

 FFI RAPPORT

 NavLab OneClick

 SVARTVEIT Kristian

 FFI/RAPPORT-2005/01361

NavLab OneClick

SVARTVEIT Kristian

FFI/RAPPORT-2005/01361

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

 3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

 FFI/RAPPORT-2005/01361 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 25
 FFI -
4) TITLE

NavLab OneClick

5) NAMES OF AUTHOR(S) IN FULL (surname first)

 SVARTVEIT Kristian

6) DISTRIBUTION STATEMENT

 Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
 IN ENGLISH: IN NORWEGIAN:

 a) Navigation post processing a) Etterprosessering av navigasjon

 b) NavLab b) NavLab

 c) Smoothing c) Glatting

 d) Aided inertial navigation system d) Integrert Treghetsnavigasjonssystem

 e) Autonomous Underwater Vehicle (AUV) e) Autonom undervannsfarkost

THESAURUS REFERENCE:

8) ABSTRACT

NavLab OneClick is a MatLab script for automatic NavLab pre-processing, estimation, and export of finished smoothed
data. This means that the user will be relieved of data structure creation, wild point filtering, estimator initialisation,
quality control, and export of the smoothed results. NavLab OneClick is a shell surrounding NavLab, performing many
of the labouring tasks that otherwise requires user intervention.

This report holds the user guide for OneClick, including description of the necessary set up required before running
NavLab OneClick the first time. All user defined parameters used by OneClick is thoroughly described. One chapter is
devoted to a discussion on memory constraints, and some suggestions on how to improve the computer’s performance.
Finally the report gives a more detailed description of the code, what it does, and why it does it.

9) DATE AUTHORIZED BY POSITION

 This page only
2005-04-29 Nils Størkersen Director of Research

ISBN 82-464-0937-9 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

 5

CONTENTS
 Page

1 EXCECUTIVE SUMMARY 7

2 BACKGROUND 8

2.1 Design philosophy 8

2.2 Overview of this document 8

3 RUNNING NAVLAB ONECLICK 9

3.1 Installation 9

3.2 Getting started 9

3.3 Selecting a run 9

3.4 Choosing position measurement aiding source 10

3.5 Navigating the finished results 10

4 USER DEFINED PARAMETERS 11

4.1 .ini-file location 11

4.2 BinaryDataToText location 11

4.3 NavLabPosFilter location 12

4.4 Default run path 12

4.5 Post path 12

4.6 Plotting extra figures 12

4.7 Get mission waypoints from HUGIN OS 12

4.8 Position accuracy warning level 13

4.9 Position aiding source 13

4.10 Start stop time 13

4.11 Dividing long runs 14

4.12 Parallel processing 14

4.13 Manual wild point editing 15

4.14 Automatic DGPS-USBL wild point filter 15

4.15 DGPS-USBL measurements acceptance area 16

4.16 Position measurement quality limit 16

4.17 Automatic DVL wild point filter 16

4.18 DVL start-up requirements 17

4.19 Depth dependent DVL accuracy 17

4.20 Depth dependent pressure sensor accuracy 17

 6

5 MEMORY CONSIDERATIONS 18

5.1 Precautions 18

6 DESCRIPTION OF NAVLAB ONECLICK 19

6.1 Reading and writing .ini files 19

6.2 Creating directories and copying files 19

6.3 Position wild point filter 20

6.4 Pre-processing 20

6.5 Pre-processing vehicle GPS 20

6.6 Merging position measurements from two sources 20

6.7 DVL wild point filter 21

6.8 DVL start up requirements 21

6.9 Choosing start and stop time 21

6.10 Varying sensor quality 22
6.10.1 Depth measurement 22
6.10.2 DVL measurements 22

6.11 Initial values 22

6.12 Export 23

6.13 Quality check 23

7 REFERENCES 24

APPENDIX

A ABBREVIATIONS 25

 7

NavLab OneClick

1 EXCECUTIVE SUMMARY

NavLab OneClick is a MatLab script for automatic NavLab pre-processing, estimation, and
export of finished smoothed data. This means that the user will be relieved of data structure
creation, wild point filtering, estimator initialisation, quality control, and export of the
smoothed results. NavLab OneClick is a shell surrounding NavLab, performing many of the
labouring tasks that otherwise requires user intervention. See [1] and [2] for a thorough
description of NavLab.

