FFIU/727/161.4

Approved
Kjeller 19 May 1998

, Mikor S Potionnr
| Vidar S. Andersen
Director of Research

VISUALIZATION OF SONAR PERFORMANCE

NILSEN Erik Hamran, TVEIT Elling, WEGGE Jon

FFI/RAPPORT-98/02542

2

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
Postboks 25, 2007 Kjeller, Norge

FORSVARETS FORSKNINGSINSTITUTT (FFI)

UNCLASSIFIED
Norwegian Defence Research Establishment
P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N-2007 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF
FF/RAPPORT-98/02542 UNCLASSIFIED PAGES
1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 55
FFIU/727/161.4
4) TITLE
VISUALIZATION OF SONAR PERFORMANCE
(VISUALISERING AV SONARYTELSE)
5) NAMES OF AUTHOR(S) IN FULL (surname first)
NILSEN Erik Hamran, TVEIT Elling, WEGGE Jon
6) DISTRIBUTION STATEMENT
Approved for public release. Distribution unlimited
(Offentlig tilgjengelig)
7) INDEXING TERMS
IN ENGLISH: IN NORWEGIAN:
a) Computer programs a) Dataprogram
b) Sonar b) Sonar
¢) Simulation ¢y Simulering
a) Diagrams dy Diagrammer

e)

THESAURUS REFERENCE: INASA SP-7064 (Vol 1)

8) ABSTRACT
The document describes several methods for sonar performance visualization, and how prediction data can be
used by an operator to adjust sonar parameters. A computer program has been implemented to create most of
the plots and diagrams in this document. A users guide to the program and a detailed description of the code
are included.

9) DATE AUTHORIZED BY POSITION
This page only

19 May 1998 M Ay f /44 f(w’v""‘// Director of Research

Vidar S. Andersen

ISBN 82-464-0260-9 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
FFI-B-22-1982 (when data entered)

CONTENTS
1 INTRODUCTIONooiesasssss a5 omms s s3 8 s
2 VISUALIZATION METHODS . :cscossswsemsossa waps
2.1 CONEOUE IS ovoo v v o 0 o 0 comsrmsonmuens, = & 5 7 % 8 5 REIEH 1 5 5 4 & 479080
2.2 ISOSHITACES & omie 55 8 5 5 i SaomEimws 5 5 5 & 55 » www & ¢ ¢ ¥ % w0
2.3 Volume visualizationc.oiiiuiinen..
2.4 Magimumispeed: :::ssvsssvsasnssrssaammenssss s swes
2.3 Optinmal Sensor PATAMBIET u.swws v v x5 = » v 0 svcomim o » 5 0 woonce
3 GSMD USERS GUIDE ..conssaunssios memomsssss ames
3.1 Installation and TP + cocswas nigas s s maea s » 8 § 1 G
32 Organization of datafiles .cowwseevvamnmmmmass v e oo
3.3 Parameter Selectioncoccvnernrasivnensssissssns
34 CONONY DI s 5 5 55 5 swmmmmuys x g8 a3 4§ Fawns & e s o o
3.5 3D visualization
4 CONCLIISEON & ::somommanssss e85 s wmees sy s » v
Beferenens saes v vas srmomene s 65 £ 5 5 4 5 WRIsws £ 5 & § § S
APPENDIX
A IMPLEMENTATION OFGSMD . ::.i:vvovusesassnns
A.l Interactive Data Language (IDLYss0vsmovsassavnn
A2 Class simctores in BN .onwe oo w5 505 0 8 mmmen 5 0 15 0 mwmoon
B SOURCE CODESUMMARY' ::5s:556ss5m@e9s 5 3 5 wnws
B.1 GEBMBEIVEL v isasionmacve s i Ea AT 8% TS § 4 5§ 1 W
B2 NS Or ..ot
B.3 BEAlatel .o v v ess s s 8 a 553 2RSS 5 §5 4§ FEE
B.4 TOWEH BFFAY v+ o 5 3 5 « woasvomenen o v 5 0% % % o wmmmos & 5 # & % s
B.5 Bl GUnIRd SOMAY . s casmacssiis 5353 somnd 55§ 2 pouss
B.6 Vninhle@epth SDIRE « ocmmmescs 5 v o v 5 5 3 0 e o @ x ¢ s o moo—"
B.7 DHPPINE SONBY :c:sssminamns i 9453455 SREas s § 45 2ames»
B.8 Main procedire LESINID L. o ¢« x » % 5 « e « 5 x 0 »mm—m
B.9 [E T) S T LI T TITITIY e
B.10 2D graphips MR e v o ¢ 5 x5 3 wvsemmnm s 8 x o 5w
B.11 3D graphics WINAOW coosessoives s siames @55 58 oo

B.12 Trackballt e

Page

o N N &

10

14
14
14
15
17
18

20

21

22
22
22

24
24
28
30
31
32
33
34
35
36
38
39
43

B.13
B.14
B.13
B.16
B.17

SONATTHAD o oorsi0@ s #8655 LEHRE E 15 8% 53§ FHTESEWH ¥ ¥ 0 Sarara

Object graphics contour plotscoeevenn...

PIOt TOUMIES 0onee v 5 6 5 & imebiendods 5 5 5 56 5 8 5 S/alieyy o 6 v » % % prwigs

Data loading routinesv.eoeeovmvonraresnvnons

Utilities

...

47
48
50
51
52

VISUALIZATION OF SONAR PERFORMANCE

1 INTRODUCTION

In modern sonar systems, computer models will be used to predict the sonar performance.
Ideally, the model should be updated very frequently, and the environmental parameters
should be changed to reflect the new position and time. The prediction data should be
presented for the sonar operator, in such a way that decisions can be made to adjust sonar
parameters, and eventually the speed and course of the vessel. The intention of this report
is to give a few examples of how the presentation can be done, and to illustrate the type of
information that are available from sonar prediction.

The document is divided in two parts. The first part concentrates on methods and graphic
algorithms for displaying sonar prediction data. The second part is a description of a com-
puter application which has been developed as a part of the project. This experimental
application has been used to create the plots and examples in this document. The applica-
tion may also give some ideas on how support tools for sonar operators can be designed.

2 VISUALIZATION METHODS

In this chapter we will show some methods for visualization of sonar prediction data. The
prediction data is generated by Generic Sonar Model from Naval Underwater Warfare
Center (NUWC), USA. We have used signal excess as a measure for sonar performance.
Figure 2.1 defines a color scale for signal excess values with corresponding probability of
detection (when the probability of false alarm is 0.01 % and O dB corresponds to 50%
probability of detection).

We will use the following sonars in the examples:
e HMS: Hull mounted sonar, 7 kHz, variable tilt, self noise depends on bearing.
* ATAS: Towed array, 2 kHz, variable sensor depth, noise from towing vessel depends

on bearing.

All parameters in the simulations are independent of range, i.e. we assume constant depth
in the whole area and no horizontal variation of the sound speed profile.

2.1 Contour plots

The signal excess is usually computed in cylindrical coordinates, i.e. as a function of
range, bearing and target depth. The resulting three dimensional scalarfield may be visual-
ized as cuts in different orientations. Figure 2.1 shows an example of a horizontal cut,
drawn as a polar contour plot.

