

 FFI RAPPORT

 REQUIREMENTS ON SUBMARINE COMBAT
SYSTEM ARCHITECTURE

 MACDONALD, Robert Helseth

 FFI/RAPPORT-2001/05922

FFIE/771/132.1

 Approved
 Kjeller 17 december 2001

 John-Mikal Størdal
 Director of Research

REQUIREMENTS ON SUBMARINE COMBAT
SYSTEM ARCHITECTURE

MACDONALD, Robert Helseth

FFI/RAPPORT-2001/05922

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

 3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

 FFI/RAPPORT-2001/05922 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE
 FFIE/771/132.1 -
4) TITLE

REQUIREMENTS ON SUBMARINE COMBAT SYSTEM ARCHITECTURE

5) NAMES OF AUTHOR(S) IN FULL (surname first)
 MACDONALD, Robert Helseth

6) DISTRIBUTION STATEMENT

 Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
 IN ENGLISH: IN NORWEGIAN:

 a) Submarine a) Undervannsbåt

 b) Combat system architecture b) Kampsystem arkitektur

 c) Commercial off-the shelf c) Hyllevare teknologi

 d) Middleware d) Mellomvare

 e) Quality of Service e) Tjeneste kvalitet

THESAURUS REFERENCE:

8) ABSTRACT

The use of commercial off-the shelf (COTS) technologies in submarine combat systems introduce inherent and
accidental risks for serious failure to meet functional requirements. This has been the experience of the last 10-15 years
and have been subject to much research in the naval communities. The main problem arise from poor system
integration, technology heterogeneity and unsuitable COTS technologies. The problems are mainly associated with the
"infrastructure" of the system, including operating systems, communciation protocols and network (LAN) technologies.
In general, COTS technologies do not support the time-sensitive and mission-critical aspect of naval combat systems.
They are designed for commercial applications and in general for “best effort” approaches which have no notion of
“quality of service”. Bottlenecks in the various layers of the COTS technologies makes system performance almost
impossible to predict. Such issues can only be detected at system integration level. One approach to a better design can
be by specifying the functional requirements in quality of service terms and then implementing appropriate mechanisms
at the various levels of the architecture. This is the preferred method currently being researched at FFI and elsewhere.
This study makes some reccomendations to appropriate requirements to be able to catch such problems and presents an
analysis of them using the quality of service enabled architecture by using COTS middleware such as the CORBA
(Common Request Broker Architecture).
9) DATE AUTHORIZED BY POSITION

 This page only
17 december 2001 John-Mikal Størdal Director of Research

ISBN-82-464-0572-1 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

 5

CONTENTS
 Page

1 INTRODUCTION 7

2 PROBLEMS WITH COMMERCIAL TECHNOLOGY 7

2.1 Problems with COTS 7

2.2 Combat system special requirements 10
2.2.1 The “Best effort” methodology 10
2.2.2 Quality-of-service enabled middleware methodology 11

3 COMBAT SYSTEM ARCHITECTURE BOTTLENECK ANALYSIS 13

3.1 Architecture definition 13

3.2 Principal bottlenecks 13

3.3 CORBA Middleware Performance Overhead 14
3.3.1 Experimental Testbed Set-up 14
3.3.2 Traffic Generators 15

3.4 Analysis of ORB end-to-end performance overhead 18

3.5 Optimisations for high-performance ORBs 19
3.5.1 CORBA High-performance issues 20
3.5.2 Evaluation Results 21
3.5.3 Simple COSSIM Flooding Test 21
3.5.4 Real-time COSSIM test with realistic data load 22

3.6 Discussion of results 23

3.7 Recommendations 24
3.7.1 Emerging technologies 24

4 CONCLUSION 28

 Distribution list 39

 7

REQUIREMENTS ON SUBMARINE COMBAT SYSTEM ARCHITECTURE

1 INTRODUCTION

The work presentation in this study is the result of a brief investigation into the use of
commerciall off-the shelf (COTS) information technology in combat systems suitable for
future submarines. It is an initial attempt into establishing what requirements must be present
in order to avoid potential serious integration problems. The methodology, testbed resources
and empirical knowledge has been reused from previous projects at FFI, in particular the New
Frigate project.

The main aim of this work is to present a set of recomedations to system level (otherwise
known as the System Segment Specification – SSS in the Fridjof Nansen class frigate
program) level requirements that capture these inherant and accidental issues of risk.

2 PROBLEMS WITH COMMERCIAL TECHNOLOGY

2.1 Problems with COTS

The combat system (CS) of the future submarines will be comprised of a mixture of
traditional military technology and COTS (Commercial of The Shelf) information technology.

The overall system architecture can be defined as being a distributed collection of
communicating and collaborating sub-systems with a great variety of communication
technologies and protocols. These represent a distributed system, which need to support the
desires levels of integration across the sub-systems (which we call “horizontal integration”).

We maintain that the presence of a mixture of real-time bounded (of both hard and statistical
“soft” type) and non real-time communication requirements will require the system to support
QoS (Quality of Service) in every layer of the system software and hardware. The proper
support of QoS in every layer and the proper integration between them (we call this “vertical
integration”) is paramount to be able support QoS at the system level.

Building distributed combat systems is a difficult task considering the lack of advanced
network functions in the operating systems and the sheer heterogeneity of the combat system
as a whole.

 8

One common and established way to automate the daunting process of integrating applications
horizontally across such heterogeneity of technologies with different performance profiles is
through the use of object-oriented middleware. This has the overall aim of hiding the
heterogeneity to the top application layer. Many such standards exist, such as CORBA, Java
and Microsoft DCOM. CORBA is the technology of choice for parts of the combat system of
the Fridtjof Nansen class new frigates.

One problem, which has been widely discussed, is that the most common off-the-shelf
operating systems, network technologies etc do not support time sensitive data transfer.
Therefore the middleware most often do not either. However have examined the available QoS
support in CORBA integrated with ATM and general purpose operating systems in order to be
able to evaluate this architecture.

The prevailing argument for using COTS is that optimal cost / effectiveness can be obtained
using “internet” based operating systems, general computing hardware and network
technologies. Also, in the application domain, COTS high-level languages, approved methods
and processing paradigms (such as object-oriented or agent / component based models) this
thinking is also valid.

However, experience show that the suitability of a given COTS technology can be
questionable to say the least. In general COTS technologies have been designed for a specific
civilian market. Applying such technologies into a military mission-critical distributed
architecture is non-trivial.

