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English summary 
This report describes mathematical modelling of the elastic stiffness of nanocomposites, which in 
this context is referred to as particles of nano-size included in a polymer matrix, i.e. particles with 
one dimension of nanometre size. The main motivation for this work was to establish 
mathematical models for calculating the elastic properties of different nanocomposites, which 
then can be included in a “model toolbox” for future applications and for improved understanding 
of this type of materials. In this study, it is assumed that micromechanics models and continuum 
mechanics theory can be applied in the modelling.  
 
Another recent report describes two-phase models for calculation of the elastic stiffness for 
composites where the nanoparticles are perfectly dispersed in a polymer matrix. A general multi-
phase Mori-Tanaka model was presented and implemented, in addition to more specialized 
expressions for composites with specific inclusion geometries and particle orientations. A perfect 
dispersion of nanoparticles in a matrix is, however, challenging to obtain. One therefore often 
ends up with a second inclusion phase with a different stiffness than the matrix and the particle. 
The second inclusion phase may be voids, with zero stiffness, or agglomerates of the primary 
particle. In both cases, the stiffness is believed to be lower than the matrix, giving a reduction in 
the overall composite stiffness. 
 
In this report, different three-phase models found in the literature are described for investigating 
the effect on the composite elastic stiffness from a second inclusion phase. In particular, the 
general two-phase Mori-Tanaka model is extended to three phases. New models are also 
presented, being slightly modified and extended versions of those found in the literature. The 
model calculations are compared. The model results are also compared to experimental test 
results for two nanoparticle/epoxy systems. 
 
As an overall conclusion, the model results for the three-phase models do agree with the 
experimental data to some extent. Including a second inclusion phase will reduce the overall 
stiffness of the composite, assuming that the stiffness of these inclusions is lower that the stiffness 
of the matrix. However, the effect from including a second inclusion phase in the modelling does 
not capture the high stiffness increase observed experimentally for low volume fractions; the 
three-phase models generally have a tendency to underestimate the elastic stiffness. An exception 
is the Paul model, but this model does not explicitly include the particle shape in the expressions, 
making it less flexible for various composites. Future studies should therefore consider other 
effects than those included in the current models. In particular, it is relevant to establish models 
that include a particle interphase, which may be modelled as a region surrounding the particles 
with different elastic properties compared to the neat matrix.  
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Sammendrag  
Denne rapporten beskriver matematisk modellering av elastisk stivhet for nanokompositter, som i 
denne konteksten refererer til partikler av nanostørrelse som er inkludert i en polymermatrise, det 
vil si partikler der en av dimensjonene er i nanometer. Hovedmotivasjonen for dette arbeidet har 
vært å etablere matematiske modeller som kan benyttes for å beregne de elastiske egenskapene til 
ulike nanokompositter, som deretter kan inkluderes i en “modellverktøykasse” for fremtidige 
applikasjoner og for økt forståelse av denne typen materialer. Det er antatt at mikromekaniske 
modeller og kontinuummekanikk kan benyttes i modelleringen.   
 
En annen nylig utgitt rapport beskriver to-fase-modeller for beregning av elastisk stivhet til 
kompositter der nanopartiklene er perfekt dispergert i en polymermatrise. En generell multi-fase 
Mori-Tanaka-modell ble presentert og implementert, i tillegg til mer spesialiserte uttrykk for 
analytiske uttrykk som er anvendbare for kompositter med gitte partikkelgeometrier og 
orientering. Perfekt dispersjon av nanopartikler i en matrise er derimot utfordrende å oppnå. Man 
ender derfor ofte opp med en ekstra inklusjonsfase som har en annen stivhet enn matrisen og 
primærpartikkelen. Den andre inklusjonsfasen kan være hulrom (gasslommer) med null stivhet, 
eller agglomerater av primærpartikkelen. I begge tilfeller er stivheten antatt å være lavere enn 
matrisens, noe som gir en lavere stivhet for komposittet.  
 
I denne rapporten er ulike tre-fase-modeller funnet i litteraturen beskrevet, med det formål å 
undersøke effekten på komposittets elastiske stivhet som følge av en inklusjonsfase nummer to. 
Spesielt er den generelle to-fase Mori-Tanaka-modellen utvidete til tre faser.  Nye modeller er 
også presentert, der disse er modifiserte og utvidede versjoner av modellene som er beskrevet i 
litteraturen. Modellresultatene er videre sammenliknet med eksperimentelle data for to 
nanopartikkel/epoksy-systemer.   
 
Som en overordnet konklusjon, er det til en viss grad godt samsvar mellom modellresultatene for 
tre-fase-modellene og de eksperimentelle dataene. Ved å inkludere en inklusjonsfase nummer to, 
reduseres stivheten til komposittet, forutsatt at stivheten til inklusjonsfasen er lavere enn 
matrisens. Derimot klarer ikke tre-fase-modellene å fange opp den veldig høye stivhetsøkningen 
som er observert eksperimentelt for lave volumfraksjoner; tre-fase-modellene ser generelt ut til å 
underestimere stivheten. Ett unntak er Paul-modellen, men denne modellen inkluderer ikke 
partiklenes geometri eksplisitt i uttrykkene, noe som gjør den mindre fleksibel for ulike 
kompositter.  Videre studier bør derfor vurdere andre effekter enn de som er inkludert i modellene 
som er vist her. Spesielt er det relevant å etablere modeller som inkluderer en interfase, som kan 
modelleres som en region som omslutter partiklene, og som har andre elastiske egenskaper enn 
matrisen. 
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1 Introduction 
This report describes mathematical modelling of the elastic stiffness of nanocomposites, which in 
this context is referred to as particles of nano-size included in a polymer matrix, i.e. particles with 
one dimension of nanometre size. The main motivation for this work is to establish a 
mathematical “model toolbox” for nanocomposites that can be used in future applications and for 
improving the understanding of this type of materials.  
 
As described by Thorvaldsen [1], several factors have to be taken into consideration when 
modelling the elastic stiffness of nanocomposites; small particle weight/volume fractions, large 
particle interfacial area, particle aspect ratio, degree of dispersion and agglomeration, interphase 
effects, length and orientation distributions, load transfer and waviness (for fibre-like particles). 
In particular, obtaining nanocomposites with perfect dispersion of the particles, or even a high 
degree of dispersion, has been reported to be very challenging, due to, among other factors, the 
high viscosity of the nanomodified matrix when adding only a small weight per cent (wt%) of the 
filler material. Establishing tools for analyses of nanomodified matrix systems with a low degree 
of dispersion is therefore relevant, resulting in composites with more than one inclusion phase. In 
addition, it is relevant to investigate the effect of voids in the matrix, i.e. a composite where the 
second inclusion phase represents areas in the matrix with zero stiffness.  
 
Models are described where one considers both free particles and agglomerates. One attempt is 
the three-phase rule of mixtures model for carbon nanotubes (CNTs) presented by Thorvaldsen et 
al. [2]. This model considers both free CNTs, agglomerates of CNTs, as well as the neat matrix. 
This model, however, contains several model parameters from different sub models. First of all, it 
is challenging to get all the required parameter values. Second, the combination of sub models 
makes it difficult to apply the correct volume fractions of each phase in the step-wise calculation 
of the composite stiffness. Other three-phase models are also  established for two-phase regions in 
a matrix, i.e. particles embedded in other particles, which again are embedded in a matrix [3]. 
 
To extend the existing “model toolbox” for calculating the elastic stiffness of nanocomposites 
[1;4-6], three-phase models based on the Mori-Tanaka method and other approaches are 
described, implemented and compared in this report. Moreover, the model calculations are 
compared with experimental data where available. The same assumptions as made in [1] for the 
composites are also applied in the current study, except for the extension to three-phase 
nanocomposites. 

2 Mathematical model 
In this section, different models for three-phase nanocomposites are described. This includes a 
general Mori-Tanaka model for three (or more) phases, as well as specialized expressions for 
some three-phase composites.  
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2.1 A general three-phase Mori-Tanaka model 

A general multi-phase Mori-Tanaka model for composites has been described in [1], including 
the theory of the Eshelby tensor. The Eshelby tensor for the different geometries is explicitly 
given in the referred report.  
 
As a short summary, the general expression for the elastic stiffness of composites with aligned 
spheroidal inclusions is given as 
 

−− − −

= = =

  = + = + +  
  

∑ ∑ ∑
11 1 1

dil
, 0 0 0 0 0 0

1 1 1

N N N
dil

C alligned r r r r r r r r
r r r

C V C A V C A V C V C A V I V A  (2.1) 

 
For composites with randomly oriented inclusions the elastic stiffness is written, 
 

−− −

= =

  = + +  
  

∑ ∑
11 1

dil
, 0 0 0

1 1

{ } { }
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C random r r r r r

r r

C V C V C A V I V A  (2.2) 

 
In the above expressions, 0V is the volume fraction of the matrix, whereas rV is the volume 
fraction of the thr inclusion phase. Moreover, 0C is the stiffness of the matrix, and rC is the 

stiffness of the thr inclusion phase. Furthermore, 0A , rA  and dil
rA are functions of the stiffness 

of the constituent materials of the composite, as well as the Eshelby tensor rS (not explicitly 

shown in the above expressions). The curly brackets in (2.2) indicate that the quantities are 
orientationally averaged. For three-phase cases, 3N = in the above expressions. 