Figure 2.1 Signal excess for ATAS (Norwegian Sea, Winter, S52) as a function of range
and bearing. Target depth is 10 m, and the speed of own ship is 10 knots.

The towing ship is moving upward in the figure. The sonar performance is poor in this di-
rection because of the noise from the towing ship. The scale in the plot is 50 km range,
and there is a distinct convergence zone at about 40 km.

In figure 2.1 there is a line drawn for the bearing 90 degrees (to the right), and a circle of
50 km radius. We have plotted the vertical cuts along these lines, i. e. signal excess as a
function of range and target depth, and signal excess as a function of bearing and target
depth. The result is shown in figure 2.2.

arget depth
T T T e T T T T T

B R e R

ing [deg)

Figure 2.2 Signal excess as a function of bearing and target depth (to the left) at 50 km
range. The other plot shows signal excess as a function of range and target
depth at 90 degrees bearing. The other parameters are the same as in figure
ol

The examples shown here are very cheap to implement, because the computations are car-
ried out in cylindrical coordinates. The main disadvantage is that we can see the sonar
performance only in some parts of space. Anyway, the method might be usefull when the
signal excess is similar for all bearings, or when the approximate position of a target is
known.

2.2 Isosurfaces

An alternative method to visualize three dimensional scalar data is to create isosurfaces.
Isosurfaces are surfaces with constant signal excess value. There are several methods to
generate isosurfaces, and many of them are based on the “marching cubes” algorithm. See
(1) to get a brief introduction to this algorithm. We have used the IDL function
“SHADE_VOLUME”".

Figure 2.3 shows an example of an isosurface representing 0 dB signal excess (the white
surface). A sector is removed to reveal some internal structures. The isosurface has holes,
which has been filled using signal excess contour plots.

m
=l
o

—{H
b
Q
>

LLI
T
&
=y
o5

ATAS, 2kHz, 100.0 m sensor depth
@ 10 kts, SS2, Norw. Sea, Winter

Figure 2.3 Isosurface (0 dB) and cuts with contour plots for visualization of signal ex-
cess data.

2.3 Volume visualization

Volume visualization can be used to show all parts of the three dimensional signal excess
data. Figure 2.4 is an example of this method, where we have used the same data as in last
section. First the data is converted to a regular grid. Then we use tables to convert signal
excess values to red, green and blue color components, together with a transperancy value.
The final image is then created by drawing many overlapping partial transparent images.
The transperancy can be adjusted to form compact or blurred objects. (See (1) for more
information about volume visualization algorithms).

Volume visualization is expensive in both memory and processing. On conventional com-
puters creating an image might take several minutes, but using specialized graphics hard-
ware we can achieve a rate of several frames per second.

Figure 2.4 Volume visualization of signal excess for ATAS (Norwegian Sea, Winter, S52).
The sensor depth is 100 m, and the towing ship is moving towards us at speed
of 10 knots. Red solid areas have signal excess above 6 dB. Yellow, transpar-
ent areas have signal excess between —6 and 6 dB. The resolution is 64x64x8.

The main disadvantage for volume visualization is that it is difficult to create good conver-
tion tables for color and transparency (convertion tables which gives clear and reasonable
sharp images). But when we find good tables, volume visualization will compress a lot of
information into one image.

10

24 Maximum speed

In most situations the speed of own vessel will influence the performance of the sonar, be-
cause noise from machinery and propulsion may reach the sensor. In addition flow noise
directly on the sensor might be of importance. For a sonar operator it is important to have
an idea of how the sonar performance is influenced by the speed. In figure 2.5 we have
chosen a specific direction and target depth and plotted the signal excess as a function of
range and own speed for a hull mounted sonar. Generally we have that the performance is
decreasing when the speed is increasing.

Figure 2.5 Signal excess as a function of range and own speed (HMS, 0 degrees bear-
ing, 40 m target depth).

In figure 2.6 we have tried to show the speed dependence for all bearings, ranges and tar-
get depths. We have simulated the sonar performance for three different speeds — 10, 15
and 20 knots. Then for each range, bearing and target depth we have found the maximal
allowed speed, provided that the signal excess is greater than 0. The result is the solid ob-
ject shown in figure 2.6, where green means that we have reasonably good performance at
20 knots, in the yellow area the maximum speed is 15 knots, and in the red area 10 knots.

11

Hull mounted, kHz:, 0.0 degree tilt
@ 10 kts, SS2, Marsteinen, Winter

Figure 2.6 Maximum allowed speed, when we require probability of detection greater
than 50%.

The method gives best results when the typical behaviour is that the signal excess is de-
creasing when the speed is increasing. This is not obvious for all sensors and target posi-
tions.

2.5 Optimal sensor parameter

Usually it is possible to change the behaviour of a sonar by changing different parameters
(e.g. sensor depth or tilt). In this section we will give some ideas on how to create tools
which can help sonar operators to choose optimal parameter values. We will use simula-
tions of a towed array, where the sensor depth has been set to 50, 100 and 140 m.

12

Figure 2.7 shows an example where we plotted the signal excess as a function of range and
sensor depth for three different target depths (50, 90 and 130 m). In this case the optimal
choice of sensor depth seems to be about the same as the expected target depth.

D0 ;.5

!-i-.n'np;(_:

= T
Range [kml

130 m target depth

Figure 2.7 Signal excess as a function of range and sensor depth for different target
depths (ATAS, winter, Norwegian Sea, SS2, bearing 90 degrees).

It is difficult to get a total overview of the situation using the plots in figure 2.7. We want
to make a single plot where the dependence of bearing and all target depths are included.
In figure 2.8 we have plotted the optimal sensor depth for each bearing, range and target
depth. A natural way to define the optimal sensor depth is to find the sensor depth which
gives the highest signal excess value for each point in space. We have modified this defi-
nition because it could lead to many unnecessary adjustments of the sensor depth. Instead

13

we define the current sensor depth as the optimal as long as signal excess is greater than 0.
When the signal excess falls below 0 we choose the sensor depth which gives the highest
signal excess greater than 0.

In figure 2.8 the current sensor depth is 100 m, and the yellow area shows the correspond-
ing detection area. The red and green areas are not covered by the current sensor depth,
but will be covered if the sensor depth is set to 50 or 140 m respectively.

ATAS, 2kHz, 100.0'™ sensor dep
@ 10 ks, SS2, Norw. Sea,

Figure 2.8 Optimal sensor depth for a towed array.

14

3 GSMD USERS GUIDE

GSMD is a visualization program for displaying signal excess data generated by “Generic
Sonar Model” from NUWC. GSMD is specially designed to let the user browse through a
large number of experiments, and to visualize results which depend on both bearing, range
and target depth.

3.1 Installation and startup

First change to the directory where GSMD should be installed, and unpack the archive file
using “tar xvf gsmd.tar”. The archive contains IDL (Interactive Data Language) source
code, data directories and shell scripts. The resource file “gsmdrc” in “gsmd/etc/setup”
should be edited so that all system variables point to correct directories. Run the setup
script by entering “source gsmd/etc/setup/gsmdrc” (This line could also be included in the
users “.tcshre” file). Note that “gsmdrc” is written for tcsh.

Now it should be possible to start IDL with the command “runidl”, and then call the IDL
procedure “GSMD?” to start the main program. Alternatively GSMD can be started direct-
ly from the shell by the command “rungsmd”.

