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REQUIREMENTS ON SUBMARINE COMBAT SYSTEM ARCHITECTURE 
 

1 INTRODUCTION 

 
The work presentation in this study is the result of a brief investigation into the use of 
commerciall off-the shelf (COTS) information technology in combat systems suitable for 
future submarines. It is an initial attempt into establishing what requirements must be present 
in order to avoid potential serious integration problems. The methodology, testbed resources 
and empirical knowledge has been reused from previous projects at FFI, in particular the New 
Frigate project. 
 
The main aim of this work is to present a set of recomedations to system level  (otherwise 
known as the System Segment Specification – SSS in the Fridjof Nansen class frigate 
program) level requirements that capture these inherant and accidental issues of risk. 

2 PROBLEMS WITH COMMERCIAL TECHNOLOGY 

2.1 Problems with COTS 

The combat system (CS) of the future submarines will be comprised of a mixture of  
traditional military technology and COTS (Commercial of The Shelf) information technology.  
 
The overall system architecture can be defined as being a distributed collection of 
communicating and collaborating sub-systems with a great variety of communication 
technologies and protocols. These represent a distributed system, which need to support the 
desires levels of integration across the sub-systems (which we call “horizontal integration”). 
 
We maintain that the presence of a mixture of real-time bounded (of both hard and statistical 
“soft” type) and non real-time communication requirements will require the system to support 
QoS (Quality of Service) in every layer of the system software and hardware. The proper 
support of QoS in every layer and the proper integration between them (we call this “vertical 
integration”) is paramount to be able support QoS at the system level. 
 
Building distributed combat systems is a difficult task considering the lack of advanced 
network functions in the operating systems and the sheer heterogeneity of the combat system 
as a whole.  
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One common and established way to automate the daunting process of integrating applications 
horizontally across such heterogeneity of technologies with different performance profiles is 
through the use of object-oriented middleware. This has the overall aim of hiding the 
heterogeneity to the top application layer. Many such standards exist, such as CORBA, Java 
and Microsoft DCOM. CORBA is the technology of choice for  parts of the combat system of 
the Fridtjof Nansen class new frigates.  
 
One problem, which has been widely discussed, is that the most common off-the-shelf 
operating systems, network technologies etc do not support time sensitive data transfer. 
Therefore the middleware most often do not either. However have examined the available QoS 
support in CORBA integrated with ATM and general purpose operating systems in order to be 
able to evaluate this architecture.  
 
The prevailing argument for using COTS is that optimal cost / effectiveness can be obtained 
using “internet” based operating systems, general computing hardware and network 
technologies. Also, in the application domain, COTS high-level languages, approved methods 
and processing paradigms (such as object-oriented or agent / component based models) this 
thinking is also valid. 
 
However, experience show that the suitability of a given COTS technology can be 
questionable to say the least. In general COTS technologies have been designed for a specific 
civilian market. Applying such technologies into a military mission-critical distributed 
architecture is non-trivial. 
 
Proper attention must be given to this concern and appropriate measures must be taken in the 
shaping of the requirements before any acquisition can be made. Safeguards for our specific 
functional requirements must be generated, and proper analysis and modelling of any tender 
must be performed. 
 
This study will show that the most critical issue is the implementation of QoS ability at system 
level as a means of supporting the required real-time requirements. Such abilities govern the 
overall real- time response and exchange of information between nodes in the system is vital. 
Failure in this respect will result in systems that can be unstable over time, fail to meet 
operational requirements (for instance in time-critical modes such as torpedo self-defence) due 
to high latency or jitter and become unable to fully exploit the potential of expensive resources 
(such as radar, sonar or sensor systems) due to the bottleneck created in the distributed 
communication system. 
 
The ability to guarantee application end-to-end QoS relates to the ability at all levels of the 
system (application domain, operating system, middleware system and hardware resource and 
network domain) to simultaneously enforce such capabilities. Failure at one level will 
invariably result in failure of QoS at the system level. This has been the principal shortfall of 
most of the architectures that have been examined during this study. 
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System level QoS can be measured in the following dimensions: 

�� application type (synchronous, "burstyness", time-critical, mission-critical 
requirements) 

�� information type (audio, video, hard real-time, statistical or "soft" real-time bounded 
communications) 

�� application and user specific requirements (battle resilience, support of legacy 
resources) 

 
The "system" infrastructure (comprised of the operating system, middleware and network 
technologies) should form a single distributed system and provide QoS for each and every 
information exchange. The future trend is towards "adaptive" capabilities where such 
exchanges are negotiated according to the connection's QoS requirements and provided 
dynamically by the system.  
 
Finally, COTS technologies have several non-functional concerns intrinsic to their use. The 
lifespan of a given COTS product follows the cycles and dynamics of the civilian information 
technology markets. These are rapid and very difficult to track with any degree of accuracy. 
Typical life spans are from 18-24 months to a few years at best. Spare parts become very 
difficult or even impossible to obtain shortly after that. Even the standards that these products 
may be designed according to evolve.  
 
Writing requirements for and ensuring a lifetime support environment for systems made from 
such components is a major concern. The principal motivation behind the introduction of 
COTS into military mission-critical distributed systems was to save cost. Yet if this is to be 
achieved over the expected lifespan of the system (often more than 15 years) and not actually 
increase cost compared to the traditional military specific technologies, draconian measures in 
acquisition, maintenance, update and generating specifications must be taken.  
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2.2 Combat system special requirements 

The following table shows what types of data and information are exchanged in a typical 
combat system.  
 

