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REALTIME SYSTEM FOR STRUCTURE MONITORING OF SHIPS USING
WAVELETS FOR TRANSIENT CHARACTERIZATION AND DETECTION

1 INTRODUCTION

In the resent years an increasing need for structural monitoring of mechanical loads and
damages on constructions has emerged. In our case, surveillance of load, pressure and
vibrations during use of vessels in rough sea condition. Critical loads must be measured
to verify design criteria. Structural monitoring is necessary to avoid overload resulting
in delamination and other damaging or degrading processes.

The development of Fibre Bragg Grating (FBG) strain sensors in the resent years have
really opened the possibility for good structure monitoring of hulls. These sensors can
be embedded in the hull, and be a part of the structure. In future structure monitoring
systems there will be a large number of sensor elements, several hundreds, maybe thou-
sands, and sufficient data power for real time signal processing and display of results
will be required. When such a sensor system is used, it is useless without intelligent
detection and characterization algorithms. These implemented algorithms must be fast if
one require that the system shall run in real time.

A realtime system must have several properties. It must have efficient routines for data
logging, data compression and detection/characterization of important events in ana-
lyzed signals. To be useful in real time, any graphical user interface (GUI) needs fast
pre—processing before viewing results.

These systems will be very important during testing of ship designs. We will then give
additional requirement to the realtime system. Data must be stored for careful detail
analysis later. This analysis is supposed to be a tool for the designer of the ship. Using
these analysis, an optimal construction may be achieved with respect to weight and de-
termining limits for structural capacities.

On a long view this structure monitoring system is supposed to be fully automatic dur-
ing active use of the vessel. A full realtime detection and characterization of transients
or interesting events followed by a comparison to typical events must be carried out be-
fore any warnings or messages can be given to the crew.

This thesis work is a part of a preliminary study for a technical feasibility project where
a fibre optic sensor system is going to be developed, installed and evaluated on a high
speed naval vessel. This will be a collaboration, the CHESS (Composite Hull Em-
bedded Sensor System) project, between Forsvarets Forskningsinstitutt (FFI) and Naval
Research Laboratory (NRL), Optical Science Division.

The thesis is a study of application of wavelets for detection and characterization of
transients phenomena. The background for choosing the wavelet approach is that wave-
let theory today is a complete mathematical tool which represents a foundation for a



Of course many of the references explain almost the same, but as a new-beginner on
wavelets without proper guidance, the learning process got very much harder. Because
of this, the really interesting work has been done in the last few months of the available
time. I hope that readers of this thesis will get a much shorter learning process on wave-
lets than me. Since learning wavelet theory consumed a great deal of time, there were
either enough time for a comparison of wavelets with other techniques for solving the
same problems, or proper experiments. Practical application of wavelet required insight
in a number of computable technical details which are not well documented in the liter-
ature. And therefore time consuming for this author.

Wavelet theory is a relatively new concept in the signal processing field, just as it is in
many other branches of science.

The first use of wavelets where introduced by J. Morlet in the late 1970’s for analyzing
seismic data. To convince his colleagues about the importance of his theory, he looked
for help, and found it at A. Grossmann. They developed the inverse transform and some
of the mathematical background of the wavelet transform. Later (1985), Y. Meyer real-
ized that the analysis and synthesis! was a rediscovery of A. Calderén’s theory form the
1960’s. .

First in the late 1980’s did wavelet theory start to enter the signal processing field, after
some important work of I. Daubechies and S. G. Mallat (3). In the 1990’s the number of
published papers on the topic has grown at an enormous rate. The large quantities of
papers might be a problem when trying to learn the basic theory about wavelets. There-
fore I think it is wise to use tutorial papers that are based on one’s own science, i.¢. the
field of signal processing in my case. On the Internet there will also be found much in-
formation on this topic. Several wavelet toolboxes for Matlab and other wavelet pro-
grams are available as shareware.

During my work, I have run into examples of applications where wavelets today are
used. Some of these are: Image compression, earthquake prediction and analysis, earth-
quake excitation and resporise of tall buildings, stresses in Dolos armor units, turbulence °
analysis and surveillance, analysis of seismic data, physics, solving mathematical prob-
lems, for removal of noise, and transient detection in signal processing.

1. General term for reconstruction or inverse transform.



2 SENSOR PRINCIPLE

This chapter will explain the principle of a fibre optic Bragg grating (FBG) sensor used
for detecting mechanical strains. Several of these sensors are part of a structure moni-
toring system. A sensor system will be attached onto the hull of a ship to measure me-
chanical deformations. The hull of such a vessel will mainly consist of composite mate-
rials, i.e. glass fibre reinforced polyester.

The sensor is a special optical fibre, with a grating in the core, that utilizes the Bragg
effect. This effect is known as Bragg reflection in solid state physics. When we have an
optical fibre with a core structure as shown in Figure 2.1, and expose this to broadband
illumination, the grating structure will reflect light at a wavelength according to Bragg’s
law (4)

2dsinf = mid,, ' 2.1)

where 6 is the angle between the light vector and the lattice, Ar is the wavelength of the
returned light, m is the order of reflection, and d is the grating period (4). Equation (2.1)
is known as the Bragg condition.

Figure 2.1 Optical fibre section with a Bragg grating. The index of refraction along
the grating is modulated like a sine (or cosine) curve with period d.
Source: (4)

In an optical fibre the angle of incidence will usually be normal to the grating interface,
and hence 8 = 90°. We will achieve highest reflection of the light with the condition
m = 1. This gives:. :

A, = 2d, (2.2)

and thus we have a linear relationship between the physical layer period d and the
wavelength (or frequency) of the reflected light.

With such a relationship, it is clear that a tension which results in a contraction or
elongation of the optical fibre along its axis will give a detectable change in wavelength
of the reflected light.

Figure 2.2 illustrates the working principle of this strain sensor. The techniques used in
detection and demodulation are not a topic for this report, however, there exists a large
number of methods that can be used. From a signal processing point of view, one only

need to know that the voltage out of the sensor is proportional to the longitudinal strain



in the fibre. For this fiber sensor, this implies a linear relationship between the optical
wavelength shift and elongation or contraction.

I;
FBG '
Coupler :
R r\ T —
source PSR
Detector
I A
Demodulator—> Voltage

Figure 2.2 A schematic overview of the sensor principle

The sensor, or more specifically the optical fibre, can contain more than one FBG ele-
ment. An example of an array with such gratings is illustrated in Figure 2.3. This sys-
tem will clearly require a more complex management/treatment of the optical and elec-
trical signals, and an example of one scheme that does this is shown if Figure 2.3. In
this particular scheme, a combination of time and wavelength division multiplexing is
used to address the various sensors (the 32 FBG’s).

Input pulse
LS Coupler
' S N R ——d L a
ELED A, Ay A s
T EDFA [ qAnn ||r||||||||—n|um|m—|||:|||um—mm|m|: b
Pulser ( 8 3 d; A
J_L Readout Pyt P— c
interferometer A Ay Ay y )
| B (| 111111 d
Wavelength Ay Ao A Ay
shift decoding
l ]lz l 3 lg 8 X 4 element FBG array
Time division . . _
d emultiplexing ELED - Edge Light Emitting Diode

Eyy ﬁ EDFA - Erbium Doped Fibre Amplifier
@ 32 wavelength/time

123 demultiplexed outputs
Figure 2.3 A 32 FBG array topology2

The FBG sensor can tolerate longitudinal strains up to about 3%.
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= Display

| - Load on hull
=| . Overload and damage warning

Digital signal processing and logging

Figure 2.4 Sketch of a vessel with structure monitoring system. Inset schematically
shows how signals are processed before presentation

One application of utilizing such a sensor system as illustrated in Figure 2.3, is shown
in Figure 2.4, Where a number of these FBG’s are attached onto the hull of a ship in or-
der to measure mechanical stresses.

According to the blocks in the inset in Figure 2.4, this thesis main work are concen-
trated on the digital signal processing and logging part.

2. Preliminary design of fiber optic sensor system for the Composite Hull Embedded Sensor System, CHESS. A
NRL (Naval Research Laboratory, U.S.A.) and NDRE cooperative R&D project.
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3  WAVELET THEORY

In this chapter we will give an overview of the concept of wavelets. First we define the
analyzing function, then the definition of the wavelet transform is stated. A detailed ex-
ample with an interpretation of the transform follows. To achieve a fast algorithm for
computing the transform, multiresolution analysis is used to show how the transform
can be implemented as a filter bank. Then the properties of the wavelets are presented.
At the end the use of wavelet package and M-band filter banks is discussed before the
chapter closes with the practical implementation of discrete time series.

No unified usage of symbols and notation has been established in the literature. In this
work we have chosen a notation which we have found most convenient.

3.1 Introduction to the Wavelet Transform

The idea behind the wavelet transform is to represent a signal f{#) as a superposition of
wavelet functions. The word wavelet is a commonly used term for a small wave3. For a
historical background, I recommend (5), (6) and especially (7). We want all wavelets to
be expressed from a basis* wavelet, called ¥ in this text.

3.1.1 The Continuous Wavelet Transform

A general wavelet obtained from the mother wavelet, ¢ € L%(R), is given by:

Yop) = Lw(ii-{’*) ,aER,,bER 3.1

Ja

The parameter a (a = 0) describe the scaling (dilatibn) of the mother wavelet y(z), and
b is used to localize the wavelet in time. The 1/ Ja factor is used to give each wavelet
the same (unit) energy. To represent a function as a superposition of all ¥, ;, , we must
find the inner product between the function f{z) and each one of the wavelets ¥, ,(2).
These inner products are the wavelet transform, defined as

WI(a,b) = (Vipf) = I YasOf (e, (3.2)

where * denotes complex conjugation. For all transforms we are interested in the exis-
tence of the inverse transform. There are some conditions the basis wavelet function
must satisfy (8)(9)(10)(11) to achieve reconstruction. The first condition implies finite
energy (3.3),

2
J lp ()| dt < =, (3.3)

3. Ondelettes; First used by Grossmann (theoretical physicist) and Morlet (geophysical engineer), Meyer (mathe-
matician) published the book Ondeletzes in 1990.

4. Also called the mother wavelet, analyzing wavelet or basic wavelet in literature.
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and the second, called the admissibility condition, ensures finite redundancy C,, (3.4).
When the redundancy? equals 1, all the wavelets form an orthonormal basis.

=}

2
)] s = 8,5 i, (3.4)
w

0

where ¥ is the Fourier transform of the wavelet function. Generally, the admissibility
condition is satisfied if the function ¥ is reasonably smooth and (3.5) is fulfilled.

o) = J y(Hdt = 0. (3.3)

With these conditions satisfied we can reconstruct® the signal f{z) from (3.2) as follows:

f@ = (—31- I J WT(a,bﬁpa,b(t)éf‘—‘;é. . (3.6)
Y a

—®(
When the parameters a and b are continuous, then W1{a,b) is called the continuous
wavelet transform (CWT).

Example

To get a better understanding of what a wavelet transform is, this example will illustrate
the CWT of two different functions (or signals) f{?), with respect to two different wave-
let bases. One of the bases will be a non—-smooth function and the other one smooth.
These are called the Haar basis and the Morlet basis, respectively.

First we look at the wavelet transform of the signal f;(7), which is a smooth function that
starts at time #;. As a first basis we choose the Haar wavelet.

1 0=<t<i

z sin(wt) ,t =t
Yo = —l,%£r<1 f(0) = 0

, Otherwise ’
0 ,otherwise

This wavelet basis was discovered by Haar around 1910, and is the simplest basis that is
known. Figure 3.1 shows a segment of the CWT of f;(#) with T = 2 (T = 27 /w) and
t;=—1. The inset in the image plot shows the analyzing wavelet.

5. For continuous scaling and translation parameters the redundancy will never equal 1 which indicate no redun-
dancy.

6. Proof will be found in (8), page 24-25.
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Analyzed signal

Scale (a)

B -4 -3 -2 -1 a 1 2 3 4 5
Time (b)
Colorscale from MIN to MAX

Figure 3.1 CWT of the partial sinus signal f;(t) with respect to the Haar wavelet

The next chosen wavelet basis is the Morlet wavelet’.

=L ict , —i12 i 2
Y(r) 5€ € 7 ,C =T ma

The CWT shown in Figure 3.2 is calculated with the same 7T and #;, and it is the abso-

lute value that is plotted since the wavelet is complex. In both cases the parameter a
varies from 0,1 to 4.

7. The wavelet is plotted in Appendix A together with all the other wavelets in the wavelet toolbox from Matlab.
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Analyzed signal

CWT(a,b)

4 T T T T T T T T T

Scale (a)
no

1.5F

0.5

-5 -4 -3 0
Time (b)

Colorscale from MIN to MAX

Figure 3.2 CWT of the partial sinus signal f;(t) with respect to the Morlet wavelet

Now, since one of the chosen bases is non—smooth we’ll see how the two bases acts on
a non smooth function, in this example the unit step function f;(z).

