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A REVIEW OF EMPIRICAL EQUATIONS FOR MISSILE IMPACT EFFECTS ON 
CONCRETE 

l INTRODUCTION 

In this document, we will be 100king at empirical formulas that exis! for predieting the 
penetration into hard materials, especially concrete and rock. 

Two observations can be made already at an early stage of this study" The good news is 
that a large number of experiments with penetration into rock and concrete have been per­
formed, and that empirical formulas for the penetra!ion depth have been constructed on the 
basis of these tesls, 

The bad news is Ihal none of the formulas give the same results. 

We shalilook at the background of the various formulas in order to shed some light on 
why they are all different. Unfortunately, not all of the original data has been made availa­
ble to us, but it should still be possible to draw some conclusions, 

It turns out that most of the military formulas were constructed on the basis of extensive 
penetration tests performed in the US during World War Il, After the war, there was not 
mueh military interest in the field of concrete penetration, and consequenlly very few ad· 
vanees were made un til the sevemles, 

In the seventies, there was an increased inlerest from the nuclear industry in obtaining mo­
re accurate formulas for penetration ioto concrctc. The old military formulas were inade­
quate sinee they were almost excJusively based on experiments with higher velocities and 
smaUer projectiles than what was of inlefest to the civilian nllclear industry, Missile vel­
ocities of interest to the nllclear industry are generally in the range 30-180 mls. As a re· 
sult, severaI studies of low velodty penetration were earried out. 

Before the seventies, we shall see that no care was taken in assuring Ihat the empirical for· 
mulas were dimensionally eorrent. Consequently, all of the older equations are dimensio­
nally wrong, i.e, the left hand side of the equation has different unlts than the right hand 
side. Fortunately, this situation has improved a lot in recent years, so Ihat all modem for­
mulas are nondimensional, 

2 SOl\-iE EXISTING PENETRATION FORc\JULAS 

We start by 100king at penetration imo very thick targels, Le. targets in w hich the final pe­
nelration depth is much less than the larget thlckness, 

Although none of the existing empirical formulas for this situation are identical, at least it 
turns out Ihat quite a few of them can be written in the following form: 
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.:!. = a Mvr , + f3 (2.1)
D DY1(JY'

c 

The symbols have the following meaning: 

x Penetration dep!h 

D Diameter of the projectile 

M Mass of !he projectile 

v lmpact velocity of the projectile 
Compressive strength of larget material 

a.p'Yi Various nondimensional constants 

There are o!her empirical equations that can not be written in !he form of (2.1), and these 

will be examined in chapter 4. We start, however, by making some remarks on the dimen­

sionality of equation (2.1). 

Notice !hat !he left hand side of (2.1) is nondimensional. The dimension of the right hand 
side is, however, dependent on the value of the Y,-{:onstants. It is clear that we can not 

choose y i freely if we want !his side to be nondimensional as weU. In faet, it can easily be 

shown !hat for equation (2.1) to be nondimensional, the ooly possible values for the 

Y,-{:onstants are the following: 

(2.2) 

If the variables above are the only ones included in !he description of the problem, dimen­

sional analysis gives us the following expression for x/D 

X (MV2
) (2.3)D = f D3

0c 

It is clear that equation (2.1) with value5 of y I as in (2.2) is a special case of (2.3). We 

shall soon see that in many of the empirical formulas, !he y i -constants have other values 

than !hose given in (2.2). As a consequence, these equations are dimensionally wrong, 
which means that the lett hand side of the equation does not have the same dimension as 
the right hand side. If 5uch a formula is written on !he form of (2.1), !he left hand side will 
be nondimensional, but the right hand side will not. 

We shall discuss the significance of the formulas not being nondimensional in chapter 7, 
where it will be shown !hat an equation need not be useless, even though it has the wrong 

dimensionality. When doing a real calculation, we just forget al30ut the dimensional pro­
blems, insert the numerical value of each parameter, and pretend !hat everything ends up 
fine with the eOITect dimension. We have to be very careful when doing so, as the final 
resul! will then depend on which unit-system we have used, Le. whether variables have 
been measured in meters, yards, inches, or whatever. 
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Most of the equations were originally pubJished in units sueh as inches, pounds and simi­

lar. For convenience, all fonnulas have been convened to SI-units. 

a f3 Yl Y2 y} 

Dim. anaJysis l 3 2 

Beth 3.6·I(T4N 0.5N 0.5 2.78 1.5 
ACE 3.5' 10-4N Oj Oj 2.785 1.5 

NDRC mod. <xlD > 2) 3.8' 1O-5N 1.0 0.5 2.9 1.8 

Bernard (conerete) 0.254 . P -1(2 O 0.5 3.0 1.0 

ACE == Anny Corps of Engineers, NDRC == National Defenee Research Commitee. 

The parameter N is a socalled "nosefactor", which describes the shape of the projectile. 

Most of the equations calculate N in different ways, bu! for simplicity we have chosen to 
be a bit sloppy and use the same symbol for all of them. This parameter will typically be 
somewhere in the range [0.7,1.2]. For more details about this [actor, one should consult 

appendix A. 

The variable p is the density of the eoncrete. This quantity could have been included in 

the general formula (2.1) by saying Ihat xlD pY" bm !his seemed unneeessary since the <X 

density only appears in the Bernard formula, and y4 would consequently have been zero in 

all the other equations. 

3 COl\1PARlSON OF THE FORMULAS 

There are some similarities between the equations since they all have the same general 
fonn of (2.1), but the y..--{;onstants vary from equation to equation. As has already been 
noted, there a1so exist other forrnulas (Ihat will be examined later) which do not fit the 
general fonn of (2.1), sa c1early one has a lot of equations to choose from. 

The question is how imponant these differences really are? To find out, we look at the 
Y,-<:onstants one by one: 

3.1 Diameter dependenee 

The parameter that there appears to be leasl disagreement on is obviously )'2 which descri­
bes how the final penetration depth depends on the diameter of the projectile. According 
to the formulas it should be somewhere in the range [2.785 ,3.0]. The small difference 
between the highest and lowest estimate is a good sign, and reinforces our belief in the 
validity of these equations. 

