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OPTIMAL GUIDANCE OF TORPEDOES

SUMMARY

This report claims that the use of line-of-sight and colli-
sion-point guidance is not the best way to guide torpedoes

in a fire control system which estimates uncertainties of

the target parameters. It is shown that the hit-probability
varies greatly with the angle-of-attack, and that it attains
maximum and minimum at certain torpedo angles. The necessary
mathematical formulas to calculate the anglewof—attack yielding
maximum hit-probability are developed for any given orienta-
tion and size of the axes of the uncertainty-ellipse describing
the uncertainties of the target estimate.

A practical guidance scheme called Optimal Guidance is
described, which always gives a torpedo trajectory yielding
the highest possible hit-probability obtainable through the
vse of position uncertainties. It automatically provides
line-of-sight guidance when the uncertainties are large,
respectively small, for distance and bearing between own ship
and target. When the uncertainties of distance and bearing
are fairly equal, the trajectory becomes more broadside on
the target than that generally obtained from collision-point
guidance.

The author considers that optimal guidancc has definite
advantages by comparison with conventional line-of-sight and
collision-point guidance, and is confident that it should
substitute these conventional guidance schemes in future

. fire control systems in which requirements for its application
are met.

INTRODUCTION

In most conventional fire control systems designed for torpedo guidance
the operator can choose between two automatic guidance modes: Line-of-
sight guidance and collision-point guidance. The use of collision-point
guidance is generally recommended when the uncertainties of both the
distance and the bearing from own ship to the target are small. When the
uncertainty of the bearing is small and the uncertainty of the distance

is large, it is recommended to use line-of-sight guidance.

RESTRICTEL
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In most conventional fire control systems the uncertainui.es of the esti-
mated target parameters (distance, bearing, course and speed) are not
available. The operator's choice of guidance mode is therefore purely
based on his intimate knowledze of the tracking-history of the target in
question and on his former experience with the performance of the fire
control system in similar tactical situations. It is obvious that de-
cisions taken on such vague assumptions are not ideal, since the distance-
and bearing-uncertainties can take on any values between the extremes

mentioned above.

There exist, however, fire control systems (MSI-T0U fire control system
for Kobben class submarines) in which certain parameter-uncertninties

are estimated. It is the scope of this report to investigate if it is
possible to utilize the information of the parameter-uncertainties to
guide torpedoes in a more optimal fashion. Or, in other words, to investi-
gate if the knowledge of uncertainties makes it possible to find a
guidance scheme leading to a higher hit-probability than that obtainable
through the use of the conventional two-state choice between line-of~-

sight guidance and collision-point guidance.

The primery questions which must be answered in connection with such

an optimalization of the torpedo hit-probability are:

a) What parameters govern the angle-of-attack of the torpedo leading
to a maximum hit-probability, when the uncertainties of the relative
position between the target and the torpedo are taken into account?

b) Is it possible to find a mathematical relationship between the wan-
ted angle-of-attack and the relevant uncertainties?

c) If a mathematical relation can be found, is this relation suited
for practical guidance of torpedoes?

It is the purpose of this report to answer and discuss all relevant

problems in connection with these questions.

The report is divided into 8 chapters and 5 appendices, and it is written
such that the basic information is contained in the chapters and the
detailed mathematics in the appendices. A reader only interested in the
basic outline of the optimal guidance scheme does not have to read the
apoendices and he may possibly also skip section 3.3 discussing some

practical aspects of the employed numerical iteration.

RESTRICTED,
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A brief description of the content of each of the remai..ng chavters is

given below in order to familiarize the reader with the general outline

of the report:

a)

c)

d)

e)

f)

g)

Chapter 2 discusses first the general nature of the guidance prob-
lem and states the necessary assumptions for its mathematical for-
mulation. The needed mathematical equations are developed for both

the calculation of the hit-probabilities for any given angle-of-
attack and for the calculation of the angle-of-attack yielding the
maximum hit-probability. The chapter gives also a detailed description
of the numerically calculated hit-probabilities and discusses the
results.

Chapter 3 describes in detail how the obtained formulas for the
angle-of-attack vielding the maximum hit-probability can be practi-
cally utilized to obtain a guidance scheme for torpedoes. Besides
developing the necessary mathematical formulation of the guidance
scheme called Optimal Guidance, practical problems in connection with
the necessary numerical iteration are discussed. The optimal guidance
scheme is divided into 3 separate stages, each of which is described
in detail. The chanter ends with two sections discussing the pre-
diction of the orientation and the size of the uncertainty-ellipse
describing the position uncertainties of the target estimate,

Chapter b discusses some relevant salvo aspects of the developed
optimal guidance scheme.

Chapter 5 discusses some aspects of the optimal guidance scheme
which relates to problems in connection with multipass guidance or
guidance after it becomes certain that hit was not obtained at last
trial,

Chapter 6 states the assumptions made in the presented optimal
guidance simulations, and discusses the results obtained from these
simulations.

Chapter T makes several suggestion as to what future work should
be carried out before the optimal guidance scheme can be fully re-
commended for practical application.

Chapter 8 gives a summary of the advantages that can be obtained
through the use of optimal guidance.

RESTRICTED
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CALCULATION OF OPTIMUM HIT-PROBABILITY

Assumptions

[

In a fire control system the position of the target is estimated relative
to the current position of own ship. The positions of the torpedoes are
estimated relative to the firing position by dead-reckoning. It is the
relative positions of the target and the torpedoes which are of basic in-
terest when guidence of torpedoes is considered. These positions are only

known unaccurately and the primary sources of uncertainties are:

a) Uncertainties in the target position relstive to own ship due to
uncertainties in the target observations.

b) Uncertainties in the current own position relative to the positions
when the torpedoces were fired due to errors in the dead-reckoning
of own ship.

¢) Uncertainties of the current position of the torpedoes relative to
the positions of firing due to errors in the dead-reckoning of the
torpedoes.,

The estimates of the torpedoes relative to own ship are hence burdened
both by uncertainties from the torpedo dead-reckoning and the own ship

dead-reckoning from the time of firing.

An estimation process such as Kalman filtering provides estimates of the
speed, course and position of the target relative to the current position
of own ship. These estimates will later in this report be referred to as
the state vector of the target. A new state vector is normally calculated
at the time of each new observation, using this current observation and
an updated version of the last computed state vector, taking into account
the intermediate movement of both the target estimate and own ship. The
uncertainties of the current state vector parameters are therefore
dependent on the history of the state vector, the uncertainties of the
observations and on the dead-reckoning errors between current time and
last observation time. However, when the dead-reckoning errors are neg-
ligible it is sufficient to calculate the new state vector taking into

account only errors in the observations.
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Estimation processes such as Kalman filtering do npot only have the
ability to calculate each parameter of the state vector, but slso to give
:estimates of the uncertainties of these parameters. As stated above, the
primary interest when guiding torpedoes is focused on the relative posi-
\tion of the target and the torpedoes and their associated uncertainties.
\If the uncertainties of the dead-reckoning of the torpedo and own ship
were known to the fire control system and these vncertainties were nor-
mally distributed, it is in pfinciple possible to calculate a state
vector and a total uncertainty which would reflect both errors in the
observations and in the dead-reckoning. It would then be possible to cal-
culate the guidance problem as if the torpedo position was known without
error and as if the target position was known as an estimated state vec-
tor with uncertainties reflecting all relevant errors. If and how this
could be practically achieved is considered to be outside the scope of

this report.

An understanding of the results of this report is not conditional on
whether the total uncertainties are known or not. It is, however, of im-
portance to have a qualitative understanding of the fact that errors in
the dead-reckoning of the torpedoes and own ship might impose changes

in the uncertainties reflecting only errors in the observations. (Both

an enlargement and a rotation of the uncertainty-ellipse described later,
will result.) In every well-adjusted fire control system the influence

of the dead-reckoning errors should be negligible, and the remaining part
of this report should preferably be understood as if that is the case.

In the considerations to follow, a Kalman filter is utilized to give esti-
mates of target position, speed and course as visualizgd in Figure 2.1,
together with an estimate of the uncertainty of these parameters. The
probability-density function of the estimated target position is gene-
rally a complex function of both x and y (the origin of the x,y-coordi-
nate system is located at the estimated target position as shown in Fi-
gure 2,1), but is reducible to a simple Gaussian form under most practi-

cal tactical situations

: 2 , iitorig
plxy) = == me(-3 & « @ (2.3)

Where a and b are the standard deviation of the position in respectively

the x- and y-directions. The simple form given in equation (2.1) is valid
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when 2 and b are small in comparison with the distance R between the

target estimate and own ship.

The density function p(x,y) is constant when x and y describe concen-
tric ellipses with centers loceted at the estimate position. The term
|UNCERTAINTY-ELLIPSE refers to the ellipse which has the standard de-
viations a and b as rajor and minor half-axes. The probability that the
target—center (or any other specific point on the target to which the
target-tracking refers) actually is located inside this uncertainty-

ellipse is approximately 50 per cent.

The probability of finding the actual target center within a differential

area dx-dy at a location (x,y) is given by
Pxy) = 5= B(-3(E + (D) )ax-ay | (2.2)

The hit-probability is thus found by a summation (integration) of P(x,y)
over the total area where hit is possible between the torpedo and the

target.

The calculations shown in the next section are performed under the .
assumptions that orientation of the uncertainty-ellipse and the size of
the half-axes & and b, do not change from the time of calculation until
the time of hit with the estimate. In most practical applications the
change in these parameters will be negligible. However, it is primarily
the use of repetitive calculation of the relevant guidance parameters
which justifies a calculation using these assumptions. Any changes in
the orientation and/or the size of the axes of the uncertainty-ellipse
will hence be reflected in slightly changed guidance parameters. This
point will also be discussed in chapter 3 when the problem of torpedo

guidance is treated.

The target is assumed to have the shape of an ellipse with half-axes &y

and b, . The length of the target is thereby 2a, end the width 2b, . It is
considered that this gives a very good approximation to the actual out-

line of the target.

The torpedo will be cornsidered to be a mathematical point in the calcu-

L4
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1ations in the next section. This should describe the torpedo very well,

particularly when the torpedoes are furnished with impact fuses.

Calculation of optimum hit-corridor

Hit between a torpedo and the target becomes possible, as visualized in
Figure 2.2, when the target center is actually located on the periphery
of an ellipse having its center at the location of the torpedo. This
ellipse is oriented with its major axis along the estimated course and
the axes are equal to that of the target (2al and 2bl). It is thus as-
sumed that the real course of the target is equal to that of the esti-
mate. (The implication of uncertainties in the estimated course will be
discussed in section 3.9 dealing with prediction of the uncertainty-

ellipse.)
The calculations given later are based on the following assumptions:

a) No error in estimated target course
b) The torpedo runs on a straight course with constant speed VT

¢) The estimate of the target runs on a straight course with constant
"~ speed VS

d) The torpedo is guided before the integration starts on & course
which leads to collision with the estimate of the target.

e) The torpedo runs at a proper depth, allowing hit with the target
in question

Figure 2.3 shows a straight-running torpedo which will pass through the
estimate at location So' The assumptions stated above will as indicated
in Figure 2.3, assure that the angle ¢ between the estimated target
course and the bearing from the estimate to the torpedo, will not change
with time. A consideration of the movements of the estimate- and tor-
pedo-positions in a stationary coordinate system, can be reduced to a
consideration of the relative movement between the torpedo and the esti-
mate by a transfer to a moving coordinate system with its origin located
at the estimate. Figure 2.l shows the situation of Figure 2.3 when only
relative movements between the torpedo and the estimated target position
are considered. All possible locations of the target center with a possi-
bility of hit by the torpedo will, as time elapses, cover sn area desig-
| RESTRICTED
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nated as the HIT-CORRIDOR (TREFF-GATE). To avoid misinterpretations it
must be clearly understood that the mid-line of this hit-corridor does
not describe the actual movement of the torpedo, but only the movenment
of the torpedo relative to the estimate. As it will be shown in section
2.5 the actual angle-of-attack (angle C in Figures 2.3 and 2.4) is both
dependent on the corridor angle ¢ and the ratic of the target- and tor-

pedo-speeds.

In Appendix 1 it is shown that in the X-Y coordinate system of Figure 2.5,

the borderlines of the hit-corridor are given by the following equations

y = mx tn (2.3)
where

m = tg (0+8) (2.4)
and

n = »/(alsin¢)2 + (blcoswz/cosme) (2.5)

The total probability of hit, as the torpedo moves in a straight course

as prescribed earlier, is given by combining equations (2.2) and (2.3),

yielding
@ mx+n

P 23;-&‘0 I f E)(P{*%((X/b)e + (yfb)z)}dydx (2.6)
-0 mx.-n . =

The goal is to find the value of the hit-corridor angle ¢ which yields
the maximum probability of hit given the axes of the target-ellipse a

1
and b., the axes of the uncertainty-ellipse a and b, and the inclination

ll
angle € between major axis a of the uncertainty-ellipse and the esti-
mated target course. This optimum hit-corridor angle can be found by

setting the derivative of the hit-probability equal to zero

3P

2 = 0 | (2.7)

As shown in Appendix 2 the solution to this equation is

m, = At /A2 + 2 : (2.8)
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where

A = {(D?-C%)cotgs + (1-D°C?)tge}/2(1-D°) (2.9)
and

D = b /e (2.10)
C = bla , {2.11)
m = tg(e+0)

The development of equation (2.8) from (2.6) was done under the preten-
sior that the hit corridor was infinitely long. Or more precisely that
the corridor extended in both directions to a region where the
probability of hit was zero for all practical purposes. However, in a
practical utilization of the hit-corridor yielding the maximum hit-
probability for torpedo guidance purposes, the optilization of the
angle~of-attack must also be achieved from a distance to the target
vhich is not infinite in the sense stated above. A closer reasoning
(which will not be given in this report) will show that no alteration of
the optimum angle-of-attack should be expected when the integration is
started at a point closer to the target than that which correspends to
infinity. This cannot, unfortunately, be proven analytically because
the equation corresponding to equation (A2.T7) will yield a summation

of analytic terms of the form

g}h u-EXP(-u®/20% )au

£+

and non-analytic terms of the form

g+N
[ EXP(-v2/206%)au
£+N

vhere f and g are the non-infinite integration limits. N is given by

equation (A2.6).

The proof that equation (2.8) can be used for calculation of the optimum
hit-corridor angle ¢ also in the cases when the integration limits are
non-infinite, will therefore be given numerically. The results of such a

numerical calculation will be discussed in sections 2.3 and 2.k,

’
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There are however certain considerations which must be taken into
sccount when such an integration is performed. The mathematically correct
procedure would be to terminate the ends of the hit~corridor by the
outline of a semi-ellipse corresponding to the tilt end.the size of

the target-ellipse. This procedure would add complexity to the inte-

gration-process, and it is found to have noc practical implication on

‘the results of the integration when some other termination of the hit-

corridor is used. The most sirple procedure would be to utilize equation
(2.6) with non-infinite integration-limits. This yields, however, quite
unwanted results of the corridor-termination when & is approximately
equal to -8. The actual termination utilized in the numerical calcula-
tions with non-infinite integral limits, is therefore a termination
which always mekes the hit-corridor a rectangle with 90 degree

corners, as shown in Figure 2.5. The probability of hit is therefore

calculated from

" .
P = giab ? [ Exp{-3((x/a)? + (y/5)%)}au av (2.12)
£ -k

and according to Appendix 1

k = /falsin¢)2 + (blcos¢)2 (2.13)
and

x = vecos(¢+8) - u-sin(e+6)

y = v<sin(%+8) + u-cos(9+8)

The integration is also performed with the upper integration limit g
equal to infinity, since no valid argument has been found to dictate a
premature termination of the integration before the probability of

hit is reduced to (practically) zero.

Numerically calculated hit-propability

Most fire control systems will use observations from one or more sensors
vhich can measure the bearing to a target with high accuracy. Sensors
having staendard deviations on tl.e bearing observations of less than

1 degrees ere frequently used. It is expected that future fire control
systems will utilize sensors yielding accuracies better than a few
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milliradians (1 mrad - 0.057 degrees). Systems employing sensors with
such bearing accuracies will generally obtain terget position esti-
mates with uncertainties across the bearing of a few multiples of ten

meters, when the target distance is less than 10 kilometers.

The minor axis b of the uncertainty~ellipse will, in accordance with
the statements given above, generally be varied between 10 and 50

meters.

The major axis & of the uncertainty-ellipse is deperndent on the parti-
cular use of the different sensors, the tracking time and the particular
sailing of owvn ship. The variations used in the numerical calcvlation
of the major axis a are therefore much greater and extend from 10 meters

toc several thousand meters.

Most of the numerical results are, for easy comparison, computed for a

1= 10 meters and a length of 2al = 100 meters. This

corresponds to a smaller vessel of the Frigate-class.,

target width of 2b

The following parameter symbols are used:

a) é = HIT-CORRIDOR ANGLE measured from estimated tgt course to
centerline of corridor. (Positive ¢ ¢ w)

b) 8 = TILT ANGLE OF UNCERTAINTY-ELLIPSE measured from estimated
tgt course to major exis of ellipse (positive c w):
~90 < 6 < 90. ‘

e} a = MAJOR UNCERTAINTY-ELLIPSE HALF-AXIS
d) b = MIKOR UNCERTAINTY-ELLIPSE HALF-AXIS
e) a, = MAJOR TARGET-ELLIPSE HALF-AXIS

f) b, = MINOR TARGET-ELLIPSE HALF-AXIS

g) C = vla

h) D = bl/al

i) P = PROBABILITY OF HIT.

Figure 2,6 shows how the HIT-PROBABILITY varies for different tilt angles
8, when the corridor angle ¢ is varied from -90 to +90 degrees. It is

complete 180 degrees symmetry such that
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P(18c+¢) = P(¢)

Figures 2.7 and 2.8 show hit-probabilities for similar configurations
to that of Figure 2.6 with different values of the major axis of the

;uncertainty-ellipse.

|
l

'In order to give the resder a thorough insight into how the probability of
hit varies when the uncertainty ellipse changes its size and orientation,

Figure 2.9 through Figure 2.19 have been included. In each separate

figure the tilt angle 6 and one of the ellipse-axes is varied. Figure

2.18 makes an exception in that the ellipse-axis b, which is in all other
figures the minor axis, in this figure is veried from a value smaller,

to a value greater than the s-axis. When the b-axis takes on the role

&s the major axis the maximum hit-probability will not be at ¢ = -0, but

at the complementary angle to the tilt angle
® = 90-6 = 90 - 22.5 = 67T.5 degrees

Figure 2.19 shows a calculation of the corridor angle ¢ for which the
probability of hit is maximum end minimum (based on equation (2.8}),
when the tilt angle 6 is varied from O to 90 degrees. The calculstion
is shown for different ratios of the minor and major ellipse-axes

C = b/a. The symmetry in this figure is such that

o(-8) = -¢(8)

Figures 2.20, 2.21 and 2.22 are included to familiarize the reader with

the change in hit probability when the size of the target is changed.

In all figures from Figure 2.6 to Figure 2.22 the integration limits
(f and g) have been greater than L times the major axis of the uncertainty
ellipse. This corresponds to infinite integration limits, since the

probability of hit outside these limits is negligible.

Figures 2.23, 2.24 and 2.25 show how the hit-probability is changed when
the lower integration limit f is changed from infinite to non-infinite
values, The results are shown for three different values of the major

ellipse-axis a.
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Discussion on calculated results

The discussion to follow can only be understood in light of the assump-

tions made in sections 2.1 and 2.2.

A close study of Figure 2.6 through Figure 2,25 will among others reveal

the following conclusions:

a)

b)

c)

e)

There exist in general distinct corrider angles ¢ for which the
probability of hitting the target with a torpedo is both minimum
and meximum,

For infinite integration limits (f,g > 4+a) these corridor angles
can be found from the relations

B = - arctg(A—Jigzggs _ (2.14)
and

o, = -0+ arctg(A+A;£;;5) {2.45)
where

A = {(D?-C?) cotgd + (1-D2c?)tg0}/2+ (1-D%)

C = bvla

D = bl/al

When 0 < 8 < 7/2, ¢; will give the corridor angle leading to
maximum hit-probability, and ¢2 to minimum hit-probability. When

0> 6 >-n/2, ¢; will yield minimum and ¢» maximum hit-probabilities.

For |6] > 5 deprees and C < 0.2 the following epproximations are
valid

¢ = -0
max

max

In other words the maximum hit-probability is obtained when the
corridor runs parallel with the major axis of the uncertainty-
ellipse. The minimum hit probability is obtained when the hit-corri-
dor is aligned with the major axis of the target-ellipse.

When kb < a; and |8] > 20 degrees there exists a meximum hit-probabi-
lity of approximately 100%, and a corresponding minimum hit-probabi-
lity which rarely exceeds 20%.

- The ratio between maximum and minimum hit-probability is increasing

with decreasing C = b/a.
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f) The width of the maximum (measured at any convenien percentege
of the meximum velue) is decreased with decreasing C = b/a. (It
becomes in other words more critically dependent on the values of
8,C and D).

g) Orientations of the uncertainty-ellipse having smell 6-values
(18] < 20 Gegrees) will in general yield lower maximum hit-
probabilities than those orientstions having larger 0-values
(|8] > 20 degrees).

n) As C = b/a is increased and approaching unity the angle of maximumn
hit-probability is shifted tovards larger absolute velues, i e the
maximum is shifted more towards & corridor angle hitting broadside
on the target.

i) In sccordance with peint ¢, the angular spacing between the maximum
and the minimum is approximately equal to €. For decreasing absolute
value of 6, this means that the maximum and the minimum become
closer together.

j) Equations (2.14) and (2.15) can be used to compute the corridor-
angles leading to meximum and minimum hit-probasbilities also when the
lower integration limit is non-infinite. (If locking distances of
more than S50 meters are employed these formulas will still
very faithfully compute the actual values).

The practical implications of these conclusions will be discussed in the

following sections.

Calculation of actual torpedo-angle

As stated earlier the hit-corridor angle ¢ is only descriptive of the
relative motion between the torpedo and the estimate. It is the task of
this section to find the relationship between the motion described by

the corridor and the actual torpedo moticn.