2.2 Specialized expression for a three-phase composite 

Weng [7] has presented a model for a three-phase composite, which is based on the Mori-Tanaka 
method. The composite bulk and shear moduli may in this model be written as  
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These general expressions for calculating the elastic properties of a three-phase composite may 
then be written as follows: 
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2
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2
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= +
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In the above expressions, iκ  is the isotropic bulk modulus, and iµ is the shear modulus of the 
matrix phase ( 0i = ) and the inclusion phases ( 2,3i = ). Moreover, following the syntax of 
Weng, 0c , 1c  and 2c are the volume fraction of the matrix and inclusion phases, respectively, with 

+ + =0 1 2 1c c c .  Finally, 

 
0

0
0 0

0 0
0

0 0

3

3 4

26
5 3 4

κα
κ µ
κ µβ
κ µ

=
+
+

=
+

 (2.6) 

 
The elastic modulus of the composite can then be expressed as, 
 

0 0

0 0

(3 )

3
comp comp comp

m comp comp

E

E

κ µ κ µ
κ κ µ µ

+
=

+
 (2.7) 

 
where the composite stiffness is normalized by the matrix Young’s modulus mE (or 0E ).  

 
In the example presented by Weng, the three phases are quartz sand fillers, the matrix, and voids 
within the matrix. The model should, however, not necessarily be restricted to the case of having 
quartz sand particles as one of the inclusion phases.   

2.3 Analytical expression for three-phase composites including voids 

Two different model approaches, which are not based on the Mori-Tanaka method, are presented 
for particulate composites with a porous matrix, i.e. composites containing voids in addition to 
nanoparticles. 

2.3.1 Uniform displacement assumption 

Cohen and Ishai [8;9] base their model on a cubic model, where a cubic inclusion is embedded in 
a cubic matrix. The boundaries are in this case subjected to a uniform displacement. The filler 
content is assumed to be in the range of 20 to 50 volume per cent, making the approximate 
approaches okay for practical use of the models. The model is, however, tested in the range from 
zero to about 50 volume per cent. It should also be emphasized that the filler content of 
nanoparticles (for which we want to apply the models) is typically less than 20 volume per cent. 
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First, assuming a voidless matrix, the elastic modulus of the particulate composite can be 
expressed as, 
 

3

1

1

f
C m

f

V
E E

m
V

m

 
 

= + 
 −

− 

 (2.8) 

 
where mE is the elastic modulus of the matrix, /f mm E E= , with fE the Young’s modulus of 

the filler, and /f f CV υ υ= the volumetric filler content, i.e. the volume fraction. 

 
Second, assuming a porous matrix including voids, a modified version of the above expression 
can be established, 
 

* 2/3
*

3
*

(1 ) 1

1

f
C m v

f

V
E E V

m
V

m

 
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 (2.9) 

 
where the Young’s modulus of the voidless matrix is now replaced by the matrix-void system, 

* * 2/3(1 )v m vE E V= − , with *
vV the void content, and * */f vm E E=  . It is assumed that the 

presence of the filler material does not affect the properties of the porous matrix. 

2.3.2 Uniform stress assumption 

Paul [8;10] suggested a similar model as Cohen and Ishai (see Section 2.3.1), but assumed that 
the boundary condition is that of uniform stress. The model is derived for a metal reinforced with 
another metal of higher elastic stiffness.  
 
The expression for a particulate composite with a voidless matrix, can in this case be written as 
 

2/3

2/3

1 ( 1)

1 ( 1)( )
f

C m
f f

m V
E E

m V V

 + −
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+ − −  
 (2.10) 

 
 where the parameters are described in Section 2.3.1.  
 
Based on Paul’s derivation, the expression for the elastic modulus of a particulate composite with 
a porous matrix (i.e. matrix including voids) then reads  
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Here, the elastic constant for the porous matrix cvE can be written as 

 
* 2/3

* 2/3 *

1

1
v

cv m
v v

V
E E

V V

 −
=  − + 

 (2.12) 

2.4 Analytical expression for three-phase composites including agglomerates 

Using the models presented by Cohen and Ishai [8;9] and Paul [10] as a starting point, new 
analytical expressions may be derived for three-phase composites with one phase being 
agglomerates of the filler material (with a reduced stiffness) instead of voids (with no stiffness). 
This will fit into the framework of model cases presented by both Cohen and Ishai and Paul, as 
well as the one by Weng [7], see Section 2.2. Since the expressions presented in Section 2.3 are 
established from different assumptions concerning the boundary conditions, two different models 
are also established here.  
 
There is one main challenge with applying the current suggested new methods: the elastic 
parameters for the agglomerates. If assuming, for simplicity, isotropic material properties of the 
agglomerates, the number of material constants is reduced to two, i.e. the Young’s modulus and 
the Poisson’s ratio. 

2.4.1 Uniform displacement assumption 

Considering the expression in (2.8), but now assuming a two-phase agglomerate/matrix 
composite, we can define  
 

ˆ a

m

E
m

E
=  (2.13) 

  
where aE is the elastic stiffness of the agglomerates. Moreover, with υ υ υ+ =m a C , where υa is 

the volume of agglomerates, we get that the agglomerate content can be written as, 
 

a a
a

a m C

V
υ υ

υ υ υ
= =

+
 (2.14) 

 
The elastic modulus of the agglomerate/matrix composite caE may then be expressed as 
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From this, the elastic stiffness of a three-phase composite, with filler and a porous matrix 
(containing agglomerates), may be written, 
 

*
3 3

*

1 1
ˆ

ˆ 1 1

fa
C m

a f

VV
E E

m mV V
m m

  
  

= + +  
  − − −  − 

 (2.16) 

 
where now * /f cam E E= . The remaining parameters are given in Section 2.3.1.  

 
In the following, this model is referred to as the Cohen-Ishai-Thorvaldsen model to distinguish it 
from the original Cohen-Ishai model. 

2.4.2 Uniform stress assumption 

Consider the expression in (2.10), and assuming a two-phase agglomerate/matrix composite, with 
m̂ given in (2.13), and following the same approach as in Section 2.4.1, the elastic modulus of the 
agglomerates/matrix composite can be expressed as, 
 

2/3

2/3

ˆ1 ( 1)
ˆ1 ( 1)( )

a
ca m

a a

m V
E E

m V V

 + −
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 (2.17) 

 
The three-phase filler/agglomerate/matrix composite may now be written as 
 

* 2/32/3

2/3 * 2/3

1 ( 1)ˆ1 ( 1)
ˆ1 ( 1)( ) 1 ( 1)( )
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 (2.18) 

 
In the following, this model is referred to as the Paul-Thorvaldsen model, to distinguish it from 
the original Paul model. 

3 Composite material systems 
Two different composite material systems are included in the current study. For both systems, 
experimental data are available from the literature. 

3.1 Material data 

The material data applied for the nanoalumina/epoxy composite are given in Table 3.1 [4]. Both 
the matrix and the alumina particles are considered having isotropic material properties. 
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Table 3.1 Material data for nanoalumina/epoxy composites, with elastic properties from [4]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 3.12 
Poission’s ratio  0.35 
Inclusion:   
Young’s modulus GPa 386 
Poission’s ratio  0.22 
 
The material data applied for the nanosilica/epoxy composite are given in Table 3.2 [11]. Both the 
matrix and the silica particles are considered having isotropic material properties. 
 

Table 3.2 Material properties for nanosilica/epoxy composites, with elastic properties from 
[11]. 

Material parameter Unit Value 
Matrix:   
Young’s modulus GPa 2.96 
Poisson’s ratio  0.35 
Silica inclusion:   
Young’s modulus GPa 70 
Poisson’s ratio  0.20 

3.2 Experimental data 

For the nanoalumina/epoxy composite, experimental data are available in [4]. The measured 
composite elastic stiffness values are given in  
 
Table 3.3 and Table 3.4 for spherical and fibre-like inclusions, respectively. Different techniques 
are applied for obtaining a good dispersion, i.e. bath sonication and horn sonication. In addition, 
for the spherical particles a surface treatment was applied prior to dispersion. The surface 
treatment is believed to improve the load transfer from the particle to the matrix. More details are 
found in [4]. 
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Table 3.3 Experimental results for the elastic properties of alumina/epoxy nanocomposites 
with spherical inclusions. The data are taken from [4]. 

Material type Sonication wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A N/A 0.0 3120 ± 110 
NT-50nm Bath 1.0 0.00350 3150 ± 100 
NT-50nm Bath 4.0 0.01385 3220 ± 130 
NT-50nm Horn 1.0 0.00345 3400 ± 190 
NT-50nm Horn 2.9 0.01025 3240 ± 70 
GPS-50nm Bath 3.0 0.01060 3290 ± 130 
GPS-50nm Horn 1.0 0.00345 3130 ± 60 
(NT = Non-treated; GPS = silane treated) 
 

Table 3.4 Experimental results for the elastic properties of alumina/epoxy nanocomposites 
with fibre-like inclusions. The data are taken from [4]. 

Material type Sonication wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A N/A 0.0 3120 ± 110 
NT-wiskers Bath 0.1 0.00035 3310 ± 140 
NT-wiskers Bath 1.0 0.00350 3360 ± 110 
NT-wiskers Bath 3.0 0.01060 3450 ± 170 
NT-wiskers Bath 5.0 0.01730 3540 ± 130 
NT-wiskers Horn 0.1 0.00035 3210 ± 190 
NT-wiskers Horn 1.0 0.00345 3390 ± 120 
NT-wiskers Horn 2.9 0.01025 3360 ± 140 
(NT=Non-treated; GPS = silane treated) 
 
For the nanosilica/epoxy composite, experimental data are available in [11]. The measured 
composite elastic stiffness values are given in Table 3.5. 
 

