracy is shown in section

5.3.2 to be comparable for both types of boundary segments. The changes done in the wall

repulsion algorithm to handle curved boundaries are as follows: The equivalent tangent vec-

tor, t̂A, is used to determine the tangential position,at,k of the agent relative to the two end
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Figure A.4 Curve segmentA defined by end pointsV0 andV1, origin O, and curvatureRA is

plotted with a solid line. The curve angle is denotedχ. The tangent vector,̂tA, is

associated with the equivalent line segment (dashed line).The normal vector,̂nA, is

plotted for 3 different points on the curve: the end points and the midpoint.

points. The distance to the boundary segment,an, is defined as the distance to the curve in

the light grey region of Fig. A.4 and as the distance to the nearest end point in the dark grey

regions of Fig. A.4. The angular coordinate relative to eachend point,βk, can be found with

Eq. A.15. The sector line angles,φo
lk, and maximum angles of visibility,αo

lk, described in sec-

tion A.2.2, can be found in much the same way as for lines. The only thing to remember is to

use the local boundary normal at the respective end points. With these small changes, the wall

repulsion algorithm described in section A.2.2, can now also be applied to curved boundary

segments with an acceptable level of accuracy.

Appendix B Automatic path finder algorithm

The automatic path finder algorithm considers both boundarysegments and individual vertices.

Since boundaries are static (or move with an easily recognizable motion), we assume the agents

can plan their route around these obstacles. Numerically, this means that the preferred direction

of motion is modified in order to try avoid physical contact with solid boundaries. The imple-

mented algorithm also take into account that the agents havea non-zero physical radius. This

complicates the details somewhat but does not alter the basic principles of the algorithm. Here,

we describe the overall structure of the path finder algorithm without going into any details.

We look at agenta, currently at positionra with preferred locationza and physical diameter

da. Primary target direction,δz0
a, is simply given asδz0

a = za − ra. We also define altern-

ative target directionδzφ
a by rotatingδz0

a by the angleφ (where positive rotation direction is

anti-clockwise). If necessary, we will test 7 different target directions, all listed in thetarget
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alternative list, T z = {δz0
a, δz

π/4
a , δz

−π/4
a , δz

π/2
a , δz

−π/2
a , δz

3π/4
a , δz

−3π/4
a }. We construct a

setB of all relevant boundary segments, that is all boundary segments within interaction range

of the agent,RA,ab. Correspondingly, we construct a setV of all relevant vertices. A simplified

path finder algorithm in pseudo code, can be formulated as follows:

Step 1: Define index n = 0.

Step 2: If (n > 6) then go to Step 10;

else define δza = T z[n] and Lpref = [ra, ra + δza].

Step 3: Let Bn be a sub-set of all boundary segments in B which agent

a will come in direct contact with assuming a is moving along

Lpref. If Bn is empty, go to Step 7.

Step 4: Find boundary segment b ∈ Bn which represents the most critical

obstacle, meaning the segment which requires the largest

modification in preferred direction of movement to avoid

collision.

Step 5: Evaluate the possibility of the agent moving around one of

the two vertices associated with the obstructing boundary

segment. If it is possible to move around both vertices,

the most favourable vertex v is chosen (based on distance,

direction, and possible connection to other boundary segments).

If not, go to Step 8.

Step 6: Construct a modified preferred path of movement which, in

the absence of other forces, will cause the agent to move

around vertex v without coming in direction contact with the

boundary. Store this in δza. Let z̃
b
a = δza + ra AND go to Step

9;

Step 7: If (n > 0) then z̃
b
a = δza + ra AND go to Step 9;

else go to Step 10.

Step 8: n = n+1. Go to step 2.

Step 9: The current temporary target position candidate is accepted,

z̃a = (1 − ωa)za + ωaz̃
b
a, where ωa is a smoothing factor to ensure

that the modification to the preferred path gradually increases

from zero as the agent approach the segment from infinity.

The direction of the preferred velocity, ua, is changed to

make ua parallel to z̃a − ra. Go to Step 10.

Step 10: Finish.
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