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A REVIEW OF EMPIRICAL EQUATIONS FOR MISSILE IMPACT EFFECTS ON
CONCERETE

1 INTRODUCTION

In this document, we will be looking at empirical formulas that exist for predicting the
penetration into hard materials, especially concrete and rock.

Two observations can be made already at an early stage of this study. The good news is
that a large number of experiments with penetration into rock and concrete have been per-
formed, and that empirical formulas for the penetration depth have been constructed on the
basis of these tests.

The bad news is that none of the formulas give the same results.

We shall look at the background of the varicus formulas in order to shed some light on
why they are alt different. Unfortunately, not all of the original data has been made availa-
ble 1o us, but it should still be possible 1o draw some conclusions.

It turns out that most of the military formulas were constructed on the basis of extensive
penetration tests performed in the US during World War 1. After the war, there was not
much military interest in the field of concreie penetration, and consequently very few ad-
vances were made until the seventies,

In the sevepties, there was an increased interest from the nuclear industry in oblaining mo-
re accurate formulas for penetration into concrete. The old military formulas were inade-
quate since they were almost exclusively based on experiments with higher velocities and
smaller projectiles than what was of interest to the civilian nuclear industry. Missile vel-
ocities of interest to the nuclear industry are generally in the range 30-180 m/s. As are-
sult, several studies of low velocity penetration were carried out.

Before the seventies, we shall see that no care was taken in assuring that the empirical for-
snulas were dimensionally correct. Consequently, all of the older equations are dimensio-
nally wrong, i.¢. the left hand side of the equation has different units than the right hand
side. Fortunately, this situation has improved a ot in recent years, so that all modern for-
mulas are nondimensional,

2  SOME EXISTING PENETRATION FORMULAS

We start by locking at penetration into very thick targets, ie. targets in which the final pe-
netraticn depth is much less than the target thickness.

Although none of the existing empirical formulas for this situation are identical, at least it
turns out that quite z few of them can be written in the following form:
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The symbols have the following meaning:

x Penetration depth

D Diameter of the projectile

M Mass of the projectile

v Impact veloeity of the projectile

e Compressive strength of target material
a.B.y; Various nondimensional constanis

There are other empirical equations that can not be written in the form of (2.1), and these
will be examined in chapter 4, We start, however, by making some remarks on the dimen-
sionality of equation (2.1).

Notice that the left hand side of {2.1) is nondimensional. The dimension of the right hand
side is, however, dependent on the value of the y~constants. It is clear that we can not
choose y; freely if we want this side to be nondimensional as well. In fact, it can easily be
shown that for equation (2.1) to be nondimensional, the only possible values for the

y ~constants are the following:

i=1 . ¥y =3, yy=2 (2.2)

If the variables above are the only ones included in the description of the problem, dimen-
sional analysts gives us the following expression for x/D

5-12)

It is clear that equation {2.1) with values of y, as in (2.2) is a special case of (2.3). We
shall soon see that in many of the empirical formulas, the y; —constants have other values
than those given in (2.2). As a consequence, these equations are dimensionally wrong,
which means that the left hand side of the equation does not have the same dimension as
the right hand side. If such a formula is written on the form of (2.1}, the left hand side will
be nondimensional, but the right hand side will not.

We shall discuss the significance of the formulas not being nondimensional in chapter 7,
where it will be shown that an equation need not be useless, even though it has the wrong
dimensionality. When doing a real calculation, we just forget about the dimensional pro-
blems, insert the numerical value of each parameter, and pretend that everything ends up
fine with the correct dimension. We have to be very careful when deing so0, as the final
result will then depend on which unit—-systern we have used, i.e. whether variables have
been measured in meters, yards, inches, or whatever.



Most of the equations were originally published in units such as Inches, pounds and simi-
lar. For convenience, all formulas have been converted to ST-units.

Formula o B8 73 Vs vy
Dim. analysis I 2 2
Beth 3.6 10N 0.5N 0.5 2.78 1.5
ACE 3.5 107N 0.5 0.5 2.785 1.5
NDRC mod. (x/D > 2} 3.8-10°N 1.9 0.5 2.9 1.8
Bernard {concrete) 0.254 - p~ 17 0 0.5 3.0 1.0

ACE = Army Corps of Engineers, NDRC = National Defence Research Cormmitee,

The parameter N is a socalled “nosefactor”, which describes the shape of the projectile.
Most of the equations calculate N in different ways, but for simplicity we have chosen o
be a bit sloppy and use the same symbol for all of them. This parameter will typically be
somewhere in the range {0.7,1.2]. For more details about this factor, one should consult
appendix A.

The variable p is the density of the concrete. This guantity could have been included in
the general formula (2.1) by saying that x/D = p%+, but this seemed unnecessary since the
density only appears in the Bernard formula, and y, would consequently have been zero in
all the other equations.

3  COMPARISON OF THE FORMULAS

There are some similarities between the equations since they all have the same general
form of (2.1), but the ¥ ~constants vary from eguation to eguation. As has already been
noted, there also exist other formulas {that will be examined later) which do not fit the
general form of (2.1), so clearly one has a let of equations to choose from.

The question is how important these differences really are? To find out, we look at the
y~constants one by one:

31 Diameter dependence

The parameter that there appears o be least disagreement on is obviously y, which descri-
bes how the final penetration depth depends on the diameter of the projectile. According
to the formulas it should be somewhere in the range {2.785 , 3.0}, The small difference
between the highest and Jowest estimate 15 a good sign, and reinforces our belief in the
validity of these equations.

3.2  Material dependence

The signs are also quite good when it comes to y,. This is a very important parameter be-
cause It gives the relationship between penetration depth and the material properties of the



target, which is our primary interest. Interestingly, all the empirical formulas say
v, = 0.5. The only problem is the dimensional analysis which predicts v, = 1

Without the dimensional analysis, one might have been tempted to conclude that y, = Q.5
hut this would have been premature. We shall soon see that there are other formulas which
give a different dependence on the target properties.