Main category QoS parameters Stacks Example 
Tactical 
information 

Small packages 
Real-time bound 

Narrow bandwidth 

Middleware Track databases 

High-volume 
information 

Upper time-limit 

Soft real-time 

High bandwidth, main burst 

Middleware  
server/client database 

Navigation chart data 
Classification data 
Sensor data 

Non-realtime Desirable with upper time limit 

Should extract every possible 
available resource left at any 
one moment 

Internet protocols 
Server services 

Encyclopedic look-up 

FTP functionality, user 
initiated 

NFS file store 
Asynchronous 
service tasks 

Routine or action related 
service functions 

No real-time requirements 
associated but operation should 
not inflict performance loss on 
other types of traffic 

Internet protocols 
Middleware 

Log copying 

Backup 

Table 2.1.  Properties of data exchange message types in combat systems. 

2.2.1 The “Best effort” methodology 

 
This is a simple method often preferred by the manufacturers of commercial non-time sensitive 
products. It has the critical fault  that it makes no assumptions on critical issues of time-
sensitivity. Basically, it is a simple analysis of  each requirement in terms of how much 
bandwidth (measured in bit/s) each connection across the system will require. This is 
numerically compared against the (often theoretical) capacity of the interconnect it is to be 
implemented. As long as there is “sufficient margin” the assumption is that the system will 
comply with all requirements. 
 
The main fault in this methodology is that the a system designed according to this 
methodology do not have any mechanisms to differentiate between relative priorities of the 
traffic that has to share common hardware, such as computer resources and network (LAN).  
 
The “Best Effort” approach do not take into consideration problems of time-sensitivity in the 
communication between sub-systems or COTS technology bottlenecks in the system. These 
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are due to non-linear and undeterministic conflicts reducing available bandwidth as all 
resources are shared equally.  
 
Problems in the true situation is often not possible to detect until a late system integration test. 
Any approval of the design by the customer must therefore be made conditional to successful 
system integration tests and exhaustive data load analysis (made to the system level, not 
isolated to each sub-system) to critical design review, with a draft showing the scope to 
principal design review. 
 
It is very difficult if not impractical to correct the system if the prior analysis is wrong. This 
will require system redesign. It may work if the data load is appropriate to the system hardware 
and software. 
 
A practical demonstration of the entire system is very often impractical as such a facility will 
not exist at critical design review. If the customer then has “agreed” to the concept of the 
system integrator changes later may be costly. 
 
This approach is used mainly in older systems where the true real-time and high-volume (such 
as video) connections are isolated from the tactical data traffic to make the system workable. 
Thus, the level of integration is low.  
 
Most systems designed according to this principle for the customer has experienced problems 
which are seldom caused directly to the original analysis but rather to later additions and 
problems with some sub-systems interaction. Thus the responsibility is very difficult to place 
on the original system integrator since there is no direct functional link between the causes of 
unstability and the contractual requirements. 

2.2.2 Quality-of-service enabled middleware methodology 

Will enforce bandwidth and latency requirements by design. This is done by implementing 
specific features which allocates resources and ensures that each and every communication 
requirement is handled in a timely fashion. 
 
Such mechanisms, although not replacing true real-time systems enables higher utilisation of 
existing systems and makes predictions and analysis of system behaviour possible. By 
enforcing QoS the system integration is made easier as performance prediction is made 
possible at an early stage identifying any problems. 
 
Appropriate emphasis must be placed on system integration, and how the various QoS 
mechanisms in each layer connects to each other. 
 
Connections spanning heterogenous technologies (due to sub-systems from different vendors) 
may have difficulty in connecting each QoS mechanism in each layer. This is like a chain 
which needs to be unbroken to work. 
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It is possible to predict how such a system will behave even at high utilisation of the hardware 
provided an accurate data load can be provided from the requirements. Potential high risk 
issues can therefore be detected prior to critical design review from paper analysis only. 
It is also possible to predict how future upgrades will impact on the systems behaviour. 
 
This is a new approach that is used in modern distributed systems at varying degrees. 
Complete packages to implement QoS at various levels defined according to data traffic, or 
service classes are proposed and implemented by most network technology vendors. Industry 
standards are implemented as well. 
 

 “Best Effort” “QoS Enforcement” 
Method Simple analysis of numercial bandwidth 

requirements. 
Requirement specifies what quality of 
service it require, in terms of bandwidth, 
latency tolerated, error rate acceptable 
and security level. The infrastructure has 
mechanisms that enforce and guarantee 
that these are fulfilled. 

Critical 
Issue  

Lack of real-time and time sensitivity 
requirements of sub-systems and issues 
across sub-systems.  

Must include end-to-end perspective and 
include connections across sub-systems. 
True performance is a function of system 
load and this is notoriously difficult to 
predict. 

Simple analysis of what quality of 
service mechanisms are to be used, and 
how they interact. 

Risk 
Assesment 

High, due to integration problems which do 
not appear until late system integration. 
Notoriously difficult to predict performance.
Very difficult if not impractical to correct 
after completion as it lacks fundemental 
mechanisms to adress time sensitiviness and 
priorities in general. 

Low, since the system enforce the 
application quality of service 
requirements. 

Example Example includes KDA MSI-3100, KDA 
MSI-2005 (as used in the frigates). This was
the typical approach of older combat system 
architectures. True real-time traffic was 
seldom implemented in the same network 
but required special technologies. 

 
Most new generation combat system 
architectures implement some form of 
this methology. 

Table 2.2.  Differences between the two most used system designs. 
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3 COMBAT SYSTEM ARCHITECTURE BOTTLENECK ANALYSIS 

3.1 Architecture definition 

The 7-layer OSI reference architecture will be used to represent a typical COTS distributed 
system.  
 