Table 3.5 Experimental results for the elastic properties of silica/epoxy composites with 
spherical inclusions. The data are taken from [11]. 

Material type wt% Nominal Vf Tensile modulus, E (MPa) 
Epoxy N/A 0.0 2960 ± 200 
Nanosilica-epoxy 4.1 0.025 3200 ± 150 
Nanosilica-epoxy 7.8 0.049 3420 ± 180 
Nanosilica-epoxy 11.1 0.071 3570 ± 130 
Nanosilica-epoxy 14.8 0.096 3600 ±   50 
Nanosilica-epoxy 20.2 0.134 3850 ± 240 
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4 Numerical results 
In this section, the calculated composite elastic stiffness as a function of volume fraction of the 
different constituents is plotted for the models described in Section 2. The composite material 
systems given in Section 3.1 are applied. For the two included systems, experimental data are also 
available, as given in Section 3.2. 

4.1 Two-phase voids/epoxy models 

For validation of the model implementation, the two-phase voids/epoxy composite models by 
Cohen and Ishai and Paul, described in Section 2.3, are plotted together with the general two-
phase Mori-Tanaka model, described in Section 2.1. The stiffness values are shown in Figure 4.1, 
where the two-phase Cohen-Ishai model is given by the black curve and the Paul model is given 
by the blue curve. These two curves agree with the results and the plot shown in the paper by 
Cohen and Ishai [8]. The general two-phase Mori-Tanaka model, based on the assumption of 
spherical shaped voids, gives similar results (red curve). The Mori-Tanaka model, however, 
estimates a lower composite stiffness as a function of void fraction, compared to the Paul model, 
but is closer to the composite stiffness calculated by the Cohen-Ishai model.  
 
As a general conclusion from this case, the elastic stiffness of a composite is reduced as a 
function of void fraction. This is as expected. 
  

 

Figure 4.1 Composite elastic stiffness of epoxy with voids. Three different two-phase models are 
plotted. 
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4.2 Three-phase models with voids 

4.2.1 Alumina/epoxy composite 

Figure 4.2 shows the calculations of the elastic stiffness for a composite with nanoalumina 
particles and voids included in the epoxy matrix (Table 3.1), as well as the available experimental 
data for spherical particles (Table 3.4). The Cohen-Ishai, Paul and the three-phase Mori-Tanaka 
models are included in the plot.  
 
For all three models, the volume fraction of the alumina particles ( fV ) is varied. In each case, the 

void volume fraction ( aV ) is either zero, i.e. a void-free particulate composite, or set to 0.005.  

 
The void-free case is shown by the solid line, whereas the case of a constant void volume fraction 
is shown by a dotted line. For the Mori-Tanaka model, spherical inclusions is applied for both the 
particles and the voids. 
 
As can be seen from the plot, the Paul model predicts a much higher composite stiffness 
compared to the Mori-Tanaka model and the Cohen-Ishai model. Including a small volume 
fraction of voids in the matrix, the elastic stiffness is reduced. Comparing the model results to the 
experimental data, we find that the Paul model is able to predict the large increase in composite 
stiffness for low volume fractions of alumina particles, but overestimates the stiffness for higher 
volume fractions. The Cohen-Ishai model generally underestimates the composite stiffness for all 
concentrations. The Mori-Tanaka calculations are in agreement with some of the experimental 
data points, but generally underestimates the stiffness. As commented by Cohen and Ishai [8], 
their approach and the Paul approach may be seen as upper and lower limits for the real stiffness. 
More test data are required before concluding on the agreement between the model calculations 
and the experimental results.   
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Figure 4.2 Elastic stiffness of a composite with particles, without voids ( 0.0aV =  ) or with 

voids ( = 0.005aV ). The Cohen-Ishai, Paul and the Mori-Tanaka models are 

plotted. For the general Mori-Tanaka model, spherical inclusions are applied for 
both inclusion phases. The experimental data are taken from Johnsen et al. [4]. 

4.2.2 Silica/epoxy composites 

Figure 4.3 shows the calculations of the elastic stiffness for a composite with nanosilica particles 
and voids included in the epoxy matrix (Table 3.2), as well as the available experimental data 
(Table 3.5). The Cohen-Ishai, Paul and the three-phase Mori-Tanaka models are included in the 
plot.  
 
For all three models, the volume fraction of the silica particles ( fV ) is varied. In each case, the 

void volume fraction ( aV ) is either zero, i.e. a void-free particulate composite, or set to 0.005. 

The void-free case is shown by the solid line, whereas the case of a constant void volume fraction 
is shown by a dotted line. For the Mori-Tanaka model, spherical inclusions is applied for both the 
particles and the voids. 
 
 As can be seen from this plot, the Paul model predicts a much higher composite stiffness than the 
Mori-Tanaka model and the Cohen-Ishai model. When including a small volume fraction of voids 
in the matrix, the composite elastic stiffness is reduced.  
 
Comparing the model results to the experimental data, we find that the Paul model overestimates 
the stiffness for all concentrations. The Cohen-Ishai model generally underestimates the 
composite stiffness for all concentrations. The Mori-Tanaka calculations are in agreement with 
some of the experimental data points, but generally seem to underestimate the stiffness for low 
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volume fractions of silica particles. As commented by Cohen and Ishai [8], and commented for 
the previous composite system, their approach and the Paul approach may be seen as upper and 
lower limits for the real stiffness.  
 

 
Figure 4.3 Elastic stiffness of a composite with particles, without voids ( 0.0aV =  ) or with 

voids ( = 0.005aV ). The Cohen-Ishai, Paul and the Mori-Tanaka models are 

plotted. For the general Mori-Tanaka model, spherical inclusions are applied for 
both inclusion phases. The experimental data are taken from Johnsen et al. [11]. 

4.3 Three-phase models with agglomerates 

4.3.1 Weng three-phase model 

Figure 4.4 displays the Weng three-phase model, see Section 2.2. In this case, the inclusion 
phases are spherical in shape. For all cases, the agglomerate volume fraction is 0.01. The 
alumina/epoxy material system data is applied in the plot. The calculated stiffness is compared to 
and found to agree with the model results using the general three-phase Mori-Tanaka method 
with spherical inclusions, see Section 2.1. 
 
As displayed in the figure, the elastic stiffness of the agglomerates is varied to see the effect on 
the composite elastic stiffness from such inclusions. The green curve displays the case where the 
second inclusion phase has the same stiffness properties as the matrix. The stiffness of the 
composite is then equal to the stiffness obtained from a two-phase alumina/epoxy model, as 
shown in [1]. The blue curve displays the case where the agglomerates have zero stiffness, i.e. 
voids. The stiffness is reduced for all particle volume fractions. This is as expected. The red curve 
shows the case where the stiffness of the agglomerates is about one third of the matrix stiffness. 
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The stiffness of the composite is reduced compared to the two-phase composite, but is higher than 
for composites with voids. Finally, the magenta curve shows the case where the stiffness of the 
agglomerates is about three times the stiffness of the matrix. The stiffness of the composites is 
higher than the two-phase composite. This latter case is, however, not believed to be physically 
meaningful.  
 

 

Figure 4.4 The Weng and the Mori-Tanaka three-phase models for particulate composites with 
agglomerates. Both the particles and the agglomerates have a spherical shape. The 
volume fraction of agglomerates is 0.01. 

4.3.2 The three-phase Mori-Tanaka model 

4.3.2.1 Nanoalumina/epoxy composite 

The three-phase Mori-Tanaka model results are compared to the experimental data for the 
alumina/epoxy composite with spherical particles. Three different shapes are included in the 
modelling: 1) spheres (aspect ratio 1α = ) , 2) slightly prolate shape (aspect ratio 3α = ), and 3) 
slightly oblate shape (aspect ratio 0.5α = ). For each shape, two different cases are run: a) zero 
agglomerates, and b) an agglomerate volume fraction of 0.005. The agglomerate elastic stiffness 
is set to 1 GPa, which is about one third of the matrix stiffness.  
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Figure 4.5 Alumina spheres/epoxy/agglomerates composite. Three different spheroidal shapes 
are included. The numerical calculations are plotted together with experimental 
results [4]. 

 
Figure 4.5 shows the composite elastic stiffness as a function of free particles. As can be 
observed, agglomerates reduce the composite elastic stiffness for all volume fractions. The test 
data for the specimens with untreated particles using bath sonication agrees well with the 
calculated stiffness for spherical particles when no agglomerates are present. Moreover, the GPS 
treated particles using bath sonication agree well with the calculated stiffness for prolate shaped 
particles when no agglomerates are present. The test data for the test specimens with untreated 
particles using horn sonication are more in accordance with the calculated stiffness for prolate 
shaped particles when agglomerates are present. Finally, the test data for the specimens with the 
GPS treated particles using horn sonication agree with the calculated stiffness for spherical 
particles when agglomerates are present.  
 