3.3 Velocity dependence

For y4, which describes the dependence on impact velocity, there is also & substantial disa-
greement between the equations. They seem to indicate that y, lies somewhere in the
range [1.0, 2.0]. Itis a good sign that v, has a value in this range because this agrees with
results that can be obtaived from 2 simple quasianalytical appreach. However, it is stili not
satisfactory to have such an inaccurate estimate of y, , even though it apparently is in the
right range.

An interesting point is that all formulas predict a nice “round” y, of either 1.0, 1.5 or 2.0,
with the notable exception of the NDRC-modified equation. Nobody seems to have found
a value of y, somewhere inbetween, say v, = 1.68 or similar.

34  Evaluation

Unfortunately, we have been unable to get our hands on the "raw data” behind the Beth,
NDRC and ACE-equation. Consequently we have had no way of properly evaluating these
formulas. However, it is known that all of these equations are based on data from tests that
were done during World War [1 (21). T total, more than 900 projectiles with diameters of
Llem, L3 cem, 3.7 om 7.5 emand 15.5 em were fired against lighly reinforced concrete
plates with thicknesses in the range [22,195] cim. The concrete strength varied from

g, = 27 MPato 6. = 44 MPa. New types of concrete have been developed after these
tests ook place, and it 15 not certain that new High Performance Concrete (FPC), with
much larger compressive strength, can be correctly described by any of the formulas.

The ACE formula (6) is said to be valid in the velocity range [200,10001 m/s, s0 11 is assu-
med that the the experiments were carried out in this range. The same goes for the NDRC
formula (25). As mentioned above, the concrete was lightly reinforced, but since the
amount of reinforcement did not seem to have a significant impact on penetration depth,
no reinforcement parameter has been included in the equations.

While the Beth and ACE equations are purely empirical, it is known that the NDRC—for-
mula is based on a physical model of the impact process (21). In other words, it is a kind
of semi-analytcal formula. In this model, it is assumed that the force F on the projectile
during penetration is given by:

F o= %}m% , x < 2D (3.13



0.2
F= (—5} x> 2D (32)

However, it has been shown (both analytically and experimentally) that this model does
not give a corract description of the penetration process (107,(131,(18).

In any case, this assumption leads to the following equations:

X o Ja -28,18 X
i) VAKNMD = <%y ‘z)(?“ (3.3}

= KNMD?81 8 4 10, 2> 2 (3.4

X X
D D
It is clear that the velocity dependence 1s determined theoretically, while the empirical data
is used to estimate X, which contains the material dependence. However, if the underlying

assumption is incorrect, there might be something suspect with the whole approach.

In 1946, the work on the NDRC~equation was abandoned without the factor & being
completely defined. However, in 1966, work was continued by Kennedy (21), who sugge-
sted that K o ¢~ %5 He arrived at this result by using a curve fitting procedure on Beth’s
experimental data for larger missile diameters. His final result is therefore known as the
modified NDRC equation,

In 1980, Degen (10) reviewed the assumptions behind the modified NDRC-formuia, and
concluded that they were invalid. He introduced a more realistic force assumption, but
surprisingly this lead to exactly the same equation. So even though the NDRC force as-
sumption was wrong, this did not seem to have any severe consequences.

Although concrete data were used in the development of the Bernard equation (4), this one
is not really supposed 5 be valid as a concrete penetration formula. According to Bernard
himself, the ACE formula fits the experimental data better than his own eguation, which he
instead recommends be used for rock penetration. Since the equation is constructed on the
basis of only 11 1ests, and the target parameters for those tests are not entirely certain, the
accuracy of the prediction is said to be about + 20%.

The Bernard equation was derived from experiments inside the following range:

X
5> 3 (3.5)
M e [5.9, 1066.0] kg {3.6)
D e [7.62,25.88] cm 3.

v € [300,800] m/s (3.8)


http:7.62,25.88
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Extrapolation outside this range is not recommended by Bemard,

4 OTHER MAJOR EMPIRICAL FORMULAS

As already mentioned there are several other empirical formulas which can not be put into
the form of (2.1}, and in this section we will describe the most important ones, Once
again, for convenience, they are all written in SI-units,

4.1 Modified Petry formula

Probably the oldest available formula is the Petry equation (17), which was first developed
in 1910, Tt is given by:

= Q.eéf{%mg(l e 2) @1

P
D
The coeffisient X was first assumed to have the following values depending on the amount
of reinforcement:

K = 0.00799 for unreinforced concrete
K = 0.00426 for “normally reinforced concrete”
K = 0.00284 for “heavily reinforced concrete”

This equation is called the modified Petry I. 'We see that the concrete strength is not inclu-
ded in the equation, which is obvicusly a rmuch too crude approgimation. This was reali-
sed by Amirikian (2), who later found a connecticn between K and o, Unfortunately, he
did not write down an apalytical expression, but instead found a graphic relation. This for-
mula is called the modified Petry 1. For details, one should consult his origina! report (2).

4.2 Bergman formula

Bergman’s formula (3) from 1949 is the one most comumonly used by the Norwegian
Defence. It is actually based on the same data as the Beth, ACE and NDRC formula, but a
different statistical analysis has been carried out, yielding a new eqguation.

Bergman's trick was to split the forrmula into two equations, depending on the impact vel-
ocity, instead of trying 1o write one equation in a closed form. For low velocities, x is just
proportional to the velocity:

X
5= 3.5% , % < 33 (4.2}
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where v, is the impact velocity that gives f—) = 3.5. This velocity must be found from the

following formula, which is valid for larger velocities:

= 486GV | G = 757 1075 (4.3)

X
D 28505

f@ =144 + 218 L 0005; , 2 = 17

If the velocity dependence is disregarded, it can be shown that everything reduces to
Beth's equation.