3,2 Material dependenee 

The signs are also quite good when it comes to yl' This is a very imponant parameter be­
cause it gives the relationship belween penetration depth and the material properties of the 
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target, which is our primary inlerest Interestingly, all the empirical formulas say 
Yl = 0,5, The only problem is the dimensional analysis wtllch prediets Yl L 

Without the dimensional analysis, one might have been tempted to conclude [hat Y l = 0.5, 
but this would have been premature, We shall soon see that there are other formulas which 
give a different dependence on the larget properties, 

3.3 Velocity dependence 

For YJ, which describes the dependence on impac! velocity, there is also a substantial disa­
greement between the equations, They seem to indicate that Y3lies somewhere in the 
range [1.0,2.0], It is a good sign that Y3 has a value in this range because this agrees with 
resuIts that can be obtained from a simple quasianalytical approaeh, However, it is still not 
satisfactory to have sueh an inaccurate estimate of Y3' even though it apparently is in the 
right range, 

An interesting point is that all formulas prediet a nice "round" y, of ellher 1,0, 1.5 or 2,0, 
with the notable exception of the NDRC-modified equation, Nobody seems to have found 
a value of Y3 somewhere inbetween, say Y3 = 1.68 or similar, 

3.4 Evaluation 

Unfortunately, we have been unable to get Dur hands on the "raw data" behind the Beth, 
NDRC and ACE-equation, Consequently we have had no way of properly evaluating these 
formulas, However, it is known that all of these equations are based on data from tests that 
were done during World War IT (21), In total, more !han 900 projectiles with diameters of 
LI cm, 1.3 cm, 3,7 cm, 7,5 cm and 15.5 cm were frred against lighly reinforeed eonerete 
plates with thieknesses in the range [22,195] cm, The eonerete strength varied from 
U c = 27 MPa to U c = 44 MPa. New types of concrete have been developed after 'hese 
lests took place, and it is not certain that new High Perfarmanee Concrete (HPC), with 
much larger compressive strength, can be correctly described by any of the formulas. 

The ACE formula (6) is sald to be valid in the velocity range [200,1000] mls, so it is assu­
med that the the experiments were carried out in this range. The same goes for the NDRe 
formula (25), mentioned above, Ihe concrete was lightly reinforced, but sinee the 
amoun! of reinforcemenl did nOI seem to have a significant impacl on penetration depth, 
no reinforcemen! parameter has been included in the equations, 

While the Beth and ACE equations are purely empirical, it is known 'hat the NDRC-for­
mula is based on a physical made! of the impact process (2!). In other words, it is a kind 
of semi-analytical formuJa. In this model, it is assumed that the force F on the projectile 
during penetration is given by: 

0,2 

F=..!::. L x<2D (3.1)( )D W' 
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,02 

F= 2:..1 , X> 2D (3.2)
( D) 

However, it has been shown (both analytically and experimentally) that this model does 
not gi ve a correct description of the penetration proeess (0),(13),(18). 

In any case, this assllmption leads to the following equations: 

~ < 2 (3.3)
D 

~ = KNMD 28vJ8 + LO, ~ > 2 (3.4) 

It is clear that the velocity dependenee is delermined Iheoretically, while the empirical data 
is used to eslimale K, which contains the material dependence. However, if the underlying 
asswnption is incorreel, there might be something suspect with the whole approach. 

In 1946, the work on the NDRC-equation was abandoned without the factor Kbeing 
completely defined. However, in 1966, work was continued by Kennedy (21), who sugge­

ssted that K a-o . He arrived at this result by us ing a curve fitting procedure on Beth'sIX .
experimental data for larger missile diamelers. His final result is therefore known as the 
modified NDRC equation. 

In 1980, Degen (10) reviewed the assumptions behind the modified NDRC-foIIDula, and 
concluded that they were invalid. He introduced a more realistic force assumption, but 
surprisingly this lead to exactly the same equation. So even though the NDRC force as­
sumption was wrong, tbis did not scem 10 have any severe consequences. 

Although concrete data were used in the deveJopment of the Bernard equation (4), this olle 
is not really supposed to be valid as a concrete penetration fonnula. According to Bernard 
himself, the ACE fonnula flIS the experimental data better!han his own equation, which he 
instead recommends be used for rock penetration. Since the equation is construeted on the 
basis of only Il reSIS, and the larget parameters for those tests are not entirely certain, the 
accuracy of the predietion is sald 10 be about ± 20%. 

The Bernard equation was deri ved from experiments inside the following range: 

"!'>3 (3.5)D 

M € [5.9, 1066.0] kg (3.6) 

D € [7.62,25.88) cm (3.7) 

V € [300,800] mls (3.8) 

http:7.62,25.88
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Extrapolation outside this range is not recornmended by Bernard. 

4 OTHER MAJOR El\1PIRICAL FORMULAS 

As already mentioned there are several other empirical formulas which can not be put into 
the form of (2.1), and in Ihis section we will describe most important ones. Once 
again, for convenience, they are all written in SI-units. 

4.1 Modilled Petl'Y fOl'mula 

Probably the oldest availabJe formula is the Petry equation (17), which was flrst developed 
in 1910. It is given by: 

2
M ( v ) (4.1)=O.06K D310g l + 20000 

The coeffisient K was flrst assumed to have the following values depending on the amount 

of reinforcement: 

K = 0.00799 for unreinforced concrete 

K = 0.00426 for "normal ly reinforced eonerete" 

K = 0.00284 for "heavily reinforced conerele" 

This equation is called the modifled Petry L We see that the conerete strength is not inclu­
ded in the equalion, which is obviously a much 100 crude approximation. This was reaJi­
sed by Amirildan (2), who later found a connection between K and (le' Unfortunately, he 
did not write down an analyticaJ expression, but instead found a graphie relalion. This for­
mula is called the modifled Petry Il For details, one should consult his original report (2). 

4.2 Bergman formula 

Bergman's formula (3) from 1949 is the one most commonly used by the Norwegian 
Defence. It is actually based on the same data as the Beth, ACE and NDRC formula, bur a 
different statisticaJ anaJysis has been carried out, yielding a new equation. 

Bergman's trick was to split tbe formula imo two equations, depending on the impact vel­
ocity, instead of trying to write one equation in a closed form. For low veloclties, x is just 
proportional to the veloclty: 

~ < 3.5 (4.2) 
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where Vi is the impact velocity tha! gives 15 = 3.5. This velocity mus! be found from the 

following formula, which is valid for larger velocities: 

X = 4.86Gv f (z) G 7 S7 10- 5 NM (4.3)= ..' D2.8 O.5D a

f(z) = 1.44 + 0'1 8 + O.OOSz , z = Gv 17J 

If the velocity dependenee is disregarded, it can be shown Ihat everything reduces to 
Beth 's equation. 