Proper attention must be given to this concern and appropriate measures must be taken in the
shaping of the requirements before any acquisition can be made. Safeguards for our specific
functional requirements must be generated, and proper analysis and modelling of any tender
must be performed.

This study will show that the most critical issue is the implementation of QoS ability at system
level as a means of supporting the required real-time requirements. Such abilities govern the
overall real- time response and exchange of information between nodes in the system is vital.
Failure in this respect will result in systems that can be unstable over time, fail to meet
operational requirements (for instance in time-critical modes such as torpedo self-defence) due
to high latency or jitter and become unable to fully exploit the potential of expensive resources
(such as radar, sonar or sensor systems) due to the bottleneck created in the distributed
communication system.

The ability to guarantee application end-to-end QoS relates to the ability at all levels of the
system (application domain, operating system, middleware system and hardware resource and
network domain) to simultaneously enforce such capabilities. Failure at one level will
invariably result in failure of QoS at the system level. This has been the principal shortfall of
most of the architectures that have been examined during this study.

 9

System level QoS can be measured in the following dimensions:

�� application type (synchronous, "burstyness", time-critical, mission-critical
requirements)

�� information type (audio, video, hard real-time, statistical or "soft" real-time bounded
communications)

�� application and user specific requirements (battle resilience, support of legacy
resources)

The "system" infrastructure (comprised of the operating system, middleware and network
technologies) should form a single distributed system and provide QoS for each and every
information exchange. The future trend is towards "adaptive" capabilities where such
exchanges are negotiated according to the connection's QoS requirements and provided
dynamically by the system.

Finally, COTS technologies have several non-functional concerns intrinsic to their use. The
lifespan of a given COTS product follows the cycles and dynamics of the civilian information
technology markets. These are rapid and very difficult to track with any degree of accuracy.
Typical life spans are from 18-24 months to a few years at best. Spare parts become very
difficult or even impossible to obtain shortly after that. Even the standards that these products
may be designed according to evolve.

Writing requirements for and ensuring a lifetime support environment for systems made from
such components is a major concern. The principal motivation behind the introduction of
COTS into military mission-critical distributed systems was to save cost. Yet if this is to be
achieved over the expected lifespan of the system (often more than 15 years) and not actually
increase cost compared to the traditional military specific technologies, draconian measures in
acquisition, maintenance, update and generating specifications must be taken.

 10

2.2 Combat system special requirements

The following table shows what types of data and information are exchanged in a typical
combat system.

Main category QoS parameters Stacks Example
Tactical
information

Small packages
Real-time bound

Narrow bandwidth

Middleware Track databases

High-volume
information

Upper time-limit

Soft real-time

High bandwidth, main burst

Middleware
server/client database

Navigation chart data
Classification data
Sensor data

Non-realtime Desirable with upper time limit

Should extract every possible
available resource left at any
one moment

Internet protocols
Server services

Encyclopedic look-up

FTP functionality, user
initiated

NFS file store
Asynchronous
service tasks

Routine or action related
service functions

No real-time requirements
associated but operation should
not inflict performance loss on
other types of traffic

Internet protocols
Middleware

Log copying

Backup

Table 2.1. Properties of data exchange message types in combat systems.

2.2.1 The “Best effort” methodology

This is a simple method often preferred by the manufacturers of commercial non-time sensitive
products. It has the critical fault that it makes no assumptions on critical issues of time-
sensitivity. Basically, it is a simple analysis of each requirement in terms of how much
bandwidth (measured in bit/s) each connection across the system will require. This is
numerically compared against the (often theoretical) capacity of the interconnect it is to be
implemented. As long as there is “sufficient margin” the assumption is that the system will
comply with all requirements.

The main fault in this methodology is that the a system designed according to this
methodology do not have any mechanisms to differentiate between relative priorities of the
traffic that has to share common hardware, such as computer resources and network (LAN).

The “Best Effort” approach do not take into consideration problems of time-sensitivity in the
communication between sub-systems or COTS technology bottlenecks in the system. These

 11

are due to non-linear and undeterministic conflicts reducing available bandwidth as all
resources are shared equally.

Problems in the true situation is often not possible to detect until a late system integration test.
Any approval of the design by the customer must therefore be made conditional to successful
system integration tests and exhaustive data load analysis (made to the system level, not
isolated to each sub-system) to critical design review, with a draft showing the scope to
principal design review.

It is very difficult if not impractical to correct the system if the prior analysis is wrong. This
will require system redesign. It may work if the data load is appropriate to the system hardware
and software.

A practical demonstration of the entire system is very often impractical as such a facility will
not exist at critical design review. If the customer then has “agreed” to the concept of the
system integrator changes later may be costly.

This approach is used mainly in older systems where the true real-time and high-volume (such
as video) connections are isolated from the tactical data traffic to make the system workable.
Thus, the level of integration is low.

Most systems designed according to this principle for the customer has experienced problems
which are seldom caused directly to the original analysis but rather to later additions and
problems with some sub-systems interaction. Thus the responsibility is very difficult to place
on the original system integrator since there is no direct functional link between the causes of
unstability and the contractual requirements.

2.2.2 Quality-of-service enabled middleware methodology

Will enforce bandwidth and latency requirements by design. This is done by implementing
specific features which allocates resources and ensures that each and every communication
requirement is handled in a timely fashion.

Such mechanisms, although not replacing true real-time systems enables higher utilisation of
existing systems and makes predictions and analysis of system behaviour possible. By
enforcing QoS the system integration is made easier as performance prediction is made
possible at an early stage identifying any problems.

Appropriate emphasis must be placed on system integration, and how the various QoS
mechanisms in each layer connects to each other.

Connections spanning heterogenous technologies (due to sub-systems from different vendors)
may have difficulty in connecting each QoS mechanism in each layer. This is like a chain
which needs to be unbroken to work.

 12

It is possible to predict how such a system will behave even at high utilisation of the hardware
provided an accurate data load can be provided from the requirements. Potential high risk
issues can therefore be detected prior to critical design review from paper analysis only.
It is also possible to predict how future upgrades will impact on the systems behaviour.

This is a new approach that is used in modern distributed systems at varying degrees.
Complete packages to implement QoS at various levels defined according to data traffic, or
service classes are proposed and implemented by most network technology vendors. Industry
standards are implemented as well.

 “Best Effort” “QoS Enforcement”
Method Simple analysis of numercial bandwidth

requirements.
Requirement specifies what quality of
service it require, in terms of bandwidth,
latency tolerated, error rate acceptable
and security level. The infrastructure has
mechanisms that enforce and guarantee
that these are fulfilled.