Bergman's equation is said to be valid in the following range:

v < 1200 m/s (4.4)
M e [0.02,1000] kg | (4.5)
o. € [30,50] MPa (4.6)
D e [0.1,04)m (4.7)

4.3 EKar formula

In 1978, using regression analysis, Kar (20) revised the NDRC-formula to account for the
type of missile material. He ended up with a very simple result, namely:

1.25
x = XNDRC(E%) . F<2 (4.8)
1.25
x=D=( )£ LNy 4.9
= EnDrC )\Em "D ( > )

where E and £, 1s the modulus of elasticity for the projectile matenial and mild steel, re-
spectively. Kar 15, however, cautious in recommending the use of this formula, because the
new factor is only approximate, and should therefore only be used until sufficient test data
is available to make a more accurate equation.

4.4 Haldar and Miller formula

In 1982, Haldar and Miller {16) reviewed the NDRC—equation. However, they were most-
ly interested in the impact of flying objects against nuclear power plants. Typical missiles
have rather low impact velocities, which means that the penetration depth is usually lower



12

than two diameters. Using low velocity data from Sliter (26), they constructed an empiri-
cal formula which fit the data better than the NDRC—equation for x/D < 2.

Their equation is split into three separate formulas:

% w - 002725 + 0220247, 03 <7< 25 {4.10)
Zj% = — 0.592 + 0.446/ . 25<i{<3 (4.11)
% = 0.53886 + 0.06892] . 3 < l< 2l (4.12)

where [ 1s called the "damage potential” and is defined by:

[ = 0372N

AMy?
4.13
D, (4.13}

The nosefactor N is the same as used in the NDRC-formula.

An obvious advaniage of these equations is that they are dimensionally correct. Haldar
and Miller also compared their formula with data from other sources than Sliter, and found
it to be more precise than the NDRC—equation. From a military point of view, there is a
problem with this equation, as it is only valid when the penetration depth is less than twice
the diameter of the projectile. This is usually not sufficient for military applications.

4.5  Adeli and Amin formuls

In 1984, using data from Sliter (26), two new empirical eguations were constructed by
Adeli and Amin (1). They examined the data using a least squares technique, and found
that the best fit was given by either a quadratic or a cubic polynomial:

g = 0.0416 + 0.1698] ~ 0.0045}7 {(4.14)
% = 0.0123 + 0.196] — 0.0087° + 0.0001/° (4.15)
where [ is defined by:

My?
I=N

Do, (4.16)

The formulas are valid in the following range:

v e [27,311 m/s {4.17)
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M e [0.1,343] kg (4.18)

I e [0.3,21] (4.19)
X

D<i2, <2 (4.20

4.6  Hughes formula

The Hughes formula {18) from 1984 15 also dimensionally correct. It is given by:

1+ 123 1n(1 + OEOBMLﬁ)G;D3

L

arlE

Another interesting feature of this equation is that the o, parameter denotes the concrate
tensile strength, whereas the relevant parameter in all the other equations has been the
compressive strength. For concrete, the compressive sirength 18 roughly ten times the ten-
sile strength,

Just like the NDRC-equation, the Hughes formula is semi-analytical, i.e. based on both
analytical methods and experimental data. Hughes, however, used an allegedly more rea-
listic assumption for the force on the projectile during penetration. It was assumed that on
impact the force rises instantaneously to the maximum value F;, and then falls off parabo-
lically according to:

2
F = }«"5( - —}i} (4.22)

This gives a final penetration depth of:

X gl gL MY
=P 1= 50 423

Experimental data is supposed to determine the value of § and the functional form of S(f3.
Hughes was also unable to obtain the ACE and NDRC data, s0 he instead used these for-
mulas to generate "pseudo—data”. He also mixed in some more recent data from Sliter (26)
and Berniaud (5), giving the following result:

B =019N, S =1+ 12.3In(1 + 0.03]) (4.24)

which of course gives exactly (4.21). Hughes pointed out that the formula is only valid as
long as neither scabbing nor perforation occurs, and from experimental data he derived rwo
mathematical criteria for this. These are given in chapter 5 and 6.
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Hughes's formula is valid for I < 3500, which roughly corresponds to impact velocities up
t0 1050 /s (given reascnable values for the other parameters). The projectiles are suppo-
sed to be hard cylindrical missiles impacting the target normally, while the concrete is
lightly reinforced. For very low values of /, the theory is expected to predict too deep
penetration since elastic and global effects are neglected in the force assumption. On com-
parison with other formulas, we shall indeed see that this is the case.

47  Young formula

Young's formula (30) is another very well known equation. Just as Bergman’s formula, 1t
has to be split into two separate equations depending on the impact velocity. For a cylind-
rical projectile, the equations are given by

0.7
X Cn-3KSNIM C1a 42 g
L= 110 107830 (D?} ¢l + 2.16 - 107%2) | v < 61m/s (4.25)
0.7
X o004 10-5ESN MY 304y > 6lm/s (4.26)
D ) D tD2 T

where S is a penetrability constant of the material. For semi~infinite concrete targets with
a cure time of more than one year, this 1§ given by

§ = 13.93(%) (4.27)

where P is the percentage of rebar. The constant § will typically be in the range [0.7,1.1].
For hard target materials, such as concrete, X is given by:

K = 043938 M < 181kg (4.28)
K=10 M > 181 kg (4.29)

There are several assumptions related to this equation:

x> 2L (4.30)
v < 1350 m/s (.31

where L is the noselength. Also, the weight of the projectile should be “more than a few
pounds”, according to Young.

Young’s formula is seen to be linear for larger velocities and approximately quadratic for
smali velocities. Itis also clear that Young's formula essentially gives y, = 0.3, which is a
lower estimate than what is given by any of the other formulas.
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4.8  British formula

There is also a quite comumon Bnitish formula (29

1.66 - 103 D28gu2

£ =481 - 10741 ~

D {4.32)

where d is the aggregate size.

It is clear that this formula has a velocity and diameter dependence which is similar to the
other formulas, but the same can not be said about the material dependence. The penetra-
tion depth apparently decreases linearly with the concrete hardness, which is different from
the predictions of all the other formulas.