Level Role Generic 
technology 

As used by 

OSI 5,6,7 Operating system and application interface Solaris 8 

Linux 

KDA in MSIFC / NF 

As proposed by NATO 
ANEP 56 

OSI 4,5 Support efficient, scalable, and automated 
support for interacting of applications 
across heterogenous networks. 

CORBA KDA in MSIFC / NF 

OSI 4,5 Support efficient, scalable, and automated 
support for interacting of applications 
across heterogenous networks. 

Java / Jini KDA in consoles / NF 

OSI 3 Support and setup connections across a 
network. 

Transport protocols
(TCP, UDP) 

  

Internet protocols 
(IP version4) 

OSI 2 Provide network interconnectivity Ethernet 
ATM 

 

Table 3.1.  Main layers of the combat system architecture. 

3.2 Principal bottlenecks 

CORBA is a popular middleware technology providing support for a distributed application 
(supporting the object-oriented paradigm) and distribution. It has been available commercially 
since the early 1990s  and has been widely proposed as basis for the integrated weapon system 
in Modernised Hauk (by DCN) and “National World” for the future submarines (by KDA). 
 
Research at FFI and collaborative research has provided a deeper understanding of the 
performance issues in CORBA based distributed systems. In general many have experienced 
latency and scalability problems with the earlier CORBA releases, and questions regarding its 
support for low-latency and QoS have been raised. These questions have given cause for 
concerns regarding the suitability of the commercial CORBA implementations for use in 
mission-critical, real-time or delay sensitive and in high-performance systems.  
 

 
   

The main aim of the evaluation was principally to validate a set of benchmark issues 
developed by research partners (at the Applied Research Laboratory, Washington University in 
USA) of performance bottlenecks in commercial ORB middleware technologies using a 
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relevant military data load, and secondly to test the list of proposed optimisations using the 
TAO experimental real-time CORBA compliant middleware. 
 
This approach would validate the current research on commercial distributed application 
domains for mission-critical distributed applications, and secondly through the TAO 
middleware provide a foundation for identifying what qualities and requirements had to be 
placed on the actual middleware that were to be used in the integrated weapon system. 

3.3 CORBA Middleware Performance Overhead 

 
Previous research into middleware performance overhead has focused on the throughput 
performance issue. These were performed by transferring large amounts of data across 
networks using "flooding techniques". Such tests are not very relevant to determine 
performance abilities for military time-critical distributed systems as they miss the special 
requirements these systems have. 
 
Yet they can show fundamental bottlenecks of the system and is a useful tool to gain a quick 
picture of the systems capabilities. We performed a simple flooding test first and followed this 
with proper real-time benchmarks exercised with a realistic data load. 

3.3.1 Experimental Testbed Set-up 

 
 The testbed “TDF” (Technology Demonstrator Facility) was designed to be able to perform 
experiments on COTS middleware and network technologies in realistic combat system 
domain applications. Realistic emulations of actual sensors and QoS requirements provide an 
environment from which empirical knowledge can be accumulated. This is a particular 
efficient method when considering complex COTS technologies. 
 
The following technologies were provided in the TDF for these tests. 
 
Traffic Generator             COSSIM v0.7 (see text) 
Operating Systems  Solaris 2.6, Linux (kernel 2.2.14 and 2.3.99), Windows NT4.0 
Middleware Technology TAO 5.0 (CORBA v2.4 compliant), RT CORBA 1.0 compliant
Network Technology  WUGS-20 2.4Git/s 2 8x8 ATM switches 
                                                3Com 24-port 10/100 Mbit/s Fast Ethernet switch 
Network Interfaces (NIC) 3Com 3c905 10/100Mbit Fast Ethernet 
    STS Technologies 1.2Gbit/s APIC ATM 
    Efficient ENI-155 155Mbit/s (OC-3a) ATM (2Mbytes RAM) 
Basic Host/Node Hardware 9x 266MHz Pentium PC, 2x UltraSPARC 2, 1x SGI Indigo 2 

Table 3.2.  Testbed Technologies. 

The COSSIM v0.7 traffic generator has been developed at FFI as part of the MULTE research 
program. It simulates the application and sensor loads of naval combat systems according to 
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specific real-time and QoS specifications. It runs on top of the CORBA (v.2.4) middleware, 
and has so far been implemented only on ACE TAO 5.0 CORBA. 

3.3.2 Traffic Generators 

Two kinds of traffic generators were used to emulate the application domain : 
�� standard “flooding models” transferring untyped and richly typed byte stream data 

between several hosts using CORBA and lower-level mechanisms like BSD sockets, 
�� specific application end-to-end generator applying a realistic military combat system 

data load using a specific range of data types and packet sizes, whilst checking each 
and every transfer for violations of the specific real-time requirements. 

 
The flooding model is the customary way to measure network and system throughput in 
systems, which have no real-time requirements. They often give misleading performance 
figures as the real-world behaviour is a function of many aspects not applied. For instance, 
real-time & time-critical requirement issues and data granularity will influence on what 
bandwidth the system can actually deliver. 
 
To be able to evaluate any COTS component the second approach must be used. Both methods 
are available in the COSSIM traffic generator tool generated at FFI as part of the MULTE 
research program. It detects violations of defined QoS requirements in the systems by 
monitoring all data traffic.  
 
Standard methodology from collaborative research and from original work has been used as 
basis for tests in which specific QoS requirements relevant for mission-critical distributed 
systems have been applied. Violations of QoS have been detected during long and repetitive 
testing and data that arrives too late are flagged as invalid. 
 
Realistic and “worst case” traffic patterns were applied from application level, and all 
measurements were done from an application-to-application level. 

3.3.2.1 Parameter Settings 

Related research on transport protocol performance over ATM has identified the impact on 
performance of a number of parameters that can be applied. 
 