Note that in the above plot, the model calculations assume a particle volume fraction as the sum 
of free particles ( fV ) and the agglomerated particles, and where the amount of free particles is 

indicated on the horizontal axis. The experimental data points, however, are based on the 
measured composite elastic stiffness for the test specimen, where different volume fractions of 
particles ( fV ) is included in the matrix. No detailed information is available for the degree of 

dispersion, i.e. the amount free particles and the amount of particles in agglomerates. In case the 
(physical) test specimens contain agglomerates, the volume fraction of free particles is lower 
(than plotted). 
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4.3.2.2 Nanosilica/epoxy composite 

The calculated stiffness using the three-phase Mori-Tanaka model is compared to the 
experimental data for the silica/epoxy composite. Three different shapes are included in the 
modelling: 1) spheres (aspect ratio 1α = ) , 2) slightly prolate shape (aspect ratio 3α = ), and 3) 
slightly oblate shape (aspect ratio 0.5α = ). For each shape, two different cases are run: a) zero 
agglomerates, and b) an agglomerate volume fraction of 0.005. The agglomerate elastic stiffness 
is set to 1 GPa, which is about one third of the matrix stiffness.  
 
Figure 4.6 shows the composite elastic stiffness as a function of free particles. As can be 
observed, the inclusion of agglomerates slightly reduces the composite elastic stiffness for all 
volume fractions of free silica particles. Composites with spherical shaped particles seem to 
underestimate the composite stiffness for low volume fractions, but agree very well for high 
volume fractions. Composites with slightly prolate shaped particles seem to better predict the 
composite stiffness for low volume fractions. For higher volume fractions, the composites with 
prolate shaped particles overestimate the composite stiffness. The composites with oblate 
particles underestimate the composite stiffness for all volume fractions.   
 
As commented for the nanoalumina/epoxy system in Section 4.3.2.1, the actual volume fraction 
of free particles in the physical test specimens may be lower than indicated in the plot, in case 
part of the particles are contained in agglomerates. Johnsen et al.[11], however, report a very high 
degree of exfoliation, which means that the actual volume fractions are very close to the fractions 
applied in the plot.  

 

Figure 4.6 Silica spheres/epoxy/agglomerate composite. Three different spheroidal shapes are 
included. The numerical calculations are plotted together with experimental results 
[11]. 
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4.3.3 Cohen-Ishai-Thorvaldsen and Paul-Thorvaldsen models 

The modified three-phase Cohen-Ishai and Paul models, where a second inclusion phase is 
included, with a stiffness different from the free particles, but higher than zero (i.e. voids), is 
analysed in this section. The model results are compared with the three-phase Mori-Tanaka model 
for spherical particle/epoxy composites. 
 
For all three models, the volume fraction of the alumina particles ( fV ) is varied. In each case, the 

agglomerate volume fraction aV is either zero, i.e. a particulate composite with perfect dispersion, 

or set to 0.005. The agglomerate-free case is shown by the solid line, whereas the case of a 
constant agglomerate volume fraction is shown by the dotted line. For the three-phase Mori-
Tanaka model, spherical inclusions are applied for both the particles and the agglomerates. The 
stiffness of the agglomerates is set to 1 GPa. 

4.3.3.1 Nanoalumina/epoxy composite 

Figure 4.7 displays the calculated composite stiffness for the nanoalumina/epoxy composite, 
together with the experimental results for the nanoalumina/epoxy composite.  
 
As can be seen from the plot, the Paul-Thorvaldsen model predicts a much higher composite 
stiffness compared to the Mori-Tanaka model and the Cohen-Ishai-Thorvaldsen models. 
Including a small volume fraction of agglomerates in the matrix, results in a reduction in the 
composite elastic stiffness. The composite stiffness is, however, higher in this case, compared to 
including voids. This is as expected. 
 
Comparing the model results to the experimental data, we find that the Paul-Thorvaldsen model is 
able to predict the large increase in composite stiffness for low volume fractions of alumina 
particles, but seems to overestimate the stiffness for higher volume fractions. The Cohen-Ishai-
Thorvaldsen model generally underestimates the composite stiffness for all concentrations. The 
Mori-Tanaka calculations are in agreement with some of the data points, but generally also seem 
to underestimate the composite stiffness.  
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Figure 4.7 Three-phase model with agglomerates. New models based on the Cohen-Ishai-
Thorvaldsen and Paul-Thorvaldsen models. The numerical calculations are plotted 
together with experimental results [4]. 

4.3.3.2 Nanosilica/epoxy composite 

Figure 4.8 shows the calculated elastic stiffness for the nanosilica/epoxy composite particles, 
together with the experimental results for the nanosilica/epoxy composite.  
  
As can be seen from the plot, the Paul-Thorvaldsen model predicts a much higher composite 
stiffness compared to the Mori-Tanaka model and the Cohen-Ishai-Thorvaldsen model. Including 
a small volume fraction of agglomerates in the matrix, the composite elastic stiffness is slightly 
reduced.  
 
Comparing the model results to the experimental data, we find that the Paul-Thorvaldsen model 
generally overestimates the stiffness. The Cohen-Ishai-Thorvaldsen model generally 
underestimates the composite stiffness for all concentrations. The Mori-Tanaka calculations are in 
agreement with the experimental data for high volume fractions, but underestimates the stiffness 
for low volume fractions of silica particles.  
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Figure 4.8 Three-phase model with agglomerates. New models based on the Cohen-Ishai-
Thorvaldsen and Paul-Thorvaldsen models. The numerical calculations are plotted 
together with experimental results [11]. 

4.4 Randomly oriented fibre-like inclusions and spherical agglomerate 
inclusions 

As the final test case, the three-phase Mori-Tanaka model is applied for calculating the elastic 
stiffness of a nanocomposite with randomly oriented fibre-like particles in a polymer system, 
where a second inclusion phase is present. 
  
Figure 4.9 displays the calculated elastic stiffness for the nanoalumina/epoxy composite with 
randomly oriented whiskers. A second inclusion phase, being either voids with no stiffness, or 
agglomerates with a higher stiffness compared to the neat epoxy, is included.  
 
Our reference in this case is the composite without agglomerates (black curve). By including a 
second inclusion phase, the composite stiffness is changed. If including voids (cyan curve), the 
matrix stiffness is reduces. If including a second (spherical) inclusion phase with higher stiffness 
(compared to the neat polymer), in this case 10 GPa, improves the elastic stiffness of the 
composite (magenta curve).  Finally, the aspect ratio of the first inclusion phase (the alumina 
whiskers in this case) will affect the composite stiffness (green curve).  
 
The aspect ratio and the elastic stiffness of the agglomerates in the model calculations are chosen 
to make a best fit with the available experimental data, without considering the physical validity 
or relevance. As can be observed, the best fit for low volume fractions is obtained by increasing 
the elastic stiffness of the agglomerates to a very high value. By also reducing the aspect ratio of 
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the particles, a good correspondence is also obtained for high volume fractions.  A very high 
stiffness for the agglomerates is, however, considered as unphysical. Hence, the thee-phase Mori-
Tanaka model is not able to predict the stiffness increase for low volume fractions very well. 
Other effects than a second phase in the form of agglomerates is required for explaining this.    
 

 

Figure 4.9 Composite elastic stiffness for randomly oriented whisker in a epoxy matrix using 
the three-phase Mori-Tanaka model. The experimental data are taken from Johnsen 
et al. [4]. 

5 Summary 
In this report, models are presented for calculating the elastic stiffness of nanocomposites, with 
main focus on three-phase models, where a second inclusion phase, in addition to the 
nanoparticles, are contained in the polymer matrix. The general Mori-Tanaka model from [1] has 
been extended to three phases. A model by Weng for three-phase composites, also based on the 
Mori-Tanaka method, is also described. In addition, a set of two-phase and three-phase models 
for nanocomposites not based on the Mori-Tanaka method, has been described. These are the 
Cohen-Ishai and the Paul models.  The latter models have been extended to also include a second 
inclusion phase with non-zero stiffness, i. e. agglomerates. For the included models, the Weng 
model is restricted to spherical particles, whereas the Cohen-Ishai model and the Paul model do 
not explicitly include the particle geometry. Only the general three-phase Mori-Tanaka model is 
applicable to different spheroidal inclusions, including spheres and oblate and prolate shaped 
inclusions.  
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Considering the model results, the three-phase Mori-Tanaka model calculations have been found 
to agree with the stiffness estimates obtained from using the Weng model. Moreover, the Paul 
model estimates a very high elastic stiffness, especially for low volume fractions. The Cohen-
Ishai model estimates a much lower elastic stiffness for all volume fractions. The general three-
phase Mori-Tanaka model estimates a stiffness that is slightly higher than the stiffness obtained 
from the Cohen-Ishai model. Including a second inclusion phase of either voids or agglomerates 
with a lower stiffness than the neat polymer, reduces the elastic stiffness for all volume fractions.  
 
Comparing the calculated results with the experimental data for two different nanocomposites 
with spherical particles, the Paul model generally overestimates the elastic stiffness, whereas the 
Cohen-Ishai model underestimates the stiffness. The Mori-Tanaka model agrees well with the 
experimental data for high volume fractions, but underestimates the elastic stiffness for low 
volume fractions. The three-phase Mori-Tanaka model is also compared with experimental results 
for nanocomposites with non-spherical particles. Both the particle aspect ratio and the stiffness 
properties of the second inclusion phase (being voids or agglomerates) will influence on the 
composite elastic stiffness.  
 