Critical
Issue

Lack of real-time and time sensitivity
requirements of sub-systems and issues
across sub-systems.

Must include end-to-end perspective and
include connections across sub-systems.
True performance is a function of system
load and this is notoriously difficult to
predict.

Simple analysis of what quality of
service mechanisms are to be used, and
how they interact.

Risk
Assesment

High, due to integration problems which do
not appear until late system integration.
Notoriously difficult to predict performance.
Very difficult if not impractical to correct
after completion as it lacks fundemental
mechanisms to adress time sensitiviness and
priorities in general.

Low, since the system enforce the
application quality of service
requirements.

Example Example includes KDA MSI-3100, KDA
MSI-2005 (as used in the frigates). This was
the typical approach of older combat system
architectures. True real-time traffic was
seldom implemented in the same network
but required special technologies.

Most new generation combat system
architectures implement some form of
this methology.

Table 2.2. Differences between the two most used system designs.

 13

3 COMBAT SYSTEM ARCHITECTURE BOTTLENECK ANALYSIS

3.1 Architecture definition

The 7-layer OSI reference architecture will be used to represent a typical COTS distributed
system.

Level Role Generic
technology

As used by

OSI 5,6,7 Operating system and application interface Solaris 8

Linux

KDA in MSIFC / NF

As proposed by NATO
ANEP 56

OSI 4,5 Support efficient, scalable, and automated
support for interacting of applications
across heterogenous networks.

CORBA KDA in MSIFC / NF

OSI 4,5 Support efficient, scalable, and automated
support for interacting of applications
across heterogenous networks.

Java / Jini KDA in consoles / NF

OSI 3 Support and setup connections across a
network.

Transport protocols
(TCP, UDP)

Internet protocols
(IP version4)

OSI 2 Provide network interconnectivity Ethernet
ATM

Table 3.1. Main layers of the combat system architecture.

3.2 Principal bottlenecks

CORBA is a popular middleware technology providing support for a distributed application
(supporting the object-oriented paradigm) and distribution. It has been available commercially
since the early 1990s and has been widely proposed as basis for the integrated weapon system
in Modernised Hauk (by DCN) and “National World” for the future submarines (by KDA).

Research at FFI and collaborative research has provided a deeper understanding of the
performance issues in CORBA based distributed systems. In general many have experienced
latency and scalability problems with the earlier CORBA releases, and questions regarding its
support for low-latency and QoS have been raised. These questions have given cause for
concerns regarding the suitability of the commercial CORBA implementations for use in
mission-critical, real-time or delay sensitive and in high-performance systems.

The main aim of the evaluation was principally to validate a set of benchmark issues
developed by research partners (at the Applied Research Laboratory, Washington University in
USA) of performance bottlenecks in commercial ORB middleware technologies using a

 14

relevant military data load, and secondly to test the list of proposed optimisations using the
TAO experimental real-time CORBA compliant middleware.

This approach would validate the current research on commercial distributed application
domains for mission-critical distributed applications, and secondly through the TAO
middleware provide a foundation for identifying what qualities and requirements had to be
placed on the actual middleware that were to be used in the integrated weapon system.

3.3 CORBA Middleware Performance Overhead

Previous research into middleware performance overhead has focused on the throughput
performance issue. These were performed by transferring large amounts of data across
networks using "flooding techniques". Such tests are not very relevant to determine
performance abilities for military time-critical distributed systems as they miss the special
requirements these systems have.

Yet they can show fundamental bottlenecks of the system and is a useful tool to gain a quick
picture of the systems capabilities. We performed a simple flooding test first and followed this
with proper real-time benchmarks exercised with a realistic data load.

3.3.1 Experimental Testbed Set-up

 The testbed “TDF” (Technology Demonstrator Facility) was designed to be able to perform
experiments on COTS middleware and network technologies in realistic combat system
domain applications. Realistic emulations of actual sensors and QoS requirements provide an
environment from which empirical knowledge can be accumulated. This is a particular
efficient method when considering complex COTS technologies.

The following technologies were provided in the TDF for these tests.

Traffic Generator COSSIM v0.7 (see text)
Operating Systems Solaris 2.6, Linux (kernel 2.2.14 and 2.3.99), Windows NT4.0
Middleware Technology TAO 5.0 (CORBA v2.4 compliant), RT CORBA 1.0 compliant
Network Technology WUGS-20 2.4Git/s 2 8x8 ATM switches
 3Com 24-port 10/100 Mbit/s Fast Ethernet switch
Network Interfaces (NIC) 3Com 3c905 10/100Mbit Fast Ethernet
 STS Technologies 1.2Gbit/s APIC ATM
 Efficient ENI-155 155Mbit/s (OC-3a) ATM (2Mbytes RAM)
Basic Host/Node Hardware 9x 266MHz Pentium PC, 2x UltraSPARC 2, 1x SGI Indigo 2

Table 3.2. Testbed Technologies.

The COSSIM v0.7 traffic generator has been developed at FFI as part of the MULTE research
program. It simulates the application and sensor loads of naval combat systems according to

 15

specific real-time and QoS specifications. It runs on top of the CORBA (v.2.4) middleware,
and has so far been implemented only on ACE TAO 5.0 CORBA.

3.3.2 Traffic Generators

Two kinds of traffic generators were used to emulate the application domain :
�� standard “flooding models” transferring untyped and richly typed byte stream data

between several hosts using CORBA and lower-level mechanisms like BSD sockets,
�� specific application end-to-end generator applying a realistic military combat system

data load using a specific range of data types and packet sizes, whilst checking each
and every transfer for violations of the specific real-time requirements.

The flooding model is the customary way to measure network and system throughput in
systems, which have no real-time requirements. They often give misleading performance
figures as the real-world behaviour is a function of many aspects not applied. For instance,
real-time & time-critical requirement issues and data granularity will influence on what
bandwidth the system can actually deliver.

To be able to evaluate any COTS component the second approach must be used. Both methods
are available in the COSSIM traffic generator tool generated at FFI as part of the MULTE
research program. It detects violations of defined QoS requirements in the systems by
monitoring all data traffic.

Standard methodology from collaborative research and from original work has been used as
basis for tests in which specific QoS requirements relevant for mission-critical distributed
systems have been applied. Violations of QoS have been detected during long and repetitive
testing and data that arrives too late are flagged as invalid.