4,9  Tolch and Bushkavitch formula

Of other significant formulas, one should include the equation of Tolch and Bushkovitch
(27) from 1947. They conducted experiments on peneiration into many different kinds of
rock, and summarised their results in the following formula:

£ =2217- 10"k A25 (4.33)

The constant & has a different value depending on whether we are dealing with soft or hard
maternals:

Hard rock: ko= 27
Soft rock (Concrete): k=47

These two values are averages of values for several materials, but given the large experi-
mental uncertainties, it is probably appropriate only to give the numbers as averages. If we
do not take the average value, Tolch and Bushkovitch found the following approximate
relation between penetration depth and compressive strength:

x o g3 (4.34)

This would comrespond to a value of ¥, = 1/3, which is a quite weak material dependence
compared with most other formulas.

The Tolch and Bushkovitch equation is based on very little data, which might be a pro-
blem. Usually, only two or three experiments have been performed on each type of mate-
rial, and this does not give enough information to enable any certain conclusions about the
parameter dependence to be drawn. One could perhaps even question whether any conclu-
sions at all can be made from so little data. In any case, we note that the formula would
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give y, = 1.0, which is inside the same range as the value given by the other equations
which have been studied.

In the original paper of Tolch and Bushkovitch (27), the constant corresponding to y, is
given as exactly 17/6. It is not a good idea to assign such an accurate value to a constant
which has been derived from experimental data. Things are made even worse by the fact
that their average experimental value for y, 18 2.89 and not 17/6 = 2.83. The reason that
the researchers have used 17/6 instead of the value suggested by their data, is that they
wanted to make a "compromise” with Beth whe, as we have seen, found y, = 278, Appa-
rently y, = 17/6 seemed like the perfect choice.

None of the experiments were performed on concrete, so it is not clear whether the formula
can be applied to such a material. The experimental impact velocities were in the range
300 — 1000 mi/s.

4.1¢ Feorrestal formula

Recently a new formula for penetration inte concrete has been created by Forrestal et al.
{123, (13). This formula is even partly analytical. It is assumed that the projectile acts as a
rigid body, and that the force on it is given by (12):

2Mvi — aD3o So,)
2M + wD*Np,

F=om (435)

x|

(0:S0) + NoV2)x, O <x <2D, Vi =

F=ZDYo S0 + Nop?), x > 2D (4.36)

il
INE

The dimensionless empirical constant § is a function of the compressive strength. These
equations may look similar to the NDRC force assumptions, but they rest, however, on a
much more solid basis, as they can be analytically derived from cavity—expansion theory
(23) under the assumption that the projectile is a rigid body.

The experiments were all performed for approximately the same o, , so S is assumed con-
stant. Now an expression for the penetration depth can be derived analytically, and it is
found to be:

Np, V2
X pa 7 |
D .."ID3 rN n(l GCS(GC)) ? (4'37)

The functional dependence of § on o, is not found from theory, and must be determined
experimentally. No analytical expression for § has been given by Forrestal et.al, but expe-
rimentally 1t is indicated that § decreases with increasing compressive strength.

Several tests have been performed to validate formula (4.37), and it appears to agree quite
well. The experiments were done with the following range of parameters:
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ve [277,9451 m/s {4.28)
0. € [11.7,15.0) MPa , 132.4,40.11MPa , {905, 1083] MPq (4.39)
M= 0064kg, 05 kg, 59ke (4.40)
D= 127Tem, 269cm, 7.62cm (4410

Notice especially that the tesis mostly involved rather small projectiles. In (4.39)~ (4.41}
above, M = 0.064 kg corresponds to D = [.27 cm etc.

4.11 TBRAA formula

The British Textbook of Air Armament {TBAA) (14) gives the following equation for pe-
netration into concrete:

\ 97510702

{1
X _ M 1D v
5= 2.52{}4m§%§§(€) (533.451 (4.42)

where € is the maximum size of coarse aggregate in the concrete. The validity range of
the formula i$ given as:

o, € [5.5,69.1] MPa (4.43)
M e [0.14,9975} kg (4.44)
D & [0.013,096] m (4.45)
v < 1130 m/s (4.46)

A new feature of this equation is that the velocity exponent depends on the concrete comp-
ressive strength. An implication of this is that for concrete with larger values of o, the pe-
netration depth is not as velocity dependent as for less solid types of concrete. However, if
we insert the allowed values of o, it is seen that the exponent will be in the range
[1.07,2.01], which is the same range as in all the other equations.

5 PERFORATION

So far we have examined the penetration depth in very thick targets. If we do not make
the assumnption about large target thickness, two other important phenomena may take pla-
ce, namely perforation and scabbing.


http:1.07,2.01
http:4.39)-(4.41
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Perforation is the entry of a2 missile into the target and its exit out of the back face.

Scabbing is the ejecting of concrete pieces from the back face, with at least a size equal 10
the thickness of the concrete layer between the surface and the reinforcement (18) , (26).

An interesting quantity 15 the required target thickness to prevent perforation/scabbing.
This is called the perforation/scabbing thickness, and is usually expressed as a function of
the penetration in ap infinite medium.

In this chapter, we review the various equations that exist for predicting perforation, and
then we ook at scabbing in the next chapter. The perforation thickness is denoted by 4.

5.1 NDRC formula

According to the NDRC--formula, the perforation thickness is given by:

- X £ s
Booafeisn, 135<£<i3s (5.13
h X 0 x

. 3.19(5] - 0.718(5J L& <13 (5.2)

whare mg; is the penetration depth according to the NDRC penetration formula. These equa-

tions were derived by Chelapati and Kennedy (21),(8),(9),(22).

According to Chang (7), the NDRC perforation formula is too conservative, which means
it predicts perforation in cases where the projectile does not go through.