The archive also include scripts and data which can be used together with the sonar simu-
lation package GSM (Generic Sonar Model) to simulate sonar systems (the “gsmd/sim”
directory).

3.2 Organization of data files

A collection of sonar simulation results is included in “gsmd.tar”. New data can be added,
but the files has to be named and formatted in a special way, and the source code of GSMD
has to be changed.

Each sonar simulation is identified by a standard set of parameters.

Parameter Name Examples Comments

self noise level high, low noise from own ship
location MT, ND Marsteinen, Norskehavet
season W, S Winter, Summer

sea state 2.9

speed 10, 15, 20 speed of own ship [knots]
sensor parameter 1 50, 100, 140/0,1, 2,3 e.g. sensor depth/tilt or signal
sensor parameter 2 processing

range 0.5,1.0, ..., 50.0 Distance to target [km]
bearing 0:.2; ;180 relative bearing

target depth 30, 70, 100, 150 depth [m]

15

The first seven parameters is used to define the names of the datafiles, and each file con-
tains a three dimensional signal excess dataset in cylindrical coordinates (range, bearing,
target depth).

The format of a GSMD data file is described in the following table:

Type Number of elements | Name Description

int 1 nrange Number of range values

int 1 ntheta Number of bearing values

int 1 ndepth Number of target depths

float nrange range List of range values

float ntheta theta List of bearing values

float ndepth depth List of target depth values

float nrange * ntheta * data 3D data array (SE, PD or other va-
ndepth lues)

The file should be stored in XDR format (hardware independent binary format). The C
program “xdrconv.c” in “gsmd/tools” directory can be used to convert ASCII data into
XDR format.

The document (3) shows how the sonar simulation and the formatting of data have been
done for a hull mounted sonar and a towed array.

When the user wants to add a new sensor to GSMD, a new class corresponding to the sen-
sor should be created. The new class should inherit the “sensor” class. Two member func-
tions, “GET_FILENAME” and “INIT” must be implemented. “INIT” initializes the object
and “GET_FILENAME?” creates a filename from the first seven parameters above.

In addition the main procedure defined in “gsmd.pro” should be edited and the new sensor
object added to the list. See the source code “gsmd.pro”. Any of the sensors ("XAD”,
“XSP” et.c.) can be used as templatex for new sensor classes.

3.3 Parameter selection

The main window in GSMD in shown in figure 3.1. The user can change all parameters
using the pulldown buttons and sliders on the left. The plots on the right shows the corre-
sponding sound speed profile and the signal excess as a polar contour plot.

From the top left the parameters are self noise level, ocean location, season and sea state.
Below there are buttons to choose the sonar and its parameters (sensor depth, tilt or signal
processing). There is also a button to change the speed of own ship.

When parameters are changed the plots are automatically updated. The polar contour plot
shows the signal excess as a function of range and bearing, given a specific target depth.

16

The target depth may be adjusted using a slider. It is possible to specify a position (range
and bearing) using the left button in the polar plot. This position will be used to create oth-
er plots, as we will see below.

On the menubar there is two pulldown menus. Use the “File” menu to quit the application.
The “Window” menu can be used to open additional plot windows.

Exraay e EE|
Filed Window g f i i SR e e |

Selfnoise: Low — {

Sound Speed Profile

0f

izolls 2 E

Location: Marsteinen — ! 00 ¢
_— e -100
Season: Winter — l ki -150

s il -200 ¢

Seastate: 882 '_tl e 950 E

iSensor:dhl il 1450 1475
' Sound Speed

ATAS, 2kHz |

' 50.0m sensur.dépth o I i

0 degree tilt “"l b

fal;get Depth
Range:

50km — | 15dB —

=3 0 3
Signal Excess L[dB]

Figure 3.1 Main window of the GSMD application.

17

3.4 Contour plots

The “2D View” button opens an additional window for contour plots. Figure 3.2 shows an
example.

= ' e R
| Window Options = B At R e et -

Target depth [ml larget depth [m]

¢

30050 100
Bearing Ldegl

Speed [kts]

100 100 20 30 . 40
Bearing Ldegl Range [kml

m sensor depth :pth

0. 100 0710~ 2100530
Bearing [degl Range [km]

Figure 3.2 Window for 2D contour plotting (ATAS, Marsteinen, Winter, S52, 10 kts speed,
50 m sensor depth, 35 km range, 90 degrees bearing, 90 m target depth).

The window may contain up to six different contour plots at the same time. The plots
shows signal excess data, and the colors are the same as in the main window. The left col-
umn has “bearing” on the x—axis and the right column always has “range” on the x—axis.
The first row shows signal excess as a function of bearing/range and target depth, the sec-
ond row signal excess as a function of bearing/range and speed, and the last row signal

18

excess as function of bearing/range and a sensor parameter (usually tilt or sensor depth).
The type and number of plots may vary for different choices of sensor.

33

3D visualization

GSMD also supports 3D visualization of sonar prediction data. The submenu “3D view”
of the main window will open the window shown in figure 3.3. This resizeable window
will display a green wireframed box. The box can be rotated using the left mouse button in

the

drawing area, the middle button will zoom the display and the right button will trans-

late the box.

Several objects can be displayed and manipulated in the 3D window:

Cuts with contour plots can be drawn correctly positioned in the 3D space. This makes
it easy to see where the cuts belong geometrically. Cuts can be created horizontally and
radially, and also as a cylinder (bearing vs. target depth). The position of the cuts is
controlled by the cursors and sliders in the main window.

Isosurfaces can be generated for different choices of signal excess levels, and visual-
ized as white surfaces. A sector of the surface can be removed to expose internal de-
tails.

Volume visualization can be used to display all details of the dataset.

Figure 3.3 shows an example of an isosurface where one half is removed to reveal the so-
nar performance for target depths in the forward and backward directions.

Options

Plot Data: Three different types of data can be displayed — signal excess, maximum
speed and optimal sensor parameter. The interpretation of the last two options is given
in the previous chapter.

Render Detail: The 'fast’ option will hide most of the graphic objects to allow faster
image update. Use ’best’ to see the final result.

Isosurface: The isosurface can be added or removed, and the signal excess level ad-
justed.

Remove Sector: Gives possibility to remove a sector from the data, and the size of the
sector can be adjusted.

Volume Rendering: Is used to turn volume rendering on or off.

The window will remember its state when it is closed and then reopened.

19

ATAS, 2kHz, 50.0 m sensor depth
Low{@ 10 kis, 352, Marsteinen, Winter

Figure 3.3 3D visualization of sonar prediction data.

20

4 CONCLUSION

We have shown some examples of how sonar prediction data can be visualized. One of the
goals has been to give some ideas on how to create support tools for sonar operators. We
have seen the importance of three dimensional visualization when the sonar performance
varies for different bearings.

When the sonar performance is computed in Generic Sonar Model, we have to keep all pa-
rameters independent of the range (i.e. constant depth and sound speed profile for the
whole area). The only parameters which varies for different bearings are the noise from
the ship, and possibly the beampattern for the antenna. In real life environmental variables
will also vary. A more accurate model would probably give much more variation for dif-
ferent bearings (especially in coastal areas), and 3D visualization would be even more im-
portant.

The application GSMD can be used to visualize sonar prediction data in real time, but the
computation of the signal excess has to be be done in advance. A challenge for the future
is to be able to compute the sonar prediction data in real time.