1 424
H=ut—1)= Zoen
ful®) ( v 0 ,otherwise
Analyzed signal
T 1 T T T T ki T T
1r [
05F || 7
0 1 i i 1 1 1 I J 1
5 -4 -3 -2 -1 0 1 2 3 4 5
CWT(a,b)
4 1 T T T 1 T
35 J 7
3 L]
2B .
L
w
1.5 7
4 4
0.5¢ ' -
L | L 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
Time (b)
Colorscale from MIN to MAX

Figure 3.3 CWT of the unit step signal f,(t) with respect to the Haar wavelet
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Analyzed signal
T T T T U T T T T
1 =
05 1
0 1 1 1 |I L L L 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
CWT(a,b)

Scale (a)

~5 -4 -3 -2 =1 o0 1 2 3 4 5
Time (b)

Colorscalé from MIN to MAX

Figure 3.4 CWT of the unit step signal f,(1) with respect to the Morlet wavelet

This example illustrates the fact that knowledge of the signal is needed in order to
choose the bast wavelet basis. Usually one would like to represent the signal with as
few coefficients as possible (for large coding gain, i.e. for compressing pictures). Other
times it is desirable to have a easy recognizable pattern (for fast manual identification).
The clue is to choose a basis that extracts the properties important for your specific
analysis. E

3.1.2  Interpretation of the CWT

One of the most difficult problems for a new—comer to wavelets is how to interpret the
wavelet transform pictures. As a start it is useful to think that the wavelet is sliding
along the function to be analyzed. For each new time (b) we must evaluate a infinite
number of integrals between f(z) and v, ,(?).

Example

The easiest example that is really good, is analyzing a sinus function with a Morlet
wavelet. Since the Morlet wavelet has a complex part, we must analyze the real and the
imaginary part separately. For a number of situations the integrals becomes zero. Then
there is a maximum when the frequency of the sinus and the wavelet is the same, and
because of symmetry very much of the representation is zero. This is shown in Figure
3.2. By analyzing the relationship between the frequency of the sinus function and the
scaling of the wavelet, we get a maximum at

= F ¢ 3
o = oWy
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where 1/T is the frequency of the function. In this particular situation we have derived
that the inverse of scale is frequency, so instead of calling it time—scale analysis we can
call it time—frequency analysis. In the example in Section 3.1.1 T = 2, which results in
amax = 1,7, which matches the figure very good. In (10) can be found some more illus-
trative examples of different sinus functions analyzed with the Morlet wavelet. Il

In principle, all transforms can be analyzed like this. Note that some wavelets not are

symmetric around zero, and therefore a diagonal pattern, like in Figure 3.1, occurs. It is

~ of course not possible to “see” frequencies in all wavelet transforms, and for that reason
we call the wavelet transform a time—scale analyzing tool. o

If the reader is in contact with the new toolbox on wavelets from MathWorks, there
might be some confusion about any results compared to mine. Mine figures are not gen-
erated using this toolbox, but by own designed routines in Matlab!

When using this toolbox for a CWT on the same signals that I have, the resulting imag-
es will as stated not be the same. As an example the pattern in Figure 3.1 will appear
vertically instead of diagonally when using the toolbox. By analyzing functions by hand
according to the definition of CWT (Equation (3.2)), one will be convinced that mine
results is correct. The only way to achieve vertically pattern is to use a shifted version
of (?) as mother wavelet. The shift must be made in such a way that center of support
of the wavelet coincidence with the vertically axis, i.e. the point ¢ = 0. For the Haar
wavelet this means that it must be shifted 1/2 unit to the left. By analyzing functions
with this version of the wavelet by hand, the same pattern as in the toolbox will occur.
Why this is done do I not know. This effect is not documented in the manual either.
There they have the same definition of the CWT as in this text. A possible reason for
doing this is that these images may give users a better intuitive illustration of what
scales that is present at a given time. This is just an assumption of mine, and it might
not be right. Only MathWorks can answer this question. '

3.1.3  The Discrete Wavelet Transform

In the case of continuous time, the function f{z) is represented as a combination of
wavelets. As long as the parameters a and b are continuous, then f{?) is clearly overrep-
resented. This is because the wavelets ¥, ,(#) do not form an orthogonal basis for the

space L2. When we operate with continuous values we will never get, or be able to
construct, an orthogonal basis for L2. The case of overrepresentation of f{¢) is normally
undesired, and is avoided by forming an orthogonal basis of ¥;,(r) that covers L% To

get an orthogonal basis, we must use discrete values for a and b. In (8), page 53, it is
concluded that if we choose a = a~/, ay > 0 (exeptfora, = 1) and

0 ¥
b= kboao'f, by = 0 then

Yult) = Vop@is — kb))  ,j,k € B (% — all integers) (3.7)

8. In many books and articles the minus before j is removed (this does not matter since j take all integers — nega-
tive and positive).
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forms an orthogonal basis for L2.

We now get a wavelet transform with respect to an orthogonal basis. This transform
(3.8) is called the discrete wavelet transform (DWT), and (3.9) is called the inverse dis-
crete wavelet transform (IDWT).

DWTG,k) = J YiOf ()t (3.8)

fO=x, > > DWIG,ky,0) 3.9)

Note that we still operate with continuous time even if we call the transform discrete.
When the wavelet basis is orthonormal the inverse redundancy factor x,, equals 1. The
DWT is now a sampled version of the CWT plot. For dyadic values (ay, = 2,b, = 1),
the sampled points are related as shown in Figure 3.5.

logz(a)

A
] L
@ L] e
L] ® L) ® ) ®
o [ ] .. L ® L ] ® @ L] ®
e @ © ¢ ® © @ @ @ @ ®© © @ ©¢ @ © ©¢ © © © o

.
| b
Figure 3.5 Dyadic (binary) sampling of the CWT

The next sections which cover multiresolution and filter banks, will give us the mathe-
matical connection between the DWT and a filter bank (FB).
The three next sections and Section 3.6 are mainly based on (2).

3.2 Multiresolution

Both mathematical and practical interpretations of wavelets seem to be best served by
using the concept of resolution (3) to define the effects of changing the scale. Multire-
solution theory is based on functions that span spaces. In order to obtain a suitable divi-

sion of L? space into smaller spaces, spanned by a finite number of wavelets, we must
introduce the scaling function. This function is fundamental to the theory of multire-
solution. As we shall see, the spaces spanned by wavelets are differentials of the spaces
spanned by different scaling functions.
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32.0  The Scaling Function ¢(1)

We will now define a new basis function ¢(?), called the scaling function. Assume now
that a set of shifted scaling functions ¢,(f) = ¢(z — k) will® span a space called Vj

Vo = Span {¢,(1)}, k € B, (3.10)
k

where V) is a subspace of L. ¢ () will then form an orthogonal basis for Vj. The size
of the subspace can be increased or decreased by changing the scale parameter of the
scaling function. A family of functions is generated from the basis scaling function by
scaling and shifting. Similar to the wavelet function (¢), the different scaling functions
are defined as

@) = V292t - ), j& B - (3.11)

Then the functions ¢ k(2ft) =¢ y ,k(’) spans the space V.
V= Span{p (2D}, k€ . - (3.12)
k

If we decrease the parameter j, ¢,(2/f) becomes wider and must be shifted in larger
steps to form an orthogonal basis. Then they can only represent coarse information, and
the space ¢ k(Zfr) spans is smaller.

Now we formulate the basic requirement of multiresolution analysis (3) to cause a nest-
ing of the spanned spaces by requiring

ViCVyi: JES, (3.13)
with
Voo =1{0] and Ve = L% ' (3.14)

The space that contains high resolution (or low scale) will then cdntain those of lower
resolution (or high scale). This is illustrated in Figure 3.6.

9. Because of properties to be defined in Section 3.4.
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2
d VeV, eV,

Figure 3.6  Scaling Function vector spaces in L?

Because of the nesting (Equation (3.13)) and the definition of V; (Equation (3.12)), the
spaces have to satisfy a natural scaling condition

ORS Vj < f(2) € Vj+ 1o (3.15)

which ensures that elements in a space can be a linear combination of the elements in
the next (or larger) space. This is achieved by requiring that

o) = > hm)2¢Q2t—n), n€ D, (3.16)

where the coefficients A(n) are a sequence of numbers!? (real or complex) called the

scaling function coefficients. The factor /2 maintains the norm of the scaling function
with the scale of two. If ¢(f) is known we can calculate the scaling function coefficients
h(n), as long as the requirement of orthonormality

J¢j,k(t)¢j,f(f)df = ok — D, (3.17)

is satisfied, by multiplying to both sides of (3.16) by ¢(2¢ — k) and integrating. This
relationship is given by

h(n) = J§J¢(:)¢(2: — n)dt. (3.18)

The recursive equation (3.16) is fundamental to the theory, and is called The Dilation
Equation (14).

3.2.2 The Wavelet Function y(t)

The important feature of a signal can better be described or parameterized, not by using
¢, x to change the size of the subspace V, but by defining a different set of functions

10. Do not think of h(n) as a digital filter yet, but as pure coefficients, i.e. linear combination. Later we will see
that A(n) in fact is a FIR filter.
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Yk that span the differences between the spaces spanned by the various scales of the

scaling function. This new function y(?) is called the wavelet function, and is the same
function as in Section 3.1.

This new space which is the orthogonal complement of V; in Vj,; is defined as W},
which means that all members of V; are orthogonal to all mcmbcrs of W;. The inner
product between these various basis functions are then given as follows:

j k,‘lj}ﬂ ¢ ndt =0,  jkIE B | (3.19)

Then the relationship between these subspaces can be seen from the following expres-
sions. If

VG Eviewnie....CL?, | | (3.20)

then the wavelet spanned subspace Wj is defined such that

Vl = VO @ WO " (3.2].)

which extends to the general relationship
L2=V,® W,, (322
j=0

as illustrated if Figure 3.7.

L‘Z

Figure 3.7 Wavelet Function vector spaces in L?

Since the parameter j € 2, the scale of the initial space is arbitrary and can be chosen
for a higher resolution (lower bound for j > 0) or for a lower resolution (lower bound
for j < 0). This means that there is no need to start at V,, but it gives an easier under-
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standing of the multiresolution concept. For an example and more detail see (2), Chap-
ter 2. In practice W, is usually chosen to represent the coarsest detail of interest in a sig-
nal. Note that the wavelet functions that spans W, is contained in the space spanned by
the next narrower scaling function, W, C V, and as a result they can be described by a
linear combination of these respective scaling functions

Y@ = > hm)2¢Qt —n), n€ D, (3.23)

for some set of coefficients i ;(n). In the append_ix'of (2) it is shown that these wavelet
function coefficients (modulo translations by multiples of two) and the scaling function
coefficients are simply related, according to the equation

hy(n) = (<I)"h(1 — n). (3.24)
An example for a finite even length-N h(n) could be

hyn) = (=D"h(N — 1 — n). (3.25)

The function that is gencrated by Equation (3.23) is the wavelet basis function (or moth-
er wavelet), and (3.23) is called The Wavelet Equation (14).

The result of the construction of the set of functions ¢;,(#) and y; () that span L2 is
that any function f(f) € L2 can be written

oo

o= c®ood)+ > > dBy, (3.26)

k= —c j=0k=—-m

or in more general terms if f(f) € V g

® Ji-1 e

= > @0+ > > dBy, (3.27)

k=— j=lok=—®
where the ¢j(k) is the scaling representation of the signal and dj(k) is the wavelet repre-
sentation. In Equation (3.26) J, = 0 and J; = =, but these two values can be chosen
arbitrary. The choice of Jp and J; will be discussed later. For a pure wavelet representa-
tion we write

fo= 2 > dikw,o, (3.28)

j:—mk:—m

that is in fact the same definition as the reconstruction formula in Equation (3.9). These
wavelet coefficients dj(k) completely describe the original signal f{#) and can be used for
analysis, description, approximation and filtering in a way similar to Fourier series co-
efficients.

3.3 Filter Bank realization

In this section we will study the relationship between DWT and filter banks (FB). First
discussed are the connections between the recursive Equation (3.16), Equation (3.23)
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and Mallat’s algorithm (3)(12)(13). Then we will see that this algorithm from a signal
processing point of view in fact is a FB.