52 CEA-EDF formula

The CEA-EDF (Comrmuissariat 4 ['Energte Atornigue — Electricité de France) formula was
proposed in 1977 by Berriaud et.al. (5). This equation was based on daita from new French
experiments conducted by the CEA-EDF. The formula is given by:

- M 63 .75
h o= Q.82 ﬁ W {§3)

The equation is valid inside the following range:

v < 200 m/s (3.4)
00 € [150,300] kg/m? (5.5)

M e [20,300] kg {5.6)
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B e 02429 (5.7)
53  Degen formula

A few years later, in 1980, using the experimental data of several different sources (5),
{113, (15}, Degen (10) statistically derived another perforation equation:

2
hoanX _gafX X
Lo22% 0.3( Q) L &< (5 8)
L. X X
L =069 +129% , 152 <% < 1341 (5.9)

where x/D is given by the NDRC-penerration formula. The experiments covered the fol-
lowing ranges:

v € [25,310] m/s (5.10)
M e [15 340 kg (5.11}
. ¢ [28,43] MPa (5.12)
D e [10,31] em (5.13)
H ¢ [15,60] cm (5.14)

where H is the wall thickness. The reinforcement was between 160 kg/m> and 350 kg/m?,
but variation of this parameter did not produce any significant effect.

54  Chang formula

Chang (7) derived a perforation formula in 1981, almost exclusively using classical me-
chanics. The reason why his equation is still classified as empirical is that he applied a
Bayesian statistical approach on some test data in order to determine a constant. His final
gquation reads:

ho= 2,79‘ g@’i y075 (5.15)
L

As always, we also state the validity range of the fonmula:

ve [167,311.81m/s {5.16)
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M e [0.1,343.6] kg (5.17)
0. € [23.2,46.4] MPa (5.18)
D € [2.0,30.5] cm (5.19)

5.5 Hughes formula

Hughes (18} has the following eguations for perforation:

h oagi x

L=36%  £<07 (5.20)
h _ X X

L =185+ 14, £>07 (5.21)

The validity range of these equations are the same as for his penetration formula, which 1s
given earlier in the report. Here x/D i3 the penetration depth predicted by the Hughes pe-
netration formula.

5.6 Adeli and Amin formula

Using a least—squares fit on test data from both Europe (5) and the US (26), Adeli and
Amin (1) derived yet another perforation formula:

2
= 0.906 + 0.3214] — 0.0106/% [ = ND%‘;- (5.22)
&

Ui

The validity range is the same as for their penetration formula.

5.7  Petry formula

In 1950, Amirikian (2) suggested that the perforation thickness was given by the following
simple formula:

=2 (5.23)

Tl

a
D

6 SCABBING

In this chapter, we list the scabbing equations which are available in the literature. Their
validity range is always the same as the corresponding perforation formula, unless otherwi-
se is stated. The scabbing thickness is denoted by s.
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6.1 NDRC formula

Just as the corresponding perforation formula, this scabbing equation was derived by Ken-
nedy and Chelapati (8), (9), (22) a long time after the tests were actually carried out

)

5 x xy x

B = ?‘%MD - 5.@5(?}} DB < (.65 (6.3
S X 3

S= 21241365, 3<£ <18 (6.2)

6.2  Chang formula

For scabbing, Chang (7) devised the following formula using his Bayesian statistics and
classical mechames approach:

04
- M 0.67
5 = 314( 3}391.) y (6.3)

6.3  Hughes formula

Hughes (18} gives the following expressions for scabbing thickness:

....‘E... o o .
D 5.%: , g < 0.7 (6.4)
D 1.74D + 2.3, 5 > 0.7 {6.5)

6.4  Bechtel Corporation formula

The Bechtel Corporation (24} has proposed the following empirical formula for calculating
the scabbing thickness for cylindrical hard missifes:

04, .05

0
s = 39.@2(5%) 1 (6.6)

The equation was based on 12 tests with solid missiles and 9 tests with half pipe missiles
inside the following experimental range:

v e [37.1,144.4) m/s (6.7)

M e [3.6,97.1) ke (6.8}
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D e [20.3,21.8] cm (6.9)
t € [30.5,61.0}em , [7.6,22.91cm (6.10)
. € [30.3,39.7] MPa (6.11)

The parameter 7 1s the target thickness. Notice that this equation is based on experiments
in a very limited diameter range.

6.5 Stone and Webster formula

Anocther scabbing formula is the one by Stone and Webster (19). It is based on 7 tests with
solid missiles and 21 tests with pipe missiles.

1/3

_ (Ml -,
5 = (;B"m}-) (6.12)

where c is a coefficient that depends on 7/D. The experimental range of the parameters
was:

v e [27,187im/s (6.13)
M e [19, 128}kg (6.14)
D e [4.1,89]cm (6.15)
t e [11.4,1521cm (6.16)
o, € [22.1,30.3]1MPa (6.17)

Notice that this equation is based on tests with rather thin concrete plates,

6.6 Petry formula
This scabbing equation was suggested by Amirikian (2) in 1950;

=22 (6.18)

Tl

=i
D

6.7 Adeli and Amin formula

The last formula that will be mention is the Adeli/Amin (1) scabbing formula. Just like
their perforation formula, it is totally empirical and based on curve fitting.
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s 2 M2
e -+ 0.4035f - O, . = N= .
) 1.8685 .01147 53{5; (6.19)

7 COMPARISON BETWEEN THE EQUATIONS

In the previous chapters, we have listed a very large number of equations giving a relation
between penetration depth, perforation thickness, scabbing thickness and various parame-
ters describing the sitwation. It is, however, obvious that the formulas are all quite diffe-
rent, and consequently their predictions will not be identical.

This is not really surprising considering what a complex field missile impact/penetration
is, especially when one takes into account all the different methods which have been used
in order 1o derive the equations. Some researchers have used a purely empincal approach,
while others have applied a semi-analytical method. Some have based thewr work solely
on their own experimental data, while others have reinterpreted data from various other
souLCes.

It is also important to note that the formulas are valid for different range of parameters.
Whether this is 2 sufficiznt explanation for their differences, will be investigated in chap-
ters 8 and 9,

In this chapter, we will try to compare the various formulas and see how different they re-
ally are. This is done most easily if we define nondimensional quantities and express the
formulas in terms of them.

7.1  Nondimensional quantities

Let us now focus on the relation between penetration depth x and immpact velocity v, The
empirical formulas say that x could be proportional to v, it could be proportional to +*, or
have even another kind velocity dependence. How important is this difference?