�� Socket Queue Size. The sender and receive socket queue windows were set to “small” 
(1 Kbyte), “standard” (8Kbyte) and “large” (128Kbyte). The size of this window has 
been shown to significantly impact on the size of the TCP segment window. In turn this 
has been shown to significantly impact on CORBA-level and TCP-level performance 
on high-speed networks. 

�� TCP “NO DELAY” flag option. TCP provides an algorithm (Nagel's Algorithm), which 
prevents small packets to be sent before acknowledgment of a previous send has been 
received. Small requests are buffered until such an acknowledgement has been 
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received. Generally, the flag is set for small packages in time-critical situations, but 
every test in this study was run with and without this setting. 

�� Data Package Size. A wide range of sizes in bytes were selected in flood-fill scenarios, 
in increments of 1, 10, 100 and 1000 bytes for the ranges of 1 through 999 bytes, 1000 
through 10000 bytes and 10000 through 64000 bytes respectively. For the specific QoS 
tests appropriate data package sizes relevant to the scenario was used. In addition 
latency was measured on remote operation invocations, which had no parameters.  

�� Numbers of Servants. Increasing the number of servants on the serves increases the 
overhead associated with de-multiplexing the server has to perform to send the 
incoming requests to the servants. A range of servants was used to measure latency and 
overhead in these operations (1, 100, 200, 300, 400 and 500) on the server. 

3.3.2.2 QoS Support in the CORBA v2.4 standard 

The previous published standards of CORBA up to and including v2.3 lacked proper 
mechanisms for implementing QoS. Specifically it lacked features that allowed applications to 
allocate, schedule and control key processor and networking communication resources 
necessary to avoid resource congestion.  
 
The CORBA v2.4 introduced the Real-time CORBA (RT CORBA) specifications and the 
Messaging facility, which support many of the lacking features. The RT CORBA specification 
defines interfaces for managing the processing and network communication resources. The 
Messaging facility defines asynchronous and QoS frameworks. 
 
These additional features are outlined in the table below. 
 
QoS Feature Functionality 
Processor resources thread pools, priority mechanisms, inter-process 

mutex, global scheduling service 
Communication resources protocol properties, explicit bindings 

Table 3.3 CORBA v2.4 Support for QoS. 

3.3.2.3 QoS Support in the ATM network technology 

QoS has a very specific meaning in the ATM world, and is defined by the ATM Forum 
organisation. This organisation maintains the ATM standards and is an open industry 
collaborative effort.  
 
ATM was designed from the outset to support telecommunication voice and video services 
with stringent latency, jitter and bandwidth requirement on a connection point-to-point 
topology.  
 

 
   

The ATM Forum defines QoS at a low level in the architecture stack (corresponding to OSI 
Layer 2) in the LANE (LAN Emulation) method of combining IP over ATM. Connections can 
be made to any other node with specific QoS patterns (a pre-defined mode and appropriate 
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parameters applied. These are enforced in the network by allocating appropriate resources for 
the required period of time. This requires specific signalling protocols and mechanism for 
implementation. For this reason ATM is relatively more expensive than Ethernet technologies. 
 
The modes are as follows : 
 
Mode Intended Use Requirement Notes 
CBR Delay/jitter time sensitive Fixed and continously 

available amount of 
bandwidth for the duration of 
the connection 

Specified in Peak Cell 
Rate (PCR) of the 
connection 

rt-VBR Varying amounts of 
bandwidth with strong 
regulated delay and jitter 

Traffic that is bursty in 
nature. For instance real-time 
voice and video 
conferencing. 

Specified by the Peak 
Cell Rate (PCR), 
Sustainable Cell Rate 
(SCR), and burstyness 
by Maximum Burst 
Size (MBS) 

nrt-VBR Same as for rt-VBR but 
with no requirement for 
time sensitiviness 

Examples : Non-real time 
voice and video. 

 

ABR Low cell loss, guaranteed 
min and max bandwidths 
but no critical delay or 
jitter time sensitiviness 
requirements 

 Specified by 
minimum Cell Rate 
(MCR) and Peak Cell 
Rate (PCR). 

UBR Applications that use the 
network on a “best effort” 
basis. 

Examples are email and ftp 
file transfer. 

No service guarantees 
for cell loss, delay or 
jitter variations. 

 
As can be seen ATM supports stringent QoS requirements (CBR, rt-VBR modes) and “best 
effort” type (like Ethernet) modes (UBR). 

3.3.2.4 QoS support in Ethernet network technology 

Ethernet is designed for a “best effort” paradigm on a connectionless basis. This makes 
Ethernet difficult to use in real-time systems for two reasons (1) every connection will 
consume all available bandwidth as there is no mechanisms for allocating resources to a 
specific connection, and (2) it is impossible to avoid network congestion and transient 
overloads. 
 
In Ethernet QoS has to be implemented at a higher level in the OSI Reference model. One such 
method is the Differential Services (DiffServ) implementing different services with different 
priorities. However, it requires that all participating nodes on the system enforce this standard 
as it has no QoS guarantees for the layers below. It is therefore possible that one unruly node 
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can consume all available bandwidth and seriously break system real-time bounds by ignoring 
the DiffServ mechanism. We did not test any such QoS on Ethernet method but this, clearly, 
should be carried out as future work as this technology will continue to be available in the low-
cost end of the market.  

3.4 Analysis of ORB end-to-end performance overhead 

 
One study into the system behaviour of CORBA has recently been performed and published by 
Boeing (3) in collaboration with several other US research institutions. Many in the defence 
industries have used this study extensively. However, this study has focused on real-time 
CORBA’s for use in essentially standard non-real time application domains and specifically it 
does not include end-to-end testing and real-time performance testing. 
 