Realistic and “worst case” traffic patterns were applied from application level, and all
measurements were done from an application-to-application level.

3.3.2.1 Parameter Settings

Related research on transport protocol performance over ATM has identified the impact on
performance of a number of parameters that can be applied.

�� Socket Queue Size. The sender and receive socket queue windows were set to “small”
(1 Kbyte), “standard” (8Kbyte) and “large” (128Kbyte). The size of this window has
been shown to significantly impact on the size of the TCP segment window. In turn this
has been shown to significantly impact on CORBA-level and TCP-level performance
on high-speed networks.

�� TCP “NO DELAY” flag option. TCP provides an algorithm (Nagel's Algorithm), which
prevents small packets to be sent before acknowledgment of a previous send has been
received. Small requests are buffered until such an acknowledgement has been

 16

received. Generally, the flag is set for small packages in time-critical situations, but
every test in this study was run with and without this setting.

�� Data Package Size. A wide range of sizes in bytes were selected in flood-fill scenarios,
in increments of 1, 10, 100 and 1000 bytes for the ranges of 1 through 999 bytes, 1000
through 10000 bytes and 10000 through 64000 bytes respectively. For the specific QoS
tests appropriate data package sizes relevant to the scenario was used. In addition
latency was measured on remote operation invocations, which had no parameters.

�� Numbers of Servants. Increasing the number of servants on the serves increases the
overhead associated with de-multiplexing the server has to perform to send the
incoming requests to the servants. A range of servants was used to measure latency and
overhead in these operations (1, 100, 200, 300, 400 and 500) on the server.

3.3.2.2 QoS Support in the CORBA v2.4 standard

The previous published standards of CORBA up to and including v2.3 lacked proper
mechanisms for implementing QoS. Specifically it lacked features that allowed applications to
allocate, schedule and control key processor and networking communication resources
necessary to avoid resource congestion.

The CORBA v2.4 introduced the Real-time CORBA (RT CORBA) specifications and the
Messaging facility, which support many of the lacking features. The RT CORBA specification
defines interfaces for managing the processing and network communication resources. The
Messaging facility defines asynchronous and QoS frameworks.

These additional features are outlined in the table below.

QoS Feature Functionality
Processor resources thread pools, priority mechanisms, inter-process

mutex, global scheduling service
Communication resources protocol properties, explicit bindings

Table 3.3 CORBA v2.4 Support for QoS.

3.3.2.3 QoS Support in the ATM network technology

QoS has a very specific meaning in the ATM world, and is defined by the ATM Forum
organisation. This organisation maintains the ATM standards and is an open industry
collaborative effort.

ATM was designed from the outset to support telecommunication voice and video services
with stringent latency, jitter and bandwidth requirement on a connection point-to-point
topology.

The ATM Forum defines QoS at a low level in the architecture stack (corresponding to OSI
Layer 2) in the LANE (LAN Emulation) method of combining IP over ATM. Connections can
be made to any other node with specific QoS patterns (a pre-defined mode and appropriate

 17

parameters applied. These are enforced in the network by allocating appropriate resources for
the required period of time. This requires specific signalling protocols and mechanism for
implementation. For this reason ATM is relatively more expensive than Ethernet technologies.

The modes are as follows :

Mode Intended Use Requirement Notes
CBR Delay/jitter time sensitive Fixed and continously

available amount of
bandwidth for the duration of
the connection

Specified in Peak Cell
Rate (PCR) of the
connection

rt-VBR Varying amounts of
bandwidth with strong
regulated delay and jitter

Traffic that is bursty in
nature. For instance real-time
voice and video
conferencing.

Specified by the Peak
Cell Rate (PCR),
Sustainable Cell Rate
(SCR), and burstyness
by Maximum Burst
Size (MBS)

nrt-VBR Same as for rt-VBR but
with no requirement for
time sensitiviness

Examples : Non-real time
voice and video.

ABR Low cell loss, guaranteed
min and max bandwidths
but no critical delay or
jitter time sensitiviness
requirements

 Specified by
minimum Cell Rate
(MCR) and Peak Cell
Rate (PCR).

UBR Applications that use the
network on a “best effort”
basis.

Examples are email and ftp
file transfer.

No service guarantees
for cell loss, delay or
jitter variations.

As can be seen ATM supports stringent QoS requirements (CBR, rt-VBR modes) and “best
effort” type (like Ethernet) modes (UBR).

3.3.2.4 QoS support in Ethernet network technology

Ethernet is designed for a “best effort” paradigm on a connectionless basis. This makes
Ethernet difficult to use in real-time systems for two reasons (1) every connection will
consume all available bandwidth as there is no mechanisms for allocating resources to a
specific connection, and (2) it is impossible to avoid network congestion and transient
overloads.

In Ethernet QoS has to be implemented at a higher level in the OSI Reference model. One such
method is the Differential Services (DiffServ) implementing different services with different
priorities. However, it requires that all participating nodes on the system enforce this standard
as it has no QoS guarantees for the layers below. It is therefore possible that one unruly node

 18

can consume all available bandwidth and seriously break system real-time bounds by ignoring
the DiffServ mechanism. We did not test any such QoS on Ethernet method but this, clearly,
should be carried out as future work as this technology will continue to be available in the low-
cost end of the market.

3.4 Analysis of ORB end-to-end performance overhead

One study into the system behaviour of CORBA has recently been performed and published by
Boeing (3) in collaboration with several other US research institutions. Many in the defence
industries have used this study extensively. However, this study has focused on real-time
CORBA’s for use in essentially standard non-real time application domains and specifically it
does not include end-to-end testing and real-time performance testing.

Considering the simple benchmark test performed using flooding techniques (see below) one
can clearly see the disappointing levels of performance. The network layer has a high signal
bandwidth (1.2Gbit/s with WUGS-20 ATM and 100 Mbit/s using Fast Ethernet) at the network
layer but only a fraction of this is apparent to the application layer. It is also dependent on the
size of the application information packages. Small packages fare significantly worse than
large ones. Typically, for a 64-byte package only 2-5% of the signal network layer bandwidth
is available to the application layer.

APPLICATION LAYER

 MIDDLEWARE
 LAYER
(Enhanced CORBA)

CONFIGURABLE
PROTOCOL STACK

NETWORK LAYER

NETWORK PROTOCOL

APPLICATION LAYER

 MIDDLEWARE
 LAYER
(Enhanced CORBA)

CONFIGURABLE
PROTOCOL STACK

NETWORK LAYER

NETWORK PROTOCOL

Network efficiency
 bottleneck

Throughput preservation
 bottleneck

Lack of QoS bottleneck

Figure 3.1 Principal bottlenecks in modern distributed systems and principal reasons for
performance loss.