As a general conclusion, the three-phase Mori-Tanaka model is considered the best and most 
applicable model for different composites – even though the model is not able to predict the very 
high stiffness increase for low volume fractions. Follow-up studies should consider other factors 
than a second inclusion phase of voids or agglomerates, to better estimate the nanocomposite 
stiffness. One relevant factor is studying the effect on the composite stiffness due to interphase 
effects, which can be described by a region surrounding the nanoparticles with different elastic 
properties compared to the neat matrix. 
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Appendix A Model summary 
Table A.1 provides a summary of the implemented models described and presented in the report. 
Note that two of the models are two-phase models, which are included for validation of the code 
and the three-phase models. 
 
The Matlab codes for all models are given in Appendix B. 
 

Table A.1 Models for the two-phase and three-phase nanocomposites. 

File name References Inclusion #1 Inclusion #2 
three_phase_1.m [1;12-14] Spherical, fibre, or disc 

Aligned 
Spherical, oblate,  or prolate 
Aligned 

three_phase_2.m [1;12-14] Spherical, fibre, or disc 
Random 

Spherical, oblate, or prolate 
Aligned 

weng_1.m [7] Particle Agglomerate or void 
cohen_ishai_1.m [8;9] Particle or void N/a 
cohen_ishai_2.m [8;9] Particle Void 
paul_1.m [10] Particle or void N/a 
paul_2.m [10] Particle  Void 
three_phase_3.m [8;9] (*) Particle Particle or agglomerate 
three_phase_4.m [10] (**) Particle Particle or agglomerate 

(*)  New model. Based on the Cohen-Ishai model. 

(**) New model. Based on the Paul model. 
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Appendix B Matlab code 

B.1 Cohen-Ishai two-phase model 

% Cohen and Ishai two-phase model 

% This case: One type of isotropic inclusions 

% Reference: Cohen and Ishai, 1967 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Stiffness - matrix 

E_m = 3.12  

nu_m = 0.35; 

 

% Stiffness - inclusion 

E_f = 0.0 % voids 

nu_f = 0.35  

 

m = E_f/E_m; 

V_f = 0.0:0.001:1.0 

 

for i = 1:length(V_f) 

  E_comp = E_m*(1+(V_f(i)/((m/(m-1))-nthroot(V_f(i),3))))   

  E_11(i) = E_comp/E_m; 

end 

 

plot(V_f,E_11,'k') 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 

B.2 Paul two-phase model 

% Paul two-phase model 

% This case: One type of isotropic inclusions 

% References: Paul, 1960 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Stiffness - matrix 

E_m = 3.12 

nu_m = 0.35 

 

% Stiffness - inclusion 

E_f = 0.0 % voids 
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nu_f = 0.35   

 

m = E_f/E_m; 

 

V_f = 0.0:0.001:1.0 

 

for i = 1:length(V_f) 

  E_comp = E_m*((1+(m-1)*power(V_f(i),2/3))/(1+(m-1)*(power(V_f(i),2/3)-

V_f(i)))) 

  E_11(i) = E_comp/E_m; 

end 

 

plot(V_f,E_11,'b') 

xlabel ('V_f (voids)') 

ylabel('E_{comp}/E_0') 

B.3 General three-phase Mori-Tanaka model for aligned inclusions 

% General Mori-Tanaka three-phase model 

% This case: Two types of isotropic inclusions 

% Three geometries: 

% 1) aligned spherical inclusions 

% 2) aligned fibre-like inclusions with aspect ratio 

% 3) aligned disc-shaped inclusion with apsect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% MATERIAL PARAMETERS 

% Elastic properties - matrix 

E_0 = 3.12  

nu_0 = 0.35 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 
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C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic properties - inclusion 

E_i = 386 

nu_i = 0.22 

 

D = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

D(1,1) = const;   

D(1,2)= const*(nu_i/(1-nu_i)); 

D(1,3)= const*(nu_i/(1-nu_i)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_i/(1-nu_i)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D; 

 

% Elastic properties  - agglomerates/voids 

E_a = 10.0 

nu_a = 0.35 

 

F = zeros (6,6); 

const = (E_a*(1-nu_a))/((1+nu_a)*(1-2*nu_a)); 

F(1,1) = const;   

F(1,2)= const*(nu_a/(1-nu_a)); 

F(1,3)= const*(nu_a/(1-nu_a)); 

F(2,1) = F(1,2); 

F(2,2) = const; 

F(2,3) = const*(nu_a/(1-nu_a)); 

F(3,1) = F(1,3); 

F(3,2) = F(2,3); 

F(3,3) = const; 

F(4,4) = const*((1-2*nu_a)/(2*(1-nu_a))); 

F(5,5) = const*((1-2*nu_a)/(2*(1-nu_a))); 

F(6,6) = const*((1-2*nu_a)/(2*(1-nu_a))); 

F; 
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% GEOEMTRY SETTINGS 

% Geometry - inclusions: 

geom_i = 1  % spherical inclusions 

%geom_i = 2  % fibre-like inclusions 

%geom_i = 3  % disc-shaped inclusions 

 

% Geometry - agglomerates/voids: 

geom_a = 1  % spherical inclusions 

%geom_a = 2  % fibre-like inclusions 

%geom_a = 3  % disc-shaped inclusions 

 

% INCLUSIONS 

if (geom_i == 1) 

  % Spherical inclusions: 

  Si_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  Si_2222 = Si_1111; 

  Si_3333 = Si_1111; 

  Si_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  Si_1133 = Si_1122; 

  Si_2211 = Si_1122; 

  Si_2233 = Si_1122; 

  Si_3311 = Si_1122; 

  Si_3322 = Si_1122; 

  Si_1212 = (4-5*nu_0)/(15*(1-nu_0));  

  Si_1221 = Si_1212; 

  Si_2323 = Si_1212; 

  Si_2332 = Si_1212; 

  Si_3131 = Si_1212; 

  Si_3113 = Si_1212; 

   

elseif (geom_i == 2) 

  % Fiber-like inclusions: 

  l = 20       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

   

  a2 = power(a,2.0) 

   

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

   

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 
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  Si_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  Si_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Si_3333 = Si_2222; 

  Si_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Si_3322 = Si_2233; 

  Si_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Si_3311 = Si_2211; 

  Si_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Si_1133 = Si_1122; 

  Si_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Si_3232 = Si_2323; 

  Si_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Si_1313 = Si_1212; 

  Si_3131 = Si_1313; 

 

elseif (geom_i == 3) 

  % Disc-shaped inclusions 

  l = 0.5       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio   

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  Si_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  Si_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Si_3333 = Si_2222; 

  Si_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Si_3322 = Si_2233; 

  Si_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Si_3311 = Si_2211; 

  Si_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Si_1133 = Si_1122; 

  Si_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Si_3232 = Si_2323; 

  Si_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Si_1313 = Si_1212; 

  Si_3131 = Si_1313; 

end  

 

% Eshelby tensor (using engineering strains) 
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Si = zeros(6,6); 

% Matrix form: 

Si(1,1) = Si_1111; 

Si(1,2) = Si_1122; 

Si(1,3) = Si_1133; 

Si(2,1) = Si_2211; 

Si(2,2) = Si_2222; 

Si(2,3) = Si_2233; 

Si(3,1) = Si_3311; 

Si(3,2) = Si_3322; 

Si(3,3) = Si_3333; 

Si(4,4) = 2*Si_1212; 

Si(5,5) = 2*Si_2323; 

Si(6,6) = 2*Si_3131; 

Si; 

 

% AGGLOMERATES/VOIDS 

if (geom_a == 1) 

  % Spherical agglomerates/voids: 

  Sa_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  Sa_2222 = Sa_1111; 

  Sa_3333 = Sa_1111; 

  Sa_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  Sa_1133 = Sa_1122; 

  Sa_2211 = Sa_1122; 

  Sa_2233 = Sa_1122; 

  Sa_3311 = Sa_1122; 

  Sa_3322 = Sa_1122; 

  Sa_1212 = (4-5*nu_0)/(15*(1-nu_0));  

  Sa_1221 = Sa_1212; 

  Sa_2323 = Sa_1212; 

  Sa_2332 = Sa_1212; 

  Sa_3131 = Sa_1212; 

  Sa_3113 = Sa_1212; 

   

elseif (geom_a == 2) 

  % Fiber-like agglomerates/voids: 

  l = 20       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio   

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 
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  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  Sa_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  Sa_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Sa_3333 = Sa_2222; 

  Sa_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Sa_3322 = Sa_2233; 

  Sa_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Sa_3311 = Sa_2211; 

  Sa_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Sa_1133 = Sa_1122; 

  Sa_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Sa_3232 = Sa_2323; 

  Sa_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Sa_1313 = Sa_1212; 

  Sa_3131 = Sa_1313; 

 

elseif (geom_a == 3) 

  % Disc-shaped agglomerates/voids: 

  l = 0.5       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

   

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  Sa_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  Sa_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Sa_3333 = Sa_2222; 

  Sa_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Sa_3322 = Sa_2233; 

  Sa_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Sa_3311 = Sa_2211; 

  Sa_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Sa_1133 = Sa_1122; 

  Sa_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Sa_3232 = Sa_2323; 

  Sa_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Sa_1313 = Sa_1212; 
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  Sa_3131 = Sa_1313; 

end  

 

% Eshelby tensor (using engineering strains) 

Sa = zeros(6,6); 

% Matrix form: 

Sa(1,1) = Sa_1111; 