From Figure 2.26 it can be found that

oD = VST sint
and
BD = DC = vaTT)e - (vgT giEn )"
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Or if
N = V_/V
B ‘vS/\rT
B = €D = VT« /1-iPsin
Thus
o _ op _ VST siné
RO & =5 W == =
ED DC /f*—E—"““Eﬂ
VTT 1-K° sin"¢
it = arctg {"“"E—E%Ez-"}
l—N2 sin2¢
where

-1/2 <a < 1/2

Also from Figure 2.26 it is obtained that

a = © = AC = @7 - ¢ -~ AC

2 2
sl
ac, = C-Cy
AC, = C,-C

where C is the estimated target course and Cl and 02 the

solutions of the actuasl torpedo courses.
Hence

ACl = & - qa

AC2 = 1 -9¢ -q

Or

C = C+*+a7-9¢-aqa '

(2.26)

(2.17)

two possible

(2.18)

(2.19)

(2.20)

(2.21)
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Given a wanted corridor angle ¢ (such as that leading to maximum hit-

probability) there exist in general two torpedo angles given by equa-

tions (2.20) and {2.21) which will yield the desired corridor.

Discussion of obtainsbility of the wanted hit-corridor

There are some limitations and points of interest in relation to the prac-—

tical obtainability of a wanted hit-corridor. Figures 2.27 through 2.31

are designed to demonstrate these points:

a)

e)

At every instant the centerline of any hit-corridor will divide the
sea into two regicns. The two possible sclutions obtainable from
equstions (2.20) and (2.21) will always be located in that region
in which the centerline was located at an earlier instant.

When Vp > Vg, there always exist two torpedo-courses corresponding
te any given corridor angle ¢,

When Vop < Vslsin @}, no solution can be found for that particular
wanted corridor angle 9.

When Vp = Vg, one solution of the torpedo-course will be coincident
with the target course. Such a solution is only of mathematical in-
terest since the distance between the torpedo and the estimate neces-
sarily is constant under these circumstasnces ané no real hit-corri-
dor is produced. (It can be shown that in the context of chapter 3,
this means that the "optimal point" will be located infinitely far
away from the estimate, i e A==,)

The calculated wanted torpedo-course becomes less dependent on the
knowledge of the actual target-course as the corridor angle be-
comes smaller, 1 e larger errors in the target velocity Vg can be
tolerated at smaller corridor angles.

The next chapter will discuss how the results obtained in this chapter

can be utilized in practical guidance of torpedoes.
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QPTIMAT, TORPEDQ GUIDANCE

General

4

This chapter will develop & scheme to be used for guidance of torpedces

|such that the wsnted hit-corridor discussed in the former chapters will

be obtained. As it turns out to be neither line-of-sight nor collision-

point guidance, the guidance scheme to be developed will be ealled
"Optimal guidance", since it assures an optimal torpede trajectory toward
the target. The development of the appropriate guidance equations are

based on the following assumpticns:

a) That the estimste- and torpedo~positions and -courses are known
at the time of calculation. (Exemplified by X,Y,C and X,, Y,, CD
respectively in Figure 3.1.)

b) That the tilt angle 6 of the uncertainty-ellipse is known at the
time of calculation. (For prediction of 6 see section 3.8.)

c) That the wanted optimum hit-corridor—angle ¢ can be calculated from
equations (2.14) and (2.15).

a) That there exist solutions for the two possible torpedo courses
Cy and Cp using equations (2.20) and (2.21).

e) That it is desirable to guide the torpedo from its present position
to an "Optimal point" (X3, Y3 in Figure 3.1) in order to control
the starting point of the hit-corridor. The torpsdo course in this
optimal point (angle C3 in Figure 3.1) must be such that if the tor-
pedo is to receive no Further steering information from this point
on, it will continue on a course yielding the wanted hit-corridor.
The optimal point must be located such that it corresponds to a loca-
tion where there is negligible probability of hit.

f) That the torpsdo trajectory between the current locetion and the
optimal point in general will consist of two turns employing mini-
mum turn radius separated by a straight trajectory. The choice of
two turns and one straight is dictated by the necessity of guiding
the torpedo from its present position where the torpedo course is
given, to some other point (here the optimal point) at which the
torpedo course must have a desired value. The use of two turns sepa-
rated by a straight path is the minimum number of turns and straights
and hence the minimum number of unknowns in the corresponding mathe-
matical formulation, by which this can be achieved. When the turns
employ nminimum turn radius it is also assured that the trajectory
becomes the shortest possible under the given requirements.

g) That the relevant guidance parameters can be calculated at any
chosen repetition-rate and at any intermediate instances between
two repetitive calculation times.
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h) Though not strictly necessary, the guidance scheme 1s developed to
jincorporate prediction of the tilt angle 6 at some convenient future
time. (Section 3.8 discusses 6-prediction in deteil.)

Using these assumptions the following section develops the mathematical

formulation of the optimal pguidance scheme.

The mathematical formulation of the optimal guidance scheme
Given the wanted hit-corridor angle ¢ such that
-nf2 < ¢ < 7f2

The corresponding torpedo angles 06 and C? cen be found as shown in chap-

ter 2 by calculating

o = &rctg {____Ii___ﬁ____Slﬂ@ ]-
l-Nesin2©
From which
Cg= C-¢+a ' .(3'}')
CT = C+7m-0-a (3.2)

Solutions will be found whenever

(Nsin‘!ﬂ)é <1

and the torpedo angles must be adjusted such that
0 < Cgy Cq < 2

As it was stated in the last section it is desirable to locate the opti-
mal point at the starting point of the hit-corridor, i e at a point where
the probability of hit is still negligible. For a wanted torpedo-course
03 given by equation (3.1) or (3.2), Appendix 3 shows that the optimal
distance "E" and the distance "A" between the optimal point and the hit

point can be calculated from

E = 3-8 (3-3)
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and

i = meli, —-EE80 0. I (3.4)
1~ cos (03—0)

where "a" is the major half-axis of the uncertainty-ellipse, "Al" a con-
venient fixed distance and "03“ and "C" respectively the wanted torpedo-
course and the estimate-course.

The mathematical formulation of the optimal guidance scheme employs for
convenience a perameter for each turn called the "turn parameter". As it
is shown in @etail in the beginning of Appendix 4, the absolute values
of these turn parameters are always unity, whereas its sign is used to
describe vhether a given torpede turn is a left turn or a right turn.

The convention for the turnparameter K is such that

K = +1 for a right torpedo turn

K = -1 for & left torpedo turn

The following notation (see Figure 3.1) is used for the development of -

the necessary mathematical formulas

X,Y = estimate coordinates

c = estimate course

Xo, " = torpedo coordinates

CO. = torpedo course

Bl = {first turn angle

Kl = turn parameter for the first turn

82 = second turn angle

K2 = turn parameter for the setond turn

Cl = course of straight path between turns
03 = wanted torpedo course at optimal point
K= VS/VT = ratio of target and torpedo speeds

R = minimum turn radius

A = distance between optimal point and ccllision

poeint
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Using this notation it is shown in Appendix k that the principle unknowns
sre

K , K, and C;

and that, given the values of K. and K

. P2 )
1 X the valuc oI Cl can be sclved

from the fecllowing equation

F(Cl) = D3sin(c—cl)—NRKl(cos(c—cl)—cos(c—co)) + NRKe{cos(c-cl)wcos{cwc3))

-KlR(cos(Co—C )-l)+K2R{cos(Cs—Cl)-l)—QlcosCl+P151nC +NDg = 0

1 1
(3.5)

where
Dy = N(A+(B,*8,)R) = N(A+(K, (C-C )42, +K,(Co=C, )+2,5)R) (3.6)
P, = Y -Y+AcosCy (3.7)
Q = X, X+ AsinC3 (3.8)
D5 = Q.cos C ~ Py sin C (3.9)

Since D. is generally dependent on the value of C. the first term in

3 1
equation (3.5) mekes it impossible to obtain any values of C, for which
F(c;) = 0

by analytical means.

The other parameters necessary for the guidance are:

The time required for the first turn

T, = BRNVp = (X (C;=C.) + 2,)R/Vy (3.10)
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The time reqguired for the straight trajectory

P_-K ReinC +K_Rsi (. ~K_)sinC,-D,cosC
. - Py KlRulnvo+ 2H31nc3¢R(m};Eim?81rCl chos -
2 (NeosC - cosCl)VT _ :

4 i -K - | P 1 5 S‘
Qa+thslnC0 “23c0503 R(Yl Feliiiii.D3 inC

= - - l
%2 (WsinC - sinC WV (3.12)
The time required for the second turn
Ty = BR/Vp = (Ky(C3=Cy) + Z,)R/Vy {3.13]
The time required from the optimal point to the collision point
T, = AV (3.14)

The total time required from the current position to the collision point
= + + I .

T T T WD WD (3.15)

Before giving the general outline of the practical optimal guidance, the

next section will discuss some practical problems connected with the

iteration process which must be employed in the calculations.

Some practical aspects of the numerical iteration

Certain precsutions must be incorporated before equation (3.5) becomes
suitable for numerical iteration. Any sinusoidal function is well suited
for numerical iteration by the use of the Newton-Raphscn method (see
reference such as C E Frgberg: Lirobok i numerisk analys,page 16), in
which the (n+l)'th term is obtained from the n'th term using the follow-

ing formulas

Cl,n+1 = Cl,n - ACl,n ‘ (3.126)
where
ac) , = Fley JM/Ft(e, ) (3.17)

The use of these formulas requires that F(Cl) and F'(Cl) (the derivative

with respect to C must be continuous between C C “
P 1) R T e
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F(Cl) as given by equation (3.5) is a modified sinusoid, which is also
well suited for iteration by the above mentioned method, provided F(Cl)
and F'{Cl) are continuous for all values of Cl.
If both the first and second turn (Eil and 62) are allowed to take on
any velue between O and 27 radians, it is proved in Appendix 5 that
F(Ci) end F‘(Cl) are continuous for all values of C,, provided that K,
changes sign at Cl = C0 end K2 changes sign at Cl = 03. Thase reguirenents
are quite natural since a change of a turn parameter is the mathematical
means by vhich a left turn is transformed into a right tum of equal mag-
nitude. This is exactly what is needed to approximately maintain the

same scolution when Cl is made to pass either C0 or C. in the process of

2

iteration.

As stated in Appendix 5 the change of K. and K, at respectively C. = Co

X 2 1
and Cl = 03 implies the following natursl definitions
K, for C_ > C, >0 and -K, for 25 > Cy > C; (3.18)
and
K, for C; > C; >0 and -K, for 2n > C; > Cy (3.19)
since Cl is restricted in the following manner
2w > Cl 20,
Such & definition cf Kl and K2’ implies that Kl and K2 also change sign
gt C., = 0. This is an unwanted effect which must be avoided in order to

1

maintain F(C.) and F'(Cl) continucus at C, = 0.

1 1

To select the solution best suitable for torpedo—guidance purposes, all
possible solutions must be found and compared. There are hence L4 diffe-

rent combinations of Kl and K2 which need investigation: 2 right turns,

2 left turns, left and right turn, and right and left turn. For each pair

of values of Kl and Kz it must be assured that all possible values of Cl

acquiring F(C.,) = 0 can be found. It becomes therefore necessary to start

1
the iteration at several values of Cl’ ieat

Cl = Ey 28y 34 e vawny 20 '

However, when such a scheme is employed, it also becomes certain that any
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iterstion leading to a value of AC in equation (3.16) for which

1,n

Iécl,nt > ¢ (3.20)

will be found from some other starting-point of the iteration. It is
Ehence logical to make the iteratiocn procedure test for values cf ACl,
:using equation (3.20) and if found to interrupt the iteration and go to
the next start velue of the iteration. The author has found by careful

examination of the employed iteration process, that & value of ¢ = /2

radians gives a desired compromise between a large enough value of e to
reduce the number of iterations and a small enough value of e to assure
that a1l possible scliutions are found., Hence it is recommended that the
iteration is started at

¢, = 0, /2, 7, 37/2 and 27 radiens

when all solutions are to be investigated.

By employing these starting points,the solution of Cl is found to an

accuracy of 0.1 degree in most circumstances using from 2 to 4 iterations.

The definition of K, and K, stated in equations (3.18) and (3.19) res-
pectively will be employed except when Cl passes 0 and hence the start-
ing points of iteration at Cl = 0 and Cl = 27 will not reveal the same
solution. It can not be assured either that some solution found by
starting at Cl = 0 for one combination of Kl and K2 is found by the start-
ing of C1 = 2t for some other combination of Kl and KE'

Since there are two optimal torpedo courses as given by equations (2.20)

and (2.21), 4 combinations of Kl and K, and 5 starting points for the

iteration, a total of 40 iterations mugt be undertaken in order to investi-
gate all possible solutions. In any reasl time system employing torpedo
guidance the time consumption is of vital interest and every scheme in
vhich the number of iterations can be cut down will be advantageous pro-
vided it does not gravely degrade the total performance of the guidance

systems.

In the search for some means to cut down the number of required itera-

tions the author has tried a method in which the first turn engle is not
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directly incorporated in egquation (3.5), which is achieved by letting

Bl = Kl = Zl = 0 in equation (3.5). The straight trajectory sngle C1 is
then calculeted as if the torpedo could teke on the angle Cl instantane-
ously. The sctual first turn 81 is then caleculated from the present tor-
pedo course Co and the wanted torpedo course Cl‘ The torpede guidance

is carried out by repetitive calculstion of Cl snd corresponding turning
until CO_= Cl. Such 8 guidance scheme cannot fully be recommended since
the total time to collision with the target estimate required to find
the best solution will be inaccurate. The advantage of the scheme is of
course that the number of iterations is reduced to 20 since Kl no longer
enters equation (3.5). A necessary consequence of the scheme is that Bl

must be restricted to a value not exceeding w radians.

Another method which also will yield 20 iterations totally to find all
possible solutions available, is one which uses the formula for Cl as
given by equation (3.5), but which restricts the first turn engle 8,

such that

T™> B

> 8,20 (3.21)

Such a restriction on Sl implies the following values of Kl

For m > C >0

-O
K, = ~‘1 for C,>Cy 20 and 2r>Cy >C_ +m (3.22)
K, = #1 for C +m2> C >C_ (3.23)
and for 2> Co >
Ky, = -1 for C >C; >C -n ‘ (3.24)
K, = +#1 for 27 >C; >C, sand C,-m1>C 20 - (3.25)

Hence for any given iterstion value of C., the corresponding value of

l’
Kl can be determined uniquely by the use of equstions (3.22) through

(3.25). Now that K, is known, only K_ and C. are unknown in equation

2 X

+

1
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(3.5) and 20 iterations will dctermine sll obtainable solutions.

The restriction on the value of 8. has the following two distinct dis

advantages:

al In some conf
e it a

ens the very best solution will not be found
becaus 1

5
1y yields 61 > 7w radians.

b) F{Cy), but not F'(Cy), becomes discontinuous at C} = Cu *+ 7 radians
as proved in Appendix 5.

It is only in the short time intervals around firing time and around the
start of next multipass that all pessible scluticns needs investigation
(see secticns 3.4 - 3.6), and that these disadvantages can possibly have
any consequence. At all other instances the torpedo has turned such that
the value of Bl is not in the viecinity of 7 radians and the listed dis-

advantages will no longer have any consequence.

Though both experience and reasoning tells that the restricticn of Bl
does not have any practical consequence at firing time, the author will
not recommend the implementation of such & restriction. There are two

reasons for this:

¢) There are certain important configurations when the target is
approaching own ship head-on, that the best multipass-solution be-
comes significantly better when B is allowed to be greater than 7
radians.

d) The calculations of all solutions are only required at firing time
and start of each multipass under normal circumstances, Since this
means that such calculations are fairly rare, at every 150 - 300 se-
conds in normal cases, the saving of the time required to find 2ll
solutions is found to be of less importance than the time-doubling to
find the very best solution,

As a summary of this chapter it should be observed that the following

is recommended for every implementation of optimal guidance:

e) K, changes sign at C, = C_.

f) K, chan nges sign at Cl = C3.

g) Neither Fl nor Yg chenges sign at C = 0, except when respectively
Co 0 cr Cj 0
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h) Before starting any iteration, values of K. and K  must be assignead
and Cl given & start value of iteration. 7

When 21l possible solutions are investigeted the following start

3
angles are recommended: Cl = 0, #/2, %, 3%/2 and 2% redians.

=N
L

An outline of ootimal guidance

The computations of the relevant guidance paremeters will be divided intc

two modes of celculetion:
Mode 1:

In this mode of calculation the turn parameters K, and K,, the straight

1 2’
path course Cl and the end course 03 are unknown. It is therefore neces-—
sary to obtain and compare all possible solutions. The best solution which
will be used for guidance purposes is that solution requiring the least

time to hit the target estimate.

This mode of calculation is normally only required at firing time and at
the start of each new multipass. However, when Mode 2 calculations fails
to find any solution or finds an unacceptable solution, the calculztien
is transferred to mode 1. Flowchart of mode 1 calculation is shown in

Figure 3.4 and Figure 3.15.
Mode 2:

This mode of calculaticn is used for the repetitive computation of the
running values of the guidance parameters, when & decision has been taken
on the principle nature of the solution used for guidance purposes. Each
new solution is in this mode based on the last found values of Kl’ K2

and Cl. Of the two possible values of C_, the one used will be that one

L4 :
which differs the least from the formerly used value. Flowchart of mode 2

calculation is shown in Figure 3.4 and Figure 3.21.

If no solution is obtained or the new solution differs in the value of

hit-time by a predetermined time (20 seconds are used in the later men-

+
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tioned simvlations), mode 1 calculation is performed bef we the guidance

18 regsswied.

Ho solution should be accepted from either mode 1 or mode 2 calculations
if the found value of the straight path T2 is less then & predelermined
time Gl. In the simulated case described lster Gl is set to 10 seconds
in mode 1 snd 2 seconds in mode 2. This preczution is necessary in order
to prevent that minor jumps in the state vector data will result in

the formerly found best solution being lost.

Furthermore the optimel guidance will be divided into three distinct
stages, each with & slightly different utilization of the developed mathe-
matical equations. The stages are as follows:

Stage 1:

Guidsnce between firing time or the time of multipass calculztion and

an instant 15 seconds before the start of the second turn.

Stage 2:

Guidence between a time 15 seconds before the start of the seccond turn
and the time when the second twrn 1is finished. The torpedo is hence lo-
cated at the optimal point at the end of stage 2 guidance.

Stage 3:-

Guidance between the time of arrival at the cptimzl point and the time

of next multipass calculstion.

The following sections will describe these three stages of guidance

in more detail.
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Stage 1 Guidance

As stated in the previous section stage 1 guidance is employed from firing

time

fore

&)

b)

c)

d)

f)l

or the time of a multipass-calculstion to an instant 15 seconds be-

the start of the second turn. The following cutline is recommended:

The stage 1 guidance is always initiated by a mode 1 calculation
finding the best of all possible solutions.

The new guidance paremeters are thereafter found by repetitive cal-
culations using the current valucs of the state vector (including
the relevant data of the uncertainty-ellipse) and the lest found
velues of the guidance parameters by mode 2 calculationse.

No new solution is eccepted if To < Gy or if the new time to colli-
sion T exceeds the last found value of T updated to current time

(i e last found time minus the elapsed time since last calculation)
by & certain predetermined value (20 seconds used in simulations).

At each new calculation time, the time betwecn the next calculation
and the start of the second turn is checked. If the time becomes
less than 15 seccnds,(lS seconds are the exryerimentally used value

el o

in the simulations) stage 2 guidance is adopted.

If a stage 1 solution is found the torpedo guidance is performed

in accordance with the values of B and K;. If the first turn is
completed before the next repetitive time of calculation the torpedo
will be guided in & straight path until the instant of next
calculation.

When current time is coincident with the nert calculation time, a
nevw solution is found as outlined from point b.

A flowchart of stage 1 guidance is shown in Figure 3.5.

Stage 2 Guidance

Stage 2 guidance is employed from the end of stare 1 guidance until co-

incidence with the optimal point. The following cutline is recommended:

a)

b)

Stage 2 guidance is always started with guidance of the torpedo

by the use of the guidance parameters found by the last calculation
in stage 1, i e the torpedo is guided through a possible first turn
Bl_and an accompanying straight path until a new calculation be-
cOmes necessary.

Before calculation it is tested if the next cslculation time will

- exceed the time at which the second turn should be started. If such
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i)
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is the case guidance will be conducted as outlined from point e, if
not the new guidance parameters are calculated by mode 2 calculaticn,

If no solution or an unacceptable solution (same tests as for stage 1)
is found, this is taken to mean that the remaining straight path

of the previously found solution has become too small (i e T, < Gy)
for any solution to be obtained. In that case the guidance 1s re—
assumed as outlined from point e.

If a solution is found, guidance is performed as dictated by the

guidance parameters until the next time for calculation. Guidance
is then continued as outlined from point b.

Guidance is performed along a straight path until the last accepted
start of the second turn.

At this point it is desired to start the second turn, but in the so
far developed method the guidance is only performed through first
turns and straights. The turn formerly considered as the second
turn is therefore transferred into a first turn. This is best done
by renewed calculation of the guidance parameters with a different
value of the distance "A" between the last calculated optimal

point and the collision point. The new value of "A" is taken to be
the last found value minus a predetermined distance Dy. (The value
of Dg will be discussed in the section 3.8.) The starting point of
the iteration angle C; is taken to be equal to the last found value
of C3. The value of X, corresponding to C; = C3 can be uniquely
determined from C; and C3, since B, is necessarily & small angle,
at least smaller than 7 radians. The value of Kj is taken to be the
former value of K2, when Bo was found to be greater than w/2 ra-
dians. If B, was found to be less than m/2 radians K; can be uni-
quely determined by Co and the new value of the start angle Cl.

If a solution is found, guidance is conducted by turning as pre-—
scrlbed by the found values of B and Kj until C4 = Cy at which
time a transfer to stage 3 guldance is undertaken or until the next
time of calculation. Renewed calculatlon is performed as in stage 1
and turning is resumed.

If no solution is found while turning through the formerly called
second turn, calculation is tried several times with smaller value
of "A", as described for stage 3 guidance.

When C, is turned to a value closest to C. within the turning ability
of the torpedo, stage 3 guidance is undertaken.

A flowchart of stage 2 guidance is shown in Figure 3.6.