Most of the visualization methods we have used can be combined with visualization of so-
nar echo and geographical data (like bottom depth, type et.c.). Hopefully some of the
ideas in this report can be usefull in the design of Man—Machine Interfaces for new sonar
systems.

21

References

(1) Foley, van Dam, Feiner, Hughes: Computer Graphics. Principles and Practice,
2nd Edition, Addison Wesley 1990

(2) IDL documentation: Objects and Object Graphics, IDL Version 5.0, March,
1997 Edition.

3) Erik Hamran Nilsen: Using the script language PERL for Generic Sonar
Model simulations, FFI/NOTAT-98/02543

22

APPENDIX
A IMPLEMENTATION OF GSMD

A.1 Interactive Data Language (IDL)

GSMD is written entirely in IDL from Research Systems Inc. Version 5 of IDL provides
tools for developing object oriented applications, and we have chosen to use objects for the
implementation of GSMD. For the readers who are not familiar with object oriented de-
sign we will describe some commen object oriented concepts:

Classes and objects

Objects are created as instances of a class, which is defined as an IDL structure and a
collection of procedures and functions. The procedures and functions are often refered to
as methods. The only way to access the data in an object is through its methods.

Inheritance

Inheritance lets the programmer use an existing class as a base for a new class. The new
class will contain all data and methods from the base class, and the programmer can add
new functionality through additinal data and methods.

Some typical object oriented concepts like virtial functions, does not have any meaning in
IDL version 5, and the polymorphism works differently from for example C++. Another
drawback of object oriented design in IDL is that structures can not be redefined without
restarting IDL. On the other hand, object oriented design is a great help for creating struc-
tured and readable code.

Further information about object oriented programming in IDL can be found in (2).
A.2 Class structures in GSMD

Figure A.l1 shows a part of the class hierarchy in GSMD. Black arrows corresponds to
inheritance and dotted lines tells us that a class contain one or more references to another
class. In other words, classes XAD, XSP et.c. are inherited from the general “Sensor™
class. “GSMServer” is the class which organizes the sensors and all relevant parameters.
Therefore “GSMServer” contains references to “Sensor” objects. The “Scalarfield” class
is a storage class for 3D signal excess data. Each “Sensor” contains one or more “Scalar-
field” objects.

23

GSMServer©@-------1 Sensor |O===----1 ScalarField
| | 1 | T
XAD XSk XSV XDS

Figure A.l Overview of some classes in GMSD

The user interface of GSMD is consisting of three classes, one for each window. In addi-
tion some extensions to “IDL object graphics” has been implemented, for example a track-
ball and filled contour plots.

24

B SOURCE CODE SUMMARY

The listing below contains class descriptions and lists of all methods of the classes in
GSMD. The implemention of the procedures and functions is not included. When the
name of a method is succeded by paranthesis, the method is a function. Otherwise it is a
procedure. Parameters and keywords can be destinguished by an equal sign at the end of
all keywords.

B.1 GSMServer

FILE: gsmserver__define.pro

OBJECT: GSMSERVER

PURPOSE:
The object is a part of an interface to visualize data from
*Generic Sonar Model”. GSMServer can hold several "sensor”-ocbjects,
and provides subroutines for extraction of signal excess data. A

list of sensor object references should be supplied for in

The SE(signal excess) data depends on several parameters, which can be
accessed through GET_PROPERTY/SET_PROPERTY. Each parameter is an
index in the range [0, max]), where max is defined individually for

each "sensor” cobhject and parameter.

Environmental parameters:
OCEAN, SEASON, SEASTATE, SHIP
Sensor parameters:
SENSOR_PAR1, SENSOR_PAR2 : Two parameters describing the sensor
state, f.ex. sensor depth or tilc.
SPEED : Speed of own ship.
Geometric parameters:
BEARING, RANGE, TARGET_DEPTH : Specifies a target position of

special interest.

The sensor objects should provide storage for SE data, and the
following methods (with specified keywords):
READ_DATA : GSMSERVER calls this procedure when the value of
OCEAN, SEASON, SEASTATE or SHIP has been changed.
The intention is to give the sensor object a
chance to read {(or compute) new data.
KEYWORDS : OCEAN, SEASON, SEASTATE, SHIP
GET_SE() : Returns a pointer to a SCALARFIELD object,
containing SE data as a function of BEARING, RANGE
and TARGET_DEPTH {cylindrical coordinates).
KEYWORDS : SPEED, SENSOR_PAR1, SENSOR_PAR2
GET_PROPERTY : Should provide lists of strings or scalars,
describing the legal ranges for all the 10
parameters ahove.

KEYWORDS

END

SEE ALSO:
SENSOR, SCALARFI
END

25

SHIP_NAMES, OCEAN_NAMES, SEASON_NAMES,
SEASTATE_NAMES,
SENSOR_PARL_LIST, S5ENSOR_FARZ_LIST, SPE

ED_
BEARING_LI3T, RANGE_LIST, TARGET_DEPTH_LIST

ELD

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 13 Jan 1998

OBJECT DEFINITION:

struct = { GSMserver, &
speed: 0, % ; Indices describing the current
bearing: i $; state of the sonar system
range: 0 =

target_depth:
NSensor:
sensor_parl:
sensor_par2:

ship:

seastate:

ocean:

season: 0,
sensor: PTR_NEW(],
main_dir: v

“r

L2 T)

vr

o O 0O o O O O O o
“r Ly

“r 4 v

; Location of data

MEMBER PROCEDURES/FUNCTIONS:

READ_DATA

GET_SSP
depth
speed

GET_RB

j i
theta
data

GET_BS
bearing
speed
data

GET_RS
range
speed
data

Is called whenever new values for

SENSOR, OCEAN, SEASON, SEASTATE or SHIP are defined

Find the current Sound Speed Profile

Get two dimensional matrix containing SE as a

function of range and bearing.

Get SE as a function of bearing and own speed.

Get SE as a function of range and own speed

; Pointer to a list of sensor objects

GET_BD
bearing
depth
data

GET_RD
range
depth
data

GET_BP1

bearing

sensor_list
data

GET_RP1
range

sensor_list
data

GET_BP2
bearing
sensor_list
data

GET_RP2
range
sensor_list
data

GET_TD
sensor_depth
target_depth

data

GET_SENSOR()
SENSOR=

GET_SE()

GET_BEST_SE()
SPEED=

GET_OPTIMAL_PAR()

LIMIT=

26

Get SE as a function of bearing and target depth

Get 5E as a funeccion

of range and cargen clench

Get S5E as a function of bearing and the firsc sensor

parameter

Get SE as a function of range and the first sensor

parameter

Get SE as a function of bearing and the second sensor

parameter

Get 5E as a function of range and the second sensor

parameter

Get a pointer to a sensor object

Returns a pointer to the current range/bearing/depth data

Returns a scalarfield object, where e=ach point centains
the index of the optimal value of sensor
parameter 1 (in other words the value of sensor par 1
which gives the highest PD).

default=0.0

GET_MAXIMUM_SPEED{)

LIMIT=

SET_PROPERTY
DIRECTORY=
NSENSOR=
SHIP=
CCEAN=
SEASON=
SEASTATE=
SPEED=
SENSCR_PARL=
SENSOR_PAR2=
RANGE=
BEARING=
TARGET_DEPTH=

GET_PROPERTY
SENSOR_NAMES=
SHIP=
OCEAN=
SEASON=
SEASTATE=
SPEED=
SENSOR_PAR1=
SENSOR_PAR2=
BEARING=
RANGE=
TARGET_DEPTH=
NSENSOR=

CLEANUP

INIT()

SENSOR_LIST=
DIRECTORY=

27

Returns a scalarfield object, where each point

contains the index of the maximum allowed speed,

when we require that SE > LIMIT.

default=C.0

Set propercies for ohject.