Bergman' s equation is said ro be valid in the following range: 

v < 1200 m/s (44) 

M € [0.02, 1000] kg (4.5) 

ac € [30, SOl MPa (46) 

D E [O.I,OA] m (4.7) 

4.3 Kar formula 

In 1978, using regression analysis, Kar (20) revised the NDRC-formula to account for the 
type of missile material. He ended up with a very simple res ult, namely: 

1.25 

X = XNDRC ( fm ) ,~ < 2 (4.8) 

1.25 


(
X - D = (XNDRC - Dl,i", ,~ > 2 (4.9)) 

where E and Em is the modulus of elasticity for the projectile material and mild steel, re­
spectively. Kar is, however, cautious in recommending the use of this fonnula, because the 
new factor is only approximate, and should therefore only be used until sufficient test data 
is available to make a more accurate equation. 

4.4 Raldar and Miller formula 

In 1982, Haldar and Miller (16) reviewed the NDRC-equation. However, they were most­
ly interested in the impact of flying objects against nuclear power plants. Typical missiles 
have rather low impact velocities, which means that the penetration depth is usually lower 
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than two diameters. Using low velocity data from Sliter (26), they constrllcted an empiri­

cal formula which fit the data better than the NDRC-equation for xfD < 2. 

Their equation is split imo three separate fonnulas: 

~ = - 0.02725 + 0.22024/ , 0.3 < / < 2.5 (4.10) 

~ = - 0.592 + 0.4461 2.5 < 1< 3 (4.11)
D 

= 0.53886 + 0.068921 3 < 1< 21 (4.12) 

where l is called the "damage poremial" and is defined by: 

(4.13) 

The nosefactor lY is the same as used in the NDRC-fonnula. 

An obvious advanlage of the se equations is that they are dimensionally correc!. Haldar 
and Miller also compared their fonnula with data from other sources than Sliter, and found 
it to be more precise than the NDRC-equation. From amilitary poim of view, there is a 
problem witb this equation, as it is on ly valid when the penetration depth is less Ihan twice 
the diameter of the projectile. This is usually not sllfficient for military applications. 

4.5 Adeli and Amin formula 

In 1984, using data from Sliter (26), two new empirical equations were constructed by 
Adeli and Amin (l). They examined the data using a least sguares techniqlle, and found 
that the best fil was given by either a quadratic or a cllbic polynomial: 

~ = 0.0416 + 0.16981 - 0.0045/2 (4.14) 

~ = 0.0123 + 0.1961 0.00812 + O.ooOIP (4.15) 

where l is defined by: 

l (4.16) 

The fonnulas are valid in the following range: 

VE [27,31l1mfs (417) 
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M E [0.1,343]kg (4.18) 

l lE [0.3,21] (4.19) 

D < 12 , c!. < 2 (4.20)
D 

4.6 Hughes formulll 

The Hughes formula (18) from 1984 is a1so dimensionally correct. It is given by: 

0.19N Mv 2 
(4.21) 

1231n( 1 + 0.03 :.~:) G,D) 

AnOlher interesting feature of this equation is that the G, parameter denotes the concrete 
tensile strength. whereas the relevant parameter in all the other equations has been the 
compressive strenglh. For concrete, the compressive strength is roughly ten times the ten­

sile strength. 

Just like the NDRC-equation, the Hughes formula is semi-analytical, i.e. based on both 
analytical methods and experimental data. Hughes, however, used an allegedly more rea­
listic assumption for the force on the projectile during penetration. It was assumed that on 
impact the force rises instantaneously to the maximum value F" and then falls off parabo­
Jically according to: 

(4.22) 


This gives a final penetration depth of: 

(4.23) 


Experimental data is supposed to determine the vaJue of fl and the functional form of SU). 

Hughes was also unable lO obtain the ACE and NDRC data, 80 he instead used these for­
mulas to generate "pseudo-data". He also mixed in some more recent data from Sliter (26) 

and Berriaud (5), giving the following result: 

f3 = O.19N , S(I) = l + 12.3 Jn(l + O.03I) (4.24) 

which of course gives exactJy (4.21). Hughes pointed OU! that the fomm1a is only valid as 
long as neither scabbing nor perforation occurs, and from experimental data he deri ved two 
rnathematical criteria for this. These are given in chapter 5 and 6. 
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Hughes's formula is valid for J < 3500, which roughly corresponds to impact velocities up 
to 1050 m/s (given reasonable values for the other parameters), The projectiles are suppo­

sed to be hard cylindrical missiles impacting the target normally, while the concrete is 
lightly reinforced, For very low values of J, the theory is expected to prediet toa deep 

penetration since elastie and global effects are neglected in the force assumption, On com­
parison with other formulas, we shall indeed see that this is the case, 

4.7 YOUIlg fonnula 

Young's formula (30) is another very well known equation, Just as Bergman's forrnula, it 
has to be split into two separate equations depending on the impact velocity, For a cylind­
rical projectile, the equations are given by 

0.7 

2':,=
D ( )LIO· 1O-3 Kgr ~ ln(l + 2.16 ' (4,25) 

I )0,7
2':, = 214. lO-sKSNI M (v - 304) , v > 61m/s (4,26)
D' D \D2 ' 

where S is a penetrability constant of the material. For semi-infinite concrete targets with 
a eure time of more than one year, this is given by 

S = 13.93(11 - P) (4.27)
0°3 

where P is the percentage of rebar, The constant S will typically be in the range [0,7,1.1], 


For hard target materials, such as concrete, K is given by: 


K = OA3W 28 M < 181 kg (4.28) 


K = LO M> 181 kg (4,29) 


There are severaI assumptions related to this equation: 


x> 2L ( 4.30) 


v < 1350 m/s (4.31) 

where L is the noselength. Also, the weigbt of the projectile should be "more than a few 
pounds", according to Young. 

Young's formula is seen to be linear for larger velocities and approximately quadratic for 
small velocities, It is also clear that Young's formula essentially gives 1'1 = 0,3, which is a 
lower estimate than what is given by any of the olber formulas. 
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4.8 British formula 

There is a1sa a quite common British formu1a (29): 

Mv L5a )~ = 4.81 . 10- 8(1 (4.32)1.66 . 108 D28(]O.2 

where d is the aggregate 

It is dear that !his formula has a velocity and diameter dependenee which is similar to the 
other formulas, but the same can not be sald about the material dependence. The penetra­
tion depth apparently decreases linearly with the concrete hardness, which is different from 
the predictions of all the other formulas. 