NavLab OneClick is a permanent part of the NavLab post-processing system. Thus, the name
OneClick is only used for development purposes. Typical NavLab users occupied with
NavLab post-processing of HUGIN navigation data, in the offshore survey industry or in the
military, will view OneClick as a general upgrade to NavLab. An upgrade that improves their
working conditions, assures quality, and reduces time and cost of post-processing
substantially.

 8

2 BACKGROUND

NavLab is developed as a powerful tool for navigation system research and development,
navigation system accuracy analysis, and navigation data post-processing. This leads to a wide
range of both users and usage. NavLab is versatile in its nature and makes all the different
usages possible. However, the complexity of the system might make it elaborate for users with
a narrow field of use. NavLab OneClick is intended for post-processing of HUGIN data using
NavLab, and automates most user interactions with NavLab. This makes NavLab for post-
processing faster and easier to use, and the risk of manual errors smaller.

2.1 Design philosophy

NavLab OneClick is implemented with emphasis on simplicity and fault tolerance. It shall be
easy to use, and shall not require in-depth knowledge of inertial navigation and Kalman
filtering. Nevertheless, the user will be presented with enough information to determine the
quality of the navigation data. The end results shall be easy to navigate and locate for future
use, and stored with enough information to reproduce the results.

2.2 Overview of this document

Chapter 3 is a user guide, including description of the necessary set up required before running
NavLab OneClick the first time. Chapter 4 describes all user defined parameters used by
OneClick. Chapter 5 discusses memory constraints and issues, and includes some suggestions
on how to improve the computer’s performance. Chapter 6 gives a description of the code,
what it does, and why it does it.

 9

3 RUNNING NAVLAB ONECLICK

This chapter gives a brief overview of the usage of NavLab OneClick. It states what input is
needed and where to find the outputs. Some comments on the interpretation of the output are
also given. For a thorough description of what NavLab OneClick does, and what algorithms
are implemented, refer to Chapter 6.

3.1 Installation

You need an installation of NavLab on your computer, and the MatLab path should include all
NavLab directories. At your preferred location a directory called “OneClick” should be
placed, and added to the MatLab path. The most convenient way to manage this is through a
“startup.m” file, or your pathdef. (See help in MatLab for more information).

The directories containing .ini files, the binary data converter, and the position outlier filter
must be specified in “OneClick.ini”, if they are not subdirectories under “OneClick” named
“ini”, “BinaryDataToTxt”, and “NavLabPosFilter” respectively. In addition, the output
path and default run path can be specified.

OneClick will use the “OneClick.ini” found first in the path, this means you can have
several copies and start OneClick from the appropriate location for different behaviour. Use
the command “which OneClick.ini” to determine which “OneClick.ini” will be used
from MatLab’s current directory.

All parameters in “OneClick.ini” are described in Chapter 4.

3.2 Getting started

Typing OneClick in the MatLab command window starts the program. MatLab’s current
directory doesn’t have to be the run directory, it can be any directory.

3.3 Selecting a run

The user is prompted for a run directory. If you find yourself always clicking down the same
directory tree to locate your runs, a default starting directory can be specified in
”OneClick.ini”. The chosen run directory must contain a subdirectory called
“navp\NavData”. OneClick expects to find the sequential text files created from the HUGIN
binary log-files here. If they are not, OneClick tries to create them from the log-files using
”BinaryDataToText.exe”. If there is not at least one sequential text file for the following
sensors: IMU, DVL, pressure and heading, OneClick is terminated with an error message.