 19

The reasons for performance loss is a complex one, and needs to be analysed properly
spanning the entire system domain. This must include all the principal layers of the distributed
architecture. One principal reason of such performance loss is the general non-determinism in
the OS and in application service priority inversion issues resulting from lack of QoS
capability in any of the system layers. This is known as the “lack of QoS bottleneck”.

Most research in this field has focused on measuring and optimising the throughput of
CORBA ORBs. This is relevant considering the principal commercial application domains and
uses of distributed systems in general. It is not relevant for real-time distributed applications
and for systems with specific QoS requirements. In such cases it is necessary to also measure
latency, latency jitter (variance of latency over time for same repetitive task) and
scalability/performance transparency performance.

Experiments were set-up to determine the throughput, latency and scalability performance of
an existing CORBA (version 2.4) compliant middleware based architecture with gigabit
WUGS-20 ATM network technology. The main operating systems tested were Windows NT4,
Solaris 2.6 and Linux (with 2.4.0 kernel).

A set of real-time benchmarks developed for mission-critical systems by the Applied Research
Laboratory (ARL) at the Washington University of St Louis, USA, was modified somewhat to
reflect our data load patterns. These were compiled and run on the TDF using the ACE TAO
(version 5.0) CORBA 2.4 and RT CORBA 1.0 compliant middleware technology, and the
ARL WUGS-20 2.4Gigabit/s ATM switch. Comparative measurements were also carried out
using a 100Mbit/s Fast Ethernet switch.

3.5 Optimisations for high-performance ORBs

The experimental work shows the limitations of commercial conventional ORB in terms of
scalability and latency. The following possible optimisations have been explored to eliminate
these bottlenecks in existing ORBs through research collaboration in several research projects
at FFI. This work has been based on the open source ACE TAO (v5) CORBA v2.4 compliant
middleware and with traffic generators relevant to military distributed combat systems. This
work has been carried out at FFI.

A survey of the relevant research obtained and documented in the MULTE project (original
published research work, collaborative research and co-operation with several international
research institutions) has identified the following areas of principal concern.

�� Lack of integration with advanced OS and network features. Existing ORBs do not
fully utilise advanced OS and network features.

�� Non-optimal de-multiplexing strategies. Existing ORBs utilize inefficient and
inflexible de-multiplexing strategies based on layered de-multiplexing.

 20

�� Excessive data copying and intra-ORB calls. Existing ORBs are not optimised to
reduce the overhead of data copies. In addition these ORBs suffer from excessive intra-
ORB functional call overhead.

�� Inefficient presentation layer conversions.
�� Non-optimised buffering algorithms used for network reads and writes.

3.5.1 CORBA High-performance issues

Based on collaborate research and on external research the following issue have been proposed
as being key to latency in high-performance CORBA distributed applications. This issue
became focus of special attention and is therefore documented here in more detail.

3.5.1.1 Operation Invocation Strategies

The way CORBA ORBs employs the OIS (operation invocation strategy) may be a cause for
increased latency. The OIS determines whether requests are invoked by dynamic or static
interfaces and if the client requests a reply or response from the server.

(B) oneway dynamic invocation (A) oneway static invocation

operation(
IDL

skeleton
DI

SERVANTCLIENT

operation(
IDL

skeleton
DI

SERVANTCLIENT

operation(IDL
skeleton

IDL
stubs

SERVANTCLIENT

operation(
IDL

skeleton
IDL
stubs

SERVANTCLIENT

(D) twoway static invocation (C) twoway static invocation

Figure 3.2Invocation strategies tested.

The following OIS were measured and all are based on the CORBA specification.

�� One-way static invocation. The client uses the SII (static invocation interface) stubs
generated by the OMG IDL compiler.

�� One-way dynamic invocation. The DII builds a request at run-time and uses the
CORBA request class.

 21

�� Two-way static invocation. The client uses the SII stubs for two-way operations
defined in the IDL interfaces.

�� Two-way dynamic invocation. The DII builds the request and blocks until the call
returns from the server.

Both average latency for 100 clients requests were measured and the latency jitter were
calculated.

3.5.2 Evaluation Results

See appendix A for a complete overview of results. Only the highlights will be discussed in
this section.

3.5.3 Simple COSSIM Flooding Test

Tests were applied across the distributed system with different packet sizes, socket windows
sizes and with the NO-DELAY flag of the TCP protocol turned on and off.

The results drawn from this test were as follows. See figure 3.3 for a simplified summary of
the measurement. See appendix A for a full overview over measurements. The tests included
free flooding throughput, latency, and variation in latency (called jitter).

�� The available throughput is dependant on packet size and the available memory
allocated to the socket window. Note the theoretical maximum throughput of TCP in
figure 4.3 compared to the observed values.

�� The effect of turning off the NO-DELAY flag (Nagels Algorithm) was noticable and
predictable. Since small packages are less efficient across a network, the Nagels
algorithm buffers these at the sender side until a large packet can be transmitted. This
increase throughput but an undeterministic wait as a consequence.

The main conclusion is that the network technology do not “deliver” its theoretical peak
performance for smaller packets. This must be borne in mind when evaluating theoretical peak
performance of technologies such as Ethernet, Fast Ethernet and 155Mbit/s ATM. Note that
we used Classical IP (CLIP) as the IP layer for ATM.

 22

0

10

20

30

40

50
60

70

80

90

100

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

TCP ND 2K TCP ND 8K
TCP ND 128K TCP Theoretical Peak (MTU=1500)

Figure 3.3 Summary of free flooding results on the throughput test on 100Mbit/s Fast
Ethernet. See appendix A for detailed measurements. The TCP (Transport
Communication Protocol) and IP was used with varying numbers of socket
windows (“small” at 2K, “medium” at 8K and “large” at 128K respectively).
NO-DELAY flag is set.

3.5.4 Real-time COSSIM test with realistic data load

The real-time tests, and optimisation tests are documented in Appendix A. Basically, these are
the validation basis for our conclusions below.

These tests show that existing commercial CORBA v2.4 compatible middleware even with
QoS capable network solutions (ATM) do not yet have the required level of real-time support
for distributed applications in those cases where many objects are involved. They may work in
small configurations, but scalability is poor and violates the real-time requirements with even
medium sized systems. Employing the RT CORBA 1.0 standard and suitable QoS capabilities
in the operating system and network technology did provide significantly better latency and
jitter results for our data loads.