Get sensor properties

Initialization of the GSMserver object.

keyword must be supplied.

List of sensor object references

Main data directory

The SENSOR_LIST

28

FILE: sensor__define.pro

OBJECT: SENSOR

PURPOSE:
SENSOR is a superclass for implementacion of sensor cbjects.
This version assumes that SE data is generated by GSM, and the
result depends on the environmental variables SHIP, OCEAN, SEASCN,
SEASTATE, plus SPEED and two additional parameters SENSOR_PAR1 and
SENSOR_PAR2. The object holds data for all wvalues of
SPEED, SENSOR_PAR1, SENSOR_PAR2 simultancusly in memory,
and new data is reloaded when other parameters ar< changed.
The SE fleld is stored in cylindrical coordinates

{bearing, range, target_depth).

SEE ALSO:
GSMSERVER, SCALARFIELD, XAD, X5P, XV3&, XD3

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 23 Feb 1998

OBJECT DEFINITION:

struct = (sensor, 5

name: ‘',

ship_names: PTR_NEW(), $
ocean_names: PTR_NEW(), $
season_names: PTR_NEW({), §
seastate_names: PTR_NEW(), §
speed_list: PTR_NEW(), $
sensor_parl_list: PTR_NEW(), §
sensor_par2_list: PTR_NEW(), $
parl_title: L
par2_title: £ b @
target_depth_lisc: PTR_NEW(), £
range_list: FPTR_NEW(), 2
bearing_lisc: PTR_NEW(), %
file_type: 0B, £
file_sym: 0B, 3

data: PTR_NEW(), $
data_dir: 't £

}
MEMBER PROCEDURES/FUNCTIONS:
REMOVE_DATA removes all loaded data, if necessary

READ_DATA reads data
OCEAN=
SEASON=
SEASTATE=
SHIP=

29

GET_SE(} returns SE data (scalarfield obiect)
SPEED=
SENSOR_PAR1=
SENSOR_FARZ=

NAME(!

CLEANUP

INIT({)
MNAME= Sensor name
DATA_DIR= Location of data files
SHIP_NAMES=
OCEAN_NAMES=
SEASON_NAMES=
SEASTATE_NAMES=
SPEED_LIST=
SENSOR_PAR1_LIST=
SENSOR_PAR2_LIST=

PAR1_TITLE= Description of parl and

PARZ_TITLE= par2, e.g. *tilc*, *sensor depth”
TARGET_DEPTH_LIST=

RANGE_LIST=

BEARING_LIST=

FILE_TYPE= DB: ASCII Eile, 1B: XDR binary file
FILE_SYM= Data is symmetric about theta=0

GET_PROPERTY
SHIP_NAMES=
OCEAN_NAMES=
SEASON_NAMES=
SEASTATE_NAMES=
SPEED_LIST=
TARGET_DEPTH_LIST=
SENSOR_PAR1_LIST=
SENSOR_PAR2_LIST=
PAR]1_TITLE=
PAR2_TITLE=
RANGE_LIST=
BEARING_LIST=

30

B.3 Scalarfield

FILE: scalarfield__define.prc
OBJECT: SCALARFIELD
PURPOSE:
The class provides storage of scalars given on & regular grid in D

space.

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 23 Feb 1998

OBJECT DEFINITION:

struct = { scalarfield, s
x: PTR_NEW(}, §
y: PTR_NEWI(), &
z: PTR_NEW(), %
v: PTR_NEW(), $
polar: 0, ¢

irregular: 0 3

MEMBER PROCEDURES/FUNCTIONS:

REMOVE_DATA Removes data from object

read_gsm Read ASCII data generated by "Generic Sonar Model®
filenames

read_xdr Read XDR binary file, format specified in

independent procedurs reac_xdr

filename
SYMMETRIC=
clear Create a zero field
GET_ZSLICE Extract a slice perpendicular to the z axis.
ZPOS=
DATA= OUT: slice
X=
Y=
GET_SUBARR () Extract a part of the field. 1If all three keywords
are defined a scalar is returned, if two keywords are
defined a vector is returned.
ZPOS=
XPOS=
YPOS=

GET_PROPERTY
XAXIs=
YAXIS=
ZAX1S=
DATA=

31

CLEANUP
INIT()
X= *x axis
¥= y axis
Z= z axis
DATA= 3D array
POLAR= 1B: polar xy, 0B: regular
IRREGULAR=

B.4 Towed array

FILE: xad__define.pro
OBJECT: XAD
PURPOSE :

XAD is a specialized SENSOR object, and provides format and
filenames for the SE data created by "Generic Sonar Model”.
The sensor used is a 2 kHz ATAS.

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 23 Feb 1998

OBJECT DEFINITION:
struct = { XAD, ¢
INHERITS sensor 3

MEMBER PROCEDURES/FUNCTIONS:
GET_FILENAME() Returns filename of SE data file

TARGET_DEPTH=
SENSOR_PAR1=
SENSOR_PAR2=
SHIP=
SPEED=
OCEAN=
SEASON=
SEASTATE=

INIT()
DATA_DIR= Path to data directory
FILE_TYPE= 0 for ASCII, 1 for XDR.
BEARING_LIST= default is 0,1..359
TARGET_DEPTH_LIST= default is 0,1

32

B.5 Hull mounted sonar

FILE: xsp__define.pro
OBJECT: XSP

PURFPOSE:
XSP is a 7 kHz Hull mounted sonar. This object provides formar
and filenames for SE data created by "Generic Sonar Model®.

Name of data files:

...dir/Xsp[noise|_F7000_5(speed)_T(tilt]_[ocean][season)_sSS[seastate].SE

where the brackets should be substituted with each element in the arrays:

[noise] = e, e

[speed] = uglr, vo2r, rQ3° tactually 10, 15 and 20 kts)
[tile) = L@L@%, L3h TR, SLULGE . L1400

[ocean] = MR, END

[season] = Wy NEY

[seastate] = "2*', '5*

|A total of 240 flles.)

Each file should be a binary data file of the format specified in
"read_xdr”, with

range & Qa8 Ll s e (50410
bearing =0, 20, ..., 340
target_depth = 20, 40, ..., 160

MODIFICATION HISTORY :
Written by Erik Hamran Nilsen, 23 Feb 1998

OBJECT DEFINITION:
struct = { XSP, §
INHERITS sensor $

MEMBER PROCEDURES/FUNCTIONS:
GET_FILENAME() Returns filename of SE data file

TARGET_DEPTH=
SENSOR_PAR1=
SENSOR_PAR2=
SHIP=
SPEED=
OCEAN=
SEASON=
SEASTATE=
_EXTRA=

INIT()
DATA_DIR=

33

B.6 Variable depth sonar

FILE: xsv__define.pro

OBJECT: XS5V

PURPOSE:

XSV is a specialized SENSOR ohjecn, 12 wHI Varianis depth sonar,
and provides format and filenamesz for the 3E data created

by *Generic Sonar Model”.