A mathematical function f(z) = z, will in general be different from the function g(z) = 2%,
but notice that if z is somewhere in the range [0,1], there is not that much difference
between the functions fand g. The same should apply to the relation between penetration
depth and impact velocity. However, the situation is a little bit different since v is a dimen-
sional guantity. To be able to compare the various empirical formulas, it is convenient to
write them in a nondimensional form, ie. define nondimensional quantities and express the
equations in terms of them.

When trying this approach, we once again run info the problem of having equations which
are dimensionally incorrect. As has been stressed, only the newer formulas have their di-
mensions correct, so these are the only formulas that in pricciple might be accurate inside
any parameter range. This doesn’t mean that any of them actually are exactly right, They
need not even be the best of the equations, but they could be right. Noue of the older for-
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mulas can be 100% correct, but they could still be excellent approximations, possibly bet-
ter than the new ones.

On this topic, we might also add that for an equation to be applicable in all ranges, it ne-
cessarily must have § = 0. Uniess this is the case, the equation will predict penetration
even when the impact velocity is zero, something which is obviously unphysical. It is seen
that many of the formuias do not even clear this hurdle, but this is not surprising as they
were usually not designed to work for such low velocities. The real worry is the difference
i1 important parameters and the dimensionally incorrect formulas.

7.2 Comparisen of nondimensional formulas for penetration

Now we can start comparing the various equations. We are mainly interested in the rela-
tion between penetration depth and impact velocity, so we define the nondimensional vel-
ocity Z, and the nondimensicnal penetration depth X in the following manner:

7 = /E%-»u L X=% (7.1)

Expressing some of the formulas in terms of these parameters gives us:

Mo 02§ X 05
ACE X=g2""+05 a, = (.35 - 1(}“3( 3‘7) =2 Q.Q3E(-~%s>

i} m

- 42 =
Hughes X = Tnmaniroim =19
o1 X 6.5

NDRC mod. X = a,2'% + 1.0 ay =38 za—ﬁ(g) 04 = &073(%) 503
Bernard X=aZ a, = 0.254 gf‘gg = 0.172

If the formulas really had been dimensionally correct, the “constants” g, and a, would
have been real nondimensional constants, but instead they have turned out to have a di-
mension. In order to compare the equations, it is therefore necessary to give numerical
values to the variables. Above, the following reasonable values for a projectile impacting
a concrete wall have been inserted:

M=500kg , D=03m , o.=230MPa , p=2000ke/m’
This gives us the following relations:

Z = 0.00248v , v = 40,2527 (7.2}
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In the Hughes equation, the material parameter is the concrete tensile strength o, instead of
compressive strength o, as tn all the other equations. It has been assumed that

o, = 0.10. = 3 MPa. In reality, the relationship between these two parameters is more
complicated, but the assumption above has sufficient accuracy for our present purposes.

40 . 1 ' ' '
NDRC
31| ——  Hughes ]
—— TBAA
sl ——  Haldar/Miller .
— ACE
——  Bernard
W25 | r=e=e=  Petry
?é~ SERERE Tolch/Bushkovitch
.% ol | — — - Biritish
- [ [P Young v
s Bergman i
15+ |
10f -
| |
- : I
0 5 10 15 20 25 30

Velocity (Z)

Figure 7.1:  Comparison of the non—dimensional penetration equations into infinite
targets.

In the equations which require a nosefactor N to be given, we have inserted the value cor-
responding to a flamosed projectile. See appendix A for details.

In figure 7.1, the various equations have been plotted. We notice that except for the ACE,
Petry and British equations, the disagreement does at first view not seem catastrophic. If
these formulas are excluded, the highest penetration estimate is, however, for Z = 30
(corresponding to approximately 1200 m/s) still about 40% larger than the lowest estimate
This is not really a satisfactory situation.

One might get the impression from figure 7.1, that for low velocities the equations ap-
proximately agree with each other. To explore this idea further, all formulas have been
plotted for low velocities Z < 10 (corresponding roughly to v < 400 m/s) in figure 7.2.
This makes it quite clear that the highest penetration estimate is, for Z = 10, almost
L00% larger than the lowest estimate. So not only do the formulas not agree with each ot-
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her at low velocities, but the relative disagreement is actually even worse than for high vel-
ocities.

Penetration {X)

-1 1 1 1 L 1 I 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Velocity (2)

Figure 7.2:  The nondimensional penetration equations into infinite targets for low
velocities (same colour codes as in figure 7.1).

7.3  Comparison of nondimensional formulas for perforation

We are able to use exactly the same procedure in creating nondimensional formulas for
perforation as we have done for penetration. The nondimensional velocity is the same as
for penetration, while the nondimensional perforation thickness H is defined by:

H - (71.3)

lEy

Using the same parameter values as for penetration, we have plotted the perforation formu-
las in figure 7.3. All of the equations, except for Hughes and NDRC, are only valid for
low velocities, so we have plotted them all for Z < 10. Itis seen that for Z = 10, the
spread between lowest and highest estimate is only about 30%, so there is better agreement
here than for the penetration formulas.
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Figure 7. 3:  Comparison of the nondimensional perforation equations.

7.4  Comparison of nondimensional formulas for scabbing

For scabbing, the situation is once again very similar. We define the nondimensional scab-
bing thickness § by:

§ = (7.4)

il

In figure 7.4, we have plotted the various formulas. The spread between lowest and hig-
hest estimate seems to be of approximately same magnitude as the perforation spread, i.e.
roughly 30%.

7.5 Observations

There is no doubt that there are large differences between the various equations. Especial-
ly for penetration, the situation is quite bad with predictions sometimes differing by more

than 100%. For perforation and scabbing, the agreement is better, but still not quite satis-

factory.
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Figure 7. 4:  Comparison of the nondimensional scabbing equations.

8 WHY ARE THE FORMULAS NOT ALL THE SAME?

In this chapter, we shall investigate the question of why there are such big differences be-
tween the equations. We start with some general remarks about possible explanations.

8.1 Dimensional problems

First we address the question of how it is possible derive dimensionally incorrect equations
from experimental data. This is related to the mathematical problem of finding the correct
formulas without solving the full set of differential equations describing the problem. By
using dimensional analysis, it is often found that a final answer can only be written in a
few different ways if it is to be dimensionally correct.