3.3.1 From Fine Scale to Coarse Scale - Analysis bank

We start with the fundamental recursion Equation (3.16) where ¢ — 2/t — k (scaling
and translating the time variable) so we get

Pt —k) = Zh(n)ﬁ ¢+t = 2k — n), (3.29)

assuming that a unique solution exists given a set of A(n). By changing the variables to
m = 2k + n, Equation (3.29) becomes

$Qit— k) = > him — 222" 't — m). (3.30)

From Equation (3.12), and assuming that f(r) € V. ,, we can write f{?) as a linear

combination of the basis functions that span Vj, ;. Then the function can be expressed
by

f@O = ¢ (VI Q21 - ), (3.31)

k

that is, its scaling coefficients only and no wavelets coefficients. The general term of
Equation (3.21),

Vis1 =V;©0W;, (3.32)

leads to the new expression

0 = col2e@ - b + Y dV2pR - b, (333)
k k

which also can be written

0 =S e, 0+ > di2p,0o. (3.34)
k k

This is consistent with multiresolution theory. Now, if ¢ j‘k(t) and y j’k(r) are orthonormal

or a tight frame!l, the j ’th level scaling coefficients ¢; are found by taking the inner
products

cf® = (fo) = f FDp@it — ks, (3.35)

which, by substituting Equation(3.30), and interchanging the sum and integral, can be
written as ‘

11. A tight frame is an orthogonal version of a basis for a representation. A general frame (not tight) is an overspe-
cified version of a basis set. Contrary to an orthogonal basis, a frame basis introduce redundancy in the representa-
tion, which gives a more robust representation.
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cfk) = Zh(m — 2k) I f(:)J2€+1¢(2f+lz — m)dt. (3.36)

If we compare the last part of Equation (3.36) (the integral) with Equation (3.35), this is
in fact the same expression at two succeeding levels. This leads us to the convolution
formula

cfl) = > him — 2k)c;, (m). (3.37)

The following corresponding relationship is obtained for the wavelet coefficients when
deduced from the fundamental Equation (3.23).

k) = > hy(m — 2K)c;, y(m). (3.38)

In signal processing terms these two convolution formulas can be interpreted as a two
band analysis FB as illustrated in Figure 3.8, where hy, = h. The right-hand boxes
downsample, with a factor of two, the results form filtering ¢ i+ through the filters

hyo(-n) and h,(-n) (impulse responses) to achieve ¢j and d -

L

botn) 7 V2 ™6

jl

" hen) V2

Figure 3.8 Two band analysis bank

3.3.2  From Coarse Scale to Fine Scale - Synthesis bank

We still expect that if f(¢) € ‘Vj+ 1» then the function can be written in terms of the scal-
ing function as

fO = ¢ V2 g+ 1 - b, (339)
k

or in terms of the next scale (which also requires wavelets , based on Equation (3.32))
as

=3 cVPp@t -0+ > @RIyt - k. (3.40)
- |

k
Now, substituting the equations (3.16) and (3.23) into Equation (3.40) gives

=S e hm 2 9@ 2kmy + S i) S hym) 2 g2+ 1-2k-).
k n k n
(3.41)
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Because of the orthonormality condition (3.17), integrating (3.39) and (3.41) multiplied
with ¢(2/* 't — k') results in the following expression

Cip (0 = > cfmhk — 2m) + > dfm)h,(k — 2m), (342

m

which is the opposite operation to an analysis bank, namely called the two band synthe-
sis bank. This FB structure is shown in Figure 3.9,

G 2 " &)

cj-r :

(P

d—s 42 > g,(n)

Figure 3.9 Two band synthesis bank

where go(n) = h(n) and g,(n) = h(n). The left boxes upsample the incoming signals
by a factor of two, meaning that a zero is put between each old sample.

We have now derived the direct connection between DWT and FB. When it comes to
construction we, depending on the problem to solve, choose how many stages we need
(want) in the FB realization. Figure 3.8 and 3.9 illustrate a one stage analysis and syn-
thesis bank, respectively.

3.4  Properties of the Scaling and Wavelet function

Until now we have not said anything about the properties of ¢(#) and (#). In this sec-
tion we will look at these two basic functions to see when they exist and what their
properties are. In Section (3.2) about multiresolution, we derived the two fundamental
equations

¢ = > h(m)\2¢Q2t —n), n€ T, (3.43)
and
Y@ = > 292t —n), n€E . (3.44)

3.4.1 Necessary conditions

It can be shown that if ¢(7) is a solution to (3.43) then
D Hm) = 2. (3.45)
n

The proof goes as follows: Integrate (3.43) on both sides and interchange the sum and
integral. Since the integral of ¢(¢) is shift invariant and by a change of variable it can be
shown from



25

ot = L hn) | p)dx, | (3.46)
24
that a necessary requirement for Equation (3.45) to hold is that

qu(r)dr #= 0. (3.47)

This shows that not just any set of séaljng function coefficients will support a solution
to Equation (3.43). The coefficients must satisfy the linear Equation (3.45). Assume that
@(?) is a solution to (3.43) such that (3.47) holds. Then '

> kmh(n — 2k) = 8(K), (3.48)
if the energy of ¢(¢)

J o (t)|2dt =E< o, (3.49)
and if the orthogonality condition

J¢(t)¢>(r — kydt = Ed(k), (3.50)
is fulfilled.

Now the (k) is the Kronecker delta function (6(k) = 1 only ifk = 0). This relation-
ship does not depend on normalization of ¢(2). If ¢(?) is normalized, then E=1, and

¢ i, «(®)’s form an orthonormal basis. The result of this is that the coefficients h(n) of the
recursive Equation (3.43) themselves are orthonormal after downsampling!2 them by
two. A corollary to Equation (3.48) is obtained for k=0, which states that the norm of
h(n) is automatically unity.

Z|h(n)\2 =1. (3.51)

It is shown (2) that a second corollary of (3.48) is

S h@n) = h@n +1) = % (3.52)

We now have three restrictions!3 on the coefficients h(n), namely Equations (3.45),
(3.51) and (3.52), all of which are independent of any normalization of ¢(#). It can also
be derived that if ¢(7) has compact supporton 0 < ¢ < N — 1 then h(n) also has com-
pact support over the same interval. Now the support (or length) of A(n) which is N

12. In some cases “‘decimating” is used in the literature.

13. (3.48) is also a restriction on the coefficients h(n), but it is dependent on E.
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must be an even number.

All stated conditions ((3.45), (3.48), (3.51) and (3.52)) limit the choice of h(n) in the
time domain. In the frequency domain two of these four restrictions correspond to a fre-
quency counterpart, namely

> hn) = /2 HO) = /2, (3.53)
> hmh(n — 2k) = 6(k) <> |H (w)|2 +|H@ + zz)]2 =2, (3.54)

where H(w) is the Discrete~Time Fourier Transform (DTFT) of A(n) and N the length
of h(n) (Note that H(w) is periodic in 27, and is symmetric around @ = 0). From the
orthonormality condition on ¢(f) (E=1) it follows that

Z|¢D(w + 23rl)|2 =1, (3.55)
1 _

where @(w) is the Fourier transform of ¢(#). If A(n) is viewed as a digital filter, the ort-
hogonality requirement (3.54) states that this FIR (Finite Impulse Response) filter is
equivalent to a so—called Quadrature Mirror Filter (QMF) (31) (see Figure 3.10). As a
corollary of the above frequency response requirements, we see that

H(®) = {2 - H2n) = 2 - H(©) = 0, (3.56)
which says that the response at the so—called Nyquist frequency (w = ) is necessarily

zero. This indicates that i(n) in fact is a lowpass filter.

When the conditions on ¢(¢) are fulfilled and Equation (3.44) defines the wavelet, the
wavelet is orthogonal to the scaling function at the same scale. Then

f ot — nyyp(t — m)dt = 0, (3.57)
if and only if the wavelet function coefficients h,(n) are given by

hy(n) = (= 1)"*™h(N, — n), (3.58)

which is a more general term for (3.24), where n is an arbitrary integer to set the sign
of h,(n), and N, is an arbitrary odd integer chosen to conveniently position A (n).
When ny = Oand Ny = N — 1 (N - length of A(n)), this results in (3.25). This condi-
tion also leads to the relation

> hmhy(n - 2k) =0, (3.59)

between the scaling function coefficients and the wavelet function coefficients.
By substituting (3.58) into (3.52) we get



27

> hym) = 0. (3.60)

Then by integrating Equation (3.44), a condition on 3(f) becomes

I Y@ =0, (3.61)
and in the frequency domain Equation (3.60) results in

H,(0) = 0. - (3.62)

Another result can be derived from the definition of the DTFT combined with the
knowledge of the wavelet function coefficients A,(n),

Hy@m) = D hym)(= D" = D k1= n)(= 1" = 2. (3.63)

As a counterpart to h(n), we now have shown that A ;(n) is a high—pass filter, that also
fulfills the demands to be a QMF.

2.5

0.5+

Oﬂ 05 1 1.5 2 25 3
i w

2 2
Figure 3.10 The two QMF frequency responses (a) |H (co)| and (b) |H 1 (cu)‘ corre-
sponding to the db2 wavelet

In the frequency domain the following relationship arises between H(w) and H,(w):

I (cu)\2 = |H@ + n’)!z. (3.64)

The results in this section have not included the effect of integer shifts of the scaling
function or wavelet function coefficients h(n) and h,(n). As noted in Section 3.2.1, the
FIR filters are not causal. In a practical situation, these sequences may be arbitrary
shifted to make the corresponding FIR filters causal.

In (15) there is presented an overview of the properties of the wavelets that is imple-
mented in the Matlab toolbox. The most interesting by this overview is that it shows the
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relationship between the existence of ¢ and the possibility of a discrete transform.
There is also a connection between the FIR filters existence and the DWT!4. Note also
that not many of the wavelets have an explicit expression. The reason for this is that
many of the wavelets is an iterated result of Equation (3.43) after designing the FIR fil-
ters to be QMFs. In the iteration process we start with ¢(#) as the box function!>, and
use the iterated version of Equation (3.43),

1, rte[0,1] o
D) = 2> Wmp®er-n), 600 = {0, s (3.65)

When Equation (3.65) convergel®, we use the resulting scaling function to obtain the
wavelet function from Equation (3.44).

One can distinguish between three main types of wavelets:
1. There exist no scaling function corresponding to the wavelet (mor! and mexh).

2. The scaling function do exist, but no FIR filters exists. A fast algorithm does there-
fore neither exist (meyr).

3. Scaling function and FIR filters exist (haar, dbN, symN, coifN and biorNr.Nd).

Table 3.1 gives an overview of the properties to the wavelet families available in the
new (Apr./May- 96) Matlab toolbox.

Appendix A plots all these wavelet functions with their corresponding scaling func-
tions.

morl | mexh | meyr | haar | dbN [symN | coifN [ biorNr.Nd
“Crude” | vV
Infinitely regular - | » I o

Compactly supported w - P
orthogonal 4

Compactly supported
biorthogonal

Symmetry oo | ] e V
Asymmetry I
Near symmetry

\

\

Al'b'iIIE!.l'y number of o v
vanishing moments

N[ Y[
\

Vanishing moments
for ¢

Arbitrary regularity | | v | v
14. Except for the Meyer wavelet. Fast algorithms can only be obtained for wavelets with existing FIR filters.
15. Box function: One if ¢ is between zero and one, zero otherwise.

16. For a more detail study of the relationship between FIR filters and the convergence of (3.63), see (14).




Existence of ¢ P L »~ -~ ~
Orthogonal analysis ol |V ol -
Biorthogonal analysis v | | V o V-
Exact reconstruction ¥ P e o ¥ 4
FIR filters v P v Ve ¥
Continuous transform | »~ p I J* B V I
Discrete transform I V’ o V B
Fast algorithm ¥ P~ V¥ |2 ¥ .
Explicit expression ¥ o for splines

Table 3.1  Overview of Wavelet Families and Associated Properties. Source: (15)

In the table above the term biorthogonal analysis is introduced. Until now we have only
studied orthogonal wavelets and filters. In this text biorthogonal wavelets will not be
explained in detail. The only difference between orthogonal and biorthogonal wavelets
is that there are two separate wavelets in biorthogonal analysis, one for decomposition
and one for reconstruction. These two wavelets are now biorthogonal. Figure 3.11 indi-
cate the difference between biorthogonal and orthogonal multiresolution.

N
N
AN
>
/
—p— =
'\
\
N
=
=

s
7
<

Figure 3.11 Visualization of biorthogonal vs. orthogonal multiresolution. Source: (14)

For a deeper study of the concept of biorthogonality, Section 6.5 in (14) is highly rec-
ommended.

3.5 Wavelet Packets / M - band FB

If the dyadic sampling grid in Figure 3.5 is inconvenient for our problem, it is possible-
to sample the time—scale plane almost as we want. This can be done by extending the
two band wavelet FB to a multiband filter bank (M-band FB), or by using wavelet
packets. These two realizations can in fact be equal, with respect to sampling grid, but
just in some special cases. We have seen in the present how a wavelet decomposition
structure looks like, and a general analysis bank is shown in Figure 3.12.
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(e — d,

Figure 3.12 4—stage 2-band analysis bank

A wavelet packet structure is constructed with respect to which sampling grid is best
suited for the problem. Assume as an example that for a certain scale you want a more
dense grid so a detection is made more accurate. This can be done by analyzing the
wavelet coefficients as shown in Figure 3.13.