OneClick creates a “post” directory adjacent to the “navp” directory in the run directory. If
the post processed data is wanted elsewhere, an alternative location can be specified in

 10

”OneClick.ini”. If this directory doesn’t exist, the user is prompted whether to stop or create
it.

If there already exists a “NavLab” directory in the “post” directory, with results from a
previous post-processing, the user is given two choices:

1. Plot previous: The previous post-processing is loaded from its .mat file, and 15 figures
recommended for real data inspection are created.

2. Process again: The run is processed again.
If the run is processed again, the existing “NavLab” directory is moved to
“NavLab_YYYYMMDD-HHMM”, with the date and time when it was created.

3.4 Choosing position measurement aiding source

The user is prompted whether to use USBL, vehicle GPS, or both as position measurement
aiding. If processing USBL, the ”TopSideAUVPos.txt” file, or the older ”pos.txt”, must be
available in the selected run directory.

3.5 Navigating the finished results

NavLab will produce a large amount of information displayed in the Matlab window. This is
information regarding the status and progress of the various parts. All this information is saved
in a log file called “OneClick_log.txt”, and a separate log file for the preprocessing of each
part called “Preproc_log.txt”.

By default NavLab OneClick plots a latitude versus longitude overview with position
measurements, real time Kalman filter positions, and smoothed positions. In addition, if
specified in ”OneClick.ini”, all the figures recommended for inspection of the navigation
results are also plotted. See [1] for guidelines regarding interpretation of these figures. The
NavLab function plot_general will give access to the whole set of NavLab figures.

NavLab OneClick finishes with a quality check, which shows if the mean of any of the
estimated biases are above 3σ. A short quality report gives the fraction of time a bias estimate
was above 3σ, and the longest continuous interval the estimate was outside 3σ. If the estimated
position accuracy is above the limit given in ”OneClick.ini”, a warning reports this.

The finished exported results are located in the “/NavLab” directory, as is the saved MatLab
workspace as a .mat file. If the run was split, the .mat files are put in “/NavLab/part01”,
“/NavLab/part02”, etc.

 11

4 USER DEFINED PARAMETERS

In ”OneClick.ini”, a set of parameters specifying the behaviour of NavLab OneClick is
defined.
Note: All string values must be without blanks (space, tabs, etc.). All blanks will be removed.
This also means that the total path to a run directory must be without blanks.

4.1 .ini-file location

OneClick copies ”preproc.ini”, ”estimator.ini”, and ”cov_matrix.ini” from this
location. The default location is a “ini” directory in your OneClick directory. Figure 4.1
shows the directory tree with default directories for .ini-files, BinaryDataToText, and
NavLabPosFilter.
Parameter Default value Example values
ini_file_location 0 0 : Default
 C:\NavLab\OneClick\ini

Figure 4.1 Default directories

4.2 BinaryDataToText location

If the .log files aren't extracted to sequential .txt files, OneClick will attempt to do this using
BinaryDataToText.exe from this location. The default location is a “BinaryDataToText”
directory in your OneClick directory.
Parameter Default value Example values
BinaryDataToText_location 0 0 : Default
 C:\NavLab\OneClick\Bi

naryDataToText

 12

4.3 NavLabPosFilter location

The multiple Kalman filter system for automatic position wild point filtering is run from this
location. The default location is a “NavLabPosFilter” directory in your OneClick directory.
Parameter Default value Example values
NavLabPosFilter_location 0 0 : Default
 C:\NavLab\OneClick\Na

vLabPosFilter

4.4 Default run path

When prompting the user for the run directory, OneClick will start in this directory. This is not
a necessity, but convenient if all runs are located under the same tree structure.
Parameter Default value Example values
default_run_path C:\ C:\mission
 /home/export/mission

4.5 Post path

The processed data from NavLab is by default placed in a “post” directory adjacent the
“navp” directory in the chosen run directory. If another location is desired, it must be
specified. In this directory, a new directory with the same name as the run directory will be
created, with a “post” subdirectory.
Parameter Default value Example values
post_path 0 0 : Default
 C:\post