Three principal conclusions can be drawn from these tests.

�� This validates the conclusion of our research partners for mission-critical military
distributed architectures. It does however highlight the fact that the issues of real-time
performance are worse for our case.

�� The test of the TAO middleware based optimisations do however, show that system

level QoS requirements can be met with existing COTS technology if certain
optimisations are employed. The problems were most serious in the real-time domain

 23

where the margins for capacities and available bandwidths were small. This implies
that proper attention to system integration analysis of QoS and real-time performance
must be performed to ensure success.

�� The tests also show that without optimisations, or with unsuitable choices of

commercial COTS components (operating systems, middleware, network
technologies), or inappropriate vertical integration between them, systems will not
perform according to intentions. There are qualities bound to principal internals of the
system (like for instance the process / thread scheduler or inefficient data copying
internally) and would require replacement rather than later stage modifications.

3.6 Discussion of results

See Appendix A for actual plots of the results. As can be seen in figure 3.3the throughput of
data measured at the application level varies according to the size of the message being sent
from one application to another through the various system layers. Messages below 1000
bytes in size perform significantly poorer than bigger messages. This is due to inefficiencies of
the various underlying system layers the message has to transverse.

As most messages in a combat system are between 16 and 64 bytes this is a serious concern. In
figures A1.1 and A1.2 multiple messages are exchanged simultaneously. Turning off the
Nagel’s algorithm in the socket layer will improve throughput (as short messages are
accumulated into a bigger one before being sent toimprove efficiency) but this will leave the
message in a system message queue until sufficient small messages have been accumulated.

This may be unaccceptable in many time sensitive situations but the effect off turning this
mechanism off (in effect trading less throughput for better latency) is shown in figure A1.4.
Note that for small messages below 256 byte the performance is only a fraction of the
theoretical throughput. In no situiation could the network “deliver” the maximum signal level
100 Mbit/s rate.

Note the effect on setting socket buffer sizes in figure A1.3 which show a much better
performance than for smaller socket sizes (figure A1.1 and A1.2) if the socket size is set to 128
kbyte.

Similar measurements for ATM networks are shown in A2, and note in particular A2.2. Such a
poor performance is typical of “real-life” situations. Only 1 % of the theoretical performance
of the network is available to the application.

The corresponding latency (in section A3) and variance in latency (section A4) is also
included.

 24

3.7 Recommendations

The results obtained verified the performance under realistic military loads of commercial and
open CORBA compliant middleware for distributed systems. The following principal
dimensions of behaviour were measured :

�� communication performance (bandwidth/capacity, latency, latency jitter)
�� priority inversion
�� non-determinism in operations and services

The test system was based on previous and collaborative research work through the MULTE
research project, adapted to the military data load defined for these tests. The results of these
tests differ therefore from the generic tests they are based upon for this reason, yet they do not
entirely invalidate them for our specific need.

Based on these experiences and the tests performed specifically for the submarine project at
FFI the following three recommendations are made for the performance, behaviour and
capabilities of any candidate of (COTS based) time sensitive operating system and
middleware solutions.

�� The time sensitive operating system must provide functions for low-latency,
deterministic context switching / scheduling capabilities. The tests show that high-
latency and high jitter can significantly degrade the ORB performance and
predictabilities. System calls can incur significant overhead with threaded kernels when
performing process and thread context mode switching.

�� The time-sensitive operating system and middleware must support QoS specifications

and should have support throughput for enforcing such specifications. Real-time
applications often specify their requirements for QoS in quantifiable terms (such as
required CPU processing, computation time and periods. In addition the OS should
have the ability of allowing enforcement of application domain end-to-end QoS. Note
that real-time ORBs cannot provide such application end-to-end QoS unless proper
networking support exists for QoS, such as the ATM network technology.

�� The real-time operating system should support priority inheritance protocols.

3.7.1 Emerging technologies

The traditional goal of middleware is to mask out problems of heterogeneity and distribution
for application developers. With the emergence of new application domains like multimedia
and real-time / time-critical applications the flexible support of QoS and real-time
requirements becomes a major challenge.

 25

Middleware has emerged as a central architectural component in supporting distributed
applications and services. The role of the middleware is to present a higher level of
programming paradigm for application writers (typically object-oriented or component-based)
and to mask out the problems of heterogeneity and distribution. In application domains where
the application itself represents a major part of the cost-driving technologies ensuring a long
lifespan is essential.

This applies in particular to the defence domain where the application level runs into millions
of lines of high-level code. Much of the infrastructure is comprised of COTS technologies
(such as operating systems and networks), which have short lifespans. The middleware layer
then serves as an abstract layer to support rapid porting of the existing (often obsolescent)
application layer over the ever-changing COTS infrastructure.

However the market for middleware is rapidly changing. For example there is increasing
demand to apply middleware technologies in a wider variety of application domains including

�� real-time and time-critical systems
�� embedded systems
�� extreme mission-critical and / or fault-tolerant systems
�� distributed multimedia systems
�� mobile systems

In this context, flexible and extensible QoS and real-time support is one of the major
challenges. These two capabilities are important because research have shown that a single
fixed middleware solution (of current technologies) will not be able to support the following
requirements that are imposed by the new application domains :

�� Dynamic QoS support. Applications should be able to specify their QoS requirements
and to dynamically change them. The middleware should provide the requested QoS
and be able to adapt to changes in application requirement, resource availability and
dynamic changes in the infrastructure (a physical change to the system through battle
damage for instance).

�� Evolution of QoS requirements. New media types and new applications might
introduce new QoS characteristics. In order to support these new requirements, QoS
management in the middleware must be extensible.

�� Transparency versus fine-grained control. Developers of application components and
users should be able to define QoS requirements in high-level (application level)
terminology as well as in low-level system parameters to directly influence the
configuration of the middleware and resource allocation and re-allocation depending on
operation mode and availability of resources at any given time.

�� Policy control. The middleware should enable end-users, application developers and
system managers to specify policies for QoS mapping, negotiation, monitoring,
adaptation and so on. For example a policy might be used to express that in case the

 26

quality of a connection should be degraded, adaptation is done by reducing the quality
of some aspect, but keeping others according to defined reduced-quality levels (for
instance reducing the resolution but not the frame update rate of a sensor video
connection across a damaged network).