Also, it can easily be shown that including more variables in describing a problem, means
more possible ways of writing the final result. When only a few variables is included in
the description, there is often basically only one way of writing the final equation. As an
example, it was mentioned earlier that if the penetration depth is to be described by equa-
tion (2.1), dimensional analysis forces the y—constants to take on the respective values of 1,
3 and 2. If other variables had been allowed in the formula, say the target density, there
would have been several other possible dimensionally correct formulas.
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Here lies a clue to the reason for the troublesome dimensions. Experiments with penetra-
tion are time- and moneyconsuming, making it very difficult to vary all kinds of relevant
parameters, as this would mean too many experiments. A consequence of this is that when
such experiments are performed, only what is believed to be the most important of the
parameters are varied.

By using the experimental data, one tries to find the functional relatonship of these few
parameters, but since there in reality are more parameters involved than has been studied,
this is not an easy task. One might interpret an effect which is caused by a variable not
being studied to be caused by a variable being studied. This could in the end lead to a di-
mensionally incorrect resullt.

For instance, 1t might seem reasonable to expect the penetration depth to depend on the tar-
get density, but this parameter is only included in a few of the equations. Including this
density as a parameter could possibly fix some of the dimensional problems that otherwise
occur. It 1s important to be aware that those formulas which do not depend on the density,
probably have been found from experiments done with only one specific density. Unless
the penetration actually is independent of the target density (which seems physically unrea-
sonable), those formulas are in principle only valid for that specific density under which
the tests have been performed.

8.2 Experimental uncertainties

It must also be remembered that there is a large degree of uncertainty associated with pene-
tration experiments. As can be seen by studying the penetration problem apalytically, a lot
of effects take place during the penetration event and contribute to the final outcome.

In the end, the data one collects from the experiments, might not be so easy to interpret.
As one of many examples, we mention Beth's formula and Bergman’s formula, which are
both based on the same data, but nonetheless are quite different, due to the fact that they
used different statistical methods for analysing the data.

The serni-analytical formulas are also very sensitive to the underlying assumptions. Hug-
hes used the NDRC—formula to generate pseudo-data, but since the force on the projectile
is assumed to depend on penetration depth in a different way than in the NDRC—formula,
the final result is quite different,

When the experimental uncertainties are large, some of the data obtained may be conflic-
ting and misleading. A natural solution is to discard such data, but since one does not
know in advance which data are correct and which are not (if we knew this, there would be
no need for any experiments!), this is a very difficult task. Consequently, a researcher
might be able to obtain almost whatever equation he wants, just by selecting the appro-
priate datapoints,

As already mentioned, penetration experiments are very expensive. Ideally, one would
like to perform thousands of experiments to ensure the validity of the formulas, but in the
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real world this is impossible. Instead, one has to settle for performing as many experi-
ments as possible, which generally is only a few. If we take Bernard’s formula as an
example, it is based on only 11 experiments. This formula depends on four parameters,
and it should be quite clear that 11 experiments do not give much of an opportunity to
study the functional form of them all. Another example is the Tolch/Bushkovitch equa-
tion, which has been obtained partially by fitting two datapoints with the best possible
(straight} line.

In order to obtain sufficient data, we have seen that some researchers have used expen-
mental data from different sources. There s a drawback to this, as the researchers themsel-
ves are not able to totally control the circumstances under which the various experiments
are performed. It 15 a basic principle of science that all experiments should be reproduca-
ble. In penetration mechanics it could seem that this is only true in principle, but not 1
reality since experiments are too expensive to be done over and over again. Consequently,
the only remaining allernative 13 o take previous resuits for granted, something which inc-
reases the uncertainty in the resulting formulas,

8.3  Different ways of analysing the data

It has been noticed that some of the equations are split into separate formulas, mostly
depending on the impact velocity. Other equations are the same for all velocities. That
some of the researchers have needed to use two (or more) equations to describe the pene-
tretation event might suggest that ¥4 in (2.1) is not really a constant, and that it in fact
depends on the impact velocity, This is certainly what Bergman and Young seemed to
believe.

If this assumption 1s correct, then it could help explaining why there is so much disagree-
ment about ¥4, The various experiments have not been performed at the same velocities,
and therefore give different results since y- is velocity dependent. Inside a certain range, it
might be approximately constant, though. Maybe the experiments that give ¥, = | have
been performed at completely different velocities than those which say v; = 27 Both
results could actually be correct, but they are just not valid in the same range.

We can test our hypothesis by comparing the data behind the Haldar/Miller (y, = 2) and
Bernard (¥4 = 1) equations. On examination of the experimental data, it is scen that the
former only uses data for quite low impact velocities, i.e. in the range 30-300 m/s, while
the latter is based on data in the range 300800 m/s. This observation seems to agree very
well with what we stated above. The hypothesis is further supported by the fact that the
Toleh/Bushkovitch formula i3 also based on data in approximately the same range as the
Bernard equation. However, due to the little amount of data used to derive this formula,
one probably should not read too much into this.

Another possibility is that the differences could be due to the various experiments being
performed with different kinds of concrete. Since concrete is such a complex material, its
material properties depend on several parameters. Perhaps some of the experiments have
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been on reinforced concrete while others have been on normal concrete, or different aggre-
gate sizes have been used in the various experiments. This could lead to different results

for the penetration depth.

9  EARLIER REVIEWS OF THE VARIOUS EQUATIONS

Before presenting our own conclusions, let us look at other reviews of the available equa-
tions that have been done.

9.1  Kennedy

In 1975 Kennedy (21) examined most of the (at that ime} avatlable equations. These were
ACE, NDRC, BRL, Amman/Whitney and mod. Petry I+

For penetration, he found that in the range [150,300] m/s, the ACE and NDRC-equation
were in reasonable agreement with experimental data, while all the other formulas seemed
to underpredict the penetration depth. For lower velocities, not much data was available at
that time, but results from the Calspan Corporation (28) showed the NDRC—equarion to be
the most accurate here as well, All the other formulas seemed to grossly underpredict pe-
netration in this velocity range.