4.6 Plotting extra figures

OneClick will always plot an overview (latitude vs. longitude) and a summary of the
estimation. In addition, OneClick can plot some 15 figures recommended for real data
analysis.
Parameter Default value Example values
OneClick_figures 0 0 : No
 1 : Yes

4.7 Get mission waypoints from HUGIN OS

OneClick can plot the mission waypoints from HUGIN OS in the latitude vs. longitude
overview plot. The HUGIN OS file ”mission.mp” is needed in the run directory for this
functionality to work.
Parameter Default value Example values
plot_mission_plan 1 0 : No
 1 : Yes

 13

4.8 Position accuracy warning level

Estimated smooth position accuracy is displayed in NavLab figure number 25, if its largest
value exceeds this limit, a warning is given in the summary.
Parameter Default value Example values
smooth_est_err_naveq_pos_limit 8 [meters]

4.9 Position aiding source

NavLab can use only one source of position measurement. This can be either vehicle GPS,
DGPS-USBL, or a merge of the both created by OneClick. The user can be asked each time
OneClick is run, or this parameter can control it.
Parameter Default value Example values
Position_aifing_source 0 0 : Ask the user
 1 : Vehicle GPS
 2 : DGPS-USBL
 3 : Both

4.10 Start stop time

Processing start and stop times can be based either on position or DVL measurements. If based
on position, the time of the first position measurement is used as start time, and the time of the
last IMU measurement is used as stop time. If based on DVL, the time of the first DVL
measurement is start, and the last is stop (Limited by not being before or after the first and last
position measurement). It is not possible to use parallel processing with DVL as start/stop
base, because the splitting algorithm only assures the availability of position measurements at
the start of each part, not DVL. The parallel processing will be disabled, and a warning given
to the user, if DVL is start/stop base.

Parameter Default value Example values
start_stop_base 0 0 : Position
 1 : DVL

 14

4.11 Dividing long runs

If the run is too long for the computer's memory, OneClick will divide it into pieces and run
them separately. The division is made such that each piece has position measurements at both
the beginning and the end. Each piece ends at the last position measurement before
max_estimator_length seconds after it starts plus overlap, as seen in Figure 4.2

max_estimator_length

Position measurements

estimator_overlap

First part

max_estimator_length

Second part

Figure 4.2 Dividing runs

To have good accuracy, an overlap between runs is needed. Two third of the defined overlap is
before the cut, and one third is after. Increased overlap decreases differences in the intersection
between two pieces, but will take longer time to process. The overlap should not be less than 6
minutes (360 seconds).
Parameter Default value Example values
max_estimator_length 8*3600 [seconds]
estimator_overlap 6*60 [seconds]

4.12 Parallel processing

If multiple processors are available, split runs can be processed in parallel. Each part of a split
run will then be initialized based on available measurements, not the results from the previous
estimation. Thus, longer overlap is recommended. After pre-processing a part, you may start
another MatLab process, and run ”OneClick_parallel.m”, which prompts you for a part to
estimate. OneClick will skip all parts where OneClick_parallel has started. Note that if parts
are not processed in parallel, the state and covariance are used for initialization as usual.
Parameter Default value Example values
enable_parallell_processing 0 0 : No
 1 : Yes

 15

4.13 Manual wild point editing

Automatic DGPS-USBL wild point editing is done prior to preproc, and automatic DVL wild
point editing is done afterwards. Manual wild-point editing of all sensor measurements can be
done during preproc.
Parameter Default value Example values
manual_wildpoint_editing 0 0 : No
 1 : Yes