Considering the simple benchmark test performed using flooding techniques (see below) one 
can clearly see the disappointing levels of performance. The network layer has a high signal 
bandwidth (1.2Gbit/s with WUGS-20 ATM and 100 Mbit/s using Fast Ethernet) at the network 
layer but only a fraction of this is apparent to the application layer. It is also dependent on the 
size of the application information packages. Small packages fare significantly worse than 
large ones. Typically, for a 64-byte package only 2-5% of the signal network layer bandwidth 
is available to the application layer. 
 

APPLICATION LAYER

   MIDDLEWARE
         LAYER
(Enhanced CORBA)

CONFIGURABLE
PROTOCOL STACK

NETWORK LAYER

NETWORK PROTOCOL

APPLICATION LAYER

   MIDDLEWARE
         LAYER
(Enhanced CORBA)

CONFIGURABLE
PROTOCOL STACK

NETWORK LAYER

NETWORK PROTOCOL

Network efficiency
      bottleneck

Throughput preservation
          bottleneck

Lack of QoS bottleneck

 

Figure 3.1 Principal bottlenecks in modern distributed systems and principal reasons for 
performance loss. 
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The reasons for performance loss is a complex one, and needs to be analysed properly 
spanning the entire system domain. This must include all the principal layers of the distributed 
architecture. One principal reason of such performance loss is the general non-determinism in 
the OS and in application service priority inversion issues resulting from lack of QoS 
capability in any of the system layers. This is known as the “lack of QoS bottleneck”. 
 
Most research in this field has focused on measuring and optimising the throughput of 
CORBA ORBs. This is relevant considering the principal commercial application domains and 
uses of distributed systems in general. It is not relevant for real-time distributed applications 
and for systems with specific QoS requirements. In such cases it is necessary to also measure 
latency, latency jitter (variance of latency over time for same repetitive task) and 
scalability/performance transparency performance. 
 
Experiments were set-up to determine the throughput, latency and scalability performance of 
an existing CORBA (version 2.4) compliant middleware based architecture with gigabit 
WUGS-20 ATM network technology. The main operating systems tested were Windows NT4, 
Solaris 2.6 and Linux (with 2.4.0 kernel).   
 
A set of real-time benchmarks developed for mission-critical systems by the Applied Research 
Laboratory (ARL) at the Washington University of St Louis, USA, was modified somewhat to 
reflect our data load patterns. These were compiled and run on the TDF using the ACE TAO 
(version 5.0) CORBA 2.4 and RT CORBA 1.0 compliant middleware technology, and the 
ARL WUGS-20 2.4Gigabit/s ATM switch. Comparative measurements were also carried out 
using a 100Mbit/s Fast Ethernet switch. 

3.5 Optimisations for high-performance ORBs 

 
The experimental work shows the limitations of commercial conventional ORB in terms of 
scalability and latency. The following possible optimisations have been explored to eliminate 
these bottlenecks in existing ORBs through research collaboration in several research projects 
at FFI. This work has been based on the open source ACE TAO (v5) CORBA v2.4 compliant 
middleware and with traffic generators relevant to military distributed combat systems. This 
work has been carried out at FFI. 
 
A survey of the relevant research obtained and documented in the MULTE project (original 
published research work, collaborative research and co-operation with several international 
research institutions) has identified the following areas of principal concern.  
 

�� Lack of integration with advanced OS and network features. Existing ORBs do not 
fully utilise advanced OS and network features.  

�� Non-optimal de-multiplexing strategies. Existing ORBs utilize inefficient and 
inflexible de-multiplexing strategies based on layered de-multiplexing. 
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�� Excessive data copying and intra-ORB calls. Existing ORBs are not optimised to 
reduce the overhead of data copies. In addition these ORBs suffer from excessive intra-
ORB functional call overhead.  

�� Inefficient presentation layer conversions.  
�� Non-optimised buffering algorithms used for network reads and writes. 

3.5.1 CORBA High-performance issues 

 
Based on collaborate research and on external research the following issue have been proposed 
as being key to latency in high-performance CORBA distributed applications. This issue 
became focus of special attention and is therefore documented here in more detail. 

3.5.1.1 Operation Invocation Strategies 

The way CORBA ORBs employs the OIS (operation invocation strategy) may be a cause for 
increased latency. The OIS determines whether requests are invoked by dynamic or static 
interfaces and if the client requests a reply or response from the server. 
 

(B) oneway dynamic invocation (A) oneway static invocation

operation(
IDL 

skeleton 
DI

SERVANTCLIENT

operation(
IDL 
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operation( IDL 
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IDL
stubs

SERVANTCLIENT 

operation(
IDL 

skeleton
IDL
stubs

SERVANTCLIENT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(D) twoway static invocation (C) twoway static invocation 

Figure 3.2Invocation strategies tested.  

The following OIS were measured and all are based on the CORBA specification. 
 

�� One-way static invocation. The client uses the SII (static invocation interface) stubs 
generated by the OMG IDL compiler. 

�� One-way dynamic invocation. The DII builds a request at run-time and uses the 
CORBA request class. 
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�� Two-way static invocation. The client uses the SII stubs for two-way operations 
defined in the IDL interfaces. 

�� Two-way dynamic invocation. The DII builds the request and blocks until the call 
returns from the server. 

 
Both average latency for 100 clients requests were measured and the latency jitter were 
calculated.  

3.5.2 Evaluation Results 

 
See appendix A for a complete overview of results. Only the highlights will be discussed in 
this section. 

3.5.3 Simple COSSIM Flooding Test 

 
Tests were applied across the distributed system with different packet sizes, socket windows 
sizes and with the NO-DELAY flag of the TCP protocol turned on and off. 
 