Cs

Figure 3.13 Example of a full wavelet packet analysis bank

An other method to achieve a different sample grid is the M—band FB. The theoretical
background for this is built on the multiresolution method discussed earlier. The main
clue is to split each wavelet vector space W, into smaller spaces W . For M=4 the de-

composition of the vector space is as shown in Figure 3.14.
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Figure 3.14 4-band wavelet system vector spaces in L?

For the M-band wavelet systems the basic recursion Equation (3.16) changes to
¢(t) = > hn)|MpMt —m), n€E B, (3.66)
n

and the basis functions that spans each of the W are all still orthonormal. This theory is

a generalization of the 2-band theory discussed in Section 3.2. The FB structure for the
4-band wavelet system is just an extension of the structure in Figure 3.12. As noted be-
fore, the FIR filters can be arbitrary shifted to become causal, therefore the minus sign
is removed in the figure below.

" h@ [ V4

hmn —> V4 [

o > h,(n) > 4
hn) 1 V4

Figure 3.15 Four band analysis bank
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Figure 3.16 .3—stage 4-band analysis bank.
For further readings on this subject, see (2)

3.6 Discrete Time Wavelet Transform

Until now we have presented a transform of continuous functions (or signals). In most
cases, transforms are calculated by a computer. As a computer only can operate on dis-
crete time series it is required that the signal we want to analyze must be sampled.
When sampling a signal, there is a minimum requirement to maintain frequency infor-
mation; namely the Nyquist criterion. To determine the sample frequency we must have
some information about the signal. Normally, typical signal characteristics are known,
sensors have a limited bandwidth, and the noise can more or less be determined. Even if
much information are available, to avoid aliasing, an analog lowpass filter is typically
used before the A/D—converter.

As discussed in the multiresolution Section (3.2) the signal can be represented as fol-
lows _

=]

fO= > ¢ ®e; 0, (3.67)

k==
if fHOEV X This is the finest scale in the signal, i.e. f(#) can be perfectly recon-
structed from these coefficients alone. These coefficients
e ® = (£67,4): (3.68)

are to be input to the analysis filter bank. To achieve this we need the connection be-
tween the sampled signal and the coefficients ¢ -*’1(k)' For J, large enough, ¢ Jl,k(t) can be

approximated by a Dirac impulse at its center of mass (first moment) since

J @(H)dt = 1. For large J, this gives

¢ (0 = 2% J fOp@)t — kyde = 2) J @t + 27 Mk)p)dt, (3.69)

which from
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21J f(OP(Ddt = [ FOO(t — 27 Imp)dt = f(t — 27Imy), (3.70)

where my is the first moment of ¢(%), results in the approximation

c; (k) = V27N 27 i(my + ). (3.71)

This method for discretization of the signal is presented in (2). There are just a few re-
fences that discuss this topic (2)(16)(17). Burrus et. al. (2) claims with support from
(16), that for all 2-regular wavelets (i.c. wavelets with two vanishing moments'’, regu-
lar!8 wavelets other than the Haar wavelet — even in the M—band case where one re-
places 2 by M in (3.71), m, = 0) one can show that the samples of the functions them-
selves form a third order approximation to the scaling function coefficients of the
signal. That is, if f(?) is a quadratic polynomial, then

¢y (k) = Jz I =), (3.72)

Thus, in practice, the finest scale J, is determined by the sample rate. By rescaling the
function and amplifying it appropriately one can assume that the samples of f(7), x(n),
are equal to the scaling function coefficients c, (n). This is the way it is done in the new
(Apr/May —-96) Matlab wavelet toolbox from The MathWorks Inc. There the sampled
signal x(n) is directly run through the FB. They also assume that the sampling frequen-
cy is 1 Hz! Therefore one must, when using this toolbox, rescale the time and scale axes
to achieve the exact transform.

Equation (3.72) states that analyzed signals f(?) after being discretizied to x(n) give the
following relationship between scale and frequency:
2=h = T, = Fy = 2%, ' (3.73)

where T is the sampling period and F is the sampling frequency of x(n). Now x(n)
must be multiplied by the factor

e (3.74)

JFy

before any analyzing in the filter bank. The output of the lowermost branch according to
Figure 3.12 is now denoted d; _;. At this branch the scale is

Gy = 27070 = 2 (3.75)
s .

Now a will increase in dyadic intervals, when j is decreased. The uppermost branch is

denoted with the index j = J|, according to Equation (3.27). For a three stage filter

bank, the grid is placed according to the j and k axes as shown in Figure 3.17.

17. K-vanishing moments: All the k’th moments, from k=0 to k=K-1, of the wavelet function is zero. .
18. K-regular: H(z) has K zeros forz = -1.
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Figure 3.17 Relationship between sampling frequency and grid pattern for the DWT

The space between the indexes & 71 will change when j is changed. This means that the
k; _; axis just is valid for the d; _; coefficients.
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4 TRANSIENT DETECTION

This chapter will consist of two main topics. First, methods for making the wavelet
transform translation invariant, and second, making use of these methods for transient
detection. However, before this, a short comparison between the wavelet transform and
correlation is made. After introducing methods to avoid shift variance, there will be a
brief discussion on detector performance before the detectors are presented.

4.1 Correlation compared to the Wavelet Transform

As stated in the previous chapter, the wavelet transform of a signal (or function) is de-
fined as

WT(a,b) = L j w*(ﬂ) f@)de. (4.1)
a

If we compare this equation with the equation for the correlation coefficient between
two signals (continuous time (18)),

T

Paf?) = 5ot j Yt + 1) fO)dt — T, (42)

0

we note that there are only small differences. ¢ and fare mean values, oy and opare
standard deviation and T is the observation window. Since the mean of ¥ is zero (ac-
cording to Equation (3.61)), we can remove ¥ f.

If the analyzing wavelet has a large correlation coefficient with the reference signal we
want to localize, a pure wavelet detector that will perform the detection with similar
performance as techniques based on matched filters. However, with a wavelet technique
we can obtain a detector which requires less computation time. Of course there are not
many cases where this is an-option.

As an example of correlation between a signal and wavelet, we design the synthetic
transient

e _ﬂcos(wt) =0

s(t,w,4,A) = A cosQQwi) + 1 i ;
S ay SERD

(4.3)
where o is the oscillation frequency (T = 27/w), A the damping coefficient, and A the
maximum amplitude. In Figure 4.1 a version of this transient is plotted as the smooth
curve. Now, assume that 9 has compact support on the interval [¢,,#,]. Then it is pos-
sible to rewrite Equation (4.2). Introducing a for scaling and energy conservation, we
get
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)

pab) = Ja J Y(1) flar+b)dt.

3

In practice the two functions ¢ and fare discretized on the interval [¢}, 7,]. Therefore
we generated a vector with length of 768 for each function??. Then we compute the cor-
relation coefficient between these two vectors for every a and b in Matlab. The correla-
tion is not dependent on any factors multiplied by the functions, it is only dependent on
the relative shape between the functions. Figure 4.1 shows the basis function  with the
transient that gives the highest correlation (pmax = 0.9405). The damping coefficient 4
is optimized (4,p, = 1.179), and a = 1.205 and b = -1.175 (T = 1.5). Among the wave-
lets in appendix A, db2 is the wavelet that gives the highest correlation.

15 i i i i :
0 05 1 1.5 2 25 3
Time

Figure 4.1 The transient (smooth curve) and db2 wavelet at maximum correlation

This example shows that there can be a very high correlation between a wavelet and a
transient. This is one of the reason why it is interesting to use WT for transient detec-
tion.

4.2 Translation Invariant Transform (TI)

As discussed in Section 3.5, we may want another sampling grid of the WT than the dy-
adic one. No matter how we choose this grid, there is a substantial risk for the represen-
tation to be translation (shift) variant. As we know, two different signals will have dif-
ferent wavelet representations. Even if these two signals just differ by a time shift, we
may risk that the concentration, waveform, or other properties of the coefficients is
quite different. To avoid this we want the representation to be translation invariant.

42.1 Method 1: Cost function dependent algorithm

Two cost function dependent algorithms to avoid shift variance have been proposed,
one by Mallat et. al., and one by Beylkin (19). In (19), an extended version of the last
19. Vector length, resulting from the WAVEFUN command in Matlab with 256 iterations of Equation (3.65).
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one is described. Below, this one will be explained in detail. Mallat’s proposal to solve
this problem will be quoted directly from (19):

“They first calculate the decomposition of the wavelet basis functions at each scale
without down-sampling. This procedure retains all the samples output by the highpass
filters (eliminates the rate—change operators in the filter bank); then, at every scale, only
those coefficients that are local extrema are retained. An iterative reconstruction algo-
rithm was proposed to recover the signal from the local extrema representation of its
wavelet transform”. '

In the following explanation, the theory is based on the presentation of the translation
invariant transform in (19) and (20).

In general, this translation invariant transform consist of two main procedures. First, we
compute the WT of all circular shifts of a N-length signal. For each single WT repre-
sentation we compute the corresponding cost function, and then uses the representation
that minimizes this function. Many different cost functions are useful, but the most fre-
quently used function is the vector entropy??

R o R T
ﬂe({x(n)}) lelxll 2“'-!"2' ’ (4.4)

where {x(n)} is a discrete sequence, and |lxll, is the norm of the vector x. Since k. is
not additive ((20)) we use the additive cost function

c@ = - S| loglxm), 45)

instead. An a’;lditive cost function must satisfy the following properties:

CO =0, C@ = » Clxm). (4.6)
= _

The “negative” energy measurement

Ew = - > #m, 4.7)
n

will also satisfy the properties in Equation (4.6). Hence, to reduce the computing com-

plexity, this energy measure can also be chosen.

As we will see in the following, there is no need for computing the WT of all circular
shifts of the N-length signal. In fact it is the degree of downsampling in one stage that
decides how many WT we need to compute. For a 2-band wavelet structure we only
need two WT computations. Then the best representation is passed on to the next stage
(level) in the decomposition tree. As an example we will study the cost function for all
circular shifts on each level of a 4-stage 2-band structure. This structure is similar to
figure 3.12.

20. A measure of the concentration of the energy of the coefficients, (19).



38

Stage 1 ' Stage 2
0 ; .
4 ! \} | \
e
© o6} |
-0.8}
‘1 s . 3 -—8 .
0o 10 20 30 0 10 20
Time shift _ Time shift
Stage 3
-20
=
O-40
4 f —80 E; z .
10 20 30 0 10 20 30
Time shift Time shift

Figure 4.2 Cost function for all circular shifts of x on each stage

The x vector in this example has a length of /28, and it is shaped like a Haar function.
In the FB the Haar filters (the filters corresponding to the Haar wavelet) are used. We
see that in the first stage the WT representation only need to be computed twice to ob-
tain the minimum cost. The interesting with these plots for stage 2—4, is that their period
is direct dependent of the downsample factor. When we are on stage S, the period of the

cost function is 25. In general?!, the maximum number of shifts to be made in each
stage, to find the minimum representation for the cost function, is equal to the down-
sample factor at that stage. So, for a single stage M—band structure it is necessary to
compute M different WT.

When we are using this translation invariant transform, the algorithm is more complex.
The complexity refer to the number of multiplications executed by the algorithm. A
simple WT has complexity O(n), while the total complexity for this TI algorithm is
O(nlog, n). Now an argument regarding computable complexity of the TI transform vs.
the Fourier transform vanish. Even if this is not the most important argument for choos-
ing wavelet analysis, it is a factor that must be taken into consideration when perform-
ing time—frequency analysis?2.

If the signal is oversampled, the variations between neighbor samples will decrease.
Then a shift of the signal does not results in such a large difference in the wavelet repre-
sentation. Clearly, with higher sample rate there is a stronger restriction on the number
21. Independent of the decomposition structure.

22. Remember that scale is the inverse of frequeﬁcy.
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of operations that can be implemented to achieve a real time system. If the upper
boundary of the sample rate is substantially larger than the maximum frequency in the
analyzed signal, there is no need for a translation invariant transform. However, in all
cases there will be a trade off between the sampling frequency and the complexity of
the implemented algorithms.