4.14 Automatic DGPS-USBL wild point filter

OneClick can run automatic wild point identification and removal on the DGPS-USBL
measurements. Vehicle GPS is not checked for wild points, but measurements are removed
based on reported accuracy from the GPS receiver. See [3] for further information on the
USBL wild point filter.
Parameter Default value Example values
automatic_USBL_wildpoint_filter 1 0 : No
 1 : Yes
USBL_filter_max_speed 3 [m/s]
USBL_filter_vehicle_stability 2 1 : unstable
 2 : stable
 3 : very stable

 16

4.15 DGPS-USBL measurements acceptance area

The parameters USBL_min_accept_depth, USBL_max_accept_angle,
USBL_max_accept_horizontal_distance, and USBL_max_accept_range define the cut cone
shown in Figure 4.3. When the AUV is outside this area, all USBL measurements are
discarded.

min accept depth

max accept angle

max_accept_horizontal_distance

max accept range

Figure 4.3 USBL acceptance area

Parameter Default value Example values
USBL_max_accept_angle_deg 60 [degrees]
USBL_min_accept_depth 10 [meters]
USBL_max_accept_horizontal_distance 300 [meters]
USBL_max_accept_range 3000 [meters]

4.16 Position measurement qu

If GPS, dGPS, or USBL position measu
more inaccurate than reported. Thus, me
values are normally cut away, even thou
USBL quality is depth dependent, hence
depths.
Parameter
USBL_quality_limit
dGPS_quality_limit
GPS_quality_limit

4.17 Automatic DVL wild point

OneClick can run an automatic DVL wi
outliers. See Chapter 6.7 for details.
Parameter
automatic_DVL_wildpoint_filter

ality limit

rements have reported high uncertainty, they tend to be
asurements with reported quality above the specified
gh they might pass the wild-point filter. Note that the
 a larger value may be necessary if operating at large

Default value Example values
14 [meters]
10 [meters]
6 [meters]

filter

ld point filter using a median based filter to detect

Default value Example values
1 0 : No
 1 : Yes

 17

4.18 DVL start-up requirements

When the DVL first gets bottom track, it is advantageous to have a stable measurement rate
before using it as an aiding sensor. All DVL measurements before a period of minimum
DVL_startup_interval_length seconds with time between samples no larger than
DVL_startup_max_diff will be discarded.
Parameter Default value Example values
DVL_startup_max_diff 4.5 [seconds]
DVL_startup_interval_length 60 [seconds]

4.19 Depth dependent DVL accuracy

Experience show that DVL performance tends to decrease with increased vehicle dynamics.
Large vehicle dynamics is often present in the surface due to wave-induced motion. To counter
this, OneClick can decrease the DVL accuracy when AUV depth is less than
DVL_depth_quality_limit. In this case the low quality values in the table below are used.
Parameter Default value Example values
varying_DVL_est_quality 1 0 : No
 1 : Yes
DVL_depth_quality_limit 2.5 [meters]
low_quality_std_w_DVL_x 10e-3 [m/s]
low_quality_std_w_DVL_y 10e-3 [m/s]
low_quality_std_w_DVL_z 10e-3 [m/s]
low_quality_std_Dv_DVL_bias_x 10e-3 [m/s]
low_quality_std_Dv_DVL_bias_y 10e-3 [m/s]
low_quality_std_Dv_DVL_bias_z 10e-3 [m/s]
low_quality_T_Dv_DVL_bias_x 20 [seconds]
low_quality_T_Dv_DVL_bias_y 20 [seconds]
low_quality_T_Dv_DVL_bias_z 20 [seconds]

4.20 Depth dependent pressure sensor accuracy

A pressure sensor is intended for underwater use, and hence less accurate in air, and sometimes
also during surfacing. Varying depth accuracy can compensate for this. The low quality values
from the table below are used when AUV depth is above depthm_depth_quality_limit.
Parameter Default value Example values
varying_depthm_est_quality 0 0 : No
 1 : Yes
depthm_depth_quality_limit 2.5 [meters]
low_quality_std_w_depthm 0.02 [meters]
low_quality_std_Dz_depthm_bias 0.2 [meters]
low_quality_T_Dz_depthm_bias 200 [seconds]

 18

5 MEMORY CONSIDERATIONS

Running NavLab can be very memory intensive, especially on long runs. And although you
have lots of memory, MatLab requires large contiguous memory blocks to handle large data
structures. If a run is longer than specified in max_estimator_length in ”OneClick.ini”,
the estimator is run several times to cover the whole length. The max_estimator_length
parameter should be based on your hardware limitations.