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 23 Feb 1998

OBJECT DEFINITION:
struct = { XSV, $
INHERITS sensor 5

MEMBER PROCEDURES/FUNCTIONS :
GET_FILENAME()

TARGET_DEPTH=
SENSOR_PAR1=
SENSOR_PAR2=
SHIP=
SPEED=
OCEAN=
SEASON=
SEASTATE=

INIT()
DATA_DIR=

B.7

34

Dipping sonar

FILE: Xds__define.pro
OBJECT: XDS
PURPOSE:
XDsS is a specialized SENSOR object, Dipping sonar,
and provides format and filenames for rthe 5E data created

by "Generic Sonar Model”.

MODIFICATION HISTCRY:
Written by Erik Hamran Nilsen, 23 F=b 1%9R

OBJECT DEFINITION:
struct = { XDS, §
INHERITS sensor 5

MEMBER PROCEDURES/FUNCTIONS:
GET_FILENAME()

TARGET_DEPTH=
SENSCR_PAR1=
SENSOR_PAR2=
SHIP=
SPEED=
OCEAN=
SEASON=
SEASTATE=

INIT()
DATA_DIR=

35

B.8 Main procedure GSMD

FILE: gsmd.pro
PROCEDURES/FUNCTIONS:
control_event
sEvent

control_cleanup
wTopBase

gsmd Main procedure for visulizacion wf *Generic sonar
Model® results. If the keyword BLOCK is set equal
to 1, the procedure will not return until the user
has pressed the quit button. If BLOCK is squal to
0, the procedure will return soon after che

user Interface has heen set up.

The keyword DATA_DIR is optieonal, and if it is nor
specified, GSMD will use the environmental variabls
SGSMU_DATA instead.

DATA_DIR= Location of data files

BLOCK= 1: block

B.9 Main window

FILE:
OBJECT: PARAMWIN

paramwin__define.pro

PURPOSE:
Main window of the GSMD applicaci

simulated parameters interactively.

on. Lets the user choose all

The window centains a pleot o

the Sound Speed Prefile and a polar plot of SE as a function of

range and bearing.

Using the left mouse button in the polar plort,

the user can specify a bearing and range of special interest.

MODIFICATION HISTORY:

Written by Erik Hamran Nilsen, 23
OBJECT DEFINITION:
struct = [PARAMWIN, $

wSensorList: OL, 3
wship: 0L, §
wOcean: 0L, 5
w3eason: 0L, &
wSeasitate: 0L, 2
wSensorParl: 0L, 3
wSensorPar2: 0L, $
wProcessing: 0L, S
wSpeed: 0L, §
wSpeedLab: 0L, $
whraw: 0L, 5
saveimage: PTR_NEW(),
wsScale: 0L, §
wSSP: OL, §
wTarget: 0L, $
wTargetLab: 0L, 3
StartColor: 0, $
NColors: 0, $
NLevels: 0, $§
v_range: [0.0, 0.0],
r_range: 0.0, $
btndown: 0b, £
bearing: 0.0, §
range: 0.0, $
bearing_index: 0, 2
range_index: 0, %

win3d: OBJ_NEW(), $
plot: OBI_NEW(), &

SMserver: OBJ_NEW() 2

MEMBER PROCEDURES/FUNCTIONS:
PROCESS_MENU
event

Feb 1998

$

$

Handles events created by the menubar and its

submenus .

37

DRAW_EVENT Handles moticn and button events from the polar
SE plo:.
event
PROCESS_EVENT Process button press and slider events.
event
CLEANUP
DRAW_TARGETPOS Draws a cursor indicating the currentc rangs and bearing.
XPOS=
YPOS=
ERASE=
DRAW_RB Draw 3E as a function of Range and Bearing (polar plot).
DRAW_SCALE Draws a color scale with SE [dB) and PD (probability of

detection) axes.

DRAW_SSP Draw the current Sound Speed Profile
GET_INFOTEXT{() Find an array of strings, describing the current state.
UPDATE Update buttons and sliders for the current sensor.

GET_PROPERTY

C_LEVELS= Contour levels
C_COLORS= Contour colors
V_RANGE= contour range
MAX_RANGE= Max discance
INIT()
SMserver Pointer to GSMSERVER object
TITLE= Window title
TLB=
MANAGE=

GROUP_LEADER=

NON-MEMBER PROCEDURES/FUNCTIONS:
paramwin_Menu_event
event

paramwin_draw_event

event

paramwin_event

event

paramwin_cleanup
tlb

38

B.10 2D graphics window

FILE: smwindow__define.pro

OBJECT: SMWINDOW

PURPOSE:

SMWINDOW is a resizable graphic window, which uses 2D graphic to
display data given by the GSMSERVER object. SE data is plotted as
functions of bearing, range, target depth, own speed, and different
sensor parameters.

MCDIFICATION HISTORY:
Writcen by Erik Hamran Nilsen, I3 Fel 1964

OBJECT DEFINITION:

struct = (SMWINDOW, 2
3 Zmin: 0.0, 3
% Zmax: 0.0, 35
E NLevels: 0, &
3 MaxRange: 0.0, ¢
H Range: 0.0, S
: Bearing:0.0, 3
i StartColor: 0, §
H NColors: 100, &
7 labell: 0L, $

; label2: 0L, $
H graphl: 0L, $
7 graph2: 0L, $

drawBplot: OB, 3
drawRplot: 0B, 3
tlb: oL,
visible: 0B,

v U

r

wDraw: 0L,
window: OL,
mainwin: OBJ_NEW(), ¢
SMserver: OBJ_NEW() 3

“r

MEMBER PROCEDURES/FUNCTIONS:

PROCESS_EVENT Process menu events.
event
SHOW
flag 0B: hide window, 1B: show window
BEARING_SHIFT Shift bearing axis 180 degrees, to make 0 degrees

the center of the plots.
bearing
data

39

DRAW Draw graphi-~s.

INIT(}
SMserver painter o GEMGEREVZR
mainwin
XSIZE=
YSIZE=
TITLE=
STARTCOLOR=
NCOLORS=
MAP=
GROUP_LEADER=

NON-MEMBER PROCEDURES/FUNCTIONS:
sMWindow_Cleanup This is the clean up roucine called when the TLE dies.
tlb

SMWindow_Expose_Events Handle window expose events here.

event

SMWindow_Event

event

B.11 3D graphics window

FILE: win3dd__define.pro

OBJECT: WIN3D

PURPOSE:
WIN3D defines a resizable IDL object graphics window, and methods
to visualize 3D signal excess data in cylindrical coardinates.
The class provides its own pulldown menus ta let the user choose

different parameters.

The following types of 3D objects are used:

Frame: A box surrounding the volume. At the moment fixed to
[-50, 50] km in both x and y direction. The dspcth
interval is set tao [0,300] m.

Isosurface: Surface defined by S(x,y,zl=const, where 3 is the
scalarfield.

RBCont : Contour plot of range vs. bearing. (Slice perpendicular
to the z axis.)

RDCont : Contour plot of range vs. depth.