4.2.2  Method 2: Downsampler ignoring algorithm

In transient detection, and most likely in other applications using the wavelet transform,
translation variance is an undesired effect. When analyzing a discrete signal, the sam-
pling frequency is chosen in such a manner that there are only small changes from sam-
ple to sample. This result in minor changes in the wavelet transform if the signal is
shifted one sample either way. Therefore, by sampling the CWT in horizontal direction,
or in time, according to the sampling period, the representation is as translation invari-
ant as possible. The purpose with this section is to make an algorithm that achieves this
requirement. Now, assuming that the analyzed signal x(n) is run through a filter bank
realization. Then a grid pattern just like in Figure 3.5 occur. The space between two
gridpoint at the lowest level is 2T, where T is the sampling period of x(n). Now, de-
laying the signal an arbitrary number of samples before running through the filter bank.
First, let this delay be equal to T’. In the first stage (a_,;) in the grid, all points will now
be moved right between two old ones. The space between all these points (old and new)
will now equals Ty, according to Figure 4.3.

log,a
A
2-0;-» + ® O e O
-0+ @ O e O e O
DT £
ami.n = 2'("1'1) T [ ] 0 @ O ] 0 @] O 2] 0
——t—t—t—t—t—t—t—>
o 1 2 3 4 5 6 7 8

Figure 4.3 Original (black grid) and one shifted (white grid) version of the DWT

If we delay x(n) one more Ty, the grid will be more complete in a homogenous sense in
the horizontal direction. Now, after a certain number of delays, the grid will be com-
plete. At this time we will not discuss the fact (or effect) that many of these new grid-
points coincide with old ones. To achieve a homogeneous grid, the structure in Figure
4.4 must be implemented.



40

x(n cy.(n N
=190 o
z-! log,a
AN
FB > g% »T+teeeeeeece0e00e
L3 [ R T R R R R T N N N R R N |
27! > = leocesecececoose
4000000000000 08@
_;E Q(S) 2T’--:ocoo:oooo:qo.o\l
0 5 10 “n
v
71
|—)‘ FB —>d_(5’/

Figure 44 “Making” a homogeneous grid in time direction

If now this grid could be computed in an efficient way, a useful translation invariant
representation for detection problems is developed. In the following one such “fast” al-
gorithm will be derived.

As the Figure 3.12 try to illustrate, filter banks are structures with many branches that
consist of one FIR filter followed by a downsampler. This means that on the way from
c; (k) to d k), the signal must pass through a number of filters and downsamplers in

cascade. The simplest case is for j = J,—1, when we only have one filter and one
downsampler.

By applying one of the Noble identities on each branch leading from c; (k) to the d; co-

efficients, it is possible to move all downsamplers in each branch to the right in the
structure. All filters will then be gathered at the left. This interchange of a filter with a
downsampler results in a new filter according to the first Noble identity.

—{ 10 6o b— = —->|G(zﬂ)—>| B Les
Figure 4.5 The first Noble identity

As a result of this, each filter bank will now have a new structure, shown i Figure 4.6.
Figure 11.3-6 in (21) shows this equivalent for a three level (or stage) filter bank struc-
ture. The filter H,(z) is the same as & ,(n) in Figure 3.8.
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Figure 4.6 Filter bank realization after using the 1st Noble identity to gather the
downsamplers to the right

For each of the filter banks in Figure 4.4, this structure will appear. Because all our fil-
ters are of the FIR type, they can be interchanged with a delay element without chang-
ing the system. Now, several identical (S to be exact) filters in parallel, with different
structures on its outputs, can be put together and the ramification may be moved to after
the filters. The result is illustrated in Figure 4.7.

Cr

23 H) 12 f—s d¥

i s a

Figure 4.7 Structure after interchanging delays and filters, and moving the ramifica-
tion point

Up to this point operations done on the structure has been mathematically correct. The
next manipulation is not legal, but I will try to convince the reader with a proof that it is
possible to do this to achieve the homogeneous grid.

For the branch according to Hy(z) we upsample the first 2° subbranches, with the same
factor as for downsampling, and then sum the results. This is not perfectly legal because
we have left out some subbranches, and also introduced upsampling that was not pres-
ent at an earlier stage.
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Figure 4.8 Example of Virtual Index Dependent Addition (VIDA) of subbranches.
Shown for the 1st branch

Figure 4.8 shows this effect for the subbranches under H,(z). The upsamplers are just
used to make the use of addition correct. Then it can be shown that the output w(n) is
equal to y(n). The reason why the operation is named VIDA, is that we virtually add the

(1) g 2)
d P vector with dffl—l

dex n can not be used on these to vectors if we follow the mathematical rules.

vector with respect to the index n. After downsampling, the in-

In Figure 4.9 the content of the vectors are shown. Note that the empty places for df,") ;
A

vectors are not defined. This is the reason why we use upsamplers.
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Figure 4.9 Vector contents shown relative to the index n -

If this method is applied to the subbranches after every filter, the resulting structure will
only consist of filters.

The outputs of this simplified structure will now produce a new sample out on each
branch for each new sample in. This means that the grid in time direction is homoge-
neous.
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Proof : : _ _
To prove that this simplicity is valid, we shall compare the results of the CWT of a Di-
rac delta function to our system response to a Kronecker delta.

First we derive the wavelet transform of the Dirac delta function. To do this we use
Equation (4.1). This gives

WIeb) = L f v{ttpoa=L1v(-8) @)

This shows us that the CWT of a delta pulse is the complex conjugated to y flipped
around the vertical axis. For a certain value of a, a scaled (and flipped) version of the
wavelet (assuming that it is not complex) will appear.

If our new sampling grid is supposed to be right, it must return a sampled version of the
previous CWT when a Kronecker delta is used as an input. In the time direction the
sample interval is constant for an arbitrary value of a (or j). Since a decides the support
of the CWT along b, this lead to the fact that for high values of a, the number of sam-
ples within the support increases. As a simple example we can study this effect on the
Haar wavelet for a single value of a.

A v CWTy(a,b) A

S

v
v

.
o

Figure 4.10 Haar mother wavelet (left) and the CWT of a delta pulse with respect to the
Haar wavelet for a given a (right) '

For simplicity we use F¢=1Hz which leads to a_; =2 according to Equation (3.75).
Now the CWT4(2, b) will have [-2, 0] as support. Since we now sample every second
(Ts=1 sec), there are two samples that are different from zero. These values are ~1/ ,,/5

for b=—2 and 1/ /2 for b=-1. The definition to the Haar mother wavelet is stated in the
example in Section 3.1. By increasing j by one (gives a=4), we get four samples differ-
ent form zero within the support. For a large number of j, the samples will construct the
original shape of the analyzing wavelet.

If we take a look at the filter coefficients for all our filters, which are the same as the
impulse response, they give the same results. For the filter H,(z) the coefficients is

{—1 BT ﬁ} The filter coefficients according to the db2 wavelet (see Appendix A),
for the four first stages is plotted are the figure below.
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Figure 4.11 The first four stage impulse responses when using the db2 wavelet as basis

When comparing these plots to the original wavelet, there is no doubt about that our al-
gorithm is correct. |

At the end it is important to say that our filters are anti causal, which means that there
will be no action on the outputs before something arrive on the input. By definition
CWT is a causal operation on a signal, and therefore by comparing results from CWT
and our algorithm, time localization will not be equal! Equality may be achieved by
making all our filters causal.

A consequence of this algorithm is that the downsamplers may not be thrown away, but
only by changing the factor, the grid in time direction may be constructed to achieve a
desired pattern or resolution. This resolution does not need to be equal for different lev-
els or stages. By inspecting each horizontal row separately, they will now have different
degrees of redundancy. To get the right wavelet representation, the outputs from each
branch must be divided by its respective redundancy factor. This factor is equal to the
degree of overrepresentation in each branch. For the branch according to H(z) the re-
dundancy is 2, because we use twice as many representation points as needed to de-
scribe the analyzed signal when taking away the downsampler.

4.3 Detector Performance

The best WT based detector result will appear if the basis function 3 matches the tran-
sient exactly. Then we have a so—called matched filter (MF) detector. This detector per-
formance depends on the degree of correlation between the basis function and the tran-
sient (20). Of course, normally the shape of the transient is unknown. Therefore, the
resulting detector performance depends on the prior information we have about the tran-
sient signal (or about a typical transient). If we have absolutely no prior information, an
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energy detector (ED) serves as a lower limit of acceptable performance. The MF detec-
tor serves as an upper limit for the performance (22). The performance is plotted as a
ROC23 curve. The ROC curves are normally produced through the so—called Monte—
Carlo?* simulations (20), with synthetic generated signals.

ROC Curve

Probability of Detection
=]
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of False Alarm

Figure 4.12 General ROC curve relationship between the MF (upper) and the ED
(lower) detector

When trying to detect a transient it is, as discussed above, desirable to use a basis func-
tion that is as equal to a transient as possible. Of course, we can choose any basis func-
tion (with finite support) and get a wavelet representation of the signal. But it is only
possible to reconstruct the signal if the basis function y satisfy the conditions
introduced in Section 3.1. This representation will be highly redundant and not very ef-
ficient to compute. If we instead choose the basis function in such a way that ¥ be-
comes a wavelet with properties so that a fast algorithm (i.e. FB computation) can be
implemented, we can get a much more optimized efficiency. This is an important factor
in real time systems.

44  The Detector

Now, two different transient detection algorithms will be presented. The first is detec-
tion on the basis of a signals wavelet representation. This method is used in some of the
references, and good results are achieved. As a translation invariant algorithm, method
1 described earlier is exclusively used. The second detector is based on the matched fil-
ter (MF) algorithm. Now the wavelet transform (WT) is an important part of the algo-
rithm. No literature is found on this detector, and the presented connection between the
MF technique and the WT is a result of the authors own deep study of this problem.
Method 2 for achieving shift invariant representation is also a product of this study.

23. Reciver Operating Characteristics: Probability of detection vs. probability of false alarm.
24, Observation of a systems behavior in action instead of analyzing a mathematical mode! of the system (52).
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44.1 Detection using the wavelet transform directly

For detection purposes in signals we must first decide if the waveform to be detected is
contained in the signal. This decision problem can be stated as the hypothesis?

:}60: x(t) = n(r)
sy 2) = as( ) + 0 “9)

where the waveform s(¢) is typically known?, and n(f) is Gaussian noise. The-parame-
ters A,7yand a are unknown. '
If we are searching for some specific waveforms, then several pairs of A,7,anda are
known. Then the optimal detector is based on correlation between x(¢) and

s((r - 79)/a 0). A detector may now be defined as

T/2 36,
x(t — 1T\, >
max Jx(t)s( )t < E@), (4.10)
az
-T/2 :HBO

where & is a threshold that is pre—determined and T is the observation interval. Equation
(4.10) states that the received signal x() passes through an infinite number of matched
filters, and the filter with the maximum output is chosen. This maximum is compared to
the threshold &, and a decision with respect to the hypothesis is made. The search for
the maximum is actually performed on the two dimensional plane (a, 7). Further details
on this detection theory can be found in (25).

The similarity of Equations (4.1) and (4.10) indicates strong connection between the
wavelet transform and correlation, as discussed in detail in Section 4.1. We can now re-
define Equation (4.10) so that the wavelet transform can be used instead.

:I-E’l
max WTta,b) < &(/a4), (“.11)
a, j-BO

where Y(¢) = s(f) and f(f) = x(f) according to Equation (4.1). In Figure 4.13 the block
diagram for Equation (4.11) is illustrated.

25. This is proposed in (22)~(25).
26. This knowlegde gives the detector performance as discussed in Section 4.3.
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Figure 4.13 Block diagram of a WT based detector

Now there are two things that must be determined before we can start to use the detec-
tor, namely the threshold & and the wavelet function . The ¥ is easiest to determine,
because we want as large correlation as possible between the wavelet and the waveform
that we are searching for. After this choice, the threshold £ must be appointed. The size
of this depend on the information we want to extract from the analyzed signal. The sig-
nal to noise ratio (SNR) is an important factor in relation to the credibility of the ex-
tracted information. ' '

As probably noted, the wavelet transform above is the continuous one. In the previous
chapter we introduced the discrete wavelet transform DWT. There we showed that this
transform can be realized as a filter bank to get a fast algorithm to compute the repre-
sentation coefficients. Instead of using the continuous transform as in Equation (4.11),
we use the discrete transform to get

36,

ax DWT(,k) = &(/aA). 4.12)
ik %,

The key assumption in the derivation of Equation (4.11), and then (4.12), is the a priori
knowledge of the waveshape to typical transients in the analyzed signal (22). As men-

tioned before, in Section 4.3, the relative difference between a transient and the wavelet
is an important factor for the detector performance. |

It is possible to use several versions, i.e. Section 3.5, of the wavelet transform for tran-
sient detection. In (20) there is used the four following versions for detection purposes:

e Ordinary 2-band WT, i.e. Figure 3.12.
e Full 2-band WP, i.e. Figure 3.13.
e 2-band TI transform introduced in Section 4.2.

o M-band TI (MTI) transform, i.e. Figure 3.16 (M=4).

As an analyzing wavelet, the db2 basis was chosen?’. For the MTI case an extended
version of the db2, corresponding to M=4, was used. Then it is shown that the energy
distribution in the time-scale plane is more concentrated as we go down the given list.

27. Also denoted D4 in the litterature because the corresponding filters have order four.
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The conclusion with respect to the detector performance, measured?® by the ROC
curve, is that highest energy concentration results in the best detector. With other words,
the detector performance ranking is given by reversing the list, although the TI and MTI
have, in this case, almost equal performance.