5.1 Precautions

Before processing long runs, some steps can be taken to lower the probability of an ‘Out of
Memory’ message from MatLab. More details can be found in MathWorks’ “memory
management guide” [4].

• Under Windows 32bit architecture, reserve 2GB of virtual memory through the control
panel.

• If running MatLab R14 on Windows XP, use the /3G switch to allow applications to
use 3 of the 4 GB memory address space. This setting is applied in the Windows file
“boot.ini” located in the root directory of your Windows drive.

• Don’t run other memory demanding applications simultaneously with NavLab, and if
you have run many other applications lately, restart your computer, or use a memory
defragmentation tool.

• Restart MatLab before each run.
• Start MatLab with the –nojvm option. This starts MatLab without java virtual machine,

and frees approximately 250MB extra free memory. (R14)
• If you have the option, choose a computer equipped with a CPU (processor) with much

cache, or better memory management. NavLab has been shown to perform very well
on:

o Pentium M dothan laptop processors with 2MB cache.
o AMD Opteron processors

NavLab runs under 64 bit MatLab for Linux, where memory constraints are not a problem as
the amount of memory address space is squared.

 19

6 DESCRIPTION OF NAVLAB ONECLICK

This chapter gives a description of what the script ”OneClick.m” does, and some background
as to why it does what it does. A log file called OneClick_log.txt containing all echoed
information is created, and moved to the NavLab directory when it has been created.

6.1 Reading and writing .ini files

OneClick will use the “OneClick.ini” found first in the path, this enables the use of several
copies, and starting OneClick from the appropriate location for different behaviour.
All parameters from ”OneClick.ini” are read and stored in a struct. As both ”preproc.m”
and ”estimator.m” clears the workspace, this struct is saved in a .mat file before running
either of the two, and loaded back afterwards.

In both ”preproc.ini” and ”estimator.ini” there are many parameters specifying the level
of automation, and general behaviour. These are written in each copy, hence any of these .ini
files with updated settings can be put in OneClick’s ini directory.

6.2 Creating directories and copying files

OneClick prompts for a run directory, in which it assumes a “NavP\NavData” directory exists
with the navigation data. When using the default output directory, a “post” directory is
created at the same level as “NavP” with subdirectory “NavLab”, as shown in Figure 6.1. The
navigation results will be stored in the “NavLab” directory and its “data” subdirectory. If
there already exists a “NavLab” directory it is moved to a directory called
“NavLab_YYYYMMDD-HHMM”. (Where YYYYMMDD-HHMM is the date and time of creation.)

Figure 6.1 Directory tree

If NavData with sequential text files are missing, or OneClick cannot create them from the .log
files, NavLab OneClick aborts with a short explanation. The three .ini-files, “preproc.ini”,

 20

“estimator.ini”, and “cov_matrix.ini”, are copied from the “ini” directory, and placed
in the “NavLab” directory. In a split run, separate copies are made for each part and placed in
the “Part01”, “Part02”... directories.

6.3 Position wild point filter

Before sending the USBL measurements to the wild point filter, measurements not fulfilling
the requirements in quality and relative AUV position described by parameters in
”OneClick.ini”, are removed.

A multi hypothesis filter [3] using up to five Kalman filters is used to identify and remove
position wild points from the USBL measurements.

6.4 Pre-processing

The pre-processing is then done, with USBL position measurement if they exist, or without
any position measurement if they don’t. The pre-processing will plot several figures used for
manual wild point editing and raw data inspection. If manual wild point editing is disabled in
”OneClick.ini”, these figures will be closed immediately after the pre-processed
measurements have been saved to files. If you wish to inspect them, enable manual wild point
editing.