RESTRICTED



3.7

- 37 - - RESTRICTED

Stage 3 Guidance

tage 3 guidance is undertaken from the optimal point until the start

of next multipass. It is at this stage of the trajectory. that the

.xcrpedo has a definite probability of hitting the target, and it might

%e adventageous to conduct the repetitive calculation more often than

%hat employed in stage 1 and 2. The following outline for stage 3

guidance is recommended:

a)

b)

c)

a)

e)

£)

At intervals, when the second turn is completed as outlined later,
renewed calculation is conducted with a value of A such that

Ansy = A-Dg, (where the subscripts denotes the n'th and n+l'st
calculation). The value of D? should depend on the value of A in _
some crude fashion. (Dg = 100+10 INT(ABS(A)/200) is used for simula-
tion). The reason is that any small change in C3 from calculation

to calculation will yield a transversal displacement of the trajectory
which is dependent on A. When D, is made larger for a given change
in C3, the corresponding calculated values of B; and By become
smaller. Hence when D, is made dependent on A in an appropriate
fashion it serves to make both the trajectory smoother and a solu-
tion more readily obtainable.

The calculation is performed as mode 2 caleulation as outlined before.
If no solution is obtained this is not necessarily because the
general outline of the solution is wrong, but because C3 has

changed so much that a solution using the particular value of A is

not found. Hence, several values of A should be tried before a
transfer to stage 1 guidance and mode 1 calculation is undertaken.

When a solution is found, the torpedo is guided in accordance with
the calculated guidance parameters through a first turn, a straight
and a second turn. The guidance through the second turn is -in stage
3 most readily performed by letting K; = K, and 8; = 8,, and
turning as it was a first turn.

At any appropriate time in accordance with the repetitive calculation,
a new solution will be calculated in accordance with mode 2 calcu-
lations using the former values of K;, Kp and Cy, and the value of
C3 which differs the least from the formerly used value. In these
repetitive calculations the value of A is not changed by Dg. If a
solution is obtained the guidance is conducted according to the
found parameters. If a solution is not found the guidance is
continued using the accepted values of last calculation until the
completion of the second turn. When the second turn is finished a
new calculation is performed as outlined in point a, using this
time a new velue of A.

When stage 3 guidance is entered the guidance is performed as out-
lined from point ¢, and at this moment the time to start the multi-
pass is saved as twice the current value of the hit-time T.

At the time of each repetitive calculation a check if current time
has passed the time of multipass calculztion should be performed.
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When this is found to be the case, a transfer to stage 1 guidance
and mode 1 calculation should be undertaken.

After collision with the estimate the value of A will become negative
since the solution now is based on a collision with the estimate which

has already taken place.

In all three stages of the guidance it is relevant to finish the first
turn, such that C0 becomes approximately equsl to Cl. Since the torpedo
can not turn through arbitrerily small angles, but is limited to say turns
of 1 degree, the torpedo angle Co becomes practically never equal to Cl.
To start a new mode 2 calculation one must be sure that there is corre-
sponidence between the values of Kl and Cl. However, since the remaining
turn angle Bl is small when the first turn is finished, K, can be

1
uniquely determined from the values of CO and C

lb
In stage 3 the torpedo is turned through both the first and second turns,
and it 1is therefore necessary to calculate both Kl and K_ from the values

2

of Cl and Co, respectively from Cl and C3 before a mode 2 calculation

is performed.

Though the above stipulated stage 3 guidance works very well, it does
have a distinct disadvantage under certain special circumstances. When
a high bearing rate is combined with a large value of A, the transversal

displacement corresponding to the transposed distance D_ becomes signifi-

cant. The corresponding valués of ﬁi and 82 become larggr in such a case,
and as stated earlier D9 must be made dependent on A in order to
compensate for this effect. Though there are no mathematical objections
to such a guidance, it is in practice unsatisfactory since increased

turning leads to increased errors in the dead-reckoning of the torpedo.

The logical consequence of the above mentioned facts is that since C3 is
steadily changing, it becomes unnecessary to turn the torpedo onto the

course dictated by C.. Hence the proper thing to do is to set 82 equal

to zero in stage 3. ghough the simulations will demonstrate that this

will smoothen the stage 3 guidance wonderfully, it cannot be fully re-
recommended before simulations with sensor errors and dead-reckoning errors
are performed. Not only will the incorporation of 82 = 0 in stage 3 have

8 very accurate way of predicting future dévelopment of the transversal
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displacement, but it also allows use of a value of D. wh'zh is much

9

smaller and independent of A. As the next paragraph on prediction will

demonstrate, a smaller value of D is of great importance for an accurate

9

trajectory.

In stage 2 guidance it is not incorporated any future development of
the transversal displacement corresponding to the transposed distance
Dg’ and the stage 2 guidance is ended with the torpedo course C0 equal

to C3. When the transversal displacement is significant, the first stage

3 calculation with renewed transposed D_, rust respond with an equivalent

9

significant turn, even in the case when 82 is set to zero. Employing

D. = 40 meters for stage 2 and D_ = 150 meters for stage 3 guidance

9 9

for the smoothed simulation, this minor redundant turning at the start of

stage 3 guidance seems to be of no practical importance.

A flowchart of stage 3 guidsnce when 82 is allowed to take on non-zero

values is shown in Figure 3.T.

Prediction of the tilt angle

When the bearing rate is different from zero,the value of the tilt angle
8 of the uncertainty-ellipse will change with time. Every change in the
tilt angle will inflict a corresponding change in the value of the end-
torpedo course C3. '

It is possible not to employ any prediction of the tilt angle and always to

use the current value of 6 for the calculation of C_. The proposed

3
straight trajectory in stage 1 guidance would hence be slightly curved

vhen the bearing rate is non-zero.

The prediction of the tilt angle 6 becomes more important with increased
bearing rates. There are two basically different approaches to obtain a

proper prediction of the 6-value at some future time:

a) To calculate a tilt angle rate 8 by observation of 8 at different
instances. The tilt angle at some future time Tg becomes accordingly

eT9 = 5+ 0 - T9 (3.26)
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when 8 is the current value of the tilt angle as estimated by the
K-filter. :

lb) It is only in rare cases that the current value of the tilt angle
is not coincident with the bearing from own ship to the target.
The tilt angle at some future time T9 can hence be calculated
from

if the bearing Upg at time T, can be calculated. By assuming that
both the estimate and own ship will travel on a straight path the
future positions of both vessels can be calculated from their
current location, their courses and their velocities. Given the
positions the bearing can be calculated directly.

In the simulations later shown the second method using bearing calcula-

tion is employed.

In both stage 1 and 2 guidance the prediction of the tiltangle 6 is
calculated for the instant when the teorpedo reaches the point displaced

by D. from the optimal point. The prediction time for stage 1 and 2

9

guidance 1is hence

Tg = Ty + T, + T5 + D9/VT +*Ug - U (3.28)

where U is the current time and U6 is the time for which T1+T2+T3 is

valid.

For stage 3 guidance the prediction time is

Ty = Dglip | (3.29)

for every calculation performed when a new displacement D_ is incorporated.

9

At every intermediate repetitive calculation,the prediction time

becomes

Ty = Ty + Ug - U (3.30)

where T9 on the right side of the equality sign has been computed at

time U6.

It should be evident that the smaller the value of D9 which can be em-
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ployed, the more accurate the actual torpedo trajectory --ill yield

the ideal trajectory.

The actual torpedo end courses are calculated from the predicted value
of B as earlier discribed. In mode 2 calculations the value of C3 will

be used which differs the least from the formerly used value.

In mode 1 calculation employed principally at firing time and &t the start
of each multipass, the prediction time is not readily available, since

the future trajectory is still completely unkonwn. In the simulation
discribed later a crude prediction time is calculated before mode 1
calculations are performed. This prediction time is set equal to the
collision time calculated when no turns are considered. Such a calcula-
tion is analytical with no need for iteration. For moderate values of

"A" this gives a good starting point for obtaining the best solution,
particularly at firing time when the collision time is generally larger
than that of multipass calculations. Since the prediction time might be in
error at the first mode 1 calculations, stage 1 guidance is never started
before an acceptable solution is found by a mode 2 calculation. The

relevant tests for acceptance are found in the flowchart in Figure 3.hL.

It is of importance to notice that for each new calculated value of 03,
it must be investigated if this new value demands a corresponding change

in the second turn paramter K2. The rule must be teo change K2 if the

angle Cl is passed when going from the o0ld to the new value of C3.

Prediction of the axes of the uncertainty-ellipse

As is evident from the description of the optimal guidance in sections

3.2 through 3.6, the guidance parameters are dependent on the values

of the axes of the uncertainty-ellipse in all three guidance stages. In
stage 1 and stage 2 guidance the location of the optimal point is
dependent on the values of these axes through both the distance "A"
between the optimal point and the collision point, and through the torpedo
end-course C.. In stage 3 guidance the displaced end point of the

3
second turn is at all times dependent on the value of C

3.
The nature of the optimal guidance and the'employment of repetitive cal-
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culations will however, make it rather unsusceptible to smaller adjust-
ments of ellipse-axes. Such adjustments are readily teken care of by
calculation of & corresponding small change in the guidance parameters.
Though, not yet proven by simulation, it is expected that even larger
adjustments of the ellipse-axes towards smaller values will readily be
accepted by the optimal guidance in all three stages such that the

new guidance parameters can be found by mode 2 calculstions. Note that

in both stage 2 and stage 3 guidance, when the guidance is most suscept-
ible to changes in the ellipse-axes, the calculation is first tried with
several increased values of the displacement before the general nature

of the formerly accepted solution is no longer considered valid and a
transfer to mode 1 calculation is undertaken. Larger instantanecus changes
in the major ellipse axis (distance-uncertainty) could result in a new
location of the cptimal point behind the current location of the torpedo,
when guidance in stage 2 or the latter part of stage 1 is employed. However,
as argued below such sudden increases in the distance uncertainty are

not expected to take place in practical, tactical situations.

In common practical, tactical situations in which for example frequent
use of passive bearing sensors are -used, the minor ellipse-axis (bearing
uncertainty) will rapidly stebilize at a low and fairly constant level
and the major axis (distance uncertainty) will steadily decrease, but
never surpass a minimum value. Every singular use of a distance measuring
sensor with better accuracy than that which corresponds to the current
distance uncertainty, will yield a sudden jump of the major axis towards
e smaller value. The distance uncertainty will, however, slowly increase
as the time since last distance observation elapses, as estimated by the
K-filter. Frequent use of distance measuring sensors will tend to
stabilize the ellipse-axes at some fairly constant values dependent on
the accuracy of the sensors in use. It can hence from these arguments be
concluded that a fairly normal development of the tracking history of a
target is such that the bearing uncertainty is fairly constant, whereas
the distance uncertainty is decreasing either continuously or abruptly
tovards a minimal value. There is one exception from this after a singular
use of a distance measuring sensor when the distance uncertainty might

slowly increase.
The Kalman filter-is at any time capable of predicting the state vector
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uncertainties at some future time. Such a prediction would both reflect
the current position-uncertainties and the added uncertainties due to
inaccuracies of the course and speed. The greatest deficiency by a
K-filter uncertainty prediction (P-matrix prediction) is, however, that
it cannot take into account the use of any sensors during the prediction
time. The ellipse-axes predicted by the K-filter are therefore generally
larger than the current values, in direct contradiction to the arguments
above stating a normal decrease in these values. It must therefore be

concluded that K-filter uncertainty-prediction is not desirable.

Other means of uncertainty-prediction might be employed. Similarly to
that suggested in the last section, the computation of the time-
derivatives of the ellipse-axes could be utilized. This kind of predic-
tion could only predict continuous changes of the uncertainties, for
which the optimal guidance scheme is rather unsusceptible as argued above.
The more drastic changes of the ellipse-axes, to which the scheme is

somewhat more susceptible, can never be predicted.
It is therefore concluded that prediction of the uncertainty-ellipse-axes

seems hardly worth while, and the use of the current values of the

uncertainties is therefore recommended.
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SALVO ASPECTS OF OPTIMAL GUIDANCE

=

The author of this report has not analysed the different aspects of
salvo guidance in great detail. However, certain suggestions seem

evident from the experience gained in optimal guidance:

a) Angular spreading should definitely not be used to guide salvoes
consisting of more than one torpedo when optimal guidance is
employed.

b) It is recomended to use spreading distances which are slightly
less than the target length.

¢) As far as possible it is recomended to conduct mode 1 calculation
for only one (central) torpedo in the salvo to deduce the general
nature of the best solution. It is further recommended to use
individual guidance and mode 2 calculations for each individual
torpedo.

d) Displacement of fictitious targets along the estimate course of one
spreading distance and half the spreading distance for three,
respectively two, torpedoes in a salvo, should be employed. It is
vital that the distribution is along the estimate course, since
this is the only way in which slightly overlapping hit-corridors
can be assured. It should be evident that particularly for 2
torpedoes in a salvo, non-overlapping hit-corridors will leave the
most probable area for hit uncovered. This fact should also
demonstrate how important it is never to use a spreading distance
which is greater than the actual target length.

MULTIPASS ASPECTS OF OPTIMAL GUIDANCE

At the start of every multipass one additional information is available:
The data used for the last guidance (preferably stage 3 guidance) was

not accurate enough to allow hit. If the data is not significantly more
accurate when the best solution for next multipass is calculated, it
seems reasonable to ultilize the information of no hit to displace the
estimate used for guidance in relation to that given by the K-filter.
Such a displacement should preferably be conducted along the estimate
course, but there is no information to advise if the displacement should
be in front or behind the given estimate. If the next multipass also fails
to guide the salvo to a hit and the data have still not bettered signifi-
cantly, the following multipass should be guided onto an estimate located

on the oposite side of the estimate of that used in the former multipass.
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The third multipass should preferably again be directed onto the target
estimate given by the K-filter. It seems natural to use the same displace-
‘ment~-distance for this purpose as that used to displace torpedoes in a

salvo.

Lhe crucial point in estimate displacements for multipass guidance is
that the estimate by the XK-filter has not changed drastically in com-
parison with the data used to guide the salvo when no hit was obtained.
There are two basically different ways to detect if such a change has

taken place or not:

a) Manual surveillance and decision

A significant improvement of the uncertainties over a short time-
interval is usually the result of one or more observations with a
better sensor, of which the operator of the torpedoes should have
knowledge. The operator is also normally given a plot of the
tactical situation in which changes in estimate uncertainties are
incorporated. It seems therefore reasonable to allow the operator
to make the decision if the development of the estimate uncertainties
has been such that estimate displacements for multipass should be
employed or not. The most effective way to incorporate this, is to
allow such a decision to be made prior to the calculation of the
multipass guidance by selection on a separate controller on the
fire control console.

b) Automatic decision

At the time of every transition to stage 3 guidance when no multipass
displacement is employed, the major and minor axes of the
uncertainty-ellipse should be saved for later comparisons. Before
conducting any multipass calculation a specially designed test
should take a decision if estimate-displacement should be incor-
porated or not for the oncoming multipass. If also a next multi-
pass should be undertaken, the same test should be performed both
using the formerly saved — and the current - values of the ellipse
axes. If the test show no significant changes, estimate displace-
ment on the oposite side to that used in the last multipass should
be employed. At least every third multipass should be directed
towards the estimate as given by the K-filter.
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SIMULATIONS

Assumptions used in the simulation

I

“

kn order to investigate and develop the optimal guidance scheme it has

een necessery to undertake guidance simulations in a controlled and
¥

accountable environment. The following restriction has therefore been

imposed on the simulation:

a)

b)

e)

e)

£)

Own ship moves on a straight course with no dead-reckoning errors.
Variations in speed and course are allowed from run to run.

The torpedo moves with a constaht speed of 30 knots and is allowed to
turn 1 degree per 0.2 seconds yielding a minimum turn radius of 177
meters. The torpedo course at the time of firing is equal to that

of own ship.

The movement of the estimate of the target is simulated on a straight
course without the use of a K-filter. The axes of the uncertainty-
ellipse can be varied from run to run, but remains constant throughout
acomplete run. The orientstion of the ellipse is always such that

the major axis coincide with the bearing between own ship and the
target estimate. Variations in speed and course are allowed from run
to run. As it can be seen from the mathematical equations only the
ratio of the target-ellipse axes enters the optimal guidance computa-
tions. This ratio is kept constant at 1/10 for all runms.

A salvo consists of only one torpedo, and no displacement of the
estimate has been incorporated at the multipass calculations.

Each run has & maximum length of 800 seconds, corresponding to an
approximate wirelength of 12000 meters. The next multipass is not
started if collision takes place after 800 seconds from firing time.
No $pecial termination procedure has been incorporated, such as to
turn the torpedo awsy from the general direction of own ship just
before the wirelength is exceeded.

Stage 3 guidance employs no calculation of the second turn Bp, in
order to make the trajectory smooth.

A printout of the simulation program has been included at the end of this

report.
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Explanation of trajectory plots

In the headings of the trajectory plots shown from Figure 6.1 through

Figure 6.14, the following abbreviations have been used:

VO = own ship speed
VS = estimated target speed
VI = torpedo speed

= major axis of uncertainty-ellipse

B = minor axis of uncertainty-ellipse

The plots show the positions of respectively the estimate, the torpedo
and own ship every 10 seconds. At every 100 seconds these posit}ons

are marked with a symbol twice the size of that used for every

10 seconds. The position of the target estimate at firing time is

marked with a star twice the size used for every 100 seconds. Own ship
posision at firing time is recognizable by its coincidence with the
torpedo position. The torpedo course is visualized by a vector re-
presentation starting out from the center of the torpedo symbol. The
position of the torpedo both at collision with the estimate and at the
start of a multipass is represented by a squared symbol. The calculation
is undertaken in a north oriented coordinate system such that the positive
Y-axis points to the north.

Some comments on the plots included in the report will be given in the

next section.

Discussion on the trajectory plots

The trajectory plots shown in Figure 6.1 through 6.1L4, do not necessarily
demonstrate practical and recommendable tactical situations. The plots
are only designed to demonstrate the behaviour of the optimal guidance

scheme in different situations.

Figures 6.1 through 6.10 must be considered as normal runs. In Figure 6.1
and Figure 6.2 which are very similar, it is demonstrated how different
own ship velocities and thereby different bearing rates, alter the

optimal guidance trajectory. When the uncertainty-ellipse is circular
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as demonstrated in Figure 6.3, the hit-corridor is oriented 90 degrees
on the estimated target course, and a broadside collision is effectuated.
Also Figures 6.4 and 6.5 demonstrate broadside collision when the value
of the major uncertainty-ellipse axis approached that of the minor
axis. Several runs such as that shown in Figures 6.9 and 6.10 anticipate
the shorter optimal guidance trajectory in comparison with a line-of-
sight guidance. In Figure 6.11 a complete line-of-sight trajectory has
been included for easy compariéon. A tactical situation with fairly extreme
bearing rate is chosen to megnify the difference between the two different

guldance schemes.

It should be noted that it is very common that the best solution found
at the start of a multipass will cross the estimate course before
reaching the new optimal point. Though this might seem unorthodox at
first glance, the reason behind such a solution is clear: it yields the
shortest trjactory under the given circumstances. Any approach to try
to make the trajectory shorter must hence change the circumstances to
which the calculations are subjected. Several suggestion as to how this
can be done will be given in the next section. A suggestion is
demonstrated in Figures 6.12, 6.13 and 6.14 in which the multipass
calculation is postponed somewhat until the torpedo has moved further
away from the estimate. From the time that the multipass should have
been calculated as suggested in Chapter 3, the torpedo is moved in a
straight trajectory dependent on the current value of the distance "A"
to the former collision point. The best dependence is in these three
runs found to be a straight pass equal to 50 percent of the distance
"A"  The time required for this straight pass is, however, not allowed
to exceed 40 seconds. Not enough runs have been investigated at the
time of writing, to yield a conclusion as to the efficiency of such

an approach.

* Before turning to the next chapter dealing with suggestions for further
work which should be undertaken, the reader should notice that in most
cases the crossing of the estimate course is done in the immediate

vicinity of the target estimate.
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T PROPOSAL OF CORTINUED WORK

This report is not complete in every detail and before the optimal

guidance can be fully recommended for practical adoption in a fire control

'system which meets its requirements for application, the author will

propose some further areas of investigations. It is however with full

‘confidence that such investigation will only lead to fairly minor

changes in the general consept of optimal guidance. The proposed investi-

gations are:

a)

b)

c)

a)

e)

f)

g)

h)

J)

Simulations with turning own ship and target.

Simulation incorporating sensor inaccuracies and s K-filter yielding
varieble values of the uncertainty-ellipse axes during the time of
guidance.

Simulation with both own ship - and torpedo-dead-reckoning errors
of different magnitudes corresponding to realistic configurations
of logs and gyroes.

Monte Carlo simulations calculating hit-probability or any other
convenient measure to compare optimal guidance to line- of—51ght
guidance and collision-point guidance.

Adjustments of incorporated experimental parameters employed in the
optimal guidance scheme should be performed with relevant
inaccuracies in both dead-reckoning and sensor observations.

It is particularly advantageous to find a minimum experimental value
of the distance between the estimate and the optimal point, set to
3+a in the presented simulation. This number will greatly influence
the number of possible multipasses.

The work started on postponement of the multipass calculation de-
scribed in the last section should be continued.

Since the torpedo crossing of the estimate course is commonly in the
immediate vicinity of the estimate, an investigation should be
undertaken to modify the stage 1 guidance to yield a slightly
different trajectory leading to a collisien at the crossing of the
estimate course. Uncritical collision-point guidance when the
torpedo is located closer to the estimate than a minimum distance
(this distance should be less than the minimum allowed value of "A")
suggests itself.

In systems in which mode 1 calculstion-time is of no great concern,
several values of postponed multipass calculation can be compared.
Even iteration might be employed to find the best possible soluticn.

In tactical situations with extreme bearingrates the predicted value
of C3 will not coincide with the desired tornedo course at the opti-
nal point (see Figuares 6.9 and 6. lO)? and a redundant turning

results. A better prediction of C3 for stage 1 and stage 2 guidance
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teking into account the future development of C3, can be investi-
geted to overcome this minor problem.

It is only considered necessary to undertake all these points of investi-
gation, when an extremely careful and complete investigation is to be

undertaken.

CONCLUSIONS

The purpose of the work described in this report was to investigate the
possibility of designing a guidance scheme which would yield a higher

hit probability than that obtainable through the conventional line-of-
sight and collision-point guidance. The reason why such an improvement

was expected is that certain fire control systems supplement the estimates
of the usuel tracking parsmeters with estimates of the uncertainty of

these parameters.

A mathematical solution which theoretically will yield the optimal hit~
probability by using the position uncertainties of the target estimate

has been given. A workable guidance scheme using this methematical solu-
tion has been found to guide torpedoes in practical, tactical situations

with dynamically changing tracking parameters.