The results drawn from this test were as follows. See figure 3.3 for a simplified summary of 
the measurement. See appendix A for a full overview over measurements. The tests included 
free flooding throughput, latency, and variation in latency (called jitter). 
 

�� The available throughput is dependant on packet size and the available memory 
allocated to the socket window. Note the theoretical maximum throughput of TCP in 
figure 4.3 compared to the observed values. 

�� The effect of turning off the NO-DELAY flag (Nagels Algorithm) was noticable and 
predictable. Since small packages are less efficient across a network, the Nagels 
algorithm buffers these at the sender side until a large packet can be transmitted. This 
increase throughput but an undeterministic wait as a consequence. 

 
The main conclusion is that the network technology do not “deliver” its theoretical peak 
performance for smaller packets. This must be borne in mind when evaluating theoretical peak 
performance of technologies such as Ethernet, Fast Ethernet and 155Mbit/s ATM. Note that 
we used Classical IP (CLIP) as the IP layer for ATM. 
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Figure 3.3   Summary of free flooding results on the  throughput test on 100Mbit/s Fast 
Ethernet. See appendix A for detailed measurements. The TCP (Transport 
Communication Protocol) and IP was used with varying numbers of socket 
windows (“small” at 2K, “medium” at 8K and “large” at 128K respectively). 
NO-DELAY flag is set. 

3.5.4 Real-time COSSIM test with realistic data load  

The real-time tests, and optimisation tests are documented in Appendix A. Basically, these are 
the validation basis for our conclusions below. 
 
These tests show that existing commercial CORBA v2.4 compatible middleware even with 
QoS capable network solutions (ATM) do not yet have the required level of real-time support 
for distributed applications in those cases where many objects are involved. They may work in 
small configurations, but scalability is poor and violates the real-time requirements with even 
medium sized systems. Employing the RT CORBA 1.0 standard and suitable QoS capabilities 
in the operating system and network technology did provide significantly better latency and 
jitter results for our data loads. 
 
Three principal conclusions can be drawn from these tests. 
 

�� This validates the conclusion of our research partners for mission-critical military 
distributed architectures. It does however highlight the fact that the issues of real-time 
performance are worse for our case.  

 
�� The test of the TAO middleware based optimisations do however, show that system 

level QoS requirements can be met with existing COTS technology if certain 
optimisations are employed. The problems were most serious in the real-time domain 
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where the margins for capacities and available bandwidths were small. This implies 
that proper attention to system integration analysis of QoS and real-time performance 
must be performed to ensure success. 

 
�� The tests also show that without optimisations, or with unsuitable choices of 

commercial COTS components (operating systems, middleware, network 
technologies), or inappropriate vertical integration between them, systems will not 
perform according to intentions. There are qualities bound to principal internals of the 
system (like for instance the process / thread scheduler or inefficient data copying 
internally) and would require replacement rather than later stage modifications.  

3.6 Discussion of results 

 
See Appendix A for actual plots of the results. As can be seen in figure 3.3the throughput of 
data measured at the application level varies according to the size of the message being sent 
from one application to another  through the various system layers. Messages below 1000 
bytes in size perform significantly poorer than bigger messages. This is due to inefficiencies of 
the various underlying system layers the message has to transverse. 
 
As most messages in a combat system are between 16 and 64 bytes this is a serious concern. In 
figures A1.1 and A1.2 multiple messages are exchanged simultaneously.  Turning off the 
Nagel’s algorithm in the socket layer will improve throughput (as short messages are 
accumulated into a bigger one before being sent toimprove efficiency) but this will leave the 
message in a system message queue until sufficient small messages have been accumulated. 
 
This may be unaccceptable in many time sensitive situations but the effect off turning this 
mechanism off (in effect trading less throughput for better latency) is shown in figure A1.4. 
Note that for small messages below 256 byte the performance is only a fraction of the 
theoretical throughput. In no situiation could the network “deliver” the maximum signal level 
100 Mbit/s rate.  
 
Note the effect on setting socket buffer sizes in figure A1.3 which show a much better 
performance than for smaller socket sizes (figure A1.1 and A1.2) if the socket size is set to 128 
kbyte.  
 
Similar measurements for ATM networks are shown in A2, and note in particular A2.2. Such a 
poor performance is typical of “real-life”  situations. Only 1 % of the theoretical performance 
of the network is available to the application. 
 
The corresponding latency (in section A3) and variance in latency (section A4) is also 
included. 
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3.7 Recommendations 

 
The results obtained verified the performance under realistic military loads of commercial and 
open CORBA compliant middleware for distributed systems. The following principal 
dimensions of behaviour were measured : 

�� communication performance (bandwidth/capacity, latency, latency jitter) 
�� priority inversion 
�� non-determinism in operations and services 

 
The test system was based on previous and collaborative research work through the MULTE 
research project, adapted to the military data load defined for  these tests. The results of these 
tests differ therefore from the generic tests they are based upon for this reason, yet they do not 
entirely invalidate them for our specific need.   
 
Based on these experiences and the tests performed specifically for the submarine project at 
FFI the following three recommendations are made for the performance, behaviour and 
capabilities of any candidate of  (COTS based) time sensitive operating system and 
middleware solutions. 
 

�� The time sensitive operating system must provide functions for low-latency, 
deterministic context switching / scheduling capabilities. The tests show that high-
latency and high jitter can significantly degrade the ORB performance and 
predictabilities. System calls can incur significant overhead with threaded kernels when 
performing process and thread context mode switching. 