�� Support for seamless system evolution. The integration of new components in the
middleware should not require re-compilation or changes of existing components and
middleware entities. This must also be true for components that encapsulate resources,
i.e. API's to network and other resource services.

Through research at FFI it has been the experience with flexible protocol configuration that the
above requirements cannot be solved only by dynamic (re-)configuration of communication
protocols. Additionally, flexibility in establishing and managing bindings is necessary.

 27

SSS Requirement What to look for Acceptable Not-Acceptable Verification requirement
Formal definition of technical
terms such as end-to-end
quality-of-service (QoS) and
its metrics and verification
methology. Also define what
involves in the term “max
load” according to the
system functionalities.

 Formal definition of the term
QoS, and every term used in
it. Must have formal
referances that can be
verified and the suppliers of
any COTS technology used
must document to which
degree they are compliant
and to which they are not.

The definition must be
unambigous and measurable,
as it forms the legal
interpretation of all
subsequent requirements in
this area.

Any formal definition as used
by COTS manufacturers as
long as they state to which
degree they are compliant.
This must be traced through
every layer of the architecture
and especially with
functionally similar but
heteregenous technologies.

Assumption on behalf RNoN
that technical terms without a
formal definition is
understood by manufacturer.
Most technical terms can be
defined in one of many ways.

Definition must include how
it is to measured, where it is
to be measured, how it is to
be measured with reference
to the OSI 7-layer reference
stack.

All data flow in external
(specified in IDS) and
internal data exchange must
be specified in QoS terms.

Examination of the definition
and acceptance by expert
body.

System behaviour Mechanisms in the
infrastructure that enforce
desirable behaviour. If this is
implemented across
heterogenous technologies in
layers then it is neccessary to
know which enforcement
mechanisms are employed,
and how they interact to
ensure end-to-end (wrt QoS
defintion) desirable
performance

Irrespective of any other
traffic, all functional
requirements with QoS
requirements related to the
correct behaviour (wrt the
QoS definition) should be
independent on system load.

Systems time response is a
function of the total (even
non-related) systems load
imposed by applications,
users and sensors on the
system infrastructure (limited
by the end-to-end as
applicable to QoS definition)

Analysis of architecture prior
to design is frozen, including
a data load which defines
“max load” in terms of
appropriate quality of service
terms.

Layered referance
architecture.

That the end-to-end
perspective is layered in an
appropriate way to illustrate
what QoS mechanisms are
implemented at each layer.

The 7-layer ISO referance
layer.

Different models for different
sub-systems.

 By analysis of design.

Redundancy The database server is
replicated.

As resources of the
infrastructure are removed
the remaining resources
should be able to reconfigure
to restablish QoS on selected
data paths according to
prioritised functions.

Proper redundancy. A centralised system in
which the absence of proper
redundancy will means loss
of other functionalities than
those purely related to
navigation.

By analysis of design.

System integration That the specification of the
data paths end-to-end (wrt
QoS definition) is not split
into seperate IDS which
splinter the responsibility of
“end-to-end”.

A complete index of data
loads on an end-to-end basis
(as relevant for the QoS
defintiion) with QoS
requirements for each and
every path.

Seperate index of data loads
specified in IDS documents
which has at their limits the
various sub-systems of
various third suppliers, and at
a network / hardware level.

Examination of the index of
data loads by expert body to
PDR and final version to
CDR.

Heterogeneity Multiple functions
implemented with different
(but functionally similar)
technologies.

The system integrator takes
the issue of heteregonous
technologies seriously for
technical complexity reasons
and for life cycle cost
reasons.

Justify the adoption of
functionally similar
technologies of different
types when they are
introduced.

Functional similar
technologies in the system.

Examination of the system
architecture, and any
justifications that the system
integrator have for selecting
multiple functional similar
technologies at any level of
the archietcture (ref referance
architecture) at PDR.

Table 3.5. Main system levelrequirement framework..

 28

4 CONCLUSION

The SSS must have appropriate requirements to catch the inherent and accidental problems as
exists with COTS. This study show that there exists bottlenecks at the middleware and network
layers making “best effort” approach perilous at best. In addition there must be attention to
how the various layers of the architecture are integrated. Loosely connected sub-systems and
heterogeneity of functional similar technologies makes integration difficult.

It is the experience of FFI that these issues are often understood by the manufacturers.
However they often seek to avoid to have to implement them. The principal problem is that
they seemingly do not wish to do proper analysis and design work prior to freezing the system
design (or to comit to a complex design) and even at contract signing could not provide the all
important “data load” specification of their system. Lack of suitable SSS requirements will not
enable us to put sufficient pressure on the evaluation process.

FFI strongly propose the inclusion of appropriate SSS requirements above those purely of
functional nature. A proposal is included in table 4.1.

 29

A. APPENDIX

A.1 Throughput Measurements for 100Mbit/s Fast Ethernet

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

1 stream (1Kb) 2 streams (1Kb) 3 streams (1Kb) 4 streams (1Kb)

Figure A1.1 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to
4 simultaneous socket based streams simultaneously. Socket window set to 1K.

0

10

20

30

40

50

60

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

1 stream (8Kb) 2 streams (8Kb) 3 streams (8Kb) 4 streams (8Kb)

Figure A1.2 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to
4 simultaneous socket based streams simultaneously. Socket window set to 8K.

 30

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

1 stream (128Kb) 2 streams (128Kb) 3 streams (128Kb) 4 streams (128Kb)

Figure A1.3 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to
4 simultaneous socket based streams simultaneously. Socket window set to 128K.

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

1 stream (1Kb) 2 streams (1Kb) 3 streams (1Kb) 4 streams (1Kb)

Figure A1.4 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to
4 simultaneous socket based streams simultaneously. Socket window set to 1K. NO-DELAY
flag set to ON.

 31

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

1 stream (8Kb) 2 streams (8Kb) 3 streams (8Kb) 4 streams (8Kb)

Figure A1.5 Throughput Measurement for 100Mbit/s Fast Ethernet (switched) supporting 1 to
4 simultaneous socket based streams simultaneously. Socket window set to 8K. NO-DELAY
flag set to ON.

 32

A.2 Throughput Measurements for 155Mbit/s ATM over CLIP (Classical IP)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

MTU 527 bytes MTU 9180 bytes MTU 64Kbytes

Figure A2.1 Throughput Measurement of 155Mbit/s ATM, and shows effect of varying the
ATM MTU value from 527bytes, 8198bytes and maximum value allowed of 64Kbytes. NO-
DELAY flag is set to ON.