4.9 Tolch and Bushkovitch formula 

Of other significant formulas. one should include the equation of Tolch and Bushkovitch 
(27) from 1947. They conducted experiments on penetration imo many different kinds of 
rock, and summarised their results in the following formula: 

(4.33) 


The constant k has a different value depending on whether we are dealing with soft or hard 
materials: 

Hard rock: k 2.7 

Soft rock (Concrete): k ~ 4.7 

These two values are averages of values for severaI materials, but given the large experi­
mental uncertainties, it is probably appropriate only to give the numbers as averages. lf wc 
do not take the average value. Toleh and Bushkovitch found the following approximate 
relation between penetration depth and compressive strength: 

I / 3x ex a- (4.34) 

would correspond to a value of Yl = 1/3. which is a quite weak material dependence 
compared with most omer formulas. 

The Tolch and Bushkovitch equation is based on very Iittie data, which might be a pro­
blem. Usually. only two or three experiments have been performed on each type of mate­
rial, and !his does not give enough information to enable any certaia conclusions about the 
parameter dependence lo be drawn. One could perhaps even question whether any conclu­
sions at all can be made from 50 little data. In any case, we note that the formula would 
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give h = 1.0, which is inside the same range as the value given by the other equations 
which have been studied. 

In the original paper of Toleh and Bushkoviteh (27), the constant corresponding to Y2 is 

given as exactly 17/6. It is not a good idea to assign such an aeeurate value to a constant 
which has been derived from experimental data. Things are made even worse by the faet 

that their average experimental value for Y2 is 2.89 and not 17/6 = 2.83. The reason that 

the researchers have used 17/6 instead of the value sugge sted by their data, is that they 
wanted to make a "eompromise" with Beth who, as we have seen, found Y2 = 2.78. Appa­

rently Y2 = 17/6 seemed like the perfect ehoice. 

None of the experiments were performed on concrete, so it is not dear whether the forrnula 
can be applied to sueh a material. The experimental impact velocities were in the range 

300 - 1000 m1s. 

4.10 FOFrestal formula 

Reeently a new fonnula for penetration into conerete has been created by Forrestal et al. 
(12), (13). This fOITUula is even partly analytical. It is assumed that the projeetile acts as a 

rigid body, and that the force on it is given by (12): 

v2 = 2Mv2 - nD30cS(ocl 
(4.35)

l 2M + nD3Np, 

(4.36) 

The dimensionless empirical constant S is a function of the compressive strength. These 
equations may look similar to the NDRC force assumptions, but they rest, however, on a 
mueh more solid basis, as they can be analytically deri ved from cavity-expansion theory 
(23) under the assumption that the projectile is a rigid body. 

The experiments were all performed for approximately the same ac , sa S is assumed eon­
slant. Now an express ion for the penetration depth can be derived anaJytically, and it is 
found to be: 

(4.37) 

The functional dependenee of S on ac is not found from theory, and must be deteITnined 
experimentally. No analytical express ion for S has been given by Forrestal eLal, but expe­
rimentally it is indicated that S decreases with increasing compressive strengtb. 

Several tests have been performed to validate formula (4.37), and it appears to agree quite 
weU. The experiments were done with the following range of parameters: 
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v € [277,945] m/s (4.38) 

OC" [IL?, 15,0] MPa , [32,4,40,1] MPa [90.5, 108.3J MPa (4.39) 

M = 0,064 kg, 0.9 kg , 5.9 kg (4.40) 

D = [,27 cm, 2.69 cm, 7.62 cm (4,41) 

Noliee especially that the lest, mostly involved ralher small projectiles, In (4.39)- (4.41) 

above, M = 0,064 kg corresponds to D = 1.27 cm etc. 

4.11 TBAA fonnuJa 

The British Textbook of Air Annament (TBAA) (14) gives the following equalion for pe­

netration into concrete: 

D)O.I(_V_\197510;O"x (4,42)2.61U4nt,~ ( C 533.4D 1 

where C is the maximum size of coarse aggregate in the concrete. The validity range of 

the forrnula is given as: 

Oc € [5,5,69,1] MPa (4,43) 

M € [0.14,9975) kg (4,44) 

D € [0.013,0,96) m (4.45) 

v < 1130 m/s (4.46) 

A new feature of this equation is thallhe veloeity exponent dcpends on the eonerete comp­

ressive strength. An implication of this is that for eoncrete with larger values of (fe. the pe­

netration deplh is nOI as velocity dependent as for less solid types of eonerete, However, if 

we insert the allowed values of (fe, it is seen !hat the exponent will be in the 

[1.07,2.01], which is the same range as in all the other equations, 


5 PERFORATION 

Sa far we have examined the penetration depth in very truck targels. If we do not make 
the assumption about large larget thickness, IWO other important phenomena may take pla­
ee, namely perforation and scabbing. 

http:1.07,2.01
http:4.39)-(4.41
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Perforation is the entry of a missile imo the larget and its exit out of the back face. 

Scabbing is the ejecting of concrete pieces from the back face, with at least a size equa! to 
the thickness of the concrete layer between the surface and the reinforcement (18) , (26). 

An interesting quantilY is the required target thickness to prevenl perforationJscabbing. 
This is ca!led the perforationJscabbing tbickness, and is usua!ly expressed as a funclion of 
the penetration in an infinite medium. 

In this chapter, we review the various equations Ihat exist for predieting perforation, and 
then we look at scabbing in Ihe next chapter. The perforation thickness is denoted by h. 

5.1 NDRC formula 

According to the NDRC-formula, the perforation thickness is given by: 

~ = 1.24 + L32 , 1.35 < ~ < 13.5 (5.1) 

2 
h (x) (Xl 1.35 (5.2)D = 3.19 D - 0.718 DJ ~ < 

where ~ is Ihe penetration depth according lo the NDRC penetralion formula. These equa­

lions were derived by Chelapati and Kennedy (21),(8),(9),(22). 

According to Chang (7); the NDRC perforation formula is 100 conservative, which means 

it prediets perforalion in cases where the projectile does not go through. 