It is hoped that this report has given sufficient material to convince
the reader that the utilization of the designed optimal guidance yields
definite advantages over that obtainable through a choice between line-
of-sight guidance and collision-point guidance. For clarity, some of

the arguments showing such advantages will be summarized below:

a) Calculations of hit probabilities when position uncertainties are
incorporated show distinct maxima and minims, even when the
bearing and distance uncertainties are almost equal. This dis-—
favours the use of uneritical collision point guidance, since such
guidance does not incorporate a calculaticn of the angle-of-attack
yielding neither maxima nor minima.

b) Line-of-sight guidance is favourable in most circumstances even up
to a ratio of the axes of the uncertainty ellipse of b/a = 1/5.

c¢) The optimal guidance yields guidance after the line-of-sight
principle in all circumstances favouring such guidance. It does not,



a)
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hewever, start line-of-sight guidance before the d: 1 predicts that
the hit-probability is non-zero and hence such guidance becomes
meaningful. The optimal guidance yields therefore & shorter
trajectory than that obtainable through the use of line-of-sight
guidance.

The optimal guidance will only rearely yield pure collision-point
guidance. In cases where collision-point guidance is traditicmally
recommended, the optimal guidance tends to yield higher hit-
probability since it guides the torpedo optimally to a collision
more broadside on the target.

In every situation, 2lso in the situation in which a choice between
the two conventicnal guidance schemes seems difficult, the optimal
guidance yields a trajectory which is very close to optimal in
relation to those data entering the guidance computation.

It becomes possible when optimal guidance is implemented to use only
one automatic guidance mode (sutomatic as contrary to manusl) to
assure the best possible guidance. The choice between two guidance
modes, each serving very different circumstances is hence eliminated.

The optimal guidance will of course yield the highest hit-probability

when the estimated position uncertainties faithfully represent the true

uncertainties of a given tactical situation. It is, however, expected

that optimal guidance, will yield better results than that obtainable

conventionally, even in cases when fairly coarse errors in dead-reckoning

are not incorporated in the uncertainty estimation process.

It is hoped that this report will raise enough interest to enable the

work with optimal guidance to continue as suggested in chapter 7.
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APPENDIX 1

DEVELOPMENT OF EQUATIONS DESCRIBING THE HIT-CORRIDOR

With reference to Figure 2.5, the equation for the target ellipse can be

written as

(SIal)2 + (r/b1)2 =3
or
(alr)2 + (bys )2 = (albl)2 (A1.1)

which by differentiation yields

2 2 -
231 rdr + 2bl s ds 0
or

2
ar _ bl s
ds 2
2y T

A straight line with inclination tg® with respect to the s-axis will be

tangential to the ellipse in a point described by

bl2s
tgd = - >
a, “r
or
al 2
s = (=) r tge ' (Al1.2)
5

A substitution of equation (Al.2) into (Al.l) yields

2
2 e 2 _ 2
(alr) + (bl(—-bl) rtgd)t = (a;b,)
2 2 2 _ L
(alblr) + (al r tge) = alebl

RESTRICTED



~ 53 - RESTRICTED

or
b2
1
Yoo, = % _—
12 ,/ > 5
(af:g@) + )
and correspondingly
a 2tg¢
- 1
s = =x
12 ,/ > 5
(altg¢) + by

From Figure 2.5 it is seen that

k = r

> 17 s tgd

or

bl2 + (altg¢)2 = 5
k. = = /(;.ltgep) + b, (AL.3)

X
/(a tg¢}2 § 2

L 1

And hence the equations for the two lines defining the hit corrider are

r = s tgd * kr

Rotetion to the x-y coordinate system is governed by

r = y cosB - x sin®
s = y sinf + x cosé
Hence

1+

k

y cos8 - x sin® = tgé(y sinbé + x cosf) 5

I+

k

y(cosé + sind tgd) = x(sin® + cos6 tgd) %

y(cos8 cos® +sin® sin®) = x(sin® cosé + cosB sind) % krcos¢
y cos(9+8) = x sin(o+8) * krcosé
¥y = mx £n . (A1.5)
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where
m = tg(o+6) (A1.6)
and
= —cos® ,/(altng . b12
cos(¢+0)

/fa sine)2 + (b,cos6)2
= l X (AL.T)
no= cos(o+8) ) :

i rotation to the u-v coordinate system is goverened by

=4

r = v sin® + u cos¢
s = v cos® - u sind
Hence

v sind + u cos® tge(v cos® - u sing) + k

r

v(tgd cosd - sind) * k

L]

u(cos® + tgd sin¢d)

r
u(c052¢ + sine) = tk cos¢
u = tcosd /gl2tgz¢ + b12 _ (A1.8)
u = #k | ' (AL.8)
where
k = f{alsiné)z + (blcos¢)2 | ' | (A1.9)

g RESTRICTED
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APPENDIX 2

CALCULATION OF THE CORRIDOR ANGLE YIELDING MAXIMUM HIT-PROBABILITY

The corridor angle yielding the maximum probability of hit can be found

by combdinding equations (2.6) and (2.7)

A A 4 2 20y .. _
3%~ 3% ‘zrew _i mi_n ExP(-1({x/a)" + (y/b)")jday ax} = © (52.1)

An integral of the form

b 2

[ EXP(-u®) au

a

has unfortunately no arithmetic solution and hence a solution of (A2.1)
cannot be obtained by a differentiation of the solution of the double-
integral. However from the intergral-calculus the following two formulas

can be used to obtain a solution

3 ° e a

3z | flxtlar = [ o {£(x,t))at (a2.2)
a a

and

lu}X) fe)as = g(w) 2 - g(v) 2 (A2.3)

ax v} - - wax T W =

where a and b must be constants.

By the use of (A2.2), equation (A2.1) reduces to

o«

—g—g = ?_Jrr-ab _£ EXP(_%(X/S-)EJA(X)&X
where
3 mx+n 5
Alx) = 55 [ Be(-3(y/v)%)ey
mx-n
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Application of (A2.3) yields

2 2
Alx) = EXP{-(mx+n)2/2b2] (x ﬁ% + 3%]

“ EXP[—(mx~n)2/2b2) (x %% - g%) .

For convenience the following parameters are included

om an
= = — = — N
A = and B 7 (A2.k)
giving
. B & " 2.2
A(x) = EXP(-(mx+n) /2v°) (Ax+B] + EXP (-(mx-n)“/2b ) (Ax—B]
Hence
@ _ 15 3p Hpn 2,2
- ST ‘i {EXP(~3(x°/a2 + (mx+n)“/v°)) (Ax+B)
- BxP(-3(x®/a® + (mx-n)2/v?)) (Ax-B)}ax
Again for convenience use
1 _ 1 m a2m? + b2 ;
S I B v (42.5)
o a b ab
and
mno mna
N = = (A2.6)
b aTp® + B

and hence obtain

%E' =5 _i {EXP(-(x+1)%/20%) (ax+B) - Exp[-(xjm)zfzog) (Ax-B) }ax
where
¢, = 2$ab'EXP{—n2X2b2 + ¥2/20°)

By the use of

u = X+H and v

"
>4
i
=

RTSTRICTED
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one has

%% = C, [ (A(u-n)+B) EXP(-u2/20° ) au - Cy [ (A(v+N)-B) ExP (v /20°) dv
or
%% = cy(3-aN) [ mxp(-u/20%)au + C,(B-a¥) [ EXP (-v2/20°) av

—cn —oo

+CA [ Exp(-v2/2 %)au - CA [v EXP(-v2/20°) av (A2.7)

Let u = v and find

o

9P N 2, 2
55 = 2C,(B-AN) _i EXP (-u”/26°) du
or

3P

o - "

55 " 202(3 AN)Y2n o

To find the maximunm and minimun

oP
o

or

-

o(B-AN) = 0

Solving 0=0 does not give any general solution for max and min, and hence

it must be found from

B - AN

1}
o

or rather

skl = SR (A2.8)

Solving this eguation in terms of tgd yields a cumbersome third degree

equation, whereas a solution in terms of m’'= tg(¢+6) yields a second
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degree equation, The latter is chosen for convenience, but first n must

be found as a function of m.

Equation (Al.7) defined n ae

L = f{;QSin¢)2 + (blcosé)gfcos{¢+6J

which by substitution of

b bl/al (A2.9)

yields

n = ar/;in2¢ + D2c082¢/cos(¢+9)

or |

n = al/g;;2(®+6—6) + D2c052(¢+6—8)/cos(¢+6)

n = al/{sin(¢+8)cose ~ cos(¢+8)sine)2 + De(cos(¢+6}c058 - sin(¢+9)sin0)2/
cos(o+6)

n = al/fcoseﬁ + Dgsinzﬂ}sin2(¢+8) - 2(1-D2)sin(¢+e)cos (946 )sind cosd

and

+ (sinee + Decosee) c052(¢+8)]cos(¢+6)

iy cose/f1+ngtg2s) tg®(9+8) - 2(1-p2) tg8 tg(e+8) + £g% + p2

2; .2

cqseﬁQl+D tg“6) m°

By

alcose{2(1+92tg28)m - 2(1-D?thﬁ}

2/?1+D2t828)m? - 2(1~D2)t58 m + tg28+ D2

¢

- 2(1-0%) tg0 m + t52 + p2

om

, —

0%

ToSTRICTED
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and hence equation(A2.8) yields

2
%5

cos6{{1+D

2 -

tg7e)m - (1 D‘)uge} om
— 30
JQ1+D2tgae)m2 - 2(1-D2)tg8 m o+ tg26 + D?

I
' ma

el o el (1D R ) - 2(1-D2)tg85m wEets ¥ 2w I8

59 .15 30

Which by substitution of

C = b/a (A2.11)
yields

((1+40%¢228)m - (1-D2)tgo} {m2+C®) =

n{(140%6g26)me - 2(1-D°)tgd m + tg°6 + D°}

(1-D°)t g0 m2-+ (02+0°c®tgP0 -D° ~tg%0)m - C°(1-D°)tge = O

or

(1-D%)m? - {(D°-C%)cotgd + (1-C2D%)tgo)m ~ C2(1-D%) = o (A2.12)
When

p° 4 1

ne - m{(Dz—szcotge + (1-c?0?)tge}/(1-0°) - €2 = 0O

If

A = {(D%-C%)cotgd + (1-2D2)tgo}/2(1-D2) (A2.13)

Then the solution becomes

]
N

A%+ C (A2.1h)

=
1]
R
1+

12
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APPENRDIX 3

CALCULATION OF THE OPTIMAL DISTANCE

From Figure 3.2 it is obtained that the uncertainty ellipse is given by

Bl ol = e

and the line OP is given by

y = x tg(e+8) = mx
Hence
b2x2 + a2x2m2 = a.2b2
x2 - 32b2
b2 + a?n@
' 5 2.2
PP = 28+ y® = (1ad)xd = (1) 52 be :
b f am
or
5 . .
+
FP = bﬁig“iiis ' (A3.1)
C” 4+ m

where C = b/a and m = tg(9+8).

It is required to locate the optimal point at & distance from the posi-
tion of the estimate at which there is only a very negligible probability
of hit. Such a requirements is met if the optimal distance E is from

2.5 to 4 times the distance FP in Figure 3.2.

A practical sclution is

] / 2 —
= 2.7p = 1+m
E = 3FP 3vy =5 > (A3.2)

C +m
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The distance between the optimal point and the hit point can te found

from Figure 3.2:
When
N<1l, and |[¢] > |c]

A =V.D =E cosa + VT cos‘(C3*C)

T
T = E cosa
VT - Vg cos (Ca—C)
T = ¥t wosn - E cosa
Vp - Vg cos (C3—C) 1-N cos [C3-C)
When
N>1, and o] < |a]
A= V,T = VST cos (CB-C) f E cosa
and
A E cosa

=¥ cos(C3~C) -1

Hence in_general

E cosa |
1 - H cos (C3-CJ

A= |

"A" is infinitely large when N cos (C3—C) = 1.
As the discussiog of section 2.3 has shown
¢ = -8 when C =b/a < 0.2

Hence for C < 0.2
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For ¢ > 0.2 value of A can become quite smell, which is for example

in disagreement with conventional use of fixed locking distances.

Hence the fellowing value of A is recommended

3a cosa |)

= naz |
A max(Al, i 303(03—0}

where Al is a predetermined fixed distance.

RESTRICTED
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APPENDIX L
DEVELOPMENT OF EQUATIONS FOR OPTIMAL GUIDANCE
A thorough analysis of left and right runs, such as visualized in Figure
3.3, reveals that the turn angle is given by

B = K(cg—cl) +7Z (Ak.1)

where % = 2m vhen K(C,~C,) < 0 and Z = 0 when K(Ca—cl).i 0. Using this

convention for the value of "Z" assures that
2m > g > Q whenever 2n > Cl,C >0

2

The values of the turn parameter "K" is furthermore such that K = 1 for

right turns and K = -1 for left turns.

The time required for the torpedo to turn an angle B becomes

T = BR/V (ALk.2)
where R is the turn radius and V the torpedo velocity.

The corresponding movements in the X- and Y-directions are corre-

spondingly
Xy ¥ Xl = KR (cosCl - c0502) (AL, 3)
Y, - ¥, = KR (sinC2 - sinCl) (AL,4)

It must be clearly understood that equations (AL.1) through (AL.4) and
the mathematical relations to follow are only valid when all course
angles (torpedo- and estimate—cdurses) are adjusted to angles between
0 and 27.
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Using these equations for the turns and the notation ada, :ed in Figure 3.1,

the coordinstes of the hit-point can be found to be

YH = Y 4+ VST cosC
YH = ¥+ KlR(31nCl~51nCO) + Vg cosCy + K23(51n03~31n01) + A cosC3
and
XH = X + VST sinC
Xy = X, ¢ KlR(cosCo-cosCl) + VgTysiny + KER(cosCl—cosC3)+A s:nC3
where
T = Tl + T2 + T3 + Th
From which the following can be obtained
VgT cosC = Py - KlR sinC_ + K,R 31n03 + R(K1~K2)51n01 + Vg T, cosCy
(Ak.5)

VST sinC = Ql + KlR cosCo - Kzﬂ c03C3 = R(Kl~K2)cosC1 + VTT2 slnCl

- (AL,6)
Where the following terms are_indepéndent of Kl, K2 and Cl
P, = Y - Y +AcosCy (Ak.7)
Q = X, - X+AsinC, (AL.8)
The two turns are described by
B, = K(C;=C) + 2, (Ak.9)
T, = B,R/V, _ (Ak,10)
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and
! 32 = KQ(CB-C]_) + 22 (All.ll)
T3 = 62R/VT (AL.12)

'where the rules governing Kl, K

5 Zl and %, are as stated in the

2
begining of this appendix.

For abbreviation the following notations are adapted

Dy = QcosC - P,sinC (Ak,13)
and

Dy = (‘I‘1 * G+ Th)VS = (BlR/VT + BR/Vp + A/VT)VS

D3 = HN(A + (sl + 52)R) (AL.14)
where

N o= Vg/Vgp | (Ak.l?)

Equation (AL.5) yields

VSTzcosC + D3cosC = Pl-KlR s:.nCo + K2R 51nC3 + R(Kl-Ke)sxnCl+VTT cosC

2 1

or

P.-K|R sinC_ + KR sinCy + R(Kl—K2)51nCl - DjcosC

T o= (A4,16)
2 (N cosC ~ cosCl)VT

and correspondingly

o - Q+K;R cosC_ = K R cosC3 - R(K1~K2)coscl - D351nC
2 (N sinC - sinCl)VT

(AL.17)
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A cembination of equaticns (A4.16) and (Ab.LT) yields

(Pl—KlR sinC_ + KR 31nC3 “ R(nl-K2)51ncl - DBQOSC)(R 51nC—31nCl) =

~ R(Kl—Ke)cosC -D.sinC) (K coscﬂcoscl)

173

1(Q1+K1R cosC0 - K2R cosc3

i - inC, ) - si i -cesCe -3 i
D3(51nCcoscl cosCsir 1) NRKI(cochosCl+ 1nCsanl co CoOSCO san51nCo)

+ NRKe(cosC cosCl+51nC 51nCl-cosC cosC3—51nC 51n03)

4 " 2 . 2
- KlR(cosCocoaCl+51n0051nC ~cos C,-sin Ci)+

1 ik
+ X, R(cosC.,cosC,+sinC,sinC —cosec —sinQC )
2 3 1 3 1 L 1
- QlcosCl + PysinCy + H(Qlcosc - P131nC) = 0

or

D_sin(C=C, )=NRK

3 1 l(cos(C*Cl)-cos{C-Co)) + NRK2(cos(C-Cl)-cos(C—C3))

- Kln(cos(co—cl)-l) + K2R(cos(03-cl)—1) - QcosCy + P,sinC; + N Ds = 0

Since D3 in general is dependent on Cl,

analytically, and the solution to the guidance problem becomes a iteration

this equation cannot be solved

problem of finding the value of C, for which

1
vhere
F(C,) = D3sin(C—Cl) - NRKl(cos(CJCl)-cos(C-Co))

+ NRKa(cos(C—Cl)-cos(C~C3)) - KlR(cos(Co-Cl)-l)

+ K2R(cos(03-cl)-l) - !.;2:]}:03_(_3_l + PysinC, + N D5 (A4.18)
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APPENDIX 5

A CORTINUETY ANALYSIS OF F(Cl)

The iterstion function was in Appendix 4 found to be

F(Cl) = DSsin{c~cl) - NRKl(cos(C“Cl)—cos(C—Co))
+ HRKe(cos(C—Cl)ﬁcos(C*CS)) - KlR(cos(Co-Cl)~l)
+ K2R(cos{03-cl)—l) - Qlcoscl + Plsincl + N D5 (A5.1)

In order for this function to be suitable for the type of iteration
(Newton-Raphson-iteration) employed in chapter 3, both the function
F(Cl) and its derivative should be continous for all values of C.. An

1

uncritical use of F(Cl) will not fullfill these requirements, and it
is the purpose of this appendix to show what precautions must be taken

in order to make the function suitable for iteration.

In the discussion to follow the following notation will be adepted

Q
1]
«
|
™

(@]
1}
= |
+
™

where C_ is either Co or C, and where € is an arbitrary small positive

2 3

angle.
A substitution of Cl‘ and Cl+ into equation (A5.1) when 09 # C, yields
F(c, ) = Dy s;n(c~c9) + D¢

and

+ + . +
F(cl ) = Dy sln(C—Cg) + Dg
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For 09 = Co, the constants D3 and D6 becomes

D, (CO) = N(A+R(nKl e+ 2z, *+ 52)) (a5.2)
+ + + |

Dy (c)) = N(A+R(K;"e + 7" + By)) (45.3)

D6(Co) & NRK2(cos(C—CO}~cos(C~CS)) + K R(cos(CB—Co)*l)

2

- Qlcosco + PlsinCO + N D5 (A5.h)
and for Cg = C3
Dy (03) = N(A+R(8l +K, e+ 2, )) ‘ - (A5.5)

+ _ + +

Dy (03) = N(A+R(8, - Ky € + Z, )) (A5.6)
Dg(C3) = = NRK,(cos(C-C5)-cos(C~Cy)) - K Rlcos(C -C5)-1)

- QlcosC3 + Plsin03 + N D5 (45.7)

and K * are equal or unegual, the continuety of
1,2 1'2

D_ needs further investigation wheras D6 is obviously continuous both

3
at Cl = Fo and Cl =C

Dependent on if K

30
Since € > 0 and

an > K, e+ 2" > 0

Zl can mathematically be expressed as

z, = w(1+K1 )

and similarly

+ +
z,” = %(1- Ky )
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And hence at Cl = C0

* % = (k.7 )N * - A5.8
Dq (c,) - Dg (co} = (Kl + K )Ne + (K" + K )N (A5.8)

Similarly at C1 = C3

7" = ﬁ(l—Ke-)

+
22 = 1'{(14-!(2 )

and

+ - - + -
D4 (c3) - Dy (03) = —(K2 + K, )Ne + (K2 + Ke_)mn (A5.9)

Only when
- + - +

Kl = —Kl and K2 = —K2

equations '(A5.8) and (A5.9) become zero.

Hence when K. and K. changes sign at C respectively

1 5 = C0 and Cl =C

1 3

F(CO+5) = F(Co-e) and F(C3+s) = F(CB-e)

The derivative of F(Cl) with respect to C, is

| - i = i o i . 3 Lo
F (cl) = NR(Kl K2)51n(c cl) D3cos(C cl) NRK151n(C ql)
+ NRKesln(C—Cl) - KR s1n(Co-Cl) + KR sin(C3-Cl)
+ lelnCl + Plcoscl
or
1 = i " - - - . _‘
F (cl) D3cos(C cl) KR 51n(co_gl) + KR 31n(C3 cl)

+ leinCl + PlcosC1
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Similarly for that obtained for F(Cl)
F'(c,”) = =D, cos(C-C,) + D~
3 3 9 T

et o opt _ +
F (Cl ) D3 cos{C Cg) + DT
vhere
DT(CO) = KR 51n(C3—CO) + Q151nCO + Plcosco
DT(CB) = KlR 51n(CO“CS) + leznu3 + P1005u3

Since DT is obviously ‘continuous at Cl = Co angd Cl = 03 and proof already

has been given on the continuety of D3 at these angles, it must be
concluded that

F'(Co+e) = F'(Co-s) and F'(c3+e) = F'(C.-g)

3

vhenever K. changes sign at C

1 8 Co and K2 changes sign at C, = C

1 3

The continuity requirement of changing the sign of the proper turn

parameter when Cl = C0 and Cl = C, is by no mean a surprise, since this

3
is the methematical method to transform a left turn into a right turn

of equivalent size, or vica versa a right turn into & left turn.

In the mathematical formulation of the iteration process it becomes
natural to define the turn parameter of for example the second turn in

the following manner

=
]
o
E
a
v
€
Iv
o

and

K, for 2n > C1 > C3
This implies mathematically a change of K2 from Cl = 27-¢ to Cl =€
(or vica versa), which must be avoided to keep F(Cl) and F'(Cl)

continuous at Cl = 0., The proof that Kl ahd K2 must be kept unchanged
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1

..'?'l._

will not be given in this text.

quite straight forward using the above adapted nolation and

If the first turn 81 is resiricted to & velue not exceeding v radiaus

as suggested in chapter 3, the value of the turn parsmeter Kl must

change =t Co+ﬁ. In order to investigate the continuety of F(C

‘et C, = C 47, the following notetion is adapted
o

&

]
f

C = Co

c
o}

+ 1T =g

+ T+

l) and F'(Cl)

(If C0 > @, the 7 radians should be subtracted in the above formulas, but

this will make no difference in the proof.)