Sa(1,2) = Sa_1122; 

Sa(1,3) = Sa_1133; 

Sa(2,1) = Sa_2211; 

Sa(2,2) = Sa_2222; 

Sa(2,3) = Sa_2233; 

Sa(3,1) = Sa_3311; 

Sa(3,2) = Sa_3322; 

Sa(3,3) = Sa_3333; 

Sa(4,4) = 2*Sa_1212; 

Sa(5,5) = 2*Sa_2323; 

Sa(6,6) = 2*Sa_3131; 

Sa; 

 

% CALCULATIONS 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

Ai_dil = inv(I+Si*inv(C)*(D-C)) 

Aa_dil = inv(I+Sa*inv(C)*(F-C)) 

 

Va =0.01 

 

for j = 1:length(Va)  

  Vf = 0.0:0.001:0.2;  

  for i =1:length(Vf)    

    V0 =(1-Va(j)-Vf(i));  

    A_0 = inv(V0*I + Vf(i)*Ai_dil + Va(j)*Aa_dil);  

    Ai_r = Ai_dil*A_0; 

    Aa_r = Aa_dil*A_0; 
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    C_comp = V0*C*A_0 + Vf(i)*D*Ai_r + Va(j)*F*Aa_r 

     

    % Transversely isotropic proerties 

    S_comp = inv(C_comp); 

    E_11(j,i) = 1/(S_comp(1,1)*E_0); 

    %end 

  end 

   

  plot(Vf,E_11,'k') 

  hold on 

end 

 

% PLOTTING 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 

B.4 General three-phase Mori-Tanaka model for randomly oriented inclusions 

% General Mori-Tanaka three-phase model 

% This case: Two types of isotropic inclusions 

% Three geometries: 

% 1) random spherical inclusions 

% 2) random fibre-like inclusions with aspect ratio 

% 3) random disc-shaped inclusion with aspect ratio 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% MATERIAL PARAMETERS 

% Elastic properties - matrix 

E_0 = 3.12 

nu_0 = 0.35 

 

C = zeros (6,6); 

const = (E_0*(1-nu_0))/((1+nu_0)*(1-2*nu_0)); 

C(1,1) = const; 

C(1,2)= const*(nu_0/(1-nu_0)); 

C(1,3)= const*(nu_0/(1-nu_0)); 

C(2,1) = C(1,2); 

C(2,2) = const; 

C(2,3) = const*(nu_0/(1-nu_0)); 

C(3,1) = C(1,3); 

C(3,2) = C(2,3); 

C(3,3) = const; 

C(4,4) = const*((1-2*nu_0)/(2*(1-nu_0))); 
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C(5,5) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C(6,6) = const*((1-2*nu_0)/(2*(1-nu_0))); 

C; 

 

% Elastic properties - inclusion 

E_i = 386 

nu_i = 0.35 

 

D = zeros (6,6); 

const = (E_i*(1-nu_i))/((1+nu_i)*(1-2*nu_i)); 

D(1,1) = const;   

D(1,2)= const*(nu_i/(1-nu_i)); 

D(1,3)= const*(nu_i/(1-nu_i)); 

D(2,1) = D(1,2); 

D(2,2) = const; 

D(2,3) = const*(nu_i/(1-nu_i)); 

D(3,1) = D(1,3); 

D(3,2) = D(2,3); 

D(3,3) = const; 

D(4,4) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(5,5) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D(6,6) = const*((1-2*nu_i)/(2*(1-nu_i))); 

D; 

 

% Elastic properties - agglomerates/voids 

E_a = 0.0 

nu_a = 0.35 

 

F = zeros (6,6); 

const = (E_a*(1-nu_a))/((1+nu_a)*(1-2*nu_a)); 

F(1,1) = const;   

F(1,2)= const*(nu_a/(1-nu_a)); 

F(1,3)= const*(nu_a/(1-nu_a)); 

F(2,1) = F(1,2); 

F(2,2) = const; 

F(2,3) = const*(nu_a/(1-nu_a)); 

F(3,1) = F(1,3); 

F(3,2) = F(2,3); 

F(3,3) = const; 

F(4,4) = const*((1-2*nu_a)/(2*(1-nu_a))); 

F(5,5) = const*((1-2*nu_a)/(2*(1-nu_a))); 

F(6,6) = const*((1-2*nu_a)/(2*(1-nu_a))); 

F; 
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% GEOEMTRY SETTINGS 

% Geometry - inclusions: 

%geom_i = 1  % spherical inclusions 

geom_i = 2  % fibre-like inclusions 

%geom_i = 3  % disc-shaped inclusions 

 

% Geometry - agglomerates/voids: 

geom_a = 1  % spherical inclusions 

%geom_a = 2  % fibre-like inclusions; NOT FULLY SUPPORTED 

%geom_a = 3  % disc-shaped inclusions; NOT FULLY SUPPORTED  

 

% INCLUSIONS 

if (geom_i == 1) 

  % Spherical inclusions: 

  Si_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  Si_2222 = Si_1111; 

  Si_3333 = Si_1111; 

  Si_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  Si_1133 = Si_1122; 

  Si_2211 = Si_1122; 

  Si_2233 = Si_1122; 

  Si_3311 = Si_1122; 

  Si_3322 = Si_1122; 

  Si_1212 = (4-5*nu_0)/(15*(1-nu_0));  

  Si_1221 = Si_1212; 

  Si_2323 = Si_1212; 

  Si_2332 = Si_1212; 

  Si_3131 = Si_1212; 

  Si_3113 = Si_1212; 

   

elseif (geom_i == 2) 

  % Fiber-like inclusions: 

  l = 20       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio   

  a2 = power(a,2.0) 

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  Si_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  Si_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 
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  Si_3333 = Si_2222; 

  Si_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Si_3322 = Si_2233; 

  Si_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Si_3311 = Si_2211; 

  Si_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Si_1133 = Si_1122; 

  Si_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Si_3232 = Si_2323; 

  Si_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Si_1313 = Si_1212; 

  Si_3131 = Si_1313; 

 

elseif (geom_i == 3) 

  % Disc-shaped inclusions 

  l = 0.5       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  Si_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  Si_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Si_3333 = Si_2222; 

  Si_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Si_3322 = Si_2233; 

  Si_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Si_3311 = Si_2211; 

  Si_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Si_1133 = Si_1122; 

  Si_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Si_3232 = Si_2323; 

  Si_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Si_1313 = Si_1212; 

  Si_3131 = Si_1313; 

end  

 

% Eshelby tensor (using engineering strains) 

Si = zeros(6,6); 
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% Matrix form: 

Si(1,1) = Si_1111; 

Si(1,2) = Si_1122; 

Si(1,3) = Si_1133; 

Si(2,1) = Si_2211; 

Si(2,2) = Si_2222; 

Si(2,3) = Si_2233; 

Si(3,1) = Si_3311; 

Si(3,2) = Si_3322; 

Si(3,3) = Si_3333; 

Si(4,4) = 2*Si_1212; 

Si(5,5) = 2*Si_2323; 

Si(6,6) = 2*Si_3131; 

Si; 

 

% AGGLOMERATES/VOIDS 

if (geom_a == 1) 

  % Spherical agglomerates/voids: 

  Sa_1111 = (7-5*nu_0)/(15*(1-nu_0));  

  Sa_2222 = Sa_1111; 

  Sa_3333 = Sa_1111; 

  Sa_1122 = (5*nu_0-1)/(15*(1-nu_0)); 

  Sa_1133 = Sa_1122; 

  Sa_2211 = Sa_1122; 

  Sa_2233 = Sa_1122; 

  Sa_3311 = Sa_1122; 

  Sa_3322 = Sa_1122; 

  Sa_1212 = (4-5*nu_0)/(15*(1-nu_0));  

  Sa_1221 = Sa_1212; 

  Sa_2323 = Sa_1212; 

  Sa_2332 = Sa_1212; 

  Sa_3131 = Sa_1212; 

  Sa_3113 = Sa_1212; 

elseif (geom_a == 2) 

  % Fiber-like agglomerates/voids: 

  l = 20       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

   

  g = (a/power(a2-1,1.5))*(a*sqrt(a2-1)-acosh(a)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 
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  e = 1/(a2-1) 

  

  Sa_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g) 

  Sa_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Sa_3333 = Sa_2222; 

  Sa_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Sa_3322 = Sa_2233; 

  Sa_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Sa_3311 = Sa_2211; 

  Sa_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Sa_1133 = Sa_1122; 

  Sa_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Sa_3232 = Sa_2323; 

  Sa_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Sa_1313 = Sa_1212; 

  Sa_3131 = Sa_1313; 

elseif (geom_a == 3) 

  % Disc-shaped agglomerates/voids: 

  l = 0.5       % fibre length 

  d = 1       % fibre diameter 

  a = l/d     % aspect ratio 

  a2 = power(a,2.0) 

  g = (a/power(1-a2,1.5))*(acos(a)-a*sqrt(1-a2)) 

  b = 1/(1-nu_0) 

  c = 1-2*nu_0 

  e = 1/(a2-1) 

  

  Sa_1111 = 0.5*b*(c + e*(3*a2-1)-(c+3*e*a2)*g); 

  Sa_2222 = (3/8)*b*e*a2+0.25*b*(c-(9/4)*e)*g; 

  Sa_3333 = Sa_2222; 