5.2 CEA-EDF formula 

The (Commissariat fl I'Energie Atomique - Electricite de France) formula was 
proposed in 1977 by Berriaud et.a!. (5). This equation was based on data from new French 
experiments conducted by the CEA-EDF. The formula is given by: 

M )0.5 vO.75 
(5.3)h = 0.82(D3 o!l375p~125 

• 

The equation is valid inside the following range: 

v < 200m/s (SA) 

Pc E [150,300] kg/m3 (5.5) 

M E [20,300] kg (5.6) 
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DCl e [0.24,2.91 (5.7) 

5.3 Degen formula 

A few years later, in 1980, using the experimental data of severai different Sources (5), 
(Il), (15), Degen (10) s!atistically derived another perforation equation: 

< 1 (5,8) 

z= 0.69 + 1.29 ~ . 1.52 < < 13,41 (5.9) 


where xfD is given by the N"DRC-penerration formula, The experiments covered the fol· 


lowing ranges: 


v e [25,3101 mfs (5.10) 


M e [15,340) kg (5.11) 


(fe e [28,43] MPa (5.12) 


D e [lO, 31) cm (513) 


H E [15,60J cm (5.14) 


where H is the wall thickness. The reinforrement was between 160 kg/ml and 350 kg/m 3 
, 


bli! variation of this parameter did no! prodllce any significant effect. 


5.4 Chang fonnula 

Challg (7) derived a perforation formlIla in 1981. almost exclusively using c1assical me· 
chanics, The reason why his equation is still classified as empirical is that he applied a 
Bayesian statistical approach on some test data in order to determine a constant. His final 
equation reads: 

(5,15) 

As always, we a180 state the valid itY range of the formula: 


vE [16.7,311.8Jmfs (5.16) 


http:0.24,2.91
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M E [O.l, 343.6J kg (5.17) 

ac € [23.2,46.4] MPa (5.18) 

D € [2.0,30.5] cm (5.19) 

5.5 Hughes formula 

Hughes (l8) has the following equations for perforation: 

h 6 x x 
D = 3. D D < 0.7 (5.20) 

11 = l 58.l + l 4 DX > 0.7 (5.21)D .. D .. 

The validity range of these equations are the same as for his penetration fonllula, which is 

given earlier in the report. Here xlD is the penetration depth predicted by the Hughes pe­

netration fonnula. 

5.6 Adeli and Amin formula 

Using a least-squares fit on test data from both Europe (5) and the US (26), Adeli and 

Amin (1) deri ved yet another perforation fonnula: 

~ = 0.906 + 0.32141 - 0.010612 (5.22) 

The validity range is the same as for their penetration fonnula. 

5.7 Petry formula 

In 1950, Amirikian (2) suggested that the perforation thickness was given by the following 
simple fonnula: 

(5.23) 

6 SCABBING 

In this chapter, we list the scabbing equations which are available in the literature. Their 

validity range is always the same as the corresponding perforation fonnula, unless otherwi­
se is stated. The scabbing thickness is denoted by s. 
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6.1 NDRC fOl'mula 

Just as the corresponding perforation forrnula. this scabbing equation was deri ved by Ken~ 
nedy and Chelapati (8), (9), (22) a long time after the tests were actually carried out: 

< 0.65 (6.1) 

~ = 2.12 + 1.36~ 3 < L < 18 (6.2)
D 

6.2 Chang COl'mula 

For scabbing, Chang (7) devised the following forrnula using his Bayesian statisties and 
classical mechanics approach: 

(6.3) 

6.3 Hughes formula 


Hughes (18) gives the following expressions for scabbing thickness: 


~ = 5.0~ ~ < 0.7 (6.4) 

D 
s 1.74 ~ + 2.3 ~ > 0.7 (6.5) 

6.4 Bechtel Corporation formula 

The Bechtel Corporation (24) has proposed the foUowing empirical forrnula for calculating 
the scabbing thickness for cylindrical hard missiles: 

0.4 05 
S = 39.02 M (1::) (6.6)( D3 ) (Jf 

The equation was based on 12 tests with solid missiles and 9 tests with half pipe missiles 
inside the following experimental range: 

V € [37.1, J44.4) m/s (6.7) 

M (' [3.6,97.1) kg (6.8) 
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D E [20.3, 21.8J cm (69) 

r E [30.5,61.0) cm , [7.6, 22.9J cm (6.10) 

a c E [30.3,39.7] MPa (6.11 ) 

The parameter I is the target thickness. Notice that this equation is based on experiments 
in a very limited diameter range. 

6.5 Stone and Webster formula 

Another scabbing forrnula is the one by Stone and Webster (19). It is based on 7 tests with 
solid missiles and 21 tests with pipe missiles. 

2) 1/3s = Mv (6.12)( cD3 

where c is a coefficicnt that depcnds on tiD. The experimental range of the parameters 
was: 


v € [27, 157}mls (6.13) 


M E [1.9, 12.8]kg (6.14) 


D E [4.1,8.9]cm (6.15) 


r € [11.4, IS.2]cm (6.16) 


a c € [22.1,30.3]MPa (6.17) 


Notice that this equation is based on tests with rather thin eonerete plates. 


6.6 Petry form ula 

This scabbing equation was suggested by Amirikian (2) in 1950: 


h = 2.2 ~ (6.18) 


6.7 Adeli and Amin formula 

The last formula that will be mention is the AdeliJAmin (1) scabbing forrnula. Just like 
their perforation formula, it is totally empirical and based on curve fitting. 
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b '" 1.8685 + 0.40351 - 0.0114/2 , ( 6.19) 

7 COMPARISON BETWEEN THE EQUATIONS 

In the previous chapters, we have listed a very large number of equations giv ing arelation 
between penetration depth, perforation thickness, scabbing thickness and various parame­
ters describing the situation. It is, however, obvious that the formulas are all quite diffe­
rent, and consequently their predictions will not be identical. 

Ihis is not really surprising eonsidering what a eomplex field misslie impactJpenetration 
is, especially when one takes lnto account all the different methods which have been used 
in order to derive the equations. Some researchers have used a purely empirical approach, 
while others have applied a semi-analytical method. Some have based their work solely 
on their own experimental data, whi.le others have reinterpreted data from various other 
sources. 

It is also important to note that the formulas are valid for different range of parameters. 
Whether Ihis is a sufficient explanation for their differences, will be investigated in chap­
ters 8 and 9, 

In Ihis chapter, we will try to compare the various formulas and sec how different they re­
allyare. This is done most easily if we define nondimensional quantities and express the 
formulas in terms of them. 

7.1 Nondimensional quantities 

Let us now fecus on the rdation between penetration depth x and impact velocity v. The 

empirical formulas say that x could be proportional to v, it could be proportional to v2, or 
have even another kind velocity dependence. How important is this difference? 