6.5 Pre-processing vehicle GPS

If vehicle GPS measurements are available, and chosen to be used as aiding measurements,
they are processed after the other sensors, as the NavLab pre-processing currently not supports
more than one position measurement source.

Vehicle GPS position measurements are not wild point filtered, but measurements with too
low reported accuracy are removed. The lever arms in “preproc.ini” are switched to vehicle
GPS, and lever arm compensation is performed.

6.6 Merging position measurements from two sources

If both DGPS-USBL and vehicle GPS position measurements are available and chosen, they
must be merged to a single measurement text file, as the estimator currently does not support
more than one position measurement source. The two sensors will not produce good quality
measurements simultaneously, thus they are well suited to be combined as a single
measurement.

The vehicle GPS is considered the most reliable and accurate sensor of the two, and makes the
basis for the new joint measurement data. All USBL measurements less than one minute away
from any vehicle GPS measurement are discarded. The two are thereafter joined in one single
text file.

 21

As the two sensors have their own bias, and only one bias can be modelled in the estimator, a
decorrelation in time is done at the last samples before switching between sensors.

6.7 DVL wild point filter

The measurement series are divided into overlapping intervals. An accept criterion is
calculated based on a constant, the dynamics of the interval, and each individual elements
distance in time from the median. If a measurements distance from the median is above this
accept criterion in each interval it is a member of, the measurement is removed as a wild point.
In Figure 6.2 measurements from a nine samples long interval are shown. The median is
marked by a red circle, and the accept criterion drawn as black lines. The seventh measurement
is seen to be outside the acceptance region.

|x-xmed|=[3 5 0 3 6 2 17 2 3]

a•(t-tmed) + b•median(|x-xmed|)
Figure 6.2 Wild point filter

The parameters used (a and b in the figure equations) are based on automatic tuning effort on
some twenty real runs, where the number of wild points was predetermined by manual
inspection. The values were chosen conservatively; to make sure no good values were cut, and
accept a few possible wild points and doubt cases. It is measurements that have an error clearly
not normally distributed,that is most critical to remove before running the Kalman filter, as
they violate the assumptions guaranteeing optimality.

6.8 DVL start up requirements

When the DVL first gets bottom track, experience have shown it to be advantageous to have a
stable measurement rate before using it as an aiding sensor. All DVL measurements before a
period of minimum DVL_interval_length seconds with time between samples no longer than
DVL_max_diff will be discarded. Both the interval length and the maximum difference are
specified in “OneClick.ini”.

6.9 Choosing start and stop time

The start and stop times can be based on either position measurements or DVL measurements
as chosen in “OneClick.ini”. If based on position measurements, the time of the first
position measurement is chosen as start point, and the stop time is the time of the last recorded

 22

IMU sample. When based on DVL measurements, the first and last DVL measurement times
are start and stop time. If there are no position measurements before the first DVL
measurement, the time of the first position measurement is used as start time, and if the there
are DVL measurements after the last position measurement the time of the last position
measurement is used as stop time.

If the run, due to memory considerations, is too long for a single estimator processing, the run
is divided in several pieces. The split is made such that all parts have positions measurements
both at the beginning and end. See chapter 0 for description of the parameters in
”OneClick.ini” defining the division scheme. The start and stop times are stored, and
“estimator.ini” is changed before each consecutive estimator run.

6.10 Varying sensor quality

Position measurements have time varying quality based on reported quality from the sensor
itself and/or depth. This is implemented in preproc, and is also available for other sensors.

6.10.1 Depth measurement

The bias and white noise model of the depth measurement used in the Kalman filter is valid
under water. When starting the navigation system on the deck of a ship, there is unmodelled
behaviour in the pressure sensor. Specifying larger uncertainties above a certain depth level
compensates for this.