BDCont : Contour plot of bearing vs. depth.

Frontpanel: Colorbar and text strings can be showed floating on
top of the other objects

40

SEE ALSO: CONT, SCALARFIELD

OBJECT DEFINITION:

struct = { WIN3D, 3

pl&E: 0B, S ; 0: 3E, l: Max spe=d, 2: Opt sens.par.
detail: 0B, 3 ; 0B=minimal detail, 12=full derail
SMserver: OBJ_NEW(), $§ : GSMserver object (NOT destroyed).
oScene: OBJ_NEW(), § : ontains oFront, oG2o and lLightsources
oFront: OBJ_NEWI(), £ ; IDLgrModel for the colorbar and info.

oCScale: CEBJ_NEW!), Calorbar
0oCSAxis: OBJ_NEW(),
OoCSTitle: OBJ_NEW(), 5 ; Colorbar cticle
infostrings: PTR_NEW(),
oInfoText: OBJ_NEW(), 5 ; IDLgrText object ta display strings
legendstr: PTR_NEW(), 5

legendTitle: "', ¢

4+

Tick values for the colorhar

o

$; Figure text strings

oGeo: OBJ_NEW(), § ; IDLgrModel for the SE data
olsoSurf: OBJ_NEW(), $; Isosurface chject

aTop: OBJ_NEW(}, $;

oBottom: OBJ_NEWI(}, 5§ ;

olnner: OBJ_NEW{:, § :

isoStyle: 0B, g . BIT 0: vizibility on/off
threshold: 0.0, 5 3 Isosurface threshold
cuts: 0B, $; if 1: Draw cucs

volume: 0B, 3

frame: 0B, %

oRBCont : OBJ_NEW(), $; Contour plot - range vs. bearing
oVolume: OBJ_NEW(}, $

sectorstart: 0, s

sectorstop: 0,]

sectorSize: 0.0, A

sectorstyle: 0B, 5

oRD1Cont: OBJ_NEW(),
oRD2Cont: OBJ_NEW(),
oRD1Frame: OBJ_NEW(),
oRD2Frame: OBJ_NEW(),
oBDCont: OBJ_NEW() ,
se_data: OBJ_NEW(),

; Contour plot - range vs. target depth

; Polyline that emphasizes pos of RDICont

; Contour plot - bearing vs. target depth
; Signal Excess scalarfield(not destroyed)

WV 4 40 U o 4 iy U 4y 4 Y 4y 4 Wy

target_depth: 0, = X

range: 0,) target position

bearing: o, 7l

c_cols: PTR_NEW(), ; List of contour colors

v_range: [0.0, 0.0],

tlb: oL, ; Top widget

visible: 0B, ; =0 if window is closed, 1 otherwise
view: OBJ_NEW(},

vrect: FLTARRI(4),

oTrackball: OBJ_NEW(],
printer: OBJ_NEW(),
window: OBJ_NEW()

4r 4T Ur W

41

MEMBER PROCEDURES/FUNCTIONS:

CLEANUP

EXPOSE_EVENTS

event

PROCESS_MENU

event

EVENT

event

SHOW
flag

SET_TRANSFORM
TYPE=

GET_COLTAB [}

n

GET_TEXTURE({)

COL_TAB=
N_COLORS=
TRANS=

DRAW_SE

CUT_DATA
DATA=
XAXIS=
YAXIS=
ZAXIS=

SECTOR_BEARING=

BUILD_CUTS
DATAl=
DATA2=
XAXIS=
YAXIS=
ZAXIS=

BUILD_ISOSURF

DATA=

XAXIS=
YAXIS=
ZAXIS=

BUILD_VOLUME

Handle window =xpose and motion/button =svencs here.

Handles events created by the menubar and its submenus.

Resize event

0: Hide window, l: Show window

Creates the texture (IDLgrImage object) used for the
contour plots. I1f COL_TAB is a scalar, a 1D texture is
created., If COL_TAB is a 2 element vector, a 2D texture

is returned.

optional

BUILD_CSCALE

BUILD_LEGEND

BUILD_INFCTEXT

SET_PROPERTY
C_COLORS=
RANGE=
STRINGS=

INIT()

smserver
GROUP_LEADER=
XSIZE=

YSIZE=

TITLE=
C_COLORS=
MAP=

42

Creates a vertical colorbar with tickvalues and ticle

Creates the figure text

[4,n] array (RGEA!
Signal Excess [min, max)
Array of strings to display

Initialization of WIN3D object.
All plotted data is taken from the GSMServer object.

GSMserver reference

Default size nf window
Window title
[4,n] array (RGBA), used for contour plocs

0: Hide window, 1: Show window

NON-MEMBER PROCEDURES/FUNCTIONS:

Win3D_Cleanup
Elb

Win3D_Expose_Events

event

win3d_menu_event

event

Win3D_Event
event

This is the clean up routine called when the TLE dies.

43

B.12 Trackball

FILE: xtrackball_ _define.pro
OBJECT: XTRACKEBALL
PURPOSE:
This object translates widget <wvents for draw widgets into
transformations chat emulats a virtual trackhall (for

object graphics in three dimensions).

CATEGORY :
Object Graphics.

CALLING SEQUENCE:
To inicially create:
oTrackball = CBJ_NEW('Trackball', Center, Radius)

To update the trackball state based on a widget event:
oTrackball-:-Update, sEvent

To re-initialize the trackball state:

oTrackball-.-Reset, Center, Radius

To destroy:
OBJ_DESTROY, oTrackball

INPUTS:
XTRACKBALL: : INIT:
Center: A two=dimensicnal vector, [x,v], representing the requested
center (measured in device units) of the trackball.
Radius: The requested radius (measured in device units) of the

trackball.

XTRACKBALL: :UPDATE:
sEvent: The widget event structure. The event type indicates
how the trackball state should be updated.

XTRACKBALL: :RESET:
Center: A two-dimensional vector, ([x,yl, representing the requested
center (measured in device units) of the trackball.
Radius: The requested radius (measured in device units) of the
trackball.

KEYWORD PARAMETERS:
XTRACKBALL: : INIT:

AXIS: Set this keyword to indicate the axis akout which
rotations are to be constrained if the CONSTRAIN
keyword is set to a nonzer value. Valid values
include:

0 = X-Axis
1 Y-Axis

44

2 = Z-Axis ldefault)

CONSTRAIN: Set this keyword te a nonzero value to indicate that
the trackball transformations are to be constrained
about a given axis (as specified by the AXIS
keyword). The default is zero (nc zonstraints).

MOUSE: 3et this keyword to a bitmask to indicate which
mouse button o henor for trackball events. The
least significant bit represents the lefomost
button, the next highest bit represents the middle
button, and the next highest bic represents the
right button. The defaulr is 1, for the left

mouse button.

XTRACKBALL: :UPDATE:
TRANSFORM: 3&t this kevwoard oo a pamsd variakle that upesn
return willi comtain a4 floating poine 4xd arvay
if a transformarticons matrix is calculated as

a result of the widget event.

XTRACKBALL: :RESET:
AXIS: Set this keyword to indicate the axis about which
rotations are to be constrained if the CONSTRAIN
keyword is set to a nonzer value. Valid values

include:
0 = X-Axls
1 = Y-Axis
2 = Z-Axis (default)

CONSTRAIN: Set this keyword teo a nonzero value to indicate that
the trackball transfoarmations are to be constrained
about a given axis las specified by the AXIS
keyword) . The default is zero (no constrainrs).