A malhematical function f(z) = z, will in general be different from the function g(z) = z2, 

but notke that jf z is somewhere in the range [0, I], there is not that much difference 
between the functions f and g. The same should apply 10 the rdalion between penetration 
depth and impact velocily. However, the situation is a HUie bit different sinee v is a dimen­
sional quantity. To be able to compare the various empiricaJ formulas, it is convenient to 
write them in a nondimensional form, i.e. define nondimensional quantities and express the 
equations in terms of them. 

When trying this approach, we once again run mto the problem of having equations which 
are dimensionally incorrect. As has been stressed, only the newer formulas have their di­
mensjons corroct, so these are the only formulas that in principle might be accUfllte inside 
any parameter range. This doesn 't mean that any of them actually are exactly right. Ihey 
need not even he the best of the equations, but they could be right. Noue of the older for­
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mulas can be 100% correct, bm they could still be excellent approximations, possibly bet­
rer than the new ones, 

On Ihis topie, we might also add that for an equation to be applicable in all ranges, it ne­

cessarily must have f3 = o, Unless this is the case, the equation will predict penetration 
even when the impact ve!ocity is zero, something which is obviously unphysical, It is seen 
that many of the formulas do not even clear !his hurdle, but Ihis is not surprising as they 
were usually not designed to work for such low velocities. The real worry is the difference 
in important parameters and the dimensionally incorrect formulas, 

7.2 Comparison of nondimensional fonnulas for penetration 

Now we can start comparing the vanous equations. We are mainly interested in the rela­
tion between penetration depth and impact veJocity, 50 we deflne the nondimensional veJ­
ocity Z, and the nondimensional penetration depth X in the following manner: 

(7.1 ) 

Expressing some of the fommlas in terms of these parameters gives us: 

M )0.25 (k )05
a =0.35'IO-J~ =0.232....!.,ACE X = a,ZI.5 + 0.5 (l D3 m2 

Hughes x ~ a2 1.9
l + 12.3ln(1 + 0,32'2) 

NDRC mod, X = a3ZLi + 1.0 

Bernard a. = 0.254 j Y 0.772
Dp 

If the fonnulas really had been dimensionally correct, the "constants" a, and a3 would 

have been real nondimensional constants, bul instead they have turned out to have a di­
mension. In order to compare the equations, it is therefore necessary to give numerical 
vaJues to the vanables. Above, tbe following reasonable values for a projeclile impacting 
a conerete walJ have been inserted: 

M = SOOkg , D = 0.3m , Oc = 30MPa, p = 2000kglm3 

This gives us the foUowing relations: 

Z = O,00248v ,v 40,252 (7.2) 
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In the Hughes equation, the material parameter is the concrete tensile strength al instead of 
compressive strength ac, as in all the other equations. It has been assumed that 

al = O.lac = 3 MPa. In reality, the relationship between these two parameters is more 

complicated, but the assumption above has sutIicient accuracy for our present purposes. 

~,-------,-------,-------,-------,--------.-------, 

5 10 15 20 25 30 
Velocity (l) 

Figure 7.1: 	 Comparison of the non-dimensional penetration equations into infinite 
!argets. 

In the equations which require a nosefactor N to be given, we have inserted the value cor­

responding to a flatnosed projectile. See appendix A for details. 

In figure 7.1, the various equations have been plotted. We notice that except for the ACE, 

Petry and British equations, the disagreement does at first view not seem catastrophic. If 
these formulas are excluded, the highest penetration estimate is, however, for Z = 30 

(corresponding to approximately 1200 mlsl still about 40% larger than the lowest estimate 

This is not reallya satisfactory situation. 

One might get the impression from figure 7.1, that for low velocities the equations ap­
proximately agree with each other. To explore this idea further, all formulas have been 

plotted for low velocities Z < 10 (corresponding roughly to v < 400 mlsl in figure 7.2. 

This makes it quite c!ear that the highest penetration estimate is, for Z = 10, alrnost 

100% larger than the lowest estimate. So not only do the formulas not agree with each ot­
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her at low velocities , but the relative disagreement is actually even worse than for high vel­
ocities. 

O 1 2 3 4 5 6 7 8 9 
Velocity (Z) 

Figure 7. 2: 	 The nondimensional penetration equations into infinite targets for low 

velocities (same colour codes as in figure 7.1 l. 

7_3 Comparison of nondimensional formulas for perforation 
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We are able to use exactly the same procedure in creating nondimensiOllal formulas for 
perforatioll as we ha ve done for penetratioIl. The nondirnensional velocity is the same as 
for penetration, while the nondimensional perforatioll thickness H is dermed by: 

(7 .3) 

Using the same parameter values as for penetration, we have plotted the perforation fOffilU ­

las in figure 7.3. All of the equations, except for Hughes and NDRe, are only valid for 

low velocities, so we have plotted them all for Z < 10. It is seen that for Z = lO, the 
spread between lowest and highest estimate is only about 30%, so there is better agreement 
here than for the penetration fonnulas . 
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Figure 7. 3: Comparison of the nondimensional perjoration equations. 

7.4 Comparison of nondimensionaJ formulas for scabbing 

For scabbing, the situation is once again very sirnilar. We defme the nondimensional scab­
bing thickness S by: 

In figure 7.4, we have plotted the various fonnulas. The spread between lowest and big­
hest estimate seerns to be of approximately same magnitude as the perforation spread, Le. 
roughly 30%. 

7.5 Observations 

There is no doubt that there are large differences between the various equations. Especial­
ly for penetration. the situation is quite bad with predictions sometimes differing by more 
than 100%. For perforation and scabbing, the agreement is better, but still not quite satis­
factory. 
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Figure 7. 4: Comparison of the nondimensional scabbing equations. 

8 WHYARE THE FORMULAS NOT ALL THE SAME? 

In !his chapter, we shall investigate the question of why there are such big differences be­

tween the equations. We s tart with some general remarks about possible explanations . 

8.1 Dimensional problems 

First we address the question of how it is possible derive dimensionally incorrecl equations 

from experimental data. This is related to the mathematical problem of finding the correct 

formulas without solving the full set of differential equations describing the problem . By 

us ing dimensional analysis, it is often found that a fmal answer can only be wriuen in a 

few different ways jf it is to be dimensionally correct. 