F(cl") =

or

=
(o=}
it

Similarly

+

1)

F(cC

D, sin(C-C -r) + NRK. (cos(

3 o) 1

+ NRKz(cos(C-Cl)cos(C—C3)) -

+ K R(cos(CB-Cl)—l) - Qlcosc

2

—D3 51n(C-C°) + D8

N(A+R(K, (=) + 2, + B,))

~2NRK -cos{C—Co) + 2K. R + Dg

1 1

: v
+ Pl51nCl + KD

C-C g )-cos(Cﬂco))

(cos(Co—Co*ﬁ)-l)

p)

HRKe(eos(CﬂCl)*cos(C—CS)) & K2R(cos(c3-cl)-1)

*Qlcoscl + P131ncl + ND

- . +
D3 51n(C-Co) + D8

>
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where
- + +
D3 = H(A+R(Kl (n+e) + Z, + 32)
+ + = +
= -2NRK al O~ % T
DB 2NRE i COV{C CO) + 21{1 R + D6

The restriction of ﬁl to & value not exceeding w radisns imply that

K, =1
Kl+ = -1

such that

D3' = N(AtR(m-e+0+8,)) = N(A+R(m-e+B,))
Dg = -2R(N cos(C-C )-1) + D

and

D3+ = N(A+R(-m-e+2148))) = HN(A+R(r-e+8,))

Dg = 2R(N cos(C-Co)—l) + Dg

From which the following conclusion must be drawn
b7 = », ad Dy % Dg"

and hence

F(C +1-¢c) ¥ F(C°+n+e) (A5.10)

Similar values of F'(Cl) becomes

F'(cl ) = D3 cos(c-co) + DT

where

?

DT = ~K;R 51n(C3-CO) - lemCD = PycosC_
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- t f
= i +
D3 cos(C ) DT

Since it is already proven that D3 D3+ it must be concluded that

F'(C tr-c) = F'(C_ #n+e) (45.11)

The restriction on the value of B, not to excesded 7 radians, will hence

1

make F{Cl} discontinuous and F'(Cl) continuous at C. = Co+w. The impli-

21
cation of this will be discussed in chapter 3. Note however that the

continuous term D6 is of the order of P, or Ql, wheras the discontinuity

1
is of the order of R.
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TABLE OF SIMULATION PROGRAMS

PROGRAM PROGRAM FUNCTION

NAME

MATIN
CCT

CCP

FA
FAZ
FBA

FBS
FCA
FCT
FES
FET
FK

FNS
FST

FTS
FIT
NEP
NTS
NTT
STR
TA

TEST
TURN

.

Main Program for torpedo guidance

Checking of collision time and start of
nultipsss ’

Guidance program for stage 3

Compare totel time for new and last best
solution

Finds distance A
Finds argument making F(85) = 0

Finds torpedc end-course closest to the last one
used

Finds the best of all possible solutions

Finds wanted corridor angle

Find time to collision with no turns

Find every solution of F(Cl) = 0

Finds the functiocnal values and turns

Finds the values of the turn parameters

Finds a new soiuticn using the latest value of Cl

Finds the shortest time to collision with no
turns

Finds transposed solution

Finds total time required to hit the estimate
Finds new estimate positioﬁ

Finds new torpedo poisiton in streight path
Finds new torpedo position in turns

Finds new positions of both torpedo and estimate

Finds wanted torpedo end-course from corridor
angle

Test for necessary change of second turnparameter

Finds new positions of both torpedo and estimate

FLOWCHART
FIGURE
NUMBER

3.4 to 3.7

3.8
3.9 and 3.10

3011
3.12
3.13

3.14
3.15
3.16
3.17
3.18
319
3.20
3.21

3.5
.23
3.2h
3.25
3.26
- 3.27
.28

3.29
3.30
3.31
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TABLE OF PROGRAM SYMBOLS

Temporary storage symbols are not listed

AQ
A3
AT

BO

co
cl
C3
Ccé
cT
AC1

D8
D9

El

E2

Gl
G2

Hl
H2

J1
J3

L]

Distance between optimal point and hit point
Major axis of uncertzinty-ellipse
Tiltangle € at prediction time

Distance from optimal point tc estimate position
Minor axis of uncertainty-ellipse

Ratio of minor and major axes of uncertainty-ellipse
Estimated target course

Current torpedo course

Torpedo course in siraight trajectory

Currently used torpsdo end-course

Possible torpedo end-course

Possible torpedo end—course

Accuracy of iteration angle Cl

Ratio of minor and major axes of target ellipse
Displacement between each tried solution

Transposed displacement

First turn angle in radians

Second turn angle in radians

Time between repetitive computations
Constant used for acceptance of straight path

Time between repetitive computations in stage 3

Corridor angle ¢
Angle o

Trajectory number used for plotting

Number of accepted solutions

Number of 1 degree turns of torpedo

RESTRI"TED



Jh

J5
J6

KL
K2

Ll
L2
L3
L4

M1
M2
M3
Mh
M5

N9

02

P2
P3
P4
P>
P6
PT

Sl
52
S5
S6

]

L]

"

n

L]

- 76 i

Number of employed iteraticns
Nurber of tried transposed solutions

Number of trieded mode 1 solutions

Turn parameter of first turn

Turn parameter of second turn

Total time to collision
Time required for the first turn
Time required for the straight path

Time required for the second turn

RESTRICTED

Time required from the optimal point to the hit point

Indicator for passing hit-time
Stage indicator

Angle indicator

Carry out plan indicator

Indicator of plan progress

Ratio of estimate and torpedo velocities

Distance between next optimal point and hit point

Own ship veloecity

2n

1 degree in radians
n

n/2

3n/2

5 degrees in radians
Minimum turn radius of torpedo

Scalefactor for plotting

Start angle of iteration process
Functional value of F{(Cl)

Angle varisble

Derivative of F(Cl)

RESTRICTED
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Uo
Ul
Uz
Uk
U5
U6
uT
u8
us

VS
VT
V9

W

X0
X8

YO
Y8

26

ZT7
z8
29

s [ o RESTRICTED
Total time to collision

Predicticn time

Current time measured from firing time

Last time for updating of own ship position
15 seconds before start of second turn

Time of start of second turn

Collision time

ime of next multipass calculation

Time of last computation

Last time for updating of torpedo position
Last time for updating of estimate position

Time for next updating of torpedo position

Estimated target velocity
Estimated target velccity
Torpedo velocit;

Torpedo velocity
Time of next repetitive computation

Current X-position of target estimate
Current X-position of torpedo

Current X-position of own ship
Current Y-position of target estimate
Current Y-position of torpedo

Current Y-position of own ship

Error or no solution indicator
Error or no solution indicator
Error or no solution indicator

Error or no solution indicator
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‘REM we¢s PRAGRAM LISTING PF BPTIMAL GUIDANCE  wew

EXTERNAL BPILBTS,BPLBT,BWHERE,BSYMBL ,BNUMBR,BAXIS

rREM tﬁ's’r»:-;‘:ﬂ':l;\‘qu';ﬁ'!lk\t&*\ﬂ'*ﬁ*s'rﬁ'feﬁ'**ﬁt*ir**{-*&t*?i*étli‘&&&ﬁ&**#

RFM 2w INPUT DATA #+

LET B=0

RE_M ﬁ&f;**ﬁ‘éﬁﬁﬁ-‘*ﬁ\‘:ﬂ'ﬁ'ﬁﬂ'i*ﬁtﬁ*&fﬁ#ﬁ*‘r***ﬁ**ﬁés‘.‘ﬂ'i‘.’\il"l}ﬂrﬁi{(*ﬁ'*i**

PRINTE2E";

INPUT @2

PRINT ¥ nsg2

PRINT "AQah;

IMPUT AR

PRINT u n3AD

PRINT UWRQ=zwy

INPUT BO

PRINT W 1380

PRINT uxQpang

INPUT X0

PRINT ® ngX0

PRINT "yQ=vy

INPUT YO

PRINT ":YD

PRINT ngcQang

INPUT CN

PRINT O n3C0

PRINT uys=";

INPUT X

PRINT ny ¥

PRINT M"yz";

INPUT Y

PRINT ngy

PRINT ngatg

INPUT C

PRINT "t

PRINT "vs";

INPUT V

PRINT ney

PRINT t"gs";

INPUT 8 _
TPRINT M nzs

PRINT nya"y

INPUT I

PRINT nyl

LET x8s¥0

LET YR=zv(Q

LET X7=¥%

LET Y7=v¥

LET #0=p2«0.5144
LET P2s6.28318530
LET P3=p2/360
LET P4sn,54p2
LET P5:0.254P2
LET PEzpd+ps

LET P7=5aF3

LET S5=C0%P3
GeSUB 1700

LET CC=85

LET 2=25

LET SB=sc=P3
GFfsuUB 1700

LFT C=8%

LET vO=30+¢0. 5144
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180 LET KN=v/30

210 LET Revgs72/pP2

212 CaLL BPLETS(0)

214 LET I7s{6¢1

246 IF Te0 THEN 256

218 E-H.L EM(IS(O-Da"Xv#KIS",*;‘uS;O;O,SJ
220 CALL RAXIS(P,D."Y=AXIS",6,8,90,0,3)
222 CALL RSYMBL(0,5,9,0.14,"TORPEDD TRAJECT":0,15)
224 CALL BwHERE(I3,74,15)

226 CALL BSYMBL(13.9.,0.14,%FRY PLET",0.8)
227 GesuUs 8100 .

228 LET Us0 3 uss0

230 CALL RSYMBL(X/8,Y/8:0.21,25,0,=1)

232 " LET UsUe«i0

233 IF U >860 THEN. 254

234 GASUB 2000

534 IF ¥>6+8 THEN 254

238 IF Y=g:8 THEN 254

240 IF X<C THEN 254

942 IF ¥Y<0 THEN 254

544 LET I¢=INT(U/$00)~U/100

245 LET 12=0.14314525

246 IF ABS(T1)<0.00¢ THEN 250

548 LET 12s0.07314%48

2510 CALL PSYMBL(X/S,Y/S,12:,14,0,=1)

252 GAT? 232

254 GATZ €587

2558 GAsSUB 6000

2568 LET IE=E.5-;|'|~_D¢2

257 CaLL FSVMBLfO.S,15*0.07:0g14r17p0r-1}
258 CALL BWHERE(13,14,15)

250 CALL RSYyMBL(13,76,0.44," ¢ WITH ASY,0,10)
260 CALL BWHERE(13.74,15)

262 CALL BNUMBR(13,Y6,0.14,40,0,-1)

264 CALL BWHERE(13,14,15)

266 CALL ESYMBL;13.16,G.14,“ AND B=",0,7)
268 CALL BWHERE(13.,14,15)

570 CALL BNYMBRf13,16,0.14,B0,0,=1)

272 CALL EWHEREFI3314115}

274 CALL BSYMRLF13,76,0.14," METER3",0.7)
284 REM tokeuhpbbdht bt rdbbbhbtdbdrbvnhndadhbpdehedorbbabnbheds
286 REM w+ MAIN PREGRAM =#

788 LET B=0 o

20 - REM edbdwta e bt ar el et b bt dd b b d bbb dd b dudedhbdy
2614 LET uo=n

292 LET U=0

P04 LET W=D

206 LET Xx=x7

208 LET Y=Y7?

300 LET uU@=g

302 LET G2=5§

303 LET Jfs=g

308 LET G=5

30 LET M2=0

35 LET Gi=40

320 _GAsUB 4700

322 IF 27=0 THEN 336

325 LET T&=n

%30 GAT? 338 _

334 LET T9=L=L4+D9/V9

334 LET JEzJ6+1

37 IF J6%in THEN 340 T

338 PRINT "\2 SALUTIZN BEBTAINABLE AT Us":U
339 GRTZ 4350

140 G2slUs 300

S RESTRICTED



345
345
4R
350
384
3§52
155
360
362
365
367
570

180 -

60
400
410
4g0
430
4én
450
455
a7n
475
480
481
482
483
484
485
488
490
495
Bon
510
812
=3
814
K&ﬁ
8i6
547
ByR
Ban
821
822
823
524
525
525
827
23n
8532
534
835
B3iA
538
8539
B4n
g42
843
544
Bd5
847
550

B5®2
K55

- 80 - | RESTRICTED

GAsUs 3500

LET Gi=2

LET UEsU

LET TaLaUb=q)

LET Ufal

LET AG=s

GASUB 9410

IF 7784 THEN 335
IF ABS(4=AQY5>50 THEN 350
IF ABS(T=L)>20 THEN 335
LET Jes¢ ‘
LET UZzU=Liel 2
LET UizU2-t5

LET waul

IF Wsl'f THEN 480
GASUE tnoC

IF Ei&#Q THEN 350
GASLUE 810

GAYZ 35¢

LET M2=¢

G@suUB irmpo

G™”sSUB 840

GPSUB 4200

LET WsksG

IF W»Li2 THEN 500
LET TeLeUBwyj

LET Uéal

G2sUB G110

IF 7731 THEN 500
IF ABS(7=L3)>10 THEN 500
LET UZ2=ll¢Lisl 2
GATZ 458

LET uwé=sy2

GZSUB 830

GASUB 4200

LET S§8=C3=P3
G2sUB 1700

LET Ci=g5 )
LET TO=T9+U6=U
LET TeTeUbey

LET K@=k2

GOSUB 3900

IF E2<PF THEN 523 "
LET Késkg

LET A=ne

LET Ge=Ci

LET MQ=n

GZSUB 6500

IF 28={ THEN 305
LET MG=y

LET Ué=y

GZT? 547

LET T8=794U6=l)
LET T=L+uUb=U

LET KE=xi

LET KB=k2

LET GG=r}

LET UEsy

GFSU8 g&Q

IF 7721 THEN 526
IF ABS(T=L)>20 THFN 526
G2sUs 1roo

IF Umk THEN 5§55
LET wzweG

IF E{&40 THEN 535

e KESTRICTED



860
B6S
579
R7S
B8N0
885
892
595
0N
665
810
615
620
622
625
627
630
632
633
834
635
840
545
660
665
870
875
680
662
685
690
700
705
707
74N
720
736
737
738
742
745
750
758
757
760
765
798
799
ann
801
810
815
620
830
835
&dnN
850
855
arzn
268
&G0
e0n
901
910
915

EET
LET
LET
LET
LET
LET
LET

- 81 - : RESTRICTED

_____ SIRICTE

M2=2
Mi=sQ
USzsl+l+|
GeG2
Mé=p
Ud=y+L

ME=(

GASUB 6R00

LET
LET
LET
LET
LET
LET

Rlaki
Rd=K2
REzF{
RE=F2
R7=12
RB=f{

IF Z8=1 THEN 305
IF ¥5=23 THEN 708

LET
LET
LET

TGsT9+UB=1]
TelLsUE=1)
UE=|]

GMSUB 3900

GA3LUB 950

IF 77=1 THEN 660

IF 4BS(T=L)<i0 THEN 580

LET
LET
LET
LET
LET
LET
LET

K{=R3J
K2zR4
Ef=RS
£E2zR6
L2=r7
Ci=R8
Md=t

GAsSUB €800
IF Z8=s1 THEM 305

LET
LET
LET
LET

DO=10*INT(ARS(A)/200)+100
NG=KN@=DQ

T6=n9/ve

Gg=scy

GZsUB 3900

LET
LET

TaTeUb=l)
Uésl)

GEZsUB 9%0
IF 7731 THEN 755
IF AB8(T-L)<?20 THEN 580

LET

M@=1

GESLE 6500
IF 78=1 THEN 305
GATC 580

REM
REM
LET
REM
LET
LET

I E TR 2 TR R RS ARAREES R RZ SRR AR AR RS2 RN N2 XX
«% PROGRAM STR o=

B=0

T e 22222 E 2232 R AR XX R S 2 R R K NERB RN F AR R TR TR R S I TR 21
u7s=y

Usw

GPRTL E4C

LET
LET

uz=u
u=us

Gfsls 2000
GESUB 2100

LET

L2=sL2=Usu7

RETURN

REM
REM
LET
REM
LET

TR R T R TR T R L R A S L R R
v+ PROGRAM FNS. FIND NEwW SQLUTIGN #¢

Bs0

22T AS I AL RS AAAR SRR AR R 2R N R REESEENE IR EEEERETNEEE S

T9sL=lLd=GeDO/VE

GesUs 5500

PESTRICTED
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a0 GASUB 5800

825 IF 76=1 THEW 9910

830 GFT?Z 960

Q50 LET A=nNg

¢535 GESUB 5800

860 LET 88=s£4§

882 GASUB 1400

Gg4 IF 79=1 THEN 990

Q66 LET Ci=85b

age GZF3UB 1800

g7n IF I7=31 THEN 990

675 LET Z7=0

ean . GESLB 4200

865 RETURN

e9n LET Z7s¢

€gs RETURN

8gn REM dekatdrped o bt b ht b b bt bt a et v A e T h e kb A A bk R
9g9 REM #+% PROGRAM TURN w*«
1000 LET B=D

toot REM st e khyrd b dd ot b r b et g e b e g
1010 LET J3=0

1020 LET S5=INT(E1/P340.5)
{025 IF 85=0 THEN 1075

{030 IF U«+C.{9>w THEN 1051}
{035 LET J3=J3+¢4

{040 LET 88=g5~1

1045 LET U=U+0.2

1050 GRTZ 1025

{051 LET Etss5%P3

{052 LET L{sE1%R/VO

{053 IF ABS(W=U)»D,01 THEN 1056
1054 LET U=w

1055 G272 1060

{056 GASUB 1600

1057 GASLB 810

{059 GPTC 1064

{060 GASUB 1500

{062 G2sUs 2000

{064 IF ¥222 THEN 1074

1066 © IF EL{/P3>2 THEN 1074
{070 GASUB 3¢50

{074 RETURN

L8725 LET Eis0

{0R0 LET Li=zg

1085 GATE LO0ED

2098 REM wtwomd et bbb b b e d s Ay b o e h by b r b e bbbt
{099 REM «¢ CROGRAM TEST, CHANGE K2 IF C3 IS PASSED FRGM 388 TO S5
{100 LET B8=0

1101 REM tdedprt o b bt m d et d b b P v b e e Y d R e
§110 IF 83»=sc THFN 1{50
{120 IF S5<«C3X THEN 1180
{130 IF SB>»>=r3 THEN {180
{140 GOTE 1170

(150 IF 88<C? THFEN 1§80
(160 IF 85>sr3 THEN {180
{170 LET K2zuK2

1180 IF §3>=z¢ THEN 188
{182 IF S5<CC THEN 1105
1184 IF 88>=c0 THEN 1105
1186 G2TZ 1162

1188 IF S58<Cr THEN 1195
{100 IF 85>3C0 THEN 1195
{102 LET Kizand

1165 RETURN
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1196
§499
£200
f201
fzne
1240
{215
1220
1225
{230
1235
1240
1245
{250
1260
1298
§1299
1300
1301
1302
1305
1306
1307
1310
1315
1317
1320
1325
£330
1335
$340
{345
{350
{355
{360
1365
1370
1380
{308
1399
§400
{4nt
14n2
£1410
1420
1425
1440
1445
{447
1450
1455
1462
$1465
{470
1471
1472
1475
178
1480
{482
1484
{&B5
14090
1405
1500

= 83 = KESTRICTED

REM wtd e v e g d b et v S A e e Tk o A s A DS Gk b W

REM &% PROGRAM FP, FIND FARAMETERS ww

LET BeO

REH PR TR T R R R R g R R R R R ERR-E AR R R-E R -8R R R R RN N R R
REM FIND CONSTANTS MNECESSARY FgR FINDING F(C1)
LET wC=r@S(C-C3Y

LET w23CdS(c=C0)

LET v3iseIN(C3)

LET wi3sCeS(c3)

LET FleyQ=Yshwil

LET GlaX0=X2AhwV3

LET VE=SIN(CY

CLET wE=CBS(0)

LET DB=spicub=Pieyb
RETURN :
REH I E S L S AT A AR RN N NS E-E N EN-EE R RRUE§ - R R R R R R RO e -
REM ¢ PROGRAM FFT. FIND FUNCTIGN AND TURNS w%
LET B=0
= T R R R R LA R R R T R R R O R R A R R g R R
REM CALCULATF F¢85) FBR GIVEN 85
LET EisKi*(S5=CN)
IF Ei»s0 THEN 1340
LET Ef=zFispPo
LET W7=£BS5(£3=85)
LET WB=CZS8(cN=55)
LET Ri=ki«R
LET R2=g2#R
LET E2=K2%(£3=85)
IF E2>=p THEN (340
LET E2sE24Pp
LET C3aNw«(As(Ei+E2)*R)
LET vé4=8IN(C=S55)
LET wdsCBS(C=85)
LET vias SIN(ESH)
LET Wiz=e@S8(88)
LET 82=D3%VAeN«R2% (HA=HO)=N+RL ¥ (W4=U2)
LET 825824PfuaVicQlivNicR{e(KB=1)¢+RE=(W7~1)¢N#*D5
RETURK
REH IEEES AR AR SRR AR R AR RS EEEEEEEREEELE E-EN-K R R R R R R R R
REM % PROBGRAM FAZ. FIND ARGUMENT MAKING F(85) ZERD we¢
LET B=0
REM watdd bt oottt e b kb d b e b bt W
REM START ITERATICN .AT $5
LET z26=0
LET Jdse
GASUB 1200
ceslis 1300
LET v7=28IN((f3=585)
LET Vv8=8IN(Cc0D=85)
LET 8€=z=D3ews+Pieuhl+Qiny]=RisVYB+RO2eY7
IF 860 THEN 1470
LET 26a1
GAYZ §8¢hH
LET §3=82/58
IF %3=0 THEN (565
IF ABS(83)>r5 THEN (482
LET Jd4sJ4+¢1
LET 2855
LET S55385=83
GESUB 1700
REM CARFFUL IF 85 PASSES 0/360 DEGKFES
IF AZS(88«85)>P4 THEN 1500
GFSUB 1100
GPTEZ 1545
IF C3%0 THEN 1504