442 MF detector making use of the wavelet transform

As discussed in Section 4.3 about detector performance, the best detector for finding
known signal shapes in analyzed signals is the matched filter (MF) technique. This tech-
nique is based on correlation (26), and the output from this algorithm is

T

ye+ 1) = Js('r)x(r + 1)dr, (4.13)
0

where T is the length of the known wave shape s(f) and x(?) is the analyzed signal. The
input signal is normally noisy, and for white Gaussian noise the MF algorithm is opti-
mal for detection purposes. To derive the algorithm using WT, another notation will
now be used. This notation is based on bra and ket vectors found in (27) and (28) and
first used in Equation (3.2). Now the output from the MF is expressed

yt+T) = (s ,x). (4.14)

By introducing the identity operator

1=l = 1, (4.15)
Jik

Equation (4.14) can be written as

(s ") = (s \[ZW&)(@J]H = > (s v (¥iex). (4.16)
ik Jk _
where the wj{k funcfions span L% When inspecting Equation (4.16) we clearly see that

the two inner products (s,gb; ,k) and (w}ik,x> are the discrete wavelet transforms of s(¢)

and x(#), respectively. A requirement for achieving this result, is that the ;s are ort-
honormal. The wavelet transform of s(r) is constant since it is a known signal shape.
The transform of x(f) will be updated for every new sample x(n).

Now, let the WT of s(#) be a matrix S with length according to the observation window
T, and height according to the numbers of stages in the filter bank. To avoid any distor-

tion, the size of S must be chosen so that it contain all non zero wavelet coefficients. Let
the wavelet representation matrix of x(#), X be of same size as S. For each new sam-

28. Obtained by 2 Monte—Carlo simulations each of 2000 tests with SNR =7 dB.
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ple?, the content in X will be shifted one place to the left, and the rightmost column
obtain the new wavelet coefficients. These two matrices are multiplied element by ele-
ment, and all these products are added together. This sum is the output of our algorithm
at a given time. The output must now be compared to a pre—determined threshold &, and
then a decision about the presence of any wave shape is made. Figure 4.14 tries to illus-
trate this.

Analyzing wavelet ~ Known transform Threshold
l Y(e) lDWTsU, k) l &
Signal Wavelet |DWT,(,k) ;D WL k) Compare to Decision
x(2) Transform x DWT(,k) 3 36, or 36,

Figure 4.14 Block diagram of the WT based MF detector

When using the detector presented above, there are some important considerations that
must be taken. The block diagram in Figure 4.14 is just true for a dyadic division of the
time-scale plane, so when using the method 2 translation invariant algorithm, one must
take into consideration the different redundancy in each stage. If not using the TI algo-

rithm, the X matrix will only be updated when all the stages have produced at least one
new output. By doing this one can decide how often, and how accurate, the time local-
ization of an arrived signal will be. In this text this option will not be further discussed.

Example

To show that this detector is a real MF detector, we shall compare its performance with
the correlation version in Equation (4.13). First we generate a synthetic transient s(?)
using Equation (4.3) with oscillation frequency & and damping coefficient 1. Observa-
tion length is 9 seconds. Then x(f) is made with one identical transient starting after 15
seconds. When the sampling frequency is 16 Hz, it means that after 240 samples we
will have a match. For the WT based detector the number of stages in the filter bank is
10.

29. Assuming that method 2 for translation invariant representation is used. If not, this procedure is executed every
time a new sample is available at the output of the branch containing the coarsest information. In other words, the
branch that has slowest rate for updating.



50

L | I ot 1

=4 1 1 1
160 180 200 220 240 260 280 300 320

Figure 4.15 Comparison of detector quality of the correlator based MF (green) and WT
based MF with correction for redundancy (blue) and without correction for
redundancy (red). The amplitude for the WT based curves are manipulated
to make the comparison better

By looking at the time localization, all three curves give the desired result. The correlat-
or based detector has the desired shape that the two other ones also are supposed to
have. Deviation from the ideal curve may be caused by many factors. In this example
the absence of the redundancy factors give the largest distortion. The observation win-
dow will also cause a slight distortion. |

If the analyzed signal contain many uncorrelated events at different scales (or frequen-
cies), an individual search may give more efficient algorithms. This means that the
wavelet representation grid can be different for each located event.
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Figure 4.16 Schematic representation of wavelet transforms of three different events.
The shaded areas represent the relative distribution of wavelet coefficients

By applying this technique to Figure 4.16, the lowest located event need only the four
first band for detection. The middle event need 3—4 bands to be located. Since this event
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have lower frequency components, distance between grid points can be increased. The
third and last event need only band 9-11 to be found, and distance between grid points
can be increased more. This method is used in the next chapter, where no interesting
information is contained in the first four bands.

In the next chapter some experiments on real data are made. There the goodness of the
WT based MF detector will be tested on noisy signals.

4.5 Transient Characterization

Until now our only concern has been detection of transients. The characteristics of a
transient is also important information in structure monitoring. When the oscillation or
damping coefficient of transients change, it may be as a result of a damage in the hull.
Then changes in typical characteristics of the transients can be sufficient for a warning.

When a transient is detected, the information provided by the similar or equality factor
can be enough to make estimations of @ and A. If the SNR is to small (to much noise),
the detector output can be distorted so much that it is not possible to use it for character-
ization of transients. Then a reconstruction of signals must be used along with some al-
gorithms for removing the noise. After removing the noise, the signal segments contain-
ing transients can be analyzed once more, or analyzed using special algorithms for
characterization directly. A combination of these two methods will probably give an op-
timal estimation.

In this text just a brief discussion on this topic will be held. This discussion will be su-
perficial, and just an simple algorithm using the similarity curve is presented.

Assume now that x(n) is sliding along s(n). When a maximum value is returned from
our detection algorithm, there is a match. For transients with a phase shift of 1/2 period
of the oscillation frequency, a minimum will occur. Now measure the time between
maximum and minimum. This time will normally be equal to half the period of the un-
known transient. The accuracy of this measure may be distorted by noise. If the tran-
sient have no damping at all, the maximum and proceeding minimum amplitudes will
have same absolute value. A change in this amplitude can be a measure of how big
damping coefficient any transient have.

Of course this algorithm alone, especially in noisy environment, is not sufficient for a
good estimation of @ and A. Together with other more specialized algorithms, this
method for characterization of transients is powerful. In this thesis any study on this
subject is left out because of other theoretical topics are prioritized.
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5 EXPERIMENTS AND APPLIED THEORY

5.1 Short wavelet analysis on some real data

In this chapter we will apply the wavelet theory on some real data. These data are pro-
vided to us by Det Norske Veritas AS (DNV), and are measurements from a test vessel,
named “Njord”, made by Kvamer Mandal AS.

5.1.1 Origin of the data

The data come from test measurements done on a test vessel made by Kvaerner Mandal
AS, and the measurements were carried out by DNV (29). The test took place during
the first half of 1993 on the coast of Mandal, and our provided data is recorded on the
3rd of June. Each signal has duration of approximately 3 minutes.

The boat is a high-speed vessel of surface effect ship (SES) or air cushion catamaran
type. The test vessel was built in scale 1:3.2, with single skin construction. The use of
materials was asymmetric, meaning that one side is constructed with glass fibre rein-
forced polyester matrix and the other side with glass/Kevlar ™ 30 hybrid reinforced poly-
ester matrix.

/

i

#2.2 - #5.7 #7.9

. Measurement zone

Figure 5.1 Measurement zones (frame no.) on the vessel. Source: (29)

Almost all sensors are located in one of the measurement zones indicated in Figure 5.1,
and the location list of sensors is as follows:

e Global vertical acceleration at the longitudinal center of gravity (LCG).
e Global strain on the midship transverse frame.

e Strain on longitudinals (aft, midship and bow).

o Local strain on the wet deck panels (aft, midship and bow).

e Local _sl:rain on side hull inner/outer panels (aft, midship and bow).

For strain measurement, strain gauges from TML3! was used, and an accelerometer32
for measurement of the acceleration. A total of 61 strain gauges were mounted inside
30. Kevlar is a trademark of Du Pont’s high strength para—aramid fiber.
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the hull during construction. Figure 5.2 shows a crossection of the hull and the location
of some of the strain gauges.

Global sirain on the

midships transverse

I frame.

V.

Strain on the
longitudinal.

Center

Local strain on the .
wet deck panels. : Local strain on the Keel
side hull inner panels

Local strain on the
side hull outer panels

Figure 5.2 Crossection of the hull, location of strain gauges. Source: (29)

For each sequence of measurements, the signal from 16 sensors were amplified and
stored on a DAT-tape with the tape recorder RD-200T from TEAC. The sensor number
is the same as the channel number, which appears in the text. Figure 5.3 shows the sig-
nal flow on the vessel during testing. No analyzing of the data was performed on board.
The tape recorder stored the signals with a bandwidth of 2.5 kHz.

16 ) 16 Tape
Sensors  |——ap—3 Amplifier 7 Recorder

Figure 5.3 Data acquisition system on board

We used a personal computer (PC) with a 16 bit analog to digital converter board to dig-
itize and transfer the data to a harddisk. The analog outputs from the tape recorder, were
digitized with sample rate 6 kHz before storage. Figure 5.4 illustrates this.

16 16
Tape A/D Board , Storage on
Recorder ’ ina PC 4 harddisk

Figure 5.4 Our data processing

The duration of the signals from the 16 channels were approximately 3 minutes and 20
seconds. This corresponds to 1.2 Mill. samples pr. channel, 9.6 Mb pr file, representing
each channel. We had three sequences of data recordings, which all together resulted in
over 450 Mb of data!

31. Type: GFLA-6-70.
32. M1000 from Micro Movement.
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Because of the short time available for analyzing the provided data, only a few exam-
ples of data manipulation using wavelets are presented.

5.1.2 Wavelet filtering

Since a large amount of data has been provided, it is a very time consuming job to look
for typical transients by hand. Therefore only one of the most characteristic transients
will be used in the experiment with transient detection in this work. In this section we
study the selected transient, and subtract noise by wavelet filtering, and in the next sec-
tion we will demonstrate transient detection.

Figure 5.5 shows the transient that was chosen as a typical transient in the experiments.
We can not claim that it is typical for the entire data set, since a visual search through
the whole set was too time consuming. However, we see that the chosen transient has
the properties that are characteristic for transients.
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Figure 5.5 A segment of one of the channels

This recording is corrupted by a great deal of unwanted noise as shown in Figure 5.5. -
Now we will try to use the filter bank to reduce this noise. First we must try to find out
in which band (or stage) the different elements in the signal are located. This is done by
making a full decomposition of the signal and then generating a series of reconstruc-
tions where a single band is ignored at a time. By inspecting the reconstructed versions
of the signal, an investigation of the effect each band has on the signal is performed.
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Figure 5.6 The effect of the first to fourth stage on the signal
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Figure 5.7 The effect of the fifth to eight stage on the signal
As shown in the figures, the first band contains most of the noise. Even if this noise has
a period of approximately 80 Hz, most of it is removed by ignoring the first band. This
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is probably because impulses have a very large bandwidth. The wave shape is not much
distorted by removal of either of the first five bands. For the sixth band there is some
distortion of the frequency component just below 45.5 seconds. For bands higher than
this, the distortion is becoming more significant.

From these results we can draw the conclusion that is should be possible to remove the
first 4-5 bands without significant loss of information. To show this we have removed
the bands one by one from the first to the eight band in Figures 5.8 and 5.9.
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Figure 5.8 Signal after reconstruction when the first to the four first bands are re-
moved
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Figure 5.9 Signal after reconstruction when the five first to the eight first bands are
removed

As stated no significant information is lost when the first five bands are canceled. Be-
yond those, the distortion is beginning to have an effect. With this knowledge, we filter
away the first four bands before further analysis.

Bandno.: 8th 7th 6th 5th 4th 3rd 2nd 1st

> log,f
117 234 46.8 93.75 1875 375 750 1500 3000 [Hz]

T T T T T T T T > Scale(j)
—2.55 —3.55 —4.55 —5.55 —6.55 —7.55 —8.55 —9.55

Figure 5.10 Frequency bounds for the first eight bands with their corresponding scale
values

From Figure 5.10 we see that by removing the first four bands, frequencies higher than
190 Hz are filtered away. The main transient carrier in this segment of the signal has, by
inspection, a frequency of approximately 12 Hz. By inspecting Figure 5.11 and 5.12,
one will see that the scale parameter j not are an integer. Some values for j are shown in
Figure 5.10. The reason why j not is an integer as assumed during the derivation of the
multiresolution theory, is that we have a connection between J, and our sampling fre-
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quency according to Equation (3.73). For practical use this is not a problem. The param-
eter j will only be an integer if the logarithm with base two of the sampling frequency is
an integer. The only reason for using j at all is that the sampled signal should be multi-
plied by a factor according to Equation (3.72), and proper values should be given on the
scale axis of the time—scale plot.