  Sa_2233 = 0.25*b*(0.5*e*a2-(c+0.75*e)*g); 

  Sa_3322 = Sa_2233; 

  Sa_2211 = -0.5*b*e*a2 + 0.25*b*(3*e*a2-c)*g; 

  Sa_3311 = Sa_2211; 

  Sa_1122 = -0.5*b*(c+e)+0.5*b*(c+1.5*e)*g; 

  Sa_1133 = Sa_1122; 

  Sa_2323 = 0.25*b*(0.5*e*a2 + (c-0.75*e)*g); 

  Sa_3232 = Sa_2323; 

  Sa_1212 = 0.25*b*(c-(a2+1)*e-0.5*(c-3*e*(a2+1))*g); 

  Sa_1313 = Sa_1212; 

  Sa_3131 = Sa_1313; 

end  

 



 
  
  
 

 42 FFI-rapport 2015/00534 

 

% Eshelby tensor (using engineering strains) 

Sa = zeros(6,6); 

 

% Matrix form: 

Sa(1,1) = Sa_1111; 

Sa(1,2) = Sa_1122; 

Sa(1,3) = Sa_1133; 

Sa(2,1) = Sa_2211; 

Sa(2,2) = Sa_2222; 

Sa(2,3) = Sa_2233; 

Sa(3,1) = Sa_3311; 

Sa(3,2) = Sa_3322; 

Sa(3,3) = Sa_3333; 

Sa(4,4) = 2*Sa_1212; 

Sa(5,5) = 2*Sa_2323; 

Sa(6,6) = 2*Sa_3131; 

Sa; 

 

% CALCULATIONS 

% Dilute matrix 

I = zeros(6,6); 

I(1,1) = 1.0; 

I(2,2) = 1.0; 

I(3,3) = 1.0; 

I(4,4) = 1.0; 

I(5,5) = 1.0; 

I(6,6) = 1.0; 

I; 

 

Ai_dil = inv(I+Si*inv(C)*(D-C)) 

Aa_dil = inv(I+Sa*inv(C)*(F-C)) 

 

% Random average matrix 

M =(1/120)*[24 64 0 16 16 0 0 0 0 0 0 64; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  24 9 45 6 6 10 10 5 5 20 40 24; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 8 0 12 32 20 0 40 0 0 0 -32; 

  8 8 0 32 12 0 20 0 40 0 0 -32; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 30 30 15 15 -20 -40 8; 

  8 3 15 2 2 -10 -10 -5 -5 20 40 8; 
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  8 8 0 -8 -8 0 0 0 0 40 20 28; 

  8 8 0 -8 -8 0 0 0 0 40 20 28] 

 

% AVERAGING OF THE FIRST INCLUSION PHASE 

D_Ai_dil = D*Ai_dil 

 

% Averaging of D_Ai_dil 

D_Ai_dil_vec(1) = D_Ai_dil(1,1); 

D_Ai_dil_vec(2) = D_Ai_dil(2,2); 

D_Ai_dil_vec(3) = D_Ai_dil(3,3); 

D_Ai_dil_vec(4) = D_Ai_dil(1,2); 

D_Ai_dil_vec(5) = D_Ai_dil(2,1); 

D_Ai_dil_vec(6) = D_Ai_dil(1,3); 

D_Ai_dil_vec(7) = D_Ai_dil(3,1); 

D_Ai_dil_vec(8) = D_Ai_dil(2,3); 

D_Ai_dil_vec(9) = D_Ai_dil(3,2); 

D_Ai_dil_vec(10) = D_Ai_dil(4,4); 

D_Ai_dil_vec(11) = D_Ai_dil(5,5); 

D_Ai_dil_vec(12) = D_Ai_dil(6,6); 

 

D_Ai_dil_aver_vec = M*transpose(D_Ai_dil_vec); 

 

D_Ai_dil_aver(1,1) = D_Ai_dil_aver_vec(1);  

D_Ai_dil_aver(2,2) = D_Ai_dil_aver_vec(2);  

D_Ai_dil_aver(3,3) = D_Ai_dil_aver_vec(3);  

D_Ai_dil_aver(1,2) = D_Ai_dil_aver_vec(4);  

D_Ai_dil_aver(2,1) = D_Ai_dil_aver_vec(5);  

D_Ai_dil_aver(1,3) = D_Ai_dil_aver_vec(6);  

D_Ai_dil_aver(3,1) = D_Ai_dil_aver_vec(7);  

D_Ai_dil_aver(2,3) = D_Ai_dil_aver_vec(8);  

D_Ai_dil_aver(3,2) = D_Ai_dil_aver_vec(9);  

D_Ai_dil_aver(4,4) = D_Ai_dil_aver_vec(10);  

D_Ai_dil_aver(5,5) = D_Ai_dil_aver_vec(11);  

D_Ai_dil_aver(6,6) = D_Ai_dil_aver_vec(12);  

D_Ai_dil_aver;   

     

% Averaging of Ai_dil 

Ai_dil_vec(1) = Ai_dil(1,1); 

Ai_dil_vec(2) = Ai_dil(2,2); 

Ai_dil_vec(3) = Ai_dil(3,3); 

Ai_dil_vec(4) = Ai_dil(1,2); 

Ai_dil_vec(5) = Ai_dil(2,1); 

Ai_dil_vec(6) = Ai_dil(1,3); 
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Ai_dil_vec(7) = Ai_dil(3,1); 

Ai_dil_vec(8) = Ai_dil(2,3); 

Ai_dil_vec(9) = Ai_dil(3,2); 

Ai_dil_vec(10) = Ai_dil(4,4); 

Ai_dil_vec(11) = Ai_dil(5,5); 

Ai_dil_vec(12) = Ai_dil(6,6); 

  

Ai_dil_aver_vec = M*transpose(Ai_dil_vec); 

 

Ai_dil_aver(1,1) = Ai_dil_aver_vec(1);  

Ai_dil_aver(2,2) = Ai_dil_aver_vec(2);  

Ai_dil_aver(3,3) = Ai_dil_aver_vec(3);  

Ai_dil_aver(1,2) = Ai_dil_aver_vec(4);  

Ai_dil_aver(2,1) = Ai_dil_aver_vec(5);  

Ai_dil_aver(1,3) = Ai_dil_aver_vec(6);  

Ai_dil_aver(3,1) = Ai_dil_aver_vec(7);  

Ai_dil_aver(2,3) = Ai_dil_aver_vec(8);  

Ai_dil_aver(3,2) = Ai_dil_aver_vec(9);  

Ai_dil_aver(4,4) = Ai_dil_aver_vec(10);  

Ai_dil_aver(5,5) = Ai_dil_aver_vec(11);  

Ai_dil_aver(6,6) = Ai_dil_aver_vec(12);  

Ai_dil_aver;   

 

% AVERAGING OF THE SECOND INCLUSION PHASE (agglomerates/voids) 

F_Aa_dil = F*Aa_dil 

 

% Averaging of F_Aa_dil 

F_Aa_dil_vec(1) = F_Aa_dil(1,1); 

F_Aa_dil_vec(2) = F_Aa_dil(2,2); 

F_Aa_dil_vec(3) = F_Aa_dil(3,3); 

F_Aa_dil_vec(4) = F_Aa_dil(1,2); 

F_Aa_dil_vec(5) = F_Aa_dil(2,1); 

F_Aa_dil_vec(6) = F_Aa_dil(1,3); 

F_Aa_dil_vec(7) = F_Aa_dil(3,1); 

F_Aa_dil_vec(8) = F_Aa_dil(2,3); 

F_Aa_dil_vec(9) = F_Aa_dil(3,2); 

F_Aa_dil_vec(10) = F_Aa_dil(4,4); 

F_Aa_dil_vec(11) = F_Aa_dil(5,5); 

F_Aa_dil_vec(12) = F_Aa_dil(6,6); 

 

F_Aa_dil_aver_vec = M*transpose(F_Aa_dil_vec); 

 

F_Aa_dil_aver(1,1) = F_Aa_dil_aver_vec(1);  
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F_Aa_dil_aver(2,2) = F_Aa_dil_aver_vec(2);  

F_Aa_dil_aver(3,3) = F_Aa_dil_aver_vec(3);  

F_Aa_dil_aver(1,2) = F_Aa_dil_aver_vec(4);  

F_Aa_dil_aver(2,1) = F_Aa_dil_aver_vec(5);  

F_Aa_dil_aver(1,3) = F_Aa_dil_aver_vec(6);  

F_Aa_dil_aver(3,1) = F_Aa_dil_aver_vec(7);  

F_Aa_dil_aver(2,3) = F_Aa_dil_aver_vec(8);  

F_Aa_dil_aver(3,2) = F_Aa_dil_aver_vec(9);  

F_Aa_dil_aver(4,4) = F_Aa_dil_aver_vec(10);  

F_Aa_dil_aver(5,5) = F_Aa_dil_aver_vec(11);  

F_Aa_dil_aver(6,6) = F_Aa_dil_aver_vec(12);  

F_Aa_dil_aver;   

     

% Averaging of Aa_dil 

Aa_dil_vec(1) = Aa_dil(1,1); 

Aa_dil_vec(2) = Aa_dil(2,2); 

Aa_dil_vec(3) = Aa_dil(3,3); 

Aa_dil_vec(4) = Aa_dil(1,2); 

Aa_dil_vec(5) = Aa_dil(2,1); 