RESTRICTED
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(502 LET K2z<K2

1504 IF CO%0 THEN 1510

{506 LET KizeKi

{510 LET $6285

1512 IF 83«0 THEN 1526

{514 LET 8%=0

1516 GeSUB 1100

{518 LET sa=p2

{520 LET S§5c26

{522 GesSUB 1100

1524 GEATZ 1545

{526 LET SE=sp2

1528 GESUB 1100

(530" LET S&sp

{532 LET S58%6

1534 GOSUB £100

(545 IF ABS(83)<n.0D0t THEN 1585

$550 IF Jd=4C THEN (570

{540 GHTE 1440

{570 LET Z29=1

{580 GATE 1565

{585 GASUB 1300

1595 RETURN

{508 REM trdd b b e b ke oy a b bbb d b
1599 REM ¢« PROGRAM FTT. FIND TOTAL TIME we

1600 LET B=0 _

iﬁﬂl REM wwdarded et b b bk e b e Y e d et b e d
{6n2 REM FIND RELEVANT TIMES FRPM GIVEN S5 )

1603 RFM ASSUMES PARAMETERS FRFM 1200 AND 1300 T@ BE VALID
(610 LET 27=0 _

1612 LET SEs(N*W6=H1)I#V9

1614 IF ABS(S563<n.0000% THEN 1625

{616 LET L2a(P1#R1*(V1=SINCCO))#R2e(V3I=«Vi)=D3uWe)/S6

1620 GAT? 1640

1625 IF N={ THEN 1690

1630 LET L2=(Qi¢R1«(CRS(CO)=Wi)+R2e¢(Wi=K3)eD3#VE)/(VOR(NEYE=VL))
(640 LET L{sEL¢R/VO

1642 IF L2<G¢ THEN 1690

1645  LET L3aE24R/VO

1650 LET Lé4za/Vg

§655 LET LaLt+L2+13¢L4

1640 GET? 1665

{690 LET 2721

1695 RETURN .

1508 REM #ddanteatbddrettd et n ad bt bd bttt ottt Rde gty
1699 REM we PROGRAM AZ2P, ADJUST ANGLE T® VALUE FREM ZERO YO 2¢PI ww
i700 LET BsC

1701 A R R L L R R T R R R o A A S R o
(702 REM ADJUST ANGLESS T@ 360»85>=D

1710 IF $5>aC THEN 1740

{720 LET $5s85+p2

$730 GRT?Z 1710

1740 IF 85<P2 THEN 1760

1750 LET S5s85«p2

1760 RETURN

2795 REM s et v st b a N e e h N e A R e d R R e C S bR b v Ntk
1799 REM w+ PREGRAM AZP. ADJUST ANGLE TQ VALUE FR@M ZERE T2 PI we
18n0 LET B=D

{801 REM #d vt e bbb dd v e et r h h b Y b e b e A e O AN A bt d A dd
{8neg REM ADJUST ANGLE 85 TB < PI AND PGSITIVE

1810 LET 553485(85)

{820 IF 85<=P4 THEN 1840

1830 LET SE=p2=35

1840 RETURN
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(548 REM »ﬁ*wﬁ¢e¢¢ﬁ¢«ewe*w¢«¢¢a§*¢&ﬁ&ﬁ**twiaﬁw&e*ﬁﬁﬁawgwa*éweﬁ
1840 REM w»¢ PREGRAM A2P/E, ADJUST ANGLE T8 VALUE FREM <PI/2 TE PI/2
{850 LET B=O

{851 REM wokerd b d bt et e bt o e b O e e e e et bttt dg
{gs2 REM ABJUST ANGLE S5 T8 epS5<s§h<aP5

1880 GE@sSUB 1700 .

{845 IF 25«<apd THEN {860

1870 IF §53p€ THEN 1885

1875 LET §83850P4

1820 GBT? 1890

5885 LET SEx55=po

1890 RETURN

{BGE RFEM #dstvdvdtbiropnb b hr bttt r bbb ettt et nd s
{869 REM «+ PROGRAM NTT. FIND NEW TORPEDG PBSITIGN AND COURSE IN TURN
{900 LET B=D

{901 REM zbheataht bt ap et b a b e e d s e e a Tt b a e rdd
fena REM ASSUMES U3 78 CONTAIN THE NUMBER OF § DEGREE PULSES
1910 IF J3=0 THEN 1970

[9!5 LET Kski

{9020 LET S52(04KaP3wJ3

1930 GESUB 1700

1940 LET XCsX0<¢KeR«(€QR2(COI=CU8(85))

1950 LET YCaYO*KeR*(SIN(S5)=8IN(CO))

{980 LET Cc=s5

1965 LET J3=p

1670 RETURN

1068 REM wdeptrdaha bt eur bbb hd gttt otbaa v ot a v tgdn
{eqg REM =«<«PREGRAM NEP. FIND NEW ESTIMATE AND BWN PESITIONew
2000 LET B=0O

20014 REM R R R e e
2002 REM CURRENT TIME I8 U, LAST CALCULATIBNIS SAVED IN U8B
2010 LET TEa(U=URY«VQuN

2045 IF T8=0 THEN 2050

2020 LET X=X§T5wSTN(CJ

2030 LET vsveTSscasS(e)

2040 LET UBsy

2050 RETURK _

2050 LET X8sx8+@2#«SIN(B1)#(U=UD)

2062 LET YEBayB+p2wCE@8¢AL)s(U=UD)

2064 - LET ue=y

2066 RETURN

2008 A A L T S T TR S T R R R e g
2099 REM v+ PREGRAM NTS. FIND NEW TBGRPED® POUSITISEN IN STREIGHT PATH
2100 LET BeQ ’ : '
2104 REM sewewapbt b b d b b btk b b h b e O U b O R b P R ARG S b hd g
2110 LET TEa(U=u7)=Vv9

2120 IF T5s0 THEN 2160

2130 LET XCeX0+TR+SINCCO)

2140 LET YC=YD+TR«CB3(CO)

2160 RETURN

2308 REM AR AR AE R AR E AR R AR R R RN TR R R R R R SR AN gy
2309 REM e+ PROGRAM FAT. FIND BEST SOLUTIZN GF ALL TURNS we
2400 LET B=0

2401 REM kot v bt e h bbb e e e d e A kP R R b h N A v h b b d s
2402 REM FIND ALL S@LUTIOBNS F2ZR WHICH F(8)=0 4HEN €3 IS GIVEN
2403 REM BEST S@LUTIAN WILL BE GTVEN IN T,Fi,F2.C1

2404 REM wILL INCREMENT Ji FZR EACH S2LUTIEN FGUND

24140 LET Ki=¢

2420 LET KZ2=t

2430 GESUB 2600

2440 LET Kist

2450 LET K2=ai

24580 GEsls 2630

2470 LET Kizsel

2480 LET K2s1
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2490
2500
7810
2520
2530
2508
2599
2600
260!
2602
2603
2610
2620
2630
2640
2650
2660
PE70
2640
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2868
2699
2900
2901
29n2
2905
2940
2942
2940
2950
2954
29056
2960
2965
2970
2975
2080
2960
2998
2009
3¢n0
Jooi
3gn2
3po5
o010
3020
330
3040
Xps50
3eA0
3e70
3g80
3090
3100
3540

GASUB 2600

LET Kiza{

LET K2=z<1

GBsUB 2600

RETURN

REM G kG N R R A G R R R R
REM w% PROGRAM FES. FIND EVRY SGLUTIEN #e

LET Ba0

REM dd ot a st g ad kb b N b b O R b e P b kGt w e Ut b dd s
REM FIND 85 FEBR WHICH F(S5)=0 WHEN Ki AND K2 ARF GIVEN
REM WILL INCREMENT JI FER EACH SgLUTIEN FAUND

LET 8ti=c

LET 58ap

GPT2 2670

LET SB=zai

LET §2==P5

GZSUB 1100

LET KEBs=sKi

LET K3sk2

GASUB 1400

IF 79=z1 TKEN 2740

GAsSUB 2e00

IF Z6={ THEN 2740

LET Ji=J1i+t

LET Ki=zk5

LET K2=K3

LET SA=sd

LET §18581+P5

IF 81<P3+0,1 THEN 2640

RETURKN

REM WAL AL AR A R e T T I R T T
REM «# PROGRAM CT. CBMPARE TIMES ¢

LET B=0

REM *iiﬁ**«tt*iﬁﬁtk#**t*t*iwte*t**w**i**iﬁ**ﬁiw*&ﬁ**wﬁﬁﬁﬁ
REM TEST IF GIVEN SBLUTIEN IS BETTEPR THAN THE FPRMER SOLUTION
LET Z&en

G@sUs 1600

IF 7734 THEN 2980

IF L>3aT THEN 29¢0

LEY T=L

LET AR=C3

LET AQ=4

LET Ci=sh

LET Fiskl

LET F2=x2

GETE 2990

LET Z&=g

RETURN

REM Al A A R T T L e R L LT LT e
REM w« PROGRAM TA, FIND TERPEDE KIT ANGLES e

LET B=0D

REM *iti*ttﬁt#ﬁ*tt*ﬁ*if#uté&witﬁw#iiﬁﬁ*ﬂ*it*&i*iti*ﬁﬁ*&ﬁﬁ
REM FINDS TOARPEDD HIT=ANGLES FROM C@RRIDZR ANGLE Hi

G@sius 5600

LET H2=4BS(H1)

IF H2a0 THEN 3¢30

LET H3zneSIN(H2)

LET Hdz{aH3en3

IF ¥4>0 THEN 3080

PRINT "NZ SALUTIZN FER PHI sM3H1/P3s" AND yatgy

GRATZ 438

LET SCaATN(HI/B30R(HA))

GPSUE 1850

LET H2=95

IF Kisze THEN 3130
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3320 LET H23=H2

%130 LET SEaf=HisHE

3140 GesUB 1700

5450 LET CEegb

3160 LET S$5sCeP4=Ri=H2

3470 GZSUB 1700

YiR0 LEY C7=85

3107 RETURK

5408 REM i—\fr***I‘f«iﬁ-\‘r**ﬁ-iﬂ'tﬁirté\i‘ﬁ\iﬁti&ﬁ*&*&*éﬁ&#wéwﬁkﬂiﬂr*ﬁ'#&ﬁﬁ&\&*
3469 REM %+ FRPGRAM FES. FIND BEST SOLUTIEN =«
38600 LET B=0 -

501 REM wéwaubatedtaebdduetaheyadhbbdPuaydabndadhhanadibybind
3802 . REM FIND TBRPEDZ FATH REQUIRING LEAST TIME
36803 REM IF Ji=0 KO SELUTIEN HAS BEEN F@unDh
3504 REM GIVES NG SBLUTIEBN WITH T»=B800 SECENDS
3505 RFM ASSUMES PARAMFTERS IN 3000 T8 BE VALID
3se0 LET T=800 :

3520 LET Ji=g

3540 LET C3=C6

RE45 SBSUB 5R00

8550 IF 76zt THEN 3580

3585 PRINT WAmM;INTCAYF" COHSMFINT(CE/P3)

%560 Gosub 2400

3580 LET C3=C7

3585 G2SUB 5RQ0

3500 IF 76s% THEN 3610

3505 PRINT™ASUFINTCAYS" C7="3INT(C7/P3)

3605 GAsUB 2400 ¥

3640 IF Ji40 THEW 3670

3620 PRINTUN? GERMFTRICAL SBLUTIBNY

3630 GBTZ 3JIBEC

3670 IF T=80n THEN 3774

3675 LET C2=x8

3680 LET AsAQ

37n0 LET Ki=F{

3710 LET K2sF2

3720 LET S8E&=rd

2730 Gesug 1200

%740 GPsUB 1200

5750 _ G@SLB 1600

3740 IF 7Z7=4 THEN 3780

2770 IF 4BS(T=L)<i THEN 3830

772 GPT% 3780 ’ :

3774 PRINT "NQ SPLUTI@N WITH T<=800 SEC "

3776 G212 3850

3780 PRINT "PREGRAM ERRER AT 3780"

3790 GETZ? 3BEBD

3830 IF Y+U<B0O THEN 3870

T340 PRINT ONEXT HIT AT Us"FINT(UT)

3850 G2T? 4350

RE70 RETURN

3808 REM******&&#&Q*****&***!I***iﬁ**ﬁttﬁi**ﬁﬁtiiQ*étt*éﬁﬂ*ﬁt
3899 REM #+ PROGRAM FK, FIND Ki AND K2 e

2eN0 LET &=0

Soni R e e R e R A A A S A AR AR T
39n2 REM MUST N@T BE USED FBR TURNS >s PI RADIANS
3905 LET SE=zc3-Ct

%010 IF 483(85)<pd THEN 3920

3915 LET S52=S5

3920 IF S5»=0 THFN 3635

3925 LET K23el

3930 GeT? 3¢40

%9135 LET K2a1

3940 LET K8zK2

X950 LEY 8§%=ci=Cno



3055
5660
3065
3970
$975
%080
3085
3900
4198
4§90
4210
£201
£210
4240
£245

4250

4260
4270
4280
4300
4303
4304
4305
4310
4315
4325
6330
4335
4340
4350
£360
4698
4609
4700
4701
4702
4705
A710
4715
4720
4725
4730
4735
4740
4745
4750
4760
4765
4770
4775
47R0
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4846
4847
4850
4860
48FR5
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IF AB2({§5)«<P4 THEN 3965

LET 58835

IF 8S5»ap THEN 3980

LET Kisel

GAT? 3985

LET Kisael

LET KésKi

RETURN

[ R s L R R I T T I m
REM we PRUGRAM PTP. PLOTT TARPEDRE POASITION ##
LET B=D .

REM tha et ottt et e b S e O P e P S e e A o e W kS
IF Usg THENW 4250

IF ABS(U3=U+103<0.08 YHEN 4250

GATEZ 4340

LET SE=P5=Cn

GASUB 1700

LET C5as5

LET U3syU

IF Us80C THEN 4350

LET If=INTC(U/100)=U/100

LET IZ2=z0.14

IF 4B8(1i)<p.00{ THEN 4315

LET I2s0,07

CALL BSYMBL(X0/3,Y0/S,12,17:0,~1)

LET I82¥0+150#CES(CH)

LET I9=y0¢i50=SIN(CS)

CALL BPLOT(Y8/5,10/5,2)

RETURN .

CaLL BRPLET(D.0.3)

G272 14
REH#*iﬁ**ﬁt*ﬁéﬁtét*ﬁ***ti*ﬁfté*iﬁﬁ*w*&i**wﬁﬁ#ﬁﬂrtﬁtii*ﬁﬁ
REM ¢«w PRAGRAM FCT. FIND COLLITION TIME we
LET B=0

REMe et s gt et e S L A R A ek R A NS o P bR bR kb
REM FIND CBLLITIBN TIME FER AskisK2s0
LET Z7=0

LET Qi=sx0=X

LET PisYQ=Y

IF Pi4#0 THEN 4760

LET §7=N#C2s¢C)

LET S€=21{a87487

IF 86<D THEN 4860

LET 86=4TN(87/SQR(S6))

LET 83=p

GATe 4800

LET S3zATN(Q1/P1)

LET S7=N#SIN(C=53)

LET S681=87¢587

IF 86«0 THEN 4880

LET SEs ATN(S7/%QR(S6))

LET 853836453

LET T76=800

GPsUB 4500

LEYT SE=85+p4

GZSUB 4900

LEYT 85z2=86+83

GRSUB 4900

LET S5=295¢p4

GBSLUZ 4600

IF T9=800 THEN 4860

PRINT

PRINT"Ta"jINT(TO)S" Cis"jINT(S4/P3)Y
RETURN

LET 27=¢

RETURN.
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4868
48990
4900
£ont
£905
£gn7
4010
6945
920
4625
£830
4935
AQ4A0

4945 °

4650
4982
4gB5
4508
4999
8500
500y
50098
san7
2010
5015
8pn20
Ep30
5040
8C50
E060
8070
BNR0
E000
5100
5i40
Bi20
8140
5150
B¢R5
8160
2¢70
g2no
8210
8220
32320
B240
5250
5260
§270
82RO
8280
5300
8310
5320
B330
R340
A345
5350
5498
5465
- B5NO
8501
5510
8525
8530

- 89 - RESTRICTED

QEH**&&&***&&&****#Q*&6&ﬁit*iﬁﬁtwﬂ*&ﬁ*t*wﬂﬁétﬁﬁﬁeéeﬁ&*
REK w¢ PROGRAM FST. FIND SHORTEST TIME &%
LET B=0
REMd'ﬂr**\gﬂ-\':f.-t—;':de:!;-drﬁﬁé###ﬁi*éﬂ-*ﬂ*#éﬁé*&&&ﬂél&@\kéf:é&-.‘.-ﬂﬁ:}&#i
GASUB 1700 |

LET S2=n#Cps(CI=CPS(ES)

IF S2=0 THEN 4925

LET LeP1/(82:V0)

GZTC 4940 _

LET S2=nN#S8IHN(CI=8IN(85]

IF 82r0 THEN 4955

LET L=0t/(82«V®)

IF L<0 THEN 4985

IF L>=T¢ THEN 49565

LET T6s=L

LET 84=85

RETURN

REM P e s T 2Lt 2 A R R R A R S AL L R LR A
REM w+ PROAGRAM FCA. FIND CBRRIDER ANGLE we
LET 8=0

REM P TS T TS AR SRS AR AR S R A R A A AR S
LET C&=C

GASUB 2060

LET THuN#VOeTY?

LET X0eX+TSeSIN(C)=(XB4A2#TOeSIN(BL))

LET YOrY+T5C0S(CI~{YB+E2eTO=CRS(ELY)

LET Z1=5G6N(¥9}

LET Z22=8GN(Y9)

IF X940 THEN 5080

LET HE=2(i=Z2)+P5

GATZ 5140

IF Y940 THEN 51$0

LET HE=P4-Z{«P5

GOTE 5140 _

LET HE=ATN(ABS(Y9/X9))

LET HBsPRdez{uPBa7{eZ72¢HE

LET S§5apb5-C

G@suUB 1Rr50

LET A3=83

LET AdaTAN(A3)

LET D=iC/100

LET C=Bn/A0

LET CeCeC

LET D=D=D

IF A4#0 THEN 5260

LET HisPS=A3

GeTZ 5340 .

LET A2s((DeC)/Ad¢(1=CeD)xhd)/(2¢(1=D))

IF A3>s0 THEN 5300

LET ABc22¢8AR(A2#A24C)

GeTe £340

LET AGS=zA2=SnR(A2%A24()

LET SEzATN(AB)

GBsUB 1850

LET Hias5=43

LET A7=3%4AD

LET CacCg

RETURN

REM e e L R Rt e R R LA R RS
REM ¢+ DRUGRAM FBA, FIND BEST ANGLE ev

LET B=0

REM setuptepadten bt ebdd e d e ndu bR e gt d bbby
GASLB 3000

LET L£6=2r3

LET 8Esf3-C8
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8540
8550
5560
8570
8540
H540
8600
B6 10
865
5620
8630
5540
BG4d
5646
5648
B850
B&A0
8670
8672
5674
5676
8680
5690
8700
B7410
8730
5730
8740
5708
8799
5800
B804
5805
8810
Bg20
8825
%810
8840
8850
5854
5856
R860
8862
5865
5870
8880
6468
8499
6500
8501
505
6520
8525
6507
A530
6535
8540
£545
6550
6555
6690
8700
§720
6730
6732

o RESTRICTED

GOsUB 1800

LET 86s85

LFT 88=£3=C7

GBSUB (800

IF 85«86 THFN B6i0

LET C3=(6

GETEZ E620

LET C3267 )
REM CARFFULL IF C3 PASSES 0/360 DEGREES
LET C8=f3J

IF ARS(CE=COY<P4 THEN 5680

IF £8»C9 THEN 5670 -

IF Ci<aPd THEN BESE0D

LET Ce=CE+P2

GATE E680

LET CSsPr2=C9

GATZ2 B6A0

IF Ci<zP4 THEN 5676

LET Ce=094pP2

GPTE 5680

LET CBsp2=(8

IF Ci=C3 THFEN 5730

IF Cix»Ca THEN 5720

IF CiesC9 THEN 5740

GATZ 5730

IF Ci{»=09 THEN E740

LFT K2=2=K2

RETURN

REM tiﬁi*#ﬁ&&tﬁi&ﬂﬁ*ﬁ**ﬁ*ﬁ*i*&ﬁ**ﬁﬁ&wéﬁitﬂ&ﬁ&ﬁﬁiﬁ*ﬁﬁﬁ
REM #% PROGRAM FA. FIND A w#
LET BeC

REM e s P 22 L R s R R AR AR R
LET Z6=¢

LET §5=C3=C

GPsSUB 1700

LET B=S§5

LET B=Ne«CES(R)

IF Bs{ THEN BB70

LET AzARS(A7«CBS(H2Y/(1=8))

IF A»200 THEN 5860

LET As200 )

LET D9s10#INT(A/2C0)+100

LET NS=A=D9

RETURN

LEY Z€=4

RETURN

RFM bodantpdbdpeddbdrbddd bkt h b v i e d bt taaraddhdudy
REM ¢+ DROGRAM FTS.FIND TRANSPRSED SQLUTION ¢
LET 820

REM ketvabbuwadddoddhbtbhdedodhrpdebd e dbbhdadabadadndady
LET Zg&=p

LET J8se _
LFT 08=25«(TNY(ABE(A)/1D00)4+1)
IF ¥S=z1{ THEN 6690

LFT Kiské

LET K2=Kk8

LET Ci=69

G2sSUB 940

IF Z7=1 THEN 6600

IF 488(T=L)<20 THEN 6770

LET JEsJ)5¢d

IF J5e20 THEN 675C

LET Azi<DB8

LET NOaNG=DA8

LET T9=79+D8sV9
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87534
740
8750
e760
§770
67%0
708
6799
8600
8014
6803
D4
£805
6850
6815
agzl
6625
8830
8835
6840
8380
AEE5
RERT
88A0
6EA2
RBAB
8870
8875
88RO
68R5
6800
BG5S
8900
a9n5
940
8915
£G20
8922
6625
geo7
6930
8935
6940
6945
80RO
6955
8GR0
£085
8970
072
&975
008
A28
7000
7001
7010
70¢5
7020
7025
7030
7038
7040
7045
7080
7055