 
�� The time-sensitive operating system and middleware must support QoS specifications 

and should have support throughput for enforcing such specifications. Real-time 
applications often specify their requirements for QoS in quantifiable terms (such as 
required CPU processing, computation time and periods. In addition the OS should 
have the ability of allowing enforcement of application domain end-to-end QoS. Note 
that real-time ORBs cannot provide such application end-to-end QoS unless proper 
networking support exists for QoS, such as the ATM network technology. 

 
�� The real-time operating system should support priority inheritance protocols. 

 

3.7.1 Emerging technologies 

The traditional goal of middleware is to mask out problems of heterogeneity and distribution 
for application developers. With the emergence of new application domains like multimedia 
and real-time / time-critical applications the flexible support of QoS and real-time 
requirements becomes a major challenge. 
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Middleware has emerged as a central architectural component in supporting distributed 
applications and services. The role of the middleware is to present a higher level of 
programming paradigm for application writers (typically object-oriented or component-based) 
and to mask out the problems of heterogeneity and distribution. In application domains where 
the application itself represents a major part of the cost-driving technologies ensuring a long 
lifespan is essential.  
 
This applies in particular to the defence domain where the application level runs into millions 
of lines of high-level code. Much of the infrastructure is comprised of COTS technologies 
(such as operating systems and networks), which have short lifespans. The middleware layer 
then serves as an abstract layer to support rapid porting of the existing (often obsolescent) 
application layer over the ever-changing COTS infrastructure. 
 
However the market for middleware is rapidly changing. For example there is increasing 
demand to apply middleware technologies in a wider variety of application domains including  
 

�� real-time and time-critical systems 
�� embedded systems 
�� extreme mission-critical and / or fault-tolerant systems 
�� distributed multimedia systems 
�� mobile systems 

 
In this context, flexible and extensible QoS and real-time support is one of the major 
challenges. These two capabilities are important because research have shown that a single 
fixed middleware solution (of current technologies) will not be able to support the following 
requirements that are imposed by the new application domains : 
 

�� Dynamic QoS support. Applications should be able to specify their QoS requirements 
and to dynamically change them. The middleware should provide the requested QoS 
and be able to adapt to changes in application requirement, resource availability and 
dynamic changes in the infrastructure (a physical change to the system through battle 
damage for instance). 

�� Evolution of QoS requirements. New media types and new applications might 
introduce new QoS characteristics. In order to support these new requirements, QoS 
management in the middleware must be extensible. 

�� Transparency versus fine-grained control. Developers of application components and 
users should be able to define QoS requirements in high-level (application level) 
terminology as well as in low-level system parameters to directly influence the 
configuration of the middleware and resource allocation and re-allocation depending on 
operation mode and availability of resources at any given time. 

�� Policy control. The middleware should enable end-users, application developers and 
system managers to specify policies for QoS mapping, negotiation, monitoring, 
adaptation and so on. For example a policy might be used to express that in case the 
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quality of a connection should be degraded, adaptation is done by reducing the quality 
of some aspect, but keeping others according to defined reduced-quality levels (for 
instance reducing the resolution but not the frame update rate of a sensor video 
connection across a damaged network). 

�� Support for seamless system evolution. The integration of new components in the 
middleware should not require re-compilation or changes of existing components and 
middleware entities. This must also be true for components that encapsulate resources, 
i.e. API's to network and other resource services. 

 
Through research at FFI it has been the experience with flexible protocol configuration that the 
above requirements cannot be solved only by dynamic (re-)configuration of communication 
protocols. Additionally, flexibility in establishing and managing bindings is necessary. 

 
   



 27  
 
 
 

SSS Requirement What to look for Acceptable Not-Acceptable Verification requirement 
Formal definition of technical
terms such as end-to-end 
quality-of-service (QoS) and 
its metrics and verification 
methology. Also define what 
involves in the term “max 
load” according to the 
system functionalities. 

 Formal definition of the term 
QoS, and every term used in 
it. Must have formal 
referances that can be 
verified and the suppliers of 
any COTS technology used 
must document to which 
degree they are compliant 
and to which they are not. 

The definition must be 
unambigous and measurable, 
as it forms the legal 
interpretation of all 
subsequent requirements in 
this area. 

Any formal definition as used
by COTS manufacturers as 
long as they state to which 
degree they are compliant. 
This must be traced through 
every layer of the architecture
and especially with 
functionally similar but 
heteregenous technologies. 

 

 

Assumption on behalf RNoN 
that technical terms without a 
formal definition is 
understood by manufacturer. 
Most technical terms can be 
defined in one of many ways. 

Definition must include how 
it is to measured, where it is 
to be measured, how it is to 
be measured with reference 
to the OSI 7-layer reference 
stack. 

All data flow in external 
(specified in IDS) and 
internal data exchange must 
be specified in QoS terms. 

Examination of the definition 
and acceptance by expert 
body.  

System behaviour Mechanisms in the 
infrastructure that enforce 
desirable behaviour. If this is 
implemented across 
heterogenous technologies in 
layers then it is neccessary to 
know which enforcement 
mechanisms are employed, 
and how they interact to 
ensure end-to-end (wrt QoS 
defintion) desirable 
performance 

Irrespective of any other 
traffic, all functional 
requirements with QoS 
requirements related to the 
correct behaviour (wrt the 
QoS definition) should be 
independent on system load. 

Systems time response is a 
function of the total (even 
non-related) systems load 
imposed by applications, 
users and sensors on the 
system infrastructure (limited 
by the end-to-end as 
applicable to QoS definition) 

Analysis of architecture prior 
to design is frozen, including 
a data load which defines 
“max load” in terms of 
appropriate quality of service 
terms. 

Layered referance 
architecture. 