We have now extracted one transient shape that may be typical for its location on the
vessel. It can be used in the WT based MF detector as the reference signal to search for
similar events.

5.1.3  Transient detection

As an example of transient detection, the previous filtered transient will now be used as
reference for detection on that same sensor element. Since we have filtered out the four

first bands, the reference signal can be downsampled by a factor 24 = 16 along with
the analyzed signal®3. This because the frequency components we search for must lie in
the same bands in both signals. Now, our search for frequency components is limited.

Analyzed signal
2000F ! ! T T T T T T T T4

10001 A

or 1 | | | | 1 | | L]

50 100 150 200 250 300 350 400 450 500
DWT(j,k)

Scale (j)
&n

50 100 150 200 250 300 350 400 450 500
Time step (k)

Colorscale from MIN to MAX

Figure 5.11 Discrete translation invariant wavelet transform of the filtered transient

Figure 5.11 shows that the DWT of our transient has a characteristic shape, where no
frequency components of the transient are left out. Now, a larger segment of the sensor
signal is extracted. By inspecting its wavelet transform, we notice that the selected area
contains our reference transient together with another with almost identical shape. In the
time-scale plane in Figure 5.12 both these two transients are located. When using the

33. Both signals are filtered before downsampling to avoid aliasing.
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WT based MF technique for detection, both transients are detected. Figure 5.13 shows
the detector output for these simulations.

This example illustrates that wavelets can be useful for both filtering and detection
problems. We have now seen how a found and modified transient can be used as refer-
ence for detection of other transients from the same sensor element. By inspection of
Figure 5.12, we clearly see that patterns similar to Figure 5.11 are found according to
each located transient. The first detected transient is the same that we have used as a
reference, and therefore the output form our detector is a high value as shown in Figure
5.13. The second detected transient has roughly identical shape, and the output is there-
fore almost as high as for the first transient. The performance of the detector in this ex-
ample shows promising results.

During this example the db2 wavelet was used. No other chooses of wavelet functions
were tried out.

Analyzed signal
20001 ' ' ' ' ! s
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ob | . t . . =
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Colorscale from MIN to MAX
Figure 5.12 Wavelet transform of a large segment of the analyzed signal
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" Detection using WT based MF technique
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Figure 5.13 Output from the WT based MF detector. The two transients that is present
in the signal are clearly detected

Since one of the proceeding detected transients are the reference signal, another seg-
ment of the channel are analyzed. This analysis is shown in Figure 5.14. In the trans-
form plot one clearly recognize events similar to those in the first analyzed segment. It
is interesting to note that one of these new transients (for time step 2000) almost have
identical characteristics as our reference transient. Only the amplitude seems to be dif-
ferent. By close inspection of the detector output in Figure 5.15, the output for this spe-
cific transient is almost similar to the output when the reference signal is analyzed (see
Figure 5.13).

This last analysis shows that even if the transients have less amplitude than the refer-
ence, an equality with respect to the other characteristics are enough to get detection.
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Figure 5.14 Wavelet transform of another large segment of the analyzed signal
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Figure 5.15 Output from the WT based MF detector. Two other transients are detected
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6 OVERVIEW OF SIGNAL PROCESSING SYSTEM

A suggested schematic overview of the signal processing part of a realtime system for
structural monitoring is shown in Figure 6.1. As indicated, this thesis are concentrated
on the use of wavelet transform for this purpose. A thorough study of the wavelet con-
cept have been the most central part of this thesis. Therefore a investigation of how to
characterize the load and mechanical response of the hull is left out.

" The storage capacity is important when deciding what data one want to keep. Probably
will a system with many sensors, where a high sampling frequency is used, not be able
to code and store raw data fast enough. The data will probably also need bigger storage
capacity than can be provided. The number of sensors and sampling frequency will de-
termine the required processing and storage capacity. In the technical feasibility study
project, CHESS, it is planed to use in the order of 50-100 sensor elements simulta-
neously. In future operating systems, the number will be much larger (The quantity
shown in Figure 2.4 is very exaggerated).

Wavelet analysis, or filter banks, can in most cases give very good improvement in data
compression, and since the transform has an inverse, storage of wavelet analyzes data
will give some advantages. Of course interesting events, such as transients, must be
stored to be able to do analysis of structural influences by hand in the future. A continu-
ous update of each sensor elements typical transient shapes is necessary to achieve good
detector performance. These stored characteristics are a very important part of the de-
tector system.



63

Transient
Storing Storing | Characteris-|  Storing
Storage T T tics A
Signal Processing .
Coding Coding Coding
| e e R AN 1

| : |

Multiplexing ! Wavelet Transient Detection| ||

Sensors [ and samplin i Transform —1>\and Characterization| | i
| |

This thesis 2
Pre—processing Pre—processing
Alarm Signals
Graphical User Interface
. Continuous Showing
Presentation Transients

Figure 6.1 Overview sketch of proposed realtime signal processing system. The work
done in this thesis is marked by the dashed line box

Before any graphical presentation of results to the user, some pre—processing must be
done. This pre—processing are dependent of how the information shall be presented. An
advanced graphical user interface (GUI) demands a more complex pre—processing. Any
graphical illustrations must be designed so that the user fast and without doubt can un-
derstand the meaning of presented events on screen.



7 FURTHER WORK

As briefly discussed in Section 4.5, sophisticated algorithms for transient characteriza-
tion will give good estimates of oscillation frequency and damping coefficients. Such
algorithms may more or less make use of wavelets. To obtain good results, a careful
study is required.

When using filter banks, removal of noise can be done statistically. For each band, sta-
tistical values are updated continuously. Only statistical deviations are stored, or start
more complex algorithms for analyzing events, i.e. thresholds is introduced. This can be
a very important part of a logging system, because much uninteresting data is discarded.
As aresult of this, storage capacity is increased. Statistics may also be used to look for
deviations in transient characteristics. If so, it may be a indication of structural damage.
This is maybe the most interesting use of statistics in hull monitoring.

Instead of calculating inner products according to Equation (3.68) to achieve the right
coefficients for filter bank analysis of signals, sampled versions of the signals are fre-
quently used directly. What the effect of this is for different sampling frequencies can in
some cases be interesting. The effect is briefly discussed in (2), (16) and (17), and more
complete conclusions may be derived.

In discrete wavelet representations redundancy can be introduced according to the dis-
cussion in Section 4.2.2. To get the algorithm for the WT based MF detector with as
good performance as possible, one must correct wavelet coefficients with the right re-
dundancy factor. A full deduction of the value of these factors in each band (or level) is
highly important. One must remember that several orthonormal bases is used in each
band to span the same function space. At the lowest level, two orthonormal bases span
W =1 Intuitively, the redundancy factor in this case equals 2, but no proof of this _is

given in the literature. These factors should hopefully also be independent of the mother
wavelet. '

It seems like that the easiest way to derive this, is to use bra and ket vector notation.
When one need higher resolution in scaling direction, wavelet packages are used. If us-
ing a full wavelet package, a homogeneous grid is achieved in this direction. By moving
all downsamplers, it would be interesting to see if the representation is correct with re-
spect to a completely homogeneous sampling in both directions of the time-scale plane.

System identification using power spectra of the input and output signal of a system is a
traditional method (30). One uses frequency information for the identification.
Identification of systems using wavelets is not a studied topic. Assuming that the system
is enforced with an arbitrary signal. On basis of the wavelet representations of the input
and output signals, a characterization of the system may be achieved. Now, assuming
that this analyzed system is our fibre optic sensor. Using wavelet analysis, typical sen-
sor noise may be characterized. This can result in a much more reliable measurements
of the tension at each sensor location. Since the sensors have different location, they
may also have different noise characteristics.
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8 DISCUSSION AND CONCLUSION

During this work, wavelet theory which was used for detection purposes in signal proc-
essing, are presented. Hopefully, the reader should have gained a good understanding of
basic wavelet theory, and hence a further study on the topic will maybe be easier.

In Chapter 3, an introduction to the wavelet transform is given. Interpretation of analyti-
cal results are discussed. When using the wavelet transform, it is necessary to be able to
interpret, or read, the transform images. One should note that transform images not al-
ways is true according to the definition of the wavelet transform. '

The multiresolution theory provide us with the possibility to use filter banks when im-
plementing discrete wavelet transforms. This is a powerful tool which gives faster algo-
rithms for time—frequency analysis compared with for example a traditional method
such as the short time Fourier transform (STFT). Together with the excellent ability to
analyze non-stationary signals, the fast algorithm are one of the best reason for choos-
ing wavelet analysis in transient detection problems. In this case, the similarity with the
matched filter method are also a contributing factor for studying wavelets.

Compared to the cost function dependent algorithm, the downsampler ignoring algo-
rithm reduces the total complexity for the translation invariant wavelet representation.
However, if data are supposed to be stored, the last algorithm needs more storage capac-
ity. Therefore this algorithm is only optimal when using the wavelet coefficients togeth-
er with the matched filter (MF) based wavelet transform (WT) detector. Then one as-
sumes that only interesting events are stored. If one wish to store the WT of an analyzed
signal, this is most efficiently solved by downsampling the representation after the de-
tector.

When using filter banks for wavelet analysis, one must remember that filters normally
are anti causal, in difference from the wavelet transform which is normally causal. The
wavelet transform are only anti causal when the analyzing wavelet has compact support
for negative values of the time variable. To achieve identical transform images accord-
ing to the definition of the wavelet transform, one must use causal filters in the filter
bank. In these cases one should remember that the analyzing wavelet and the corre-
sponding filters have identical support.

If one, when using the MF based WT detector, choose an observation window for the
reference signal that are to small, the detector performance will decrease. This is espe-
cially important when the signal to noise ratio (SNR) is small. When analyzing signals
with large SNR, a smaller observation window may be used. The size34 of the observa-
tion window is determined of the correlation between the analyzing wavelet and the ref-
erence signal. If the correlation is good, this will result in a smaller window size.

Due to lack of time, no experimental work was done. However, a few examples of ap-
plied theory from literature are shown. These few experiments indicate that the pro-
34, The size is both length, which is in the time direction, and width, which is in the scale direction.
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posed detector algorithm have good pcrfonﬁance with respect to real data. By inspect-
ing some of these data, one can conclude that the SNR is very large. Hopefully the SNR
will not be decreased when using FBG strain sensors instead of electrical strain gauges.

During the experiments, the reader probably with suspicion noted that the discrete scal-
ing parameter j not was an integer. In the multiresolution section one require that j
should be an integer. As described before, j will only be an integer for certain values for
the sampling frequency. If using an approximation of the inner products between the
analyzed signal and the scaling function for a chosen integer J, this will cause this error.
However, for practical realizations of a system, this should not be of any concern. Itis
only important if one require proper values on the scaling axis on the transform images.
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Definition

Continuous scaling parameter.
Continuous shift (translation) parameter.
Mother wavelet function. | |

The wavelet scaled by a and shifted by b, energy is constant.
The Fourier transform (FT) of y(f), Y(w) = j (e ™ @ds.

The Fourier transform of ¢(z).

The continuous frequency variable.

The imaginary number, i = ,,/—_1 :

Denotes complex conjugation.

Redundancy in the continuous transform.

Inverse redundancy factor in the discrete transform.
All real numbers.

All integers — negative and positive.

Continuous wavelet transform.

Discrete scaling parameter, a = ao' /.

Discrete shift (time) parameter, b = k bya J,
Scaling grid parameter in DWT.
Translation grid parameter in DWT.

Discrete wavelet transform.
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Scaling function.

Subspace spanned by ¢ ik

Subspace spanned by ¥ ;.
The empty space.

Absolute integrable.
Infinite—dimensional Hilbert space ((8)).
Scaling function coefficients and lowpass FIR filter.

Wavelet function coefficients and highpass FIR filter.
Scaling coefficients.
Wavelet coefficients.

The Dirac delta function.
The Kronecker delta function.

The Discrete-Time Fourier Transform (DTFT) of h(n),
N-1
Ho) = % h(n)e ~ i,

n=0

The DTFT of h,(n).
The length of the filters.

The number of filters in one stage of a decomposition/reconstruction
filter bank, i.e. M—band FB.

Correlation coefficient. Maximum correlation if p = + 1.
The damping coefficient in a transient. Wavelength in Chapter 2.
Threshold in transient detection.