.-.91.—

GESUB 5500

GATE 6530

LET Z8%%

RETURNK

LET =L

RETURN

REM *ﬁ#ﬂ**w#&ééiﬁw%ﬁt#**ﬁékﬁQﬁ*ﬁtﬁ#ﬁﬂ&ﬁét*ﬁéﬁ&kﬁ*ﬁ**ﬁ***
REM &+ PRAGRAM CEP. CARRY BUT PLAN #w
LFT B=0

REM ﬁ&*gg&ﬁbw*ﬁeﬁﬁ*tﬁ*ﬁéi&**&k*ﬁk*ﬁ*t*#*ﬁﬁ**&ﬁﬁ&ﬁw*&&***
IF ¥5sf YHEM 6860

IF Mi5s2 THEH 6815

IF INTCE$/P3+0.5)<! THEN 6860
G7ASUB 1000

IF UsW THEN 6860

LET wWuWsG

GeguB 4200

GASUE 7000

IF ?8=0 THEN &850

RETURN ;

IF v4si THEN 6857

RETURK

IF Ei&0 THEN 6810

LET Ug=y«L2

LET ME=§

IF U9<W THENW 6910

GAsUB 810

CFSUB 4200

LET wWehal

GrSUB 7000

IF 28=0 THEN 6900

RETURN

1F ¥4={ THEN 6865

RETURN

cfslB 830

LET £1=E2

LET Ki=sk2

LET ME=2

GPSUB 1000

LET E2=E1{

IF UsW THEN 6972

LET weweG

G2sls 4200

GAESUB 7¢00

IF 28=0 THEN 6960

RETURN

IF Y4ef THEN 6270

RETURN

IF E1«0 THEN 6925

LET ME=3

RETURN

REM i**it&ﬁﬁt&ﬁ*#ﬁ**t*kl**tiﬂ*t&rit*k!&*wéﬁ*&**ﬂ******éﬁﬁ
REM #% PRAGRAM CCT. CHECK CALLITICN TIME ex
LET B=0

BEM *&tﬁt*pﬁiiﬁit&t*ti****ttiﬁ&ﬁt**i*tﬁiﬁit*ditﬁ*i**ﬁ*tﬁ*
LET Z&=¢

IF ¥i={ THEN 7030

IF w>L4 THEN 7040

RETURN

IF W2U8 THEN 7090

RETURN

LET UG=sL4

PRINT )

PRINT"CPLLITIAN AT Us"iINT(U4)
G2slUB 830
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7080 GFSUB 4200 p
7062 CALL BSYMBL(XO/8,Y0/8,0.14,15:0,=1)
7065 LET Mis
7070 LET MEs3d )
Tori REM CEMBENSKATE FER UNCGVERED DISTANCE
7072 LET NOsNG#(T9+UE=U)=VS
7075 RETURN
7040 GesUB 810
7094 GRSUB 4200 _
7406 CALL BSYMBLIXO0/8,Y0/5:0,44:15,0,=12
7140 PRINT :
Y T 1 PRINTHMULTIPASS AT Us"jINT(U)
7115 LET Z8=1
7120 RETURN
Feag BEM P e  r L R L 222 R AL LR RN AR AR RS R R RS A
7e92 RFM ee PROEGRAM T8 DRAW CwN SHIP
7004 REM R T T TR R R A R A R R R S R R
8000 CALL BeyMBLIX8/5,Y8/5:0.14,25,0,=1)
8002 LET U=0
8on3 LET Ul=t
R0N4 LET Usy«10
BOOS IF U> 800 THEN 80S6
BONG GASUB 2¢60
BOC8 IF %8>»5+8 THEN BOEBO
Bns0 IF Y8>8«8 THFN B0EGS
apie IF Xg«0 THEZN 8056
rO14 IF YB8<0O THEN 8056
RDY16 LET Ii=tnT(u0/i003=U0/100
o8 LET I2z0.14314=25
B0o20 IF 4BS(71)<n.0N0{ THEN 8050
Bp22 LET IE:P.O?;I&ﬁiB
ROSKO CALL BSYMBL(XB/S,YB/S,12,14;0,=1)
Ap52 GAT? BOC4
ApS6 LET XB8=¥0
RO58 LET YRay(
B059 LET Ul=y
A062 RETURN
8090 REM tdsntradad b aab b Atk bbb A p b Ao b e R h bbb Ok bk bW
8062 REM «+ PRUGRAM TF DRAW TEXT
BOGd REM g e e e F L SRS TSRS SRR S ST AR S AR R R R N2 L
8100 CALL BSYMBL(D.5,8.8,0.14,"VN2",0,3)
8405 CALL PWHERE(13:.14,15)
8107 LET 2232/0.8144 -
Bi1¢0 CALL BNUMBR(13,8.8/,0.%4,08,0,=1)
Ri(5 CALL BWHERE(T3,74,15)
5120 CALL BSYMRLFIZ.B8.R,0,.04;:";, yS82",0:5)
R125 CALL BWHERE(13.,14,15)
8430 CalLl BNUMBR(IS:B.B;D.1!-‘1-\!;0.:-1)
8135 CALL BWHERE(I3:14,15) _
£140 CALL BSYMBL(I3,8.8,0.14," AND VY230 KT8".,0.14)
8145 RETLRA
REM FOR SMOOTHING OF STAGE 2 GUIDANCE
635 LET Kz=0
B34 G@sUB €50
705 LET DG=150
74N LET K?=(
758 LET K&z
5850 LET C9=40
6525 LET DR=23

HETsSNL,®IT

RESTRICTED



2
L
I

, NORTH
£

S

ESTIMATED
TGT POSITION

VELOCITY
S VECTOR
UNCERTAINTY,

ELLIPSE

A NORTH

OWN SHIP

Figure 2.1

1
[

il

(vn position snd tarpet stete vector data with uncertsinty-
ellips

RESTRICTE



.-9}5-

ESTIMATED
TGT COURSE

;e A at_which
st be located in

Figure 2.2 The torpedo position T end the

i

ellip
periphery the actual torget center 1
ri

..‘\.q
order for the torpedc to hit the target

RTSI“' HTC‘ “'



O
W
i

) — ——— ACTUAL TGT CENTER MUST BE LOCATED ON
N T i i i ee e
5 ELLIPSE IF HIT AT t=T, SHOULD BE POSSIBLE

TORPELO
POSITICH
AT =Tz
ViAT
ESTIMATE
COURSE
ESTIMATE
POSITION
AT 1. = T L
TORPEDO
COURSE

TCRPEDO HIT
WITH ESTIMATE

\\‘\.UNCERTMNTY ELLIPSE

Figure 2.3 Different relative positions of the torp=do_snd the
nd target position




i
\D
[ORY
i

POSITION OF ESTIMATED
c E,- N .
R GURSE
TCRPEDO TGT COUR

H1T -CORRIDOR

N
N
N
N
AN
\
X
Y
\
N
N
%
c N
\\ /4’-
N VSAT

N > ESTIMATE
’,/*”” COURSE

POSITION OF
TARGET AT
ALL TIMES ™~

UHCERTAINTY
ELLIPSE

Figure 2.4  The estsablis!

rider when only relastive

the estimate is considered

motion betvee:

AR T T 0D
I :;.;J.,‘Llua.‘.'i

pende e aA—rr



....9?..

uu:\':g
u=k u=-k
y
\.r=kf ‘:ﬁt"—-_.___\\\ :

ESTIMATET
YGT COURSE

=

T
\
T -

UNCERTAINTY
ELLIPSE

TARGET
ELLIFSE

Figure 2.5 The hi

neeris

FESTRICTEL



-
A4

C1E]

T

L

i

RES'

L | / ﬂ
e ,///, \ &
IIIIIIIII /. T
Ce——— / \
—— ’.
.r.....r:.!..... \ ._m«_n =+
~ it
P /,ﬂ
~ mw
N 4a ]
E E N
o o E E ) w...
o = o o N |
- £ - /*/..,_,
82 g 1\
sy 5 htL
™~ N
| M\
R
Pive )
R\
Py |
|
[
a J M ‘/.. T
) L - e 4 Y\
=3 o = 2 ? o 2
a m @ @ ~ “ w < o " illll.\\.\\i ___ ,f
n t ’ F= iuT

6a367.5°

Bz 895°

e
e —
e e
Ep———
e — ittt
o o —

rs

80

60

Lo

20

-8

-80

83 parzmeter

8

with

e ;

[l

t-probability vs corridor angle

Hi

Figure 2.6

RESTRICTED




A 2al = 100m
P 2b1 = 10m
azxi00m
bz 10m
8895 ° bR
—= ! 4100 "
\\ /
\ ,af
\\ /
\ {
\ /
\\ /
' f
! /
\ / /
/ 1
\ / !
\ / !
\ / /
\ / /
\ / /
\ / i
/ /
\ / !
\ _/ /
\ // f
Y /
P /

- z ./\ /
sl / \ /
‘._..---""/ . \- f . !,/'
—————————————————— T T fom s "'}f— ———"ﬁ;;:z:—’*“"‘“:
\\ / ./..-.:,,,/
\ / s
\\ /t; ///'
/.
\ ///’ /
\ -7 4
} s it . ; . . * 1 : f - + o
-80 -60 -40 20 0 20 L0 60 80 q

Figure 2.7 Hit~probability vs corridor angle ¢, a = 100 m,

s & e

b=10mn

ESTRICTED



!5 2al=100m

2bi= 10 m e

- 100 /

b ¥ t } t i } t + ; } } } 4 + —p—
.80 -60 L0 -20 0 20 L0 ] 80 g
Figure 2.8 !} £bility vs corridor angle ¢, 2 = k0O m,

LaSTRICTED



> i
T m———— 5 R e e I —
R re— i,
N —— II/ -~ I e
§ Ml 020 CoeemRSELL o - % =4
i T —— \ e
\ fr.....fr.............: : \ .m‘“
- —_— . o
I~ e— \ e
~ T
¥ ~ R = \ w
i ..........! . ~ 1 1 W mu.
- -~ i -
~ ~
S / S / _ >
=~ . ~, . _|: i
- ~ i
=5 |
.........r...f...... / ./././ / i o
u .;..........,...f i /.... s L 2 ol
€e @ Sy b | e
= < ~— \ |
o2 e = B S ~ | )
" o oa E o . . % < paw
wou =) r.Aﬁu !f!.t / 1 )
== r.l-.’.rl / — £
FaLTs =~ N a
.0 nom e S N | & i)
N D oo a . ..r.....r... " N, _r ~
1 R \ !
o~ AR
i =~ N -
@] % ~ \ oy 8
- 8 = @ o o o s L e \
‘ o o & w© = = g = - ~ 24 \
< f t 4 { } = t t — °
~ / 5
g / o |
* \.\ * .\ o ..L.J
£ P AN o
Y
" . / i . Rl
o . . " 7 oS R
- y 1 A7 {
- ’ ! i)
i 4 | [43 vy
et : ¥ CT < 8
3 i ’ | ol ol
a2 —— \\ | _._._ ,.rl_m
..”J \.\o.\ % \- 3 ."l.. m | .m
£ [ #
I A L
-7 2 . e J I i ol
- =
\\ u ﬁMu \\ [
- o = P 1
- . o & - £ [ o
\\ " \| = >
P 8 e S ] [ o
-~ - w E
g . ql...\l.\..\\ M i m -... L oy
—_—— 7 i
— W 5
i s e ) o/ 1 e o
/ .Illlllllll.ll...ll:l..ll.lulll.!l o s ? [EN
LA~ ——
T b e o g e e e i A i o .- g s ey . ok e
T e — 1

sESTRICTED



(4

i

9

80

€0

nE3TRICTED

225°

2al= 100m
Zbi= 1Gm
a = VARIABLE
b=10m

6
¢, a = variable,

L0

ngle

o e e e} o e | e s p S o o i g S = e

20

corridor &

&

ity vs ¢

=2C

i
2

-L0

=60

a=10m
a

-82




= S

2al=100m
Zbl = 10m
8 =01°
= VARIABLE
b e = 10
a=10m e R
—— 4+ 100 . e s e
-+ 80
+ 80
c=50m T o
/,-—‘-—.‘-
G
/s
/
-+ 60 /
/!
!
/
!
._5’?{"‘l
/
!
) a=100m L ) ff ) .
-';E?i
’féi!
i
/i
i
I! Fl \
{1
Aoy
a=200m > 111 N
_____________________________ - u] L mmrmimm Bt st e e el e e
I
Hi
[
I
AN
. /W
o S e W P -
I
n fi ;‘\
e SO i i
-80 -50 =40 -20 0 20 &0 60 0
Figure 2.11 Hit-prcbability vs corridor angle ¢, & = variable

i

b =10 m,




i

=

,‘_»¢--

///
-
-// .

o ——
——

—

g e :

-+ 100

2a1s100m

2b1 = 10m

= §9.8°
a= VARIABLE

b=50m

CLiifF, ,L_

-

coerridor

o

D S ———

" ———

e &, a = variable,

RESTRICTED



- 105 =

P 2al =1C0m
= 10m
1 100 bt
g =225"
o= VARIABLE
b =50m
+ 50
T B0
+ 70
—— - /____,_..—
<. a=50m s

e s e g e P ey

I i i i t T +

20 Lo 60 BO

& = varia -
. = varisble,

Y. aESTRICTED



P Zat =100m
Zhl =z 10m
B =01¢°
= YARIABLE
-+ 100 =50m
+ §0
-+ BO
-+ 70
“h‘\‘\\ '//’.—F'
'~
~ //
N, R
+4 re
\\ 60 /
N /
N\ 7
% J:
\ i
\\ /
\ -+ 50 ./
\e=50m /
\\
\
\
\ 140

5
—+ 1
azsoom o N¥
/L"i\
; gl IR
a=1000m - ! .

B Gz 5(_1'(:3'_.9.]_“ I . i . St ¥ - CP
e A mE e S s : % E — : i F— i o
-80 -6C 40 -20 ) 20 ] 60 80
T ~ = L > - iy s
TPIFVYTE .. VS Corriqaor anr:le C, 8 = Varisa 2le 5

SESTRICTED



— 10'{ .

& P 2ai = 100m
2b1=10m
g =225°
a = 1000m
b = VARIABLE
100
b =10m
+80
+80
470
160
! +50
4o
b=50m {'.. 43g
Iy
Iy
=F
(L
] ﬂ +20
/B
b=100mf ,oq |
N
2 3 ".",‘
h:Z{JUm\\* 110
: ' \_-§§
=2 N

it-~probzhility vs corrideor angle 7, a = 1000 m,
b = varisple, 8 = 22,57

AESTRICTED



b=10m ﬂ

- 108 -

é..f-’ 2al = 100m
2bt = 10m
g = 2259
e =500m
b = VARIABLE
+100
a0
+80
-+70
T60
450
T4
r30
-20
-10
.--""“
____SE,!-....—-—""'- &
s =T
,"""5"—"”—.- —"
---:."'5"‘;—-:"""‘
e
b} i + L f f } i
[ 20 40 60 g0 59

.
orridor ang

£

nESTRICTED



=t
L)
0

-+ 100

S0

180

-+60

2al =100m

2bl = 10m
B = 225°
g = 100m

b

v

VARIABLE




=330 = RESTRICT

2ai=100m
2bt=z10m
6 =215°
-+ 100 az=50m
b= VARIABLE

Figure 2.18  Hit-probebility vs corridor sngle ¢, e = 50 m,

b = varizble, 8 = 22,59

RESTRICTED



L0

\ D=btfal=1/10

30+

=204

-30 1

=40

-50T

-501

=70

=i kdd. =

TO $0°

MINIM UM

c<t{50

.

\\\

N

~ C=1f12
i \\?,/z/
C:‘“g .‘\

F
o
"y
NN

MAXIMUM

-99_

Figure 2.19

mexlimi

8
.-‘_%_’:;:g:?:za.':‘wwf:f;?:w:vqm_zw_*-:ri::;u o e . o : Al —
30 40 £0 60 70 60 80
=1/4 C=1

nd minimum




RESTRI

o= 1R =

/ = — _
E
S
£ ; N |
. N
i , |
o o \ i
[ ] - * " . ik
~ £ / / I
E S it
aa = \ I
W N . - . P -
w = %/ ,.__,
-— - "
EE S % el r 1
cSEal = A
o i b I
wou 0 11
oo | | & ey _ﬂ_ €
I\
R
N T
HERR
o \ / .___
Lo U
5 : g A Skl
g g 2 g 4 & 2 2 - 8 —g e A\
o — Ll t!..— I.|-Il.l.|-|l|ll|!| ~ I.I.l..ll\a.\ _“-._.
<l t } { e : } + o e ’
——— -~ /

6=22 5e

Sale
o e —
s i D e

B0

g0

L0

20

-0

-L0

-60

-80




(]

a=500m
10m

A

ui b
- -
oM
< <
© o«
< <
= =
" i
o a

bifal=1/10
22.5°

D
8

+ 100

]

=+

B0

T+ 70

60

T 50
T 40
1 30

ai=200m

RESTRICTED



al=200m
al=150m - — —_——— —
et

g

/ ﬂ]:?sn}._'\
-~

RESTRIC "'.: o3H)

a=&L0m

h=10m

al = VARIAELE

b1=VARIABLE

C:bi/fat=1/10
gz 225°

-L0

TESTRICTED

L



bt
ot
h S o

RESTRIC

i a = 500 m
|l “a p b= 10m
' f=22000m
e e £ = 100m
°}:Es: 85.9° Lioo ———= 1tz 10m {a
g =2000m
o B = B99°
§=225° rl o 6= 225°
-+ 80 ¥ 8= 0.1°
+ 80
=1 >
=]
4 70
L]
=+ &0
o\ &°
\ i /
| [
°\1\ i‘ + 50 'P"'
| I i
i\ ;ﬂ o;
! he ]
l\ ° :1 !
| h 1 o ]
i b '; - L0 o(;,
‘\ ! J i [§
: !r ! g=.1° ]
\ L [
1\ I T
’I.'l o e i’ T} 30 ol
i
1 ll i / l!
3 . /!
A ‘:’\‘3 ° fj‘ L\ ;;; o (<]
\\ o // _;} ':I\ ‘;!‘20 o/ !I
A o {1 /
VN /‘/" l El\a f“J s 4 y
AR A | & g
© \ X / o
_,_,...e-"""ek\“ o = ) \ x//? 'Ea\x o s
% - . x e = : PRSI QU__ L gl 1 ’i\“-x"‘* » e .‘// - E,,.,_::Q
T & S|y B R pe— y
" Hxhhhi;ﬁ"'"é‘;\—-\zﬁ‘.. __Iﬂ—-\:'\ Y —x== ﬁ_ﬂ_.____é‘:‘}':w‘_“‘g:pwﬂ—«-nﬂﬁ——«
Hh*“-g‘:‘::-;g‘.::‘_fé:: —0"§:‘£E?iﬂ; o
— i e e T T ——h
-50 -50 -0 -20 20 ) 0 s
Figure 2,03 .

it

crider angle ¢, &

=200 m,

KESTRICTED



RICTED

- 116 ~

0"‘“—\0 + 100 ———f= 10m Y

Figure 2.2k  Hit-probebility vs corridor snele ¢, & = 100 m,




¢

‘.‘4-._.__0

N

s
R i
/ [}

@ ~
N mom B

2
Ne— R @ Sy el T
e -—--——4’-—--—*¢; g

T

~_@
RN

T

0

-
oy

%

- 100

- 80

az40m
b= 10m
—— s 200 m
———=t= 10m

g= 200 m

© @:89.5° S
6 gx225° /

x §:01° °

=]

#*

% _x.—-—-ﬂ'%”'—"’-—?—"—-x

-B0 ~60




i ‘

TORPEDO
COURSE 2

! nnd torpedo

ey Bl - ke \ e
£ f,}:‘:‘:\:‘:’j}r .?ﬁ-’g.m : B S -.-3' 21 («2

- RESTIICTED




A
/ - TORPEDD
COURSE

¢ /

7 b >
| ——rmare

] TGT COURSE

IZ,C 7

L HIT WITH ESTIMATE

VyEvg [sin®}
&

/
"'h-“‘_ £ f
It

Figure 2.27

ZESTRICTED



C=0°
V1 =30KTs

i a— cz
€y &Cy ———— 1
Veg=z 1KIS
[} \"5:15KT5
« ¥g=30KTS
X VgelOKIS
360 ¥1=Vg
B m Qo e e Qo e — B B i o B e e G B e 300 g @ G e -~ —
- L~
- - \0\ -‘HK"“—-‘ v
- X
a\ Lo 4 3s0 "o\ S Vi>V¥y
Yy=¥ : ~ e
\T s _‘,/ \0\\ m_‘th
+ 32 ~
Q\ Lo 0 e o,
A 5 by
Ve/Vial "0 ~
x o X 1 300 RO e S
- K 0.
¥ VT)VS \ \\o
\x ¢ . + 280 "
[+
0\0 \x \ o '\.\\o
\ \X \_
o\‘
o \. ® + 240
Vg / Vim0 o \ \
* A
\\o \, 4 220
\\o x\
\Q\a& + 200
x
o%
e 180
2
+ 160\9-\\9
\“\“c
e Q\x\"‘\
\ \ 0\\\'5{‘-’1::0
T+ 120 e X o
‘\\K \0
4100 : \ ~
X \
o \ o
o~ 1 80 . X
o_‘\ \ ' \\
~o \ %
~
~ Vi~ 0 .
X\\ \ojsf T -+ &0 \\ o \\!
~ ~ \ Y
She T { et
:‘h..‘_‘_‘u ‘NON L0 : [}
— S ;
Yy > Vg e o~ i \
-~ ~ - v > V
k“’*‘-x.__ ""o\‘ + 20 ,’.f S T o
Texa So —

i & . - A & - A Hf:::;-. -—"3."—-.;# A A ‘{J.T T VE’; N \
A 1 3 T ¥ T 4 A = Y i T . 4 ) 1 A 4 ¥ 4 s 4
-0 -60 ~40 -0 -0 20 L0 60 80

Figure 2.28

RESTRICT




WANTED
CORRIDOR

VS50 KT
_‘——-——__..&.