That the end-to-end 
perspective is layered in an 
appropriate way to illustrate 
what QoS mechanisms are 
implemented at each layer.  

The 7-layer ISO referance 
layer. 

Different models for different
sub-systems. 

 By analysis of design. 

Redundancy The database server is 
replicated. 

As resources of the 
infrastructure are removed 
the remaining resources 
should be able to reconfigure 
to restablish QoS on selected 
data paths according to 
prioritised functions. 

Proper redundancy.  A centralised system in 
which the absence of proper 
redundancy will means loss 
of other functionalities than 
those purely related to 
navigation. 

By analysis of design. 

System integration That the specification of the 
data paths end-to-end (wrt 
QoS definition) is not split 
into seperate IDS which 
splinter the responsibility of 
“end-to-end”. 

A complete index of data 
loads on an end-to-end basis 
(as relevant for the QoS 
defintiion) with QoS 
requirements for each and 
every path. 

Seperate index of data loads 
specified in IDS documents 
which has at their limits the 
various sub-systems of 
various third suppliers, and at 
a network / hardware level. 

Examination of the index of 
data loads by expert body to 
PDR and final version to 
CDR.  

Heterogeneity Multiple functions 
implemented with different 
(but functionally similar) 
technologies. 

The system integrator takes 
the issue of heteregonous 
technologies seriously for 
technical complexity reasons 
and for life cycle cost 
reasons. 

Justify the adoption of 
functionally similar 
technologies of different 
types when they are 
introduced. 

Functional similar 
technologies in the  system. 

Examination of the system 
architecture, and any 
justifications that the system 
integrator have for selecting 
multiple functional similar 
technologies at any level of 
the archietcture (ref referance 
architecture) at PDR. 

Table 3.5. Main system levelrequirement framework..
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4 CONCLUSION 

 
The SSS must have appropriate requirements to catch the inherent and accidental problems as 
exists with COTS. This study show that there exists bottlenecks at the middleware and network 
layers making “best effort” approach perilous at best. In addition there must be attention to 
how the various layers of the architecture are integrated. Loosely connected sub-systems and 
heterogeneity of functional similar technologies makes integration difficult. 
 
It is the experience of FFI that these issues are often understood by the manufacturers. 
However  they often seek to avoid to have to implement them. The principal problem is that 
they seemingly do not wish to do proper analysis and design work prior to freezing the system 
design (or  to comit to a complex design) and even at contract signing could not provide the all 
important “data load” specification of their system. Lack of suitable SSS requirements will not 
enable us to put sufficient pressure on the evaluation process.  
 
FFI strongly propose the inclusion of appropriate SSS requirements above those purely of 
functional nature. A proposal is included in table 4.1. 
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A.  APPENDIX 

A.1  Throughput Measurements for 100Mbit/s Fast Ethernet 
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Figure A1.1  Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to 
4 simultaneous socket based streams simultaneously. Socket window set to 1K. 
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Figure A1.2 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to 
4 simultaneous socket based streams simultaneously. Socket window set to 8K. 
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Figure A1.3 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to 
4 simultaneous socket based streams simultaneously. Socket window set to 128K. 
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Figure A1.4 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to 
4 simultaneous socket based streams simultaneously. Socket window set to 1K. NO-DELAY 
flag set to ON. 
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Figure A1.5 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to 
4 simultaneous socket based streams simultaneously. Socket window set to 8K. NO-DELAY 
flag set to ON. 
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A.2 Throughput Measurements for 155Mbit/s ATM over CLIP (Classical IP) 
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Figure A2.1 Throughput Measurement of 155Mbit/s ATM, and shows effect of varying the 
ATM MTU value from 527bytes, 8198bytes and maximum value allowed of 64Kbytes. NO-
DELAY flag is set to ON. 
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Figure A2.2 Throughput Measurement of 155Mbit/s ATM, NO-DELAY flag set and socket 
window set to “small” (2K), “medium” (8K) and “large” (128K). 
 

 
   



 33 

 

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

 TCP-ND 2K  TCP-ND 8K  TCP-ND 128K

 
Figure A2.3  Throughput Measurement for 155Mbit/s ATM with NO-DELAY flag set. Socket 
window set to “small” (2K), “medium” (8K) and “large” (128K). 
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Figure A2.4. Throughput Measurement for 155Mbit/s ATM with NO-DELAY flag set. Socket 
window set to “small” (2K), “medium” (8K) and “large” (128K). 
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A.3 Latency Measurements 
 

0.10

1.00

10.00

100.00

1 10 100 1000 10000 100000

Packet size (bytes)

La
te

nc
y 

(m
s)

1s-8k 2s-8k 3s-8k 4s-8k

Figure A3.1  Latency Measurement for 100Mbit/s Fast Ethernet, with 1, 2, 3 and 4 
simultaneous socket connections running. Socket window is set to 8K. 
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Figure A3.2  Latency Measurement for 100Mbit/s Fast Ethernet, with 1, 2, 3 and 4 
simultaneous socket connections running. Socket window is set to 128K. 
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Figure A3.3  Latency Measurement for 155Mbit/s ATM (with CLIP – Classical IP). NO-
DELAY flag set to ON and socket window to 128K. 
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Figure A3.4  Latency Measurement for 155Mbit/s ATM (with CLIP – Classical IP). NO-
DELAY flag set to ON and socket window to 2K. 
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A.4 Jitter Test for 155Mbit/s ATM 
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Figure A4.1  Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY 
flag set to ON and socket window size is 2K. 
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Figure A4.2 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY 
flag set to ON and socket window size is 128K 
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Figure A4.3 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY 
flag set to ON and socket window size is 8K 
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Figure A8.3 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY 
flag set to ON and socket window size is 8K 
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