Complexity factor. Typically number of operations or multiplications
on a n-length sequence.
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APPENDIX
A OVERVIEW OF AVAILABLE WAVELETS IN MATLAB

The dashed line shows the corresponding scaling function to each wavelet function. For
the Morlet wavelet the dashed line indicates the imaginary part of 1(#), and the continu-
ous line the real part (For the Morlet and Mexican hat wavelet there does not exist any

_ corresponding scaling function, see table 3.1). These figures are generated using the '
WAVEFUN command in Matlab. This function use the iteration Equation (3.65) with 2®
iterations. It is possible to construct Daubechies wavelets in Matlab up to N = 50. For
the biorthogonal wavelets, the decomposition functions is used in the analysis part and
the reconstruction functions in the synthesis part.
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B MATLAB PROGRAMS

In this appenix the most important Matlab procedures/programs that I have used during
my work be listed. Each program will have an introduction that in a short way explain
what the program does.

sig_filt.m: Is used for filtering the analyzed signal. The results of this routine are
presented in Section 5.1.2. The GONE variable contain the bands to be ignored during
the reconstruction. The number of stages are desided by the largest absolute value in
this variable.

clear;

Channel = 3;

disp(’Loading file ....");

eval([’load cha’ num2str(Channel) ’;’]);

x = eval([’cha’ num2str(Channel)]);

x = x(1:2"(floor(log2(length(x)))));
Fs = 6000; % [Hz]

start = 267000;

L = 2°13;

y = x(start:start+L-1);

t = TvsX(x,Fs,start,start+L-1);

wname = ‘db2’;

GONE = [-14 1 2 3 4]; % Band(s) to be left out
S = max(abs(GONE)); % Number of stages
C = x;

disp(’Computing ..... e

S AL TLITIIHIILLLTLITILILLLIBINLY

for s = 1:8,

[C,D] = dwt(C,wname);
if member(s,GONE),
D = zeros(length(D),1);

end;

EQ = ['D’' int2str(s) ' = D;']; eval(EQ);

disp(sprintf(’D%i ok %i %i’,s,length(C),length(D)));
end;
disp(’Decomposition ok ’);
$EEHIIHILLIITLLILLLLILLILILLLHIBILRRY

for s = 1:58,

EQ = ['D = D' int2str(S-s+l1) ’;’]; eval(EQ);
$ disp(sprintf(’ %i %i’,length(C),length(D)));

if length(C) ~= length(D).,

D = [D’ 0]';

end;

C = idwt(C,D,wname);

disp(sprintf(’'D%i ok’,S-s+1));

end;

disp(’'Reconstruction ok ’');

S EETELTLIITLLTTLLLILLLLTLLLLILTILLL%Y
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TxsX .m: This function returns a time vector with equal length as the vector x. Fs is the
samle rate and start/stop give the boudaries for this time vector.

function t = TvsX(x,Fs,start,stop);

tstart = start/Fs;

tstop = stop/Fs;

t = [tstart:1l/Fs:tstopl;

t = wkeep(t,length(x),'l");

member . m: Test if a veriable A is a member of a vector B.

function T = member(A,B);

% Tests if A is a member of B.
$ If so, returning 1, else 0.

% Syntax: answer = member(A,B);

T = 0;
for n = 1l:length(B),
if A == B(n),
T =1;
end;
end;

WTdetector .m: Is the detector used in Section 5.1.3. Compute first the filters according
to second method for TI transform. The Y matrix is the reference representation.

clear; clf;

D= 4;

Fs = 6000/D; % [Hz]

J1 = log2(Fs);

wavelet = 'db2’;

[HO,H1,RHO,RH1] = wfilters(wavelet);
S = 10; % Number of stages in the FB
j = -[J1-1:-1:J1-1-S+1];

$%% Computing filters in the FB %%%
for s = 1:8,

EQ = [/FILT’ num2str(s) ' = FBfiltNr(’ num2str(s)
',2,wavelet);’'];

eval (EQ);
end; disp('Filters ok ...");

$ELFLLLLLLLIILETITLLLLTLLLLLEIRINLY

$%% Make y %%%
load BAl_4; % Filtered and downsampled signal
y = BAl_4;
~for n = 1:D,
y = dyaddown(y);
end;
ystart = 267000/2°D;
L = 2~(13-D);
y = y(ystart:ystart+L-1)';
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t = TvsX(y,Fs,ystart,ystart+L-1);
FTILLHELDHHLY

$%% Compute DWT of a known signal y, store it in Y %%%
for s = 1:8,

EQ = ['Y(’ num2str(s) ’,:) = filter(FILT’ num2str(s) .....
r,1,v)/(sqrt(2°J1)); 1;%*2"s); "1
eval(EQ);
end; disp(’Y matrix ok ...");

PRSI ELERLIILLLEIRLHLTLTILILILLLLALLLINLLLY

$%% Make x %%%
x = BAl_4;
for n = 1:D,
x = dyaddown(X);
end;
$xstart = 250000/2"D; % hoved eks.
xstart = 660000/2"°D;
x = x(xstart:xstart+50000/2°D)";
FEEIFFEEEELES

$%% Compute DWT of the unknown signal x, store it in X %%%
for s = 1:8,

EQ = [’X(’ num2str(s) ’,:) = filter(FILT' num2str(s)

',1,x)/(sqrt(2°J1)*2"s);'1;

eval(EQ);
end; disp(’X matrix ok ...");
P EE RIS LI LTSI ELLLLALLIITIITTLLLLLTLLLLILTLILTILLLY
disp(’/DWT matrices ok ..."):

ly = length(y);
1x = length(x);:
MF = wkeep2(X,ly,’1"):
for n = 1: 1x,
if ly+n > 1x,

new = zeros(S,1);
else,

new = X(:,ly+n);
end;

$MF = [new wkeep2(MF,ly-1,'1")];

MF = [wkeep2(MF,ly-1,'r’') new];

matching(n) = sum(sum(Y.*MF));
end; disp(’'Detection done!’);

MAX = maxindex(matching,’abs’);

Tmax = MAX/Fs;

g = matching;

hold off; plot(g); grid on;

etmp = axis; axis([1 length(g) etmp(3) etmp(4)1);
xlabel ('Time step (k)’); ylabel('’'Detector output’);
title(’Detection using WT based MF technique’);
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wavefun(wavelet);
:lyl,j.psi)
:1x],3,psi)

[phi,psi,xval]
DWTplot(Y,y, [1:
DWIplot(X,x, [1:
colormap (hot);

o

FBfiltNr.m: Construct the filters used in the filter bank without downsamplers.

function H = FBfiltNr(S,D,wavelet);

$Use the l1lst Noble identity to compute the impulse response

$to the FIR filter at a specific stage. All the downsamplers
$is moved to the right, which means that a signal is filtred
$before dovnsampling.

%

$ Syntax: hs = FBfiltNr(s,D,'wname’);

%

$s is the stage number at which the filter hs is located.

%D is the dowhsample factor in each stage BEFORE moving the

¢downsamplers to the right.

% Made by Roger Eriksen 17/6-96. Ver.2

[H0,H1,RHEO,RH1] = wfilters(wavelet);
if § == 1,

H = H1;
elseif § == 2,

H = conv(HO,nobelidl(H1,D));
else,

tmp = HO;

for s = 1:5-2,

tmp = conv(tmp,nobelidl(HO,D*2"(s-1)));

end;
H = conv(nobelidl(H1l,D*2"s),tmp);
end; :

nobleidl.m: Realization of the first Noble identity.

function F = nobelidl(H,D);
% Computes the Noble identity from left to right
% according to the figure in [9], page 100.

$ Made by Roger Eriksen, Spring 96. Ver.2

tmp = H(2:length(H));
F = zeros(l, (length(H)-1)*D+1);
F(l) = H(1):
for n = 1:1length(H)-1,
F(n*D+1) = H(n+l);
end;
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wkeep2 .m: Extracts a part of a matrix.

function y = wkeep2(X,arg2,arg3);

[r,c] = size(x);
if arg3 == '1l’,

y = x(:,1:arqg2);
elseif arg3 == ‘r’,

y = X(:,c—arg2+l:c);
else,

y = wkeep(x,arg2);
end;

maxindex .m: Finds the indexes for the maximum, minimum or absolute maximum in a
Vector or a matrix.

function M = maxindex (X, type):

$Finds the index in the vector or matrix X
%that corresponds to a maximum (’'max’),
gminimum ('min’) or absolute maximum (’abs’)
gvalue.

% Made by Roger Eriksen 27/6-96. Ver.4.

if type == ’abs’,
m = max(max(abs(X))):

elseif type == 'min’,
m = min(min(X));
elseif type == 'max’,
m = max(max(X));
else,
error(’Wrong arguments, read help!’);
end;

s = size(X);
[A B] = find(X == m);

if A ==1, % X is a vector
M = max(M);

else,
M = [A B];

end;

DWTplot .m: Plot the dircrete wavelet representation of a analyzed signal. Used for the
DWT plots in Section 5.1.3.

function DWTplot(c, f,time,scales,psi);

%

$imageplot of the DWT(a,b), with the analyzing
swavelet in the rigth corner. The analyzed signal
$is plotted over the DWT plot.

%

% syntax: DWTplot(c,f,time,scale,psi)

%
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c — the wavelet representation matrix
f - the analyzed signal
time - time vector

scale - scaling vector
psi the analyzing wavelet

9P dP dP df dP dP

$If the analyzing wavelet is complex, both the
$real and the imaginary part is shown. The
$imaginary part is plotted as a dashed line.
$When the DWT is complex the absolute valve is
splotted. '

$ Made by Roger Eriksen 16/6-96. Ver. 2. Based on CWTplot

clf;

NBC = 64;
caxis([1 NBC]);
axis off;

% Plot of analyzed signal

WINDOW1 = [0.075 0.8 0.85 0.15];
axes('position’,WINDOW1);

plot(time, f,’'g-")7

axis([min(time) max(time) 1.5*min(f) 1.5*max(f)]);
title(’Analyzed signal’);

% Plot of DWT
WINDOW2 = [0.075 0.14 0.85 0.55]:
axes('position’,WINDOW2);
if ~(imag(c) == 0),

c = abs(c);
end;
C = wcodemat(c,NBC, ‘'mat’,0);
image(time, fliplr(scales),NBC-abs(C));
xlabel ("Time step (k)’);. :
ylabel(’Scale (j)'):
title('DWT(J,k)");:
grid off;

% Plot of the analyzing wavelet

WINDOW3 = [0.77 0.55 0.13 0.11];

axes('position’,WINDOW3);

if ~(imag(psi) == 0),
plot(imag(psi), 'r=.");

end;

hold on;

plot(real(psi),'b-");

axis([1 length(psi) min(real(psi)) max(real(psi))l):

hold off;

axis off;

grid off;

% Plot of colorbar
CBAR = [0.3 0.05 0.4 0.0125];
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axes(’'position’,CBAR);
for n = 1:NBC,
bar(l,n) = NBC-n+l;
bar(2,n) = NBC-n+l;
end;
image(bar);
axis off;
axes(’position’, [0 0 1 0.0000171);
axis off;
title(’Colorscale from MIN to MAX');

CWTplot .m: Used to produce the plots in Section 3.1.

function CWTplot(c,f,time,scales,psi);

%

$imageplot of the CWI(a,b), with the analyzing
$wavelet in the rigth corner. The analyzed signal’
%is plotted over the CWT plot.

%

% syntax: CWTplot(c,f,time, scale,psi)

% g

$ c - the wavelet representation matrix
$ f — the analyzed signal

$ time - time vector

% scale - scaling vector

$ psi — the analyzing wavelet

%

$If the analyzing wavelet is complex, both the
$real and the imaginary part is shown. The
$imaginary part is plotted as a dashed line.
%When the CWT is complex the absolute valve is
gplotted.

$ Made by Roger Eriksen 14/5-96. Ver. 2.

clf;

NBC = 64;
caxis([1 NBC]);
axis off;

$ Plot of analyzed signal

WINDOW1l = [0.075 0.8 0.85 0.15];
axes('position’,WINDOW1);

plot(time, f, 'g-");

axis([min(time) max(time) 1.5*min(f) 1.5*max(f)]);
title(’Analyzed signal’);

% Plot of CWT
WINDOW2 = [0.075 0.14 0.85 0.55];
axes('position’,WINDOW2);
if ~(imag(c) == 0),
c = abs(c);
end;
C = wcodemat(c,NBC, 'mat’,0);



89

image(time, fliplr(scales),NBC-abs(C));
xlabel('Time (b)’):

ylabel(’'Scale (a)’');
title('CWT(a,b)’);

grid off;

$ Plot of the analyzing wavelet

WINDOW3 = [0.77 0.55 0.13 0.11];

axes('position’ ,WINDOW3);

if ~(imag(psi) == 0),
plot(imag(psi), ‘r—.");

end;

hold on;

plot(real(psi),'b-");

axis([1 length(psi) min(real(psi)) max(real(psi))]);

hold off;

axis off;

grid off;

$ Plot of colorbar
CBAR = [0.3 0.05 0.4 0.0125];
axes(’position’,CBAR);
for n = 1:NBC,
bar(l,n) = NBC-n+l;
bar(2,n) = NBC-n+l;
end;
image(bar);
axis off;
axes(’position’, [0 0 1 0.00001]);
axis off;
title(/Colorscale from MIN to MAX');
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