Vg=E0KTS

NO SDLUTION
FOR Vs ) 6OKTS

lgure 2.89

= AL &

Vg=40KTS

NORTH

L

V5=30KTS

ESTIMATET
TGT COURSE

Vq = 30KTS

HIT WITH
ESTIMATE

RESTRICTED



- P~ A
'---..','_i‘;-j;;.!’ f /// it

L WANTED

Vg=10 KTS

Vg =204TS

/
Vg=25KTS

~ 122 = RE

e ESTIMATED

. TGT COURSE
Pl e

Ve=30KTS !
U

305KTS

HiIT WITH ESTIMATE

Vo= 25KTS

Vg=30K1S

NO SOLUTION
FOR \*s>

RO

g P




€04

50

40

304

20-

104

Z SOLUTIONS

N0 SOLUTION

Vi=30KTS

VS = VT/Siﬂ]¢£

N\

bl

L2

hewins which target velocities wh

& 0 60 70 80 90

[}
b P ol A

RESTRICTTD



-

F<y

NORTH

Fhase

-"‘/:

FOIT

STRAIGHT
PATH Vi Ty

Cl

g

{K])\"I)a

FIRST
TURN

*rf
b
b
4.}
a3
-

s gy R I - o - 3 T 1 + -
iogwental torpede trajectory employed in optimal
Dphx

Euidance -

RESOQTrATen
dvZaed aava ir



§
-t

L NORTH

ESTIMATET TGT
POSITION AT =l N\ HIT POINT
TIME T Y

OPTIMAL POINT
(TCRPEDD POSITION AT TIME T)

istance E

Figure 3.2  Rs ; e the targst

RESTR,




)4

%5y, 91

Right and left turn

i,

RIGHT TURHN

. (xz) Vz}

Xy Yy

LEFT TURN

RESTRICTED



DROTIALE RAATY
PROGRAN AN

{  EnTem mAwW )
m:_lﬂ,-m__./

e o——y

U =0

v =0

U8=0

82=5

J8 =g

1

“

i S T 1.3 e T 5 R

CALL TA

|
!
]
i
i
L

t:l.' a

CALL FBS

T=L +U6-U
Us=U
AS=A
CALL FS1

YES
>y

'Asmr—tﬁ>zd

nfiSTRICTED



PROGRAN RAW continued

U2=U-Hi-H.2
Ui=t2-15

W =W--G
Ja=g

§ L1}
e
CALL TURN
M2=1
.
¥
CALL TURN
CALL STR1
W=i+6
CALL STR1
E"*“

T=L--U6-U
ug=u
CALL FHSt

torpedo

- —m——

RESTRICTED



i ey

PROGEAN PIAIN continued

Ub=uz Ta=Tg+-
CALL STR2Z T=L-U8-1j
T8=T4-FUG-U Ke=11
T=T-+U5-U K&=12
Ci=C3-7/188 G5=01
Adiust 2720120 U=l
K=K2 CALE FRS3
CALL FK

RS——

¥
CALL TURK

w_chart of STAGE 2 puidance pguiding the torpedo until

Figure 3.6 Flow
reaching the optimsl point

RESTRICTED



PROGHAN MAIN comtinusd

&

L4

[

L
L]
|

RESTRICTED

[z=2
Mi=0
US=y-H+L
=62

=g
bg=t-L
5=0
CALL CGP
SAVE: K1,H2
E1,E2 L2&C1

fomm e e

Te=Ta-+-UG-U
T=L-UE-4
us=u

CALL FK

CALL FNS3

‘I
URSAVE: K1, K2
E1,E2,L2&C1
1id=1

CALL COP

NG

bl
<2t

ABS(T-L)

CALL FTS l

Z8=1

YES

Figure 3.7




% FgL = RESTRICTED

PRCGHAM CCT

Us=U4 CALL STR
CALLSTR2 z8=1

M=t

M5=3

W9=N9-HTS-+HUG-U) VT

L

s
( RETURN )

Figure 3.8 Flow chart of Program CCT which checks if the time for
collision or start of multipass will be excceded

RESTRICTED



PROGRANM COP

ENTER CGP 3

CALL STR1
V=W +6
CALL €CT

i

!

CALL STR1

i Y
C RETURN ) [1]

Flow chart of Program COP vhich will guid

Figure 3.9

according 1o

Mh = 0 and until s

¥

1
=

next calculation

rn is Tini

me WD
-t Ry
nigned 1F !

‘-L;.igi



PRABGRAN CLP continued

Ei=E2
Ki=K2
Rib=2

Fa

"
C&LL TURH
E2=E1

e

W= +6
Catl CCT

Figure 3.10 Flow chart of Program COP continued

g RESTRICTED




PROGRAN CF

{ ENTER €T ;:)

Z6=0
CALL FTT

'y

(  metorny )

Figure 3.11 Flow chsrt of Program CT testing if the new solution is
better than the former best solution

RESTRICTED



135 - RESTRICTED

_“\\
(:_ ENTER FA J)

proms oo

26-0
§5=03-C
ADIUST 27>85 220

e

R1=3%a
F=ABS{AT*ens H2/{1-B)

ZG=1

D9=10 *INT{A/200)+ 100
lg=A-DS

¥

=

¥

( RETURN )

. . i . 1
Figure 3.12 Flow chart of Program FA computins the distence "A"
between the optimal point and the hit-point




PROGRAR FAZ

( ENTER FAZ )

260
=0
CALL FFT1
2 7
7
V7=sin{L3-55)
V8=sin(CG-S5)
$6=-D3¥ WAHPES W1
401¥ VI-R1- V3{iR2¥V7
CALL FFT2
&
ES
o $6>=0
NG i1
13=35-44
$3=52/56
§8-55
S5=856-83 §h=1 Sh=2T
ADJUST 270>S5 5.
ol \
. CALL TEST ] CALL TEST
- N iz ABS(S3) >T/2
v ¥
SG=2m Si=
55-85 §5=56
ABS{S8—S5) >mo>—YES -
v ]
CALL TEST —l | CALL TEST l I CALL TEST
MO ‘--u -

ABS(S3) <AC1

YES

4

C RETURN )

Figure 3.13 Flow chart of Program FAZ, finding S5 making F(S5) = 0

RESTRICTEL



— }_';:!" -

PROGRAM FBA

CALL TA >0 ¥Es
£8=03 )
I
PRI .- 78=1
NO
CR=27+C8 C8=27-€9
§6=C03-C6 |
§5=C3-C7 . |
ADSIST : ‘
255,95 =0
_ YE
e et <=7 2
NG i YES
85 <S5 gg=2a--C0 C8=27-C8
3 K o ]
A L L
C3=C6 £3=07
l fiore _i
¥
C8=C3
NO

ABS(C8-C9) <m >
YES YES
sl

KZ=—HK2 K2=—K2
o X -
.,..!'

‘ RETUNN )

Figure 3.14 Flow chart of Program FBA finding thne new torredo sngle
h is clos

Sl e

gst _to the former value

RESTRICTED




PROGRAM FB

(:T ERTER FES j:)

L

=803
Ji=6

£3=C6
CALL FA

Ki=1

K2=1
CALL FES
Ki=1
K2=-1
CALL FES
Ki=-1
K2=1
CALL FES
Ki=—1
Ké=—1
CALL FES

y
| .y
o

¥

C3=C7
CALL FA

Figure 3.15

YES

KO

< X34 =

L

iKi=1
Ki=1
CALL FES
Ki=1
2=-1
CALL FES
Ki=—t
Kz=1
CALL FES
K1=—1
K2=—1
CALL FES

1

o
P

Flow chart of Proesram FBS finding the best of all possible

C3=A8
A=AS
Ki=F1
K2=F2
§5=C1
CALL FFTH

CALLFTT

T +U <g062

solution by mode 1 calculutions

RESTRITTE



= 3G =

PROGEANM FCA

C ERTER FCA )

£9=C

A3=0 +G79

AG=TATI(A3)
L

D=(b1/21}?
C={/a)?

o D)

YES
X

¥

A2 = ({D-CY R4+
o 1-pxC)asH(2:{(1-D))

Hi=n/2-A3
C=C3

¥

/

AS=AZ +/A2% +C A5 = A2-\/R27HT

S5=ATH(AS)
ADJUST —m/2<<SB <7 /2

H1=85-A3
C=C9

|

( RETURH i

Figure 3.16 Flow chart of Program FCA calculasting the wanted

corridor angle Hl




PRGGEAM FOT

-

S7=hYeos €
86=1-57+87

( ENTER FCT)

L

£7=0
Bi=X6-X
PI=Y0- ¥

v RO

S6=ATN{S7/SQR(E6)
§3=0

| S

S3=ATHR(O1/P1)
§7=11*sin(C-83)

86=1-87 %87

¥

$6<0

Lo

VES

S6=ATH{S7/SGR(Sa))

Z71-1

-—%-!!

C1=86 -+S3
T8=500
CALL FST
Ci=C1+m
CALL FST
C1=-S6 +53
CALL FST
Ci=C1 +m
CALL FST

e
g

T

Z7=1

Figure 3.17 Flovw chart c
- ollisicn point when ne turns are considered

{ RETURN }

tufterl -

t of Pregraem FCT finding the least time to
3

KESTRICTED



PROGRAM FES

o 1251_ _—

{ ENTER FES )

==

s1-a
§5-0

§5=81
S3=-7/2
CALL TEST

Figure 3.18

A&

5
K

Ke=K1
K3=K2
CALL FAZ

Ji=d1 +1

i;.;

K1=K5

K2=K3
S6=81
§1=81 +m/2

( RETURN )

Flow chart of Program FES, finding the best solution

RESTRICTED

2

RESTRICTED



- 1y -

PROGRAM FFT

ENTER FFTi 3 ENTEH FFY2 \
C_- g (:._mm_‘._.___._/

o
¥ ¥
Wz=cos{C-C0) S e

V3=sin £3

VW2=s0s €3
Pi=VO-Y +A-W3
0i=XG-X +A *¥3
Vi=sin

Wh=cos [

D5=01 ~We—-P1 VG —

¥
R A
W7=cos({C3--S5
Vig=cos{C0-55
Ri=ik1+R
R2=KZ ¥R
E2=K2 %{C3-55)

}
)

YES

E2>>=0

NO

E2=E2 +2Zm

Vs

§
D3=Nx(A-HET+HEZ)+R)
Vé=sin(C—5§5)
Vid=cos(C—-S5)

Vi=sin 5%

Wi=cos S5

$2=D3 *V4-HI < B2AWA-W0) -+ R(Wa-W2)
§2=824+P1 4 V1-01*W1-P1 (W31} 2= (W71-1)
$2=82-Hi D5

— RESTRICTED



w GHT -

™1 T3
1ok g
(B e

PROGRAM FX

(SRS P ]

RETURN

Flow chert of Pro;

K, when the turns

P it

ram FX, finding the values of K, and

are less than 1 radians

._ RESTRLJIED



PROGRAM FHS

‘ ENTER F?-“.S‘i)

TO=L~LA-GHBOVT
CALL FBA

R I |

CALL FA

WG

ot
g

ENTER FIJSD

NO

ENTER FRNSE3 \‘

csd

o]

A=N9
CALL FBA

$5=C1
CALL FAZ

791 YES

~

YES

L

NO

Ci=35
CALL FTT

Z7=0 I

A

Figure 3.21 Flow chart of Progzrem IS

i

F.-m
a3
g

RETURN )

finding & new solution of Cy

based on oid values of C;, by Mode 2 calculations

RESTRICTED



PROGRAM FST

s
{ ENTER FST —)

i

ADIUST 27 >C1>g i
82=p“*eps G—cos L1 5

¥ s
L=P1/(82 +¥T) $2=NK ¥sin C—sin £1

L=01/{SZ +VT)

|

L><Tg >YES 2

m

Tigure 3.22 Flow chart of Program FST finding the shortest time

~5)lision point

s el I ek ety




- 146 ~ i
PREGRAM FTS
( ERTER FTS )
¥
Z=1 o
pg=28INT{ABS{A)I080+H) it

3 A=A-D8
K1=K6 fg=H9-D8
KZ=K8 T9=T$ +DENT
C1=GY CALL FBA
CALL FNS2

Z8=1

‘ RETURN )
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Figure 3.27 Flowv chart of Program KTT simulating torpedo dead-
reckoning in turns

|
J
[P
(2=}
ol
—t
e
ird
i
L459




PROGHAL STR

( EHTERSTEﬁ;} ( . ERMTER STR2 :)

U7=U U7=y
U=w U=Ug

Y
CALL NTS
CALL HEP
Lz=L2-Fu7-4

¥
e

{ RETURN '

TR which will update the estimate

Figure 3,28 Flow chart of Prog . which will uws
ions Lo either time UQ or to next

and the lorpedoe no
tine for com




PROGRAM TA

C ERTER TA )

CALL FEA

Z8=0
H2=ABS(HT)

e i

H3=N*sin H2
Ha=1-H3 13

L Ha >0

YES

SB=ATH{H3/\/H4)
ADJUST /2 285 =>-7/[2

N ¥ e
“é‘ﬂ

Y CE=C-Hi+HZ

8= ¢7=Cim-Hi-H2
ADJUST 27>C6,07 =0

7
v

( RETURN )

of Program TA computing

=
e

the two possible

i

ey

.

ielding the vanted nit-corxl

e e B i e

Figure 3.29

lLow cnarht

[

RESTRICTEL



t-J
R
LY

i

1

e

PROGRAM TEST

‘ ENTER TEST '

Ki=—K1

téﬂ‘:

‘ RETURN )

ogrem Test, testing if the iteration

>3 requiring changing of the turn

Figure 3.30 Flow chart of P:
hes produced &ng
parameters

RESTRICTED



~ 154 -

PROGRAM TUnn

P
( EwTERTURN )

J3=0
SE=iNT(180E1/mHLE)

3=J3 - '
_YES ,f”f’i%;\\N“‘x\h N laa 4t

§5=0 { §5=551

\ U=t +0.2

poz>w >

¥ ¢ vES

Ei= Ef=S5»7/130
Li= Li=E1#R/ VT

NG

ABS(W-U} >0.01

U=w

v ¥
CALL NTT CALL NTT
CALL NEP - CALL STR1

E1 %180/ >2

CALL FKI

.L:;

‘ RETURN )

Flow chart sirulating the turning of

o or uwntil next

o)
5

RESTRICTED



60.00 70.40

]
50.00

[12

—

a

'
t

Y-AXLS3
20.00 30.00 0.00

10.00

0.00

“f
4
S
L
&
+
b
+
&
P
3
%
+
&
+
*
£
-
¥
-
b
5
flee
&\\;:‘g

1 1 TR i i
0.c0 10.00 20.00 g 30.00 , 40.00 50.00 60.CC
X-BXIS (X10= )

RESTRICTED




60. 00 70.00 80.00

]

50.00

(X10°

=
40.00

r
i
-

-AX1

>0

0.0

20.00 3

10.00

0.00

56 T T e ———
Al i it oeil

TORPEDRC TRAJECTORY PLOT
VO=5, VS=15 RAND VT=30 KTS

@
P
—

{ | |
0.00 10.0G 20.063 30.00

éfﬁ/_a\
At ]
& ‘-\*“++4 g
e
bt *4 4 i++§<+
*hia
+ B
Woeaagpr
PR aa
l"%‘.«b”}—-‘.’}:«s S
T ey D
i ” i

40.00 50.00 60. 09
X-AXIS (X102 )

Figure 6.2 Trajectory vlot



-
L™
et

o R e el S
\?.f

i
00 oL

00" 09

FED

e
-

RESTRY

+
k)

Trajectory uvle

Figure 6.3



¥
EL‘L

&
JLN.

\\E\s
Werasdifueadil s i neiiduad b diaed®

0008

ool

N

poos

|_
o002

i
ool

0o-0

60. GG

50.00

40.00
)

20.00

10.00

0.06

30.00

02

it

(X

X-AXIS

RICTED

Eadl
[N

En
iy

v _plot

ayectory

e

T

L

-
gare 6.

Fi



on

(a

~i
i

£

e o
e O
b= Ll
led —

*
00 ' 0S
(

.
00" 0h potoe

201 X1

& T X84

!
00" D2

D

I
o}

RESTRICT:

Trajectory vnlot

Figure 6.5



-

~EDG TRAJECTORY PLOT
/0=15, VS=15 AND VT=30 KT

o 5
1000 AND B=20 ME’
H A=200 AND B=20 MET

fﬁ X 5
fﬁ ! A

AP L s e B T R L A B S Y -i--t--‘.-;j:-sv-e-i-}ﬁ-a- & 43'_ e R s

Rt

. T I T T I 1
0.60 10.00 25.00 30. 040 L0, 00 50.00 £0.00

X-AXIS (X102 )

Pigure 6.6  Trajectory oplot - ESTRTCTED



ww o]
o
: -
Y
i
o) :
o % 3
el L
Y b ww — <
-~ ] w. X
X 5T : =
= H =
/r..n..‘a E.lf.;_\"u 1 “Mm. | m{l\
;_ — 02 3 Loy
| e, 3 Geep)
Ll m.lfl.p. w‘wn T-Uv:.\“
€ o 2
| S e e
T e : .
A e M
Pl 3 ] _
i e ¥ &<
Yyom 1 i
) LY
ey M 1
oy &L mm.
muuv T E
(o R
Ldey =
O v =
ce 1
Oy s *
=== @ _
_
; o
o]
] _ ﬁ _ I ] S T e
no-oa oo oL 0o o8 00" os D0 0% 0aoe D0 0e oo-ol go-o
[ 20TX1 83XH~K

tory plot

s o .



RESTRICTED

- 162 -

w
7y
1
Al ep) 7
L 07
Hrr....l__ WMM++++++4+,._.mm...++++++...+wm+++++++++wm4+...+.e..‘_._.+wm+++++++.v+wm+4+++++ ok b o bk b S e D =
5= Lid
Ul.rl
OV wn |
o
o
m I
[
S (Y
o
(o'
f—
(|
o O )
— N\ "
(RO
(.
s VR
b TLrl.I A ' 2
-+
— — IR %*
— + * =
8 4
¥ _ ] _ ﬁ _ T I -
poro8 000l 0o o8 D0 0S 0o 0h D0 0E 00°0e oo'ot o0
( 201X) SIXH-A

60.00

50.00

RESTRICTED

)

40.00

(X102

20.00 30.00
X-AXIS

16.00

0.00



- 163 -

METERS
METERS

i
i

=20
20

3
Hz

N
i

HND
D

H

4
R

{

¢

¥

e

4 7
SH et et AP bt b b e b o e Db b ok ++wm+++mm.‘++4ﬁ..§&\ﬂ

\u 2
| \x "
iy
...P%_._

J/

L o

i
00'0L

{
05098

I
0005
(

DO.Q_M._
201X] GIXY-

09°0€
A

.«.&.&l}z\;\@(

P b e




=
i

e
1
{
nm,.‘
M_m

co-

00 0%

201X}

I |
00°0€
SIXY-A

RESTRICTED




-

£0.04

e ¥

[
2
0.
(o]
R
£l g
45 R
Q et -t
o : n..:_
o et i
— ASL S
A n el &l
] e ﬂ)_
. % 4 [778] t
.o " o 53 ol
1 r . P & Sy
W.ﬂwv¢+4é++4;awm+++++&+++wm+++é+++++ww++++++.u++w.m+ R -k IR i
) - &l
e , @ =} ol
s - L] S|
L) i . Y
o) . @ | o !
o I i i
b= By . o
X . : o &
= == o ol
LA ] i =3
sitin S o
i - . U > 4
T o O o ¥
& o1 < e
& il . o
— -3 o
| e i)
e — A
B 3=
—— T @ -
E....\uul. o8 1 ._u_

B ol
e ‘ ase 9
- v ﬂm o))

Oy U O o= | L
Ry O (4] b
Oy M ° g
= @ * 2

b ..I.L.
oy o~ aw
e Ul “
[ R m m...m.
Ll e 4
ot = <5 e
a1 -
XL “e 0
ey
T\\t &) iy
ww_
& o i
.v+++w_,m...++...+++++ﬁ++++...+w\+._,wm+++....v+++._.w~_m+4+++++++¥.4+++.4.+,...{F.Mm = nﬂ
] _ _ _ o

i i i I I [
00° 03 00" 0L 00°09 DG 0S 00" oh 00’08 D002 0001 000
( 201X) SIXU-A



50.00

60.00

(X102 )
§0.00 50.00

-AXIS

=8

£ o]
o

20.00

10.00

70.00
|

.= 166 - RESTRICTED

TORFEDO TRAJECTORY PLOT
VO=10, V3=15S AND VT=30 KTS

o: WITH A=200 AND B=20 METERS
a¢ WITH H=200 RND B=20 METERS

\rwﬂ“'&ﬁ

s

N HH’
o ,4444'5{5@ ¥
JIPTTE ol

{{ ;H*‘#’:‘H *

KL Al

0.00

0.

i

o i | | | |
00 10.00 20.40 30.00° 40. 00 50.00
X-AXIS (X102 )

Figure 6.12 uT_z;q_t}g_g}'_Qggmp_;_Qt___xg ith “alayed svart of multivpas s




£0.00 70.00 BG0.0G
I | J

(X10° )
0. 00 50. 00

-AXIS

>0

[ o

30.0

20.00

= 167 ~ RESTR

TORPEDDO TREJECTBRY PLOT
VO=10, V3S=15 BANO VT=30 KTS

o: WITH RA=200 END B=20 METERS
2. WITH A=200 BND B=20 METERS

2
[mn]
r':l =
e 4
MM&»:V&@&*
W4W
: “‘*MNHW‘rM\
w ’{d.;.uh}'_g;mmb,;
I T l | | l t
0.00 10.00 20.00 20.0G 2 40.00 50.00

Figure 6,13

A=RXLIS 1X1Gc J

Trejectory plot with delaved start of -wltinass




"RAJECTORY PLOT
D VT=30

C = 168 -

KTS

o
vo=13,
o: WITH A=200 RAND B=20 METERS
- =: WITH A=200 AND B=20 METERS
=
o
(18]
o
o
o
f\.
155
P
o
[in)
o
=
w
~ A
O
‘__‘ <
o
o
U'}?-' > PHresstidirte Rasa 8
— :
>
a
i
>3
o ]
m
O
o
o
(V)
O
o |
‘3H»eﬁH«-}}’:H++++H-+}5'{H-t-+4+++6;§i++++u+++)§§+44u+++4—},‘4&H++++4+;§4<-+44+++++%e+++++
a
&)
o] ] i | | |
0.00 10.00 20.00 3t g.0da 50.00

X-AXIS

Figure 6.1k Trajectory plot -rith lelaved s+art of multinas:

0 y
(X102

)

e

.

S8
ESTRICTED

|
60.060



	Document (2).pdf
	IR-E-205
	205-dok1.pdf
	205-dok2
	205-dok3
	205-dok4