His conclusion was to recommend the NDRC-equation for penetration since it seemed to
be “valid” over the whole velocity range.

As for perforation and scabbing, he also recommended the NDRC—equation, but only until
something better became available. According to hum, this formula had the advantage of
not being purely empirical, which made him more confident in extrapolating its results
outside the test range.

5.2  Sliter

In 1980, Sliter (26) performed another review of the empirical equations for low impact
velocities. Of the older formulas, only the NDRC-equation was considered, though. This
was partly because of Kennedy's conclusion that it was consistently better than the other
old formulas.

Sliter compared the NDRC penetration equation with newer test data and found reasonably
%« e [0.6,2.0]. Reasonably good means within + 25%. accuracy. For
smaller values of %, the agreement was not equally satisfactory, though.

good agreement for

For scabbing, he concluded that further investigation was reeded before any of the empin-
cal equations could be applied with confidence for large diameter missiles. In the meanti-
me, one could use scabbing formulas developed over a limited range of impact parameters.
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Examples are the Stone/Webster and Bechtel equations which, as we have seen, are not va-
lid for a large range of parameters, but furns out to be very good where they are valid,

For perforation, the CEA-EDF formula and the NDRC-formula was compared, with the
result being that the former gave much befter agreement with data. However, he wams
that perforation is more dependent on the amount of retnforcement than scabbing and pe-
netration resistance, so consequently the formula should not be applied outside the range of
reinforcement, for which it was derived.

9.3 Adeli and Amin

In 1985, Adeli and Amin (1) built on the work of Sliter and performed vet another review
of the available equations for penetration, perforation and scabbing. Together with the
NDRC, ACE and modified Petry equations, they also included the new equations from
Haldar/Miller, Hughes and themselves. In their evaloation they used the recent data from
Sliter.

For penetration, they drew the following conclusions after comparing the formulas with
the experimental data:

ACE and the modified Petry I overpredicted the penetration depth with a big margin, while
generally the Hughes, Haldar/Miller and their own formulas were the most accurate ones.
More precisely, for x/D » 0.6, the NDRC, Haldar/Miller, Hughes and Adeli/Amin were the
best ones, while for x/D < (.6, the modified Petry II, Haldar/Miller and Adeli/Amin were
more accurate.

Adeli/Amin then performed a statistical comparison to find the best overall fit. If all data
points were included in the analysis, the guadratic Adeli/Amin were found to give the least
coeffisient of variation. However, in an analysis using only data points corresponding to a
velocity larger than 144 a5, the NDRC-eqguation was found to be slightly better than this
formula.

Their main conclusion on penetration was to recommend their own quadratic formula for
velocities below 144 m/s. For velocities between 144 m/s and 310 s/s they recommended
the NDRC—formula or the quadratic formula.

On scabbing they compared all relevant equations, finding the Chang, Bechtel, and theis

own formulas to give the best predictions. These are the formulas they recommend. The
NDRC, ACE and Hughes formulas also agree quite well with the data, but thev are more
conservative.

For perforation, they also compared the available formulas and found that Adeli/Amin,
Chang, Degen and CEA-EDF to be the best formulas. For velocities below 310 m/s these
- formulas were recommended.

Notice that Adeli/Amin only compared the formulas in the low velocity range and for non-
deformable missiles.



33

10 SUMMARY

The review by Adeli/Amin is the most recent and consequently they have been able to
build on Kennedy and Sliter, while using all the available new data. We therefore have
some confidence in their conclusions. However, being mainly interested in threats against
nuclear reactors, they only looked at the low 1mpact velocities.

From a military point of view, the high velocity regime v > 300 m/s is of larger interest.
For high velocities there are unfortunately very little data available, and what is available
is very old and almost unobtainable. Nearly all high velocity penetration formulas are ba-
sed on data from the American tests during World War I1. It is difficult to say how much
confidence can be put into these equations without having seen the original data. We are
therefore hesitant in making any firm recommendations for this velocity range.

For low velocities, we endorse the conclusions by Adel/Amun, although with some reser-
vations. When examining the test data, it is seen that the data is very much scatiered. This
is obviously due (o experimental uncertainties rather than the final penetration formula
being very “irregular”. In our opinion there is no point in using higher and higher polyno-
mials to approximate the datapoints even closer. Instead, what is needed is more reliable
data.

For high velocities, there is an even greater need for more (reliable} data. It must be said
though, that the approach of Forrestal et.al. looks quite promising and might be something
to build on in the future.

For perforation and scabbing, we also endorse the conclusions of Adeli/Amin for low vel-
ocities.

In the high velocity regime, there are only the NDRC and Hughes equations available.
There is no poiot in recommending any of these, as we have no data to base our judgement
on. We know, however, that the NDRC-equations are based on very old data, while the
Hughes equations partially are based on “what the NDRC-data might have been”.

To summuarise our recommendations, we advice that until a better theoretical understanding
of the penetration phenomenon is established, one should be very carefu! in applying any
of the equations. It is especially important 1o understand that each formula should only be
applied inside the range for which the original tests took place.
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APPENDIX
A NOSEFACTORS

As we have seen, many of the empirical formulas include a nosefactor N in the equation.
Unfortunately, there are several different definitions of this factor, which may ultimately
lead to some confuston, Here is an overview of the various definitions:

Let § denote the length of the nose (the part of the projectile which is curved), D the pro-
jectile diameter and R the curvature radius Then we have the following definitions:

NDRC: N =072 +0255/D , N e [072,1.17]
Bergman: N=07+0275/D , Ne 08 12]
Young: N = 0.56 4+ 0.1835/D Ogival projectile
N = 0.56 + 0.258/D  Conical projectile
&(R/D) —~
Forrestal: = —M
24(R/D)Y?

Hughes gives no analytical formula for his nosefactor, but instead gives its value for the
following special cases:

Hughes: N = 100 Flat nose
N =112 Blunt nose
N = 126 Spherical nose

N = 139 Very sharp nose
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