Also, it can easily be shown that including more variables in describing a problem, means 

more possible ways of writing the final result. When only a few variables is included in 

the description, there is often basically only one way of writing the final equation. As an 

example, it was mentioned earlier that if the penetration depth is to be described byequa­

tion (2.1), dimensional analysis forces the y-constants to take on the respective values of l , 

3 and 2. If other variables had been a1lowed in the formula, say the target density, there 

would have been several other possible dimensionally correct formulas. 
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Here lies a clue to the reason for the troublesome dimensions. Experiments with penetra­

tion are time- and moneyconsurning, making it very diffieult to vary all kinds ofrelevant 

parameters, as lhis would mean toa many experiments. A eonsequence of this is that when 
snch experiments are performed, only what is believed to be the most important of the 

parameters are varied. 

By using the experimental data, one tries to find the functional relationship of these few 

parameters, but since there in reality are more parameters in vol ved than has been studied, 

this is not an easy task. One rnight interpret an effect whieh is eansed by a variable not 

being studied to be eau sed by a variable being studied. This conld in the end lead to a di­

mensionally incorrect resul!. 

For instance, it rnight seem reasonable to expeet the penetration depth to depend on the tar­
get density, but this parameter is only included in a few of the equations. Including this 

density as a parameter could possibly fix some of the dimensional problems that otherwise 

oeeur. It is important to be aware that those formulas which do not depend on the density, 
probably have been found from experiments done with only one speeific density. Unless 

the penerration actually is independent of the target density (whieh seems physically unrea­

sonable), those formulas are in principle only valid for that specifie density under which 
the tests have been perfonned. 

8.2 Experimental uncertainties 

It must also be remembered that there is a large degree of uncertainty associated with pene­

tration experiments. As can be seen by studying the penetration problem analyticaJly, a lot 

of effects take place during the penetration event and contribute to the fmal outeame. 

In the end, the data one collects from the experiments, rnight not be so easy to interpret. 
As one of many examples, we mention Beth 's formula and Bergman's formula, which are 
both based on the same data, but nonetheless are quite different, due to the faet that they 
used different statistical methods for analysing the data. 

The serni-analytieal fonnulas are also very sensitive to the underlying assumptions. Hug­

hes used the NDRC-formula to generate pseudo-data, but since the force on the projectile 
is assumed to depend on penetration depth in a different way than in the NDRC-formula, 
the final result is quite different. 

When the experimental uncertainties are large, some of the data obtained may be conflic­

ting and misleading. A natural solution is to diseard such data, but since one does not 

know in advance which data are correet and which are not (if we knew this, there would be 
no need for any experiments!), this is a very difficult task. Conseqnently, a researcher 

rnight be able to obtain almost whatever equation he wants, just by selecting the ap pro­
priate datapoints . 

As already mentioned, penetration experiments are very expensive. Ideally, one would 

like to perform thousands of experiments to ensure the validity of the formulas, but in the 
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real world this is impossible. Instead, one has to settle for perforrning as rnany experi­
ments as possible, which generally is only a few. If we take Bernard's fonnula as an 
example, it is based on only Il experiments. This formula depends on four parameters. 
and it should be quite dear that 11 experiments do not give much of an opportunity to 
study the functional form of them alL Another example is the TolchIBushkovitch equa­
tion, which has been obtained panially by fitting rwo datapoints with the best possible 
(straight) line . 

In order to obtain sufficient data, we have seen that some researchers have used experi­
mental data from different sources. There is a drawback 10 this, as the researcllers Ibemsel­
ves are not able lo total ly control tbe circumstances under which the VarlOUS experimems 
are performed. It is a basic principle of science that all experiments should be reproduca­
ble. In penetration mechanics il could seem thal this is only true in principle, bul nol in 
reality since experiments are too 10 be done over and over again. Consequently, 
tlle only remaining alternative is lO take previous results for granted, something which inc­
reases the unccrtainty in the resulring formulas. 

8.3 Different ways of analysing the data 

It has been noticed Ihat some of the equations are split inlo separate formulas, mostly 
dependlng on the impact velocity. Other equations are the same for all velocilies. That 
some of the researchers have needed to lise two (or more) equations to describe the pene­
tretation event might suggest tllal Y3 in (2.1) is nol real ly a eonstant, and that it in faet 
depends on the impacl velocity. This is certaInly whal Bergman and Young seemed to 
beheve. 

lf Ihis assumplion is correct, then it could heIp explaining why there is 50 much disagree­
ment aboul Y3' The various experiments have not been perfonned al the same velocities, 
and therefore gi ve different resuIts since Yl is velocity dependenL Inside a certain range, it 
might be approximately constanI, though. Maybe the experimenls that give Y3 = 1 have 
been performed at completely different velocities than those which say Y3 = 2? Both 
results could aClually be correet, bul they are just not valid in the same range. 

We can test our hypothesis by comparing the data behind the Haldarf},ofiller (Y3 = 2) and 
Bernard (y) = l) equations. On examination of the experimental data, it is seen that the 
former only uses data for quite low impaet velocities, Le. in the range 30-300 mls, while 
the latter is based on data in the range 30Cl--SOO mls. This observation seems to agree very 
weU with what we Slaled above. The hypothesis is further supported by the faet that the 
TolchIBushkovitch formula is also based on data in approximately the same range as the 
Bemard equation. However, due to the Iittle amount of data used to derive lhis formula, 
one probably should not read too much into this. 

Another possibility is that the differences could be due to the VarlOUS experiments be ing 
performed with different kinds of eonerete, Since conerele is such a complex material, its 
material properties depend on several parameters, Perhaps some of the experiments have 
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been on reinforced conerete while others have been 00 normal eonerete, or different aggre­
gate sizes have been used in the various experiments. This could lead to different results 

for the penetratioo depth. 

9 EARLIER REVIEWS OF THE VARIOUS EQUATIONS 

Before presenting our own eonclusioos, let us look at olher reviews of the available equa­

tions that have been done. 

9.1 Kennedy 

In 1975 Kennedy (21) examined most of the (at that time) available equations. These were 
ACE, NDRC, BRL, Amman/Whitney and mod. Petry I+U. 

For penetration, he found that in the range [150.300] mls, the ACE and NDRC-equation 
were io reasonable agreement with experimental data, while all the olher formulas seemed 
to underprediet the penetration depth. For lower velocities, not much data was available at 
that time, bUl results from the Calspan Corporation (28) showed the NDRC-equation to be 
the most accurate here as well. All the other formulas seemed to grossly underprediet pe­
netration in this velocity range. 

His cOIlclusion was to recommend the NDRC-equalion for penetration since it seemed to 
be "valid" over the whole velocity range. 