0

20

40

60

80

100

120

140

160

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

 TCP-ND 2K TCP-ND 8K TCP-ND 128K

Figure A2.2 Throughput Measurement of 155Mbit/s ATM, NO-DELAY flag set and socket
window set to “small” (2K), “medium” (8K) and “large” (128K).

 33

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

 TCP-ND 2K TCP-ND 8K TCP-ND 128K

Figure A2.3 Throughput Measurement for 155Mbit/s ATM with NO-DELAY flag set. Socket
window set to “small” (2K), “medium” (8K) and “large” (128K).

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Packet size (bytes)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

 TCP 2K TCP 8K TCP 128K

Figure A2.4. Throughput Measurement for 155Mbit/s ATM with NO-DELAY flag set. Socket
window set to “small” (2K), “medium” (8K) and “large” (128K).

 34

A.3 Latency Measurements

0.10

1.00

10.00

100.00

1 10 100 1000 10000 100000

Packet size (bytes)

La
te

nc
y

(m
s)

1s-8k 2s-8k 3s-8k 4s-8k

Figure A3.1 Latency Measurement for 100Mbit/s Fast Ethernet, with 1, 2, 3 and 4
simultaneous socket connections running. Socket window is set to 8K.

0.10

1.00

10.00

100.00

1 10 100 1000 10000 100000

Packet size (bytes)

La
te

nc
y

(m
s)

1s-128k 2s-128k 3s-128k 4s-128k

Figure A3.2 Latency Measurement for 100Mbit/s Fast Ethernet, with 1, 2, 3 and 4
simultaneous socket connections running. Socket window is set to 128K.

 35

 TCP-L 128K

0

2

4

6

8

10

12

14

1 10 100 1000 10000 100000
Packet size (bytes)

La
te

nc
y

(m
s)

Figure A3.3 Latency Measurement for 155Mbit/s ATM (with CLIP – Classical IP). NO-
DELAY flag set to ON and socket window to 128K.

2K

0.1

1

10

100

1 10 100 1000 10000 100000

Packet size (bytes)

La
te

nc
y

(m
s)

Figure A3.4 Latency Measurement for 155Mbit/s ATM (with CLIP – Classical IP). NO-
DELAY flag set to ON and socket window to 2K.

 36

A.4 Jitter Test for 155Mbit/s ATM

 TCP-L-ND 2K

0

5

10

15

20

25

1 10 100 1000 10000 100000

Iteration run (for 1byte package)

La
te

nc
y

Ji
tte

r (
m

s)

Figure A4.1 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY
flag set to ON and socket window size is 2K.

 TCP-L-ND 128K

0

5

10

15

20

25

1 10 100 1000 10000 100000

Iteration run (for 1byte package)

La
te

nc
y

Ji
tte

r (
m

s)

Figure A4.2 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY
flag set to ON and socket window size is 128K

 37

 TCP-L-ND 8K

0

5

10

15

20

25

1 10 100 1000 10000 100000

Iteration run (for 1byte package)

La
te

nc
y

Ji
tte

r (
m

s)

Figure A4.3 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY
flag set to ON and socket window size is 8K

 TCP-L-ND 8K

0

5

10

15

20

25

1 10 100 1000 10000 100000

Iteration run (for 1byte package)

La
te

nc
y

Ji
tte

r (
m

s)

Figure A8.3 Jitter Measurement for 155Mbit/s ATM (using CLIP – Classical IP). NO-DELAY
flag set to ON and socket window size is 8K

 38

 39

DISTRIBUTION LIST

 FFIE Dato: 17 December 2001
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

X RAPP NOTAT RR 2001/05922 FFIE/771/132.1 17 December 2001
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS

UTSTEDT
ANTALL SIDER

Unclassified 50 39

RAPPORTENS TITTEL FORFATTER(E)

REQUIREMENTS ON SUBMARINE COMBAT
SYSTEM ARCHITECTURE

MACDONALD, Robert Helseth

FORDELING GODKJENT AV FORSKNINGSSJEF FORDELING GODKJENT AV AVDELINGSSJEF:

John-Mikal Størdal Johnny Bardal

 EKSTERN FORDELING INTERN FORDELING

ANTALL EKS NR TIL ANTALL EKS NR TIL
1 SFK/P-PPG03 14 FFI-Bibl
1 v/OK Tor Arild Orre 1 Adm direktør/stabssjef
 1 FFIE

1 SFK/T 1 FFISYS
1 v/Helge Svartveit 1 FFIBM
1 v/KK Hans Christian Kjelstrup 1 Erik Ahlsen, FFIE
 1 Jon Buer, FFIE

1 UVBF 1 Karsten Bråthen, FFIE
1 v/OK Christian Harstad 1 Arne Cato Jenssen, FFIE
 1 Stig Lødøen, FFIE

1 KNM T 1 Robert Macdonald, FFIE
1 v/ OK Petter Solheim 1 Arvid Melkevik, FFIE
 1 Ole Martin Mevassvik, FFIE

1 FO/SST/PLAN-2 1 Kjell Olav Nystuen, FFIE
1 v/KK Ole Bosse 1 Kjell Rose, FFIE
 1 John Mikal Størdal, FFIE
 1 Erik Nordø, FFIE
 1 Johan Aas, FFIE
 1 Pål Kristiansen, FFIE
 7 Arkiv, FFIE
 1 FFI-veven

 FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind I, Bestemmelser om publikasjoner
 for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nødvendig.

	INTRODUCTION
	PROBLEMS WITH COMMERCIAL TECHNOLOGY
	Problems with COTS
	Combat system special requirements
	Table 2.1. Properties of data exchange message types in combat systems.
	The “Best effort” methodology
	Quality-of-service enabled middleware methodology

	COMBAT SYSTEM ARCHITECTURE BOTTLENECK ANALYSIS
	Architecture definition
	Principal bottlenecks
	CORBA Middleware Performance Overhead
	Experimental Testbed Set-up
	Traffic Generators
	Parameter Settings
	QoS Support in the CORBA v2.4 standard
	QoS Support in the ATM network technology
	QoS support in Ethernet network technology

	Analysis of ORB end-to-end performance overhead
	Optimisations for high-performance ORBs
	CORBA High-performance issues
	Operation Invocation Strategies

	Evaluation Results
	Simple COSSIM Flooding Test
	Real-time COSSIM test with realistic data load

	Discussion of results
	Recommendations
	Emerging technologies

	CONCLUSION