Aa_dil_vec(6) = Aa_dil(1,3); 

Aa_dil_vec(7) = Aa_dil(3,1); 

Aa_dil_vec(8) = Aa_dil(2,3); 

Aa_dil_vec(9) = Aa_dil(3,2); 

Aa_dil_vec(10) = Aa_dil(4,4); 

Aa_dil_vec(11) = Aa_dil(5,5); 

Aa_dil_vec(12) = Aa_dil(6,6); 

  

Aa_dil_aver_vec = M*transpose(Aa_dil_vec); 

 

Aa_dil_aver(1,1) = Aa_dil_aver_vec(1);  

Aa_dil_aver(2,2) = Aa_dil_aver_vec(2);  

Aa_dil_aver(3,3) = Aa_dil_aver_vec(3);  

Aa_dil_aver(1,2) = Aa_dil_aver_vec(4);  

Aa_dil_aver(2,1) = Aa_dil_aver_vec(5);  

Aa_dil_aver(1,3) = Aa_dil_aver_vec(6);  

Aa_dil_aver(3,1) = Aa_dil_aver_vec(7);  

Aa_dil_aver(2,3) = Aa_dil_aver_vec(8);  

Aa_dil_aver(3,2) = Aa_dil_aver_vec(9);  

Aa_dil_aver(4,4) = Aa_dil_aver_vec(10);  

Aa_dil_aver(5,5) = Aa_dil_aver_vec(11);  

Aa_dil_aver(6,6) = Aa_dil_aver_vec(12);  

Aa_dil_aver;   
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% CALCULATIONS 

Va =0.05 

Vf = 0.0:0.001:0.018;  

 

for i =1:length(Vf)  

  V0 =(1-Va-Vf(i));  

  

  % NOTE: Current version only support SPHERICAL SHAPED 

AGLOMERATES/VOIDS 

  if (geom_i == 1 & geom_a == 1) 

    %Gives the correct spherical distr. 

    A_0 = inv(V0*I + Vf(i)*Ai_dil + Va*Aa_dil);  

  elseif (geom_i == 2 & geom_a == 1) 

    % gives a transversely iso C_comp 

    A_0 = inv(V0*I + Vf(i)*Ai_dil_aver + Va*Aa_dil);  

  elseif (geom_i == 3 & geom_a == 1) 

    A_0 = inv(V0*I + Vf(i)*Ai_dil_aver + Va*Aa_dil); 

    % Additional elseif statements needed in case aglomerates/voids 

    % have a different geometry  

  end 

   

  C_comp = (V0*C + Vf(i)*D_Ai_dil_aver + Va*F_Aa_dil_aver)*A_0 

     

  % Transversely isotropic properties 

  S_comp = inv(C_comp); 

  E_11(i) = 1/(S_comp(1,1)*E_0); 

end 

 

% PLOTTING 

plot(Vf,E_11,'m') 

hold on 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 

B.5 Weng three-phase model 

% Weng three-phase model 

% This case: Two types of isotropic inclusions (three-phase model) 

% Geometry: random spherical inclusions 

% Refererence: Weng, 1984 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Elastic properties - matrix 
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E_0 = 3.12 

nu_0 =  0.35 

mu_0 = E_0/(2*(1+nu_0)) 

kappa_0 = E_0/(3*(1-2*nu_0)) 

alpha_0 = (3*kappa_0)/(3*kappa_0+4*mu_0) 

beta_0 = (6/5)*((kappa_0+2*mu_0)/(3*kappa_0+4*mu_0)) 

 

% Elastic properties - inclusion (phase 1) 

E_f =  386  

nu_f = 0.22   

mu_f = E_f/(2*(1+nu_f)) 

kappa_f = E_f/(3*(1-2*nu_f)) 

 

% Elastic properties - agglomerates/voids (phase 2) 

E_a =  3.12 % GPa  

nu_a = 0.35 %  

mu_a = E_a/(2*(1+nu_a)) 

kappa_a = E_a/(3*(1-2*nu_a)) 

 

V_f = 0.0:0.001:0.2;  

V_a = 0.01 

 

for i =1:length(V_f) 

  a=(V_f(i)*(kappa_f-kappa_0))/(alpha_0*(kappa_f-kappa_0)+kappa_0)... 

      +(V_a*(kappa_a-kappa_0))/(alpha_0*(kappa_a-kappa_0)+kappa_0) 

   

  b=(V_f(i)*(mu_f-mu_0))/(beta_0*(mu_f-mu_0)+mu_0)... 

      +(V_a*(mu_a-mu_0))/(beta_0*(mu_a-mu_0)+mu_0) 

   

  kappa_c(i)=1+a/(1-alpha_0*a) 

  mu_c(i)=1+b/(1-beta_0*b) 

   

  % Effective Young's modulus (normalized) 

  E_c(i)= kappa_c(i)*mu_c(i)*(3*kappa_0+mu_0)/... 

      (3*kappa_c(i)*kappa_0+mu_c(i)*mu_0); 

end 

 

plot(V_f,E_c, 'g') 

xlabel ('V_f') 

ylabel('E_{comp}/E_m') 

legend('E_a=0 (voids)', 'E_a=1 GPa', 'E_a=E_m', 'E_a= 10 GPa') 
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B.6 Cohen-Ishai three-phase model 

% Cohen and Ishai three-phase model 

% This case: One type of isotropic inclusions and voids 

% References: Cohen and Ishai, 1967 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Stiffness - matrix 

E_m = 3.12 

nu_m = 0.35 

 

% Stiffness - inclusion 

E_f = 386 

nu_f = 0.22 

 

V_f = 0.0:0.001:0.015 

V_a = 0.005 

 

for i = 1:length(V_f) 

  E_cv = E_m*(1-power(V_a,2/3))   

  m = E_f/E_cv 

  E_comp = E_cv*(1+(V_f(i)/((m/(m-1))-nthroot(V_f(i),3)))) 

  E_11(i) = E_comp/E_m; 

end 

 

plot(V_f,E_11,'k--') 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 

B.7 Paul three-phase model 

% Paul three-phase model 

% This case: One type of isotropic inclusions and voids 

% References: Paul, 1967 

% 

% Author: Tom Thorvaldsen, FFI, March 2014 

 

% Stiffness - matrix 

E_m = 3.12 %GPa % 2.76 %GPa 

nu_m = 0.35; 

 

% Stiffness - inclusion 

E_f = 386.0 % GPa % 72.4; 
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nu_f = 0.22  %0.2; 

 

V_f = 0.0:0.001:0.015 

V_a = 0.005 

 

for i = 1:length(V_f) 

  E_cv = E_m*((1-power(V_a,2/3))/(1-power(V_a,2/3)+V_a)) 

  m = E_f/E_cv 

  E_comp = E_cv*((1+(m-1)*power(V_f(i),2/3))/(1+(m-

1)*(power(V_f(i),2/3)-V_f(i)))) 

  E_11(i) = E_comp/E_m; 

end 

 

plot(V_f,E_11,'c--') 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 

B.8 Cohen-Ishai-Thorvaldsen  three-phase model 

% Cohen-Ishai-Thorvaldsen three-phase model  

% This case: One type of isotropic inclusions and agglomerates 

% References: Cohen and Ishai, 1967 + Thorvaldsen 

% 

% Author: Tom Thorvaldsen, FFI,  March 2014 

 

% Elastic properties - matrix 

E_m = 3.12 

nu_m = 0.35 

 

% Elastic properties - inclusion 

E_f = 386 

nu_f = 0.22 

 

% Elastic properties- agglomerates 

E_a = 1.0 

nu_a = 0.35 

 

V_f = 0.0:0.001:0.015 

V_a = 0.005 

 

for i = 1:length(V_f)   

  m_a = E_a/E_m 

  E_ca = E_m*(1+(V_a/((m_a/(m_a-1))-nthroot(V_a,3)))) 
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  m = E_f/E_ca 

  E_comp = E_ca*(1+(V_f(i)/((m/(m-1))-nthroot(V_f(i),3)))) 

  E_11(i) = E_comp/E_m; 

end 

 

plot(V_f,E_11,'k') 

xlabel ('V_f') 

ylabel('E_{comp}/E_0') 

B.9 Paul-Thorvaldsen three-phase model 

% Paul-Thorvaldsen three-phase model  

% This case: One type of isotropic inclusions and agglomerates 

% References: Paul, 1967 + Thorvaldsen 

% 

% Author: Tom Thorvaldsen, FFI, January 2014 

 

% Elastic properties - matrix 

E_m = 3.12 

nu_m = 0.35 

 

% Elastic properties - inclusion 

E_f = 386 

nu_f = 0.22 

 

% Elastic properties - agglomerates 

E_a = 1.0  

nu_a = 0.35 

 

V_f = 0.0:0.001:0.015 

V_a = 0.005 

 

for i = 1:length(V_f) 

  m_a = E_a/E_m 

  E_ca = E_m*((1+(m_a-1)*power(V_a,2/3))/(1+(m_a-1)*(power(V_a,2/3)-

V_a))) 

   

  m = E_f/E_ca 

  E_comp = E_ca*((1+(m-1)*power(V_f(i),2/3))/(1+(m-

1)*(power(V_f(i),2/3)-V_f(i)))) 

  E_11(i) = E_comp/E_m; 

end 

 

plot(V_f,E_11,'c') 
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xlabel ('V_f') 

ylabel('E_{comp}/E_0') 
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