As for perforation and scabbing, be also recommended the NDRC-equation, bul only until 
something better became available. According to him, Ihis formula had the advantage of 
not being purely empirical, which made him more confident in extrapolating its results 
outside the test range. 

9.2 Sliter 

In 1980, Sliter (26) performed another review of the empirical equalions for low impacI 
velocities. Of the older formulas, only the :-<DRC-equation was considered, though. This 
was partly because of Kennedy's conclusion that it was consistently better than the other 
old formulas. 

Sliter compared the NDRC penetration equation with newer test data and found reasonably 

good agreement for ,,[0.6,2.0). Reasonably good means witrun ± 25%. accuracy. For 

smaller values of ~, the agreement was not equally satisfactory, tbough. 

For scabbing, he concluded that further investigation was needed be fore any of tbe empiri­
cal equations could be applied with confidence for large diameter missiles. In the meanti­
me, ane could use scabbing fonnuJas developed over a limited range of impact parameters. 
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Examples are the Stone/Wehster and Bechtel equations which, as we have seen, are not va· 

lid for a large range of parameters, but turns out to be very good where they are valid. 

For perforation, the CEA-EDF formula and the NDRC-formula was compared, with the 
resul! being that the former gave mueh better agreement wilh data. However, he wams 
that perforation is more dependent on the amount of reinforeement than scabbing and pe­

netration resistanee, 50 consequemly the formula should not be applied outside the range of 

reinforcement, for which it was derived. 

9.3 Adeli and Amin 

In 1985, Adeli and Amin (l} built on the work of Sliter and performed another review 
of the available equations for penetration, perforation and scabbing. Together wilh the 
NDRC, ACE and modified Petry equations, they also included the new equations from 
HaldarlMiller, Hughes and themselves. In their evaluation they used the recent data from 

Sliter. 

For penetration, they drew the following conclusions after comparing the formulas wilh 
the experimental data: 

ACE and the rnodified Petry I overpredicted the penetration depth \Vith a big margin, while 
generaJly the Hughes, HaldarlMiIler and their own fonnulas were the most accurate ones. 
More predsely, for xID > 0.6, the NDRC, HaldarlMiller, Hughes and AdelilAmin were the 

best ones, while for xID < 0.6, the modified Petry Il, HaldarlMilIer and AdelilAmin were 
more accurate. 

Adeli/ Amin then performed a slatislical comparison lO find the best overall fit. If all data 
points were included in the analysis, the quadratic AdelilAmin were found to gi ve the least 

coeffisient of variation. However, in an analysis using only dala points corresponding to a 
velocity larger than 144 mJs, the NDRC-equation was found lo be slightly better than this 
fonnula. 

Their maln conclusion on penetralion was 10 recommend their own quadratic fonnllia for 
velocities below 144 mJs. For velocities between 144 mJs and 310 mJs Ihey recommended 
the NDRC-fonnula or the quadratic fonnula. 

On scabbing they compared all relevant equations, finding the Chang, Bechtel, and their 
own fonnulas to give the best predictions. These are the formulas they recommend. The 
NDRC, ACE and Hughes formulas also agree quile well with the dala, bUl they are more 
conservative. 

For perforation, they also compared the available formulas and found that Adelil Amin, 
Chang, Degen and CEA-EDF to be the best fonnulas. For velocities below 310 mJs these 
formulas were recommended. 

Nolice that AdeliJ Amin only compared the fonnulas in the low velocity range and for non­
deformable missiles. 
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10 SUMMARY 

The review by AdeliJ Amin is the most recent and consequently they have been able 10 

build on Kennedy and Sliter, whiJe using all the available new data. We therefore have 
some confidenee in their conclusions. However, being mainly interested in threats against 
nuclear reactors, they only looked at the low impact velocities. 

From a military point of view, the high velocity regime v > 300 mls is of larger interest. 
For high velocities there are unfortunately very Iitt1e data available, and what is available 
is very old and almost unobtainable. Nearly all high velocity penetration formulas are ba­
sed on data from the American test, during World War Il It is difficult to say how much 
confidenee can be put inta these equations without having seen the original data. We are 
therefore hesitant in making any fum recommendations for this ve10city range. 

For low velocities, we endorse the conclusions by AdeliJ Amin, although with some reser­
varions. When exarnining the test data, it is seen that the data is very much seattered. Thi, 
is obviously due to experimental uncertainries rather than the final penetration formula 
being very "irregular". In our opinion there is no point in using higher and higher polyno­
mials to approximate the dalapoints even cIoser, Instead, what is needed is more reliab1e 
data. 

For high velocities, there is an even greater need for more (reHable) data, It must be said 
though, that the approach of Forrestal et.al. 100ks quite promising and might be something 
to build on in the future. 

For perforation and scabbing, we also endorse the conclusions of AdelilAmin for low vel­
ocities. 

In the high velocity regime, there are onJy the NDRC and Hughes equations available. 
There is no poiol in recommending any of these, as we have no data 10 base our judgement 
on. We know, however, that the NDRC-equations are based on very old data, while the 
Hughes equations partially are based on "what the NDRC-data might have been". 

To summarise our recommendations, we advice that unU] a bet ter theoretkal understanding 
of the penetration phenomenon is established, one should be very careful in applying any 
of the equations. It is especially important to understand that each formula should onJy be 
applied inside the range for which the original tesls took place. 
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APPENDIX 

A NOSEFACTORS 

As we have seen, many of the empirical formulas include a nosefactor N in the equation. 
Unfortunately, there are several different definitions of this factor, which may ultimately 
lead 10 some confusion. Here is an overview of the various definitions: 

Let Sdenote the length of the nose (the part of the projectile which is curved), D the pro­
jectile diameter and R the curvature radius Then we have the following definitions: 

• 

NDRC: N = 0.72 + 0.25S/D , N E [0.72, 1.17] 

Bergman: 	 N = 0.7 + 0.27S/D , N € [0.8,1.2] 

Young: 	 N = 0.56 + 0.183S/D Ogival projectile 

N = 0.56 + 0.2SS / D Conical projectile 

N = 8(R/Dl -	 lForrestal: -2=-4c'c(R=-/7:D,",,)2' 

Hughes gives no analytical formula for his nosefactor, but instead gives its value for the 
following special cases: 

Hughes: 	 N = 1.00 Flat nose 

N = 1.12 Blunt no se 
N = 1.26 Spherical nose 

N = 1.39 Very sharp nose 
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