6.10.2 DVL measurements

Experience show lowered DVL measurement quality when the AUV is in the surface zone.
OneClick can switch between high and low sensor accuracy when AUV depth crosses the limit
defined in “OneClick.ini”. Decorrelation in time when switching from large to low bias
model is implemented.

6.11 Initial values

The script get_sensor_values_for_init.m is used to find initial values for the Kalman
filter. This script interpolates between measured values if necessary. If there are no DVL
measurements available at start time, zero is used, and the uncertainty described in
“cov_matrix.ini” is raised to 2 m/s (1σ).

If the run has been divided, all but the first initial values are instead obtained from the real time
data produced in the previous piece. A debug script is inserted to run in the estimator, picking
out the state and covariance matrix at the desired start time of the next piece. The obtained
initial values are written to “estimator.ini”.

 23

6.12 Export

The workspace is saved in a .mat file named after the run directory. In split runs this is done
after each estimator run, placing them in directories named “part01”, “part02”, etc. The
smooth position, velocity, and attitude is exported and placed in the run directory in .txt files.
If more than one estimator run was done, the data is merged to form a single long .txt file.

6.13 Quality check

The script quality_check.m performs a test on all estimated biases. If any of the real time or
smoothed biases has a mean above three times the standard deviation used in the Kalman filter
model, a warning is plotted. When a sensor has time varying bias specification, the statistical
distance is calculated by dividing the estimated bias by the modelled bias. If the mean
statistical distance is above three, the warning signals this. A warning will also be generated if
the estimated position error has been above acceptable position accuracy at any time.

A short error report is also generated. This report tells the fraction of time the bias estimates
was above three sigma, and gives the longest continuous interval with bias estimates above
three sigma.

 24

7 REFERENCES

[1] Gade, K (2003): NavLab - Overview and User Guide November 2003. FFI/RAPPORT-
2003/02128

[2] Gade, K (2004): NavLab, a Generic Simulation and Post-processing Tool for Navigation.
European Journal of Navigation, Volume 2, Number 4, November 2004, pp. 51-59.

[3] Jacobsen, Hans Petter (2004): NavLabPosFilter - Windows exe program to remove
outliers.

[4] MathWorks, (2005): Memory Management Guide,
http://www.mathworks.com/support/tech-notes/1100/1106.html

 25

APPENDIX

A ABBREVIATIONS

AUV Autonomous Underwater Vehicle
DGPS Differential Global Positioning System
DVL Doppler Velocity Log
IMU Inertial Measurement Unit
USBL Ultra Short BaseLine system

	FFI RAPPORT
	EXCECUTIVE SUMMARY
	BACKGROUND
	Design philosophy
	Overview of this document

	RUNNING NAVLAB ONECLICK
	Installation
	Getting started
	Selecting a run
	Choosing position measurement aiding source
	Navigating the finished results

	USER DEFINED PARAMETERS
	.ini-file location
	BinaryDataToText location
	NavLabPosFilter location
	Default run path
	Post path
	Plotting extra figures
	Get mission waypoints from HUGIN OS
	Position accuracy warning level
	Position aiding source
	Start stop time
	Dividing long runs
	Parallel processing
	Manual wild point editing
	Automatic DGPS-USBL wild point filter
	DGPS-USBL measurements acceptance area
	Position measurement quality limit
	Automatic DVL wild point filter
	DVL start-up requirements
	Depth dependent DVL accuracy
	Depth dependent pressure sensor accuracy

	MEMORY CONSIDERATIONS
	Precautions

	DESCRIPTION OF NAVLAB ONECLICK
	Reading and writing .ini files
	Creating directories and copying files
	Position wild point filter
	Pre-processing
	Pre-processing vehicle GPS
	Merging position measurements from two sources
	DVL wild point filter
	DVL start up requirements
	Choosing start and stop time
	Varying sensor quality
	Depth measurement
	DVL measurements

	Initial values
	Export
	Quality check

	REFERENCES