MOUSE: Set this keyword to a hitmask to indicate which
mouse button to honor for trackball events. The
least significant bit represents the leftmost
button, the next highest bit represents the middle
button, and the next highest bit represents rhe
right button. The default is lb, for the left

mouse button.

OUTPUTS :
XTRACKBALL: : UPDATE :
This function returns a 1 if a transformation matrix is calculated
as a result of the widget event, or 0 otherwise.

EXAMPLE:
Create a trackball centered on a 512x512 pixel drawable area, and
a view containing the model to be manipulated:
xdim = 512
ydim = 512
wBase = WIDGET_BASE()

45

wDraw = WIDGET_DRAW(wWBa:<, X¥SIZE=zxdim, Y3IZE=ydim, 2
SRAPHICS_LEVEL=2, /BUTTON_EVENTS, 3
/MOTION_EVENTS, /EXPOSE_EVENTS, RETAIN=0)

WIDGET_CONTROL, wBase, /REALIZE

WIDGET CONTRQL, wDraw, GET_VALUE=oWindow

oTrackball = OBJ_NEW!'Trackball', {xdim/2.,ydim/2.], xdim/2.)
oView = OBJ_NEW('IDLgrvView'!

oModel = OBJ_NEW|(‘IDLgrModel')

oView->Add, oModel

XMANAGER, 'TrackEx', wBase

In the widget event handler, handle trackball updates.
As the trackball transformation changes, update the transformation

for a model object tinstance of IDLgrModel), and redraw the view:

PRO TrackEx_Event, sEvent

bHaveXform = oTrackball- -Update({ sEvent, TRANSFORM=TrackXform
IF (bHaveXform) THEN BEGIN
oModel - -GerProperty, TRANSFORM=ModelXform
oModel--SetProperty, TRANSFORM=ModelXform # TrackXform
oWindow- -Draw, oView

ENDIF

MODIFICATION HISTORY:
Written by: DD, December 1996

Changed by: EHN, Feb 1998
Implemented zoom and translation, changed name to XTRACKBALL

OBJECT DEFINITION:

struct = (xtrackball, $
btndown: 0b, S
axis: 0, $
constrain: Ob, &
mouse: 0b, £
center: LONARR(2), $
radius: 0.0, $
zoombutton: Ob, $
zZzoompos: 0, §
zbdown: 0b, $
zoomfactor: 0.0, §
transbutton: 0b, $
transx: 0, $§
transy: 0, $
thdown:0b, $

“r

transfactor: 0.0,
world: OBJ_NEW(),
ptd: FLTARRI(3), &
ptl: FLTARRI(3) 3

13

MEMBER PROCEDURES/FUNCTIONS:
UPDATE()
sEvent
TRANSFORM=

INIT()
center
radius
AXIS=
CONSTRAIN=
MOUSE=
WORLD=
ZOOMBUTTON=
TRANSBUTTON=

CLEANUP

RESET
center
radius
AXIS=
CONSTRAIN=
MOUSE=
ZOOMBUTTON=
TRANSBUTTON=

NON-MEMBER PROCEDURES/FUNCTIONS :
XTRACKBALL_CONSTRAIN()
pt
vec

47

B.13 Sonarmap

FILE: sonarmap__define.pro

OBJECT: SOMNARMAP

PURPOSE:
The intention of SONARMAP is to visualize the ocean hottom and
surface, with axes and own position. At the moment the class is

only capable of drawing a box.

MODIFICATION HISTCRY:
Wrictcen by Erik Hamran Nilsen, 17 Feb 199°

OBJECT DEFINITION:

struct = { sonarmap, $
INHERITS IDLgrModel, $
depth: 0.0, §
oBottom: OBJ_NEW!), £
oSurface: OBJ_NEW(), §
oBox: OBJ_NEW(}, %
oGrid: OBJ_NEW(), 5
limit: [0.0, 0.0, 0.0, 0.0] $

MEMBER PROCEDURES/FUNCTIONS:
INIT()
DEPTH=
LIMIT=
GRID=
_EXTRA=

CLEANUP

SET_PROPERTY
THICK=

48

B.14 Object graphics contour plots

FILE: cont__define.p
OBJECT: CONT

~

n]

PURPOSE:
Cont is inherited from IDLgrModel! (IDL 5 sbject graphics) and may be
used to create contour plots. The contouring is implemented using

one dimensional texture mapping.

The contour plots may be visualized in three different forms:
- cartesian coordinates (in xyv plane)
- polar coordinates (in xy plan=)

- on a cylinder (cylinder axis parallell to z axis!

MODIFICATICN HISTORY:
Written hy Erik Hamran Nils=n, 23 Feh 1998

Irregular mode not implemented

OBJECT DEFINITION:
struct = { cont, §
INHERITS IDLarMocel, 2
polar: 0, 15
irregular: 0, 2

cyl_rad: 0.0, 5

wd': PTR_NEW(), $
yd: PTR_NEW(), $
zd: PTR_NEW(), &
zd2: PTR_NEW(), $
range: [0.0, 0.0], §
range2: [0.0, 0.01, §

elevation: 0.0, §
texture: OBJ_NEW(), §

texrange: [0.0, 0.0}, §
texrange2: (0.0, 0.0}, ¢
oPoly: OBJ_NEW(), %
axison: Ob, &

oAxis: OBJ_NEW() %

MEMBER PROCEDURES/FUNCTIONS:
READ_GSM Reads ASCII data file. See the independent procecure
read_gsm for details.
filename
BUILDPOLY
BUILDPOLY_REG

BUILDPOLY_POLAR

BUILDPOLY_CYL

BUILDAXIS

SET_TEXTURE

Cexture

SET_PROPERTY
ZDATAl=
ZDATA2 =
XDATA=
YDATA=
RANGEl=
RANGEZ=
CYL=
TEXTURE=

INIT()
XDATA=
YDATA=
ZDATALl=
ZDATA2=
POLAR=
CYL=
AXIS=
IRREGULAR=
RANGEl=
RANGE2=
ELEVATION=
TEXTURE=
_EXTRA=

CLEANUP

For a description of the keywords,

49

[4,n] array (B3BA) or IDLgrImage paints

Initcialization of CONT object.
X axis (1D array!
Y axis (1D array!
Grid data (2D array)
Additional grid data

0: Cartesiar coords, 1: Foalar rcoords

Radius of wvl

1: put axes on ploc
Irregular dara

Z data range

22 data range

if 1= 0.0 plot 3D

Same as in SET_TEXTURE

.

ses INIT method.

Additional parameters will be passed on to IDLgrModel

50

B.15 Plot routines

PROCEDURES /FUNCTIONS :
polcont
data
rmin
rmax
argmin
argmax
_EXTRA=

PURPOSE:

nncontour (Nearest Neighbour contour) creates a contour plot where
the data is approximated by the nearest neighbor method. Data has
to be defined on a regular grid.

XRANGE may be specified, but the YRANGE is always the same as the y

axis.

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 23 Feb 1998

PROCEDURES/FUNCTIONS:

nncontour
data 2D array
% x axis
Yy y axis
LEVELS= contout levels
C_COLORS= and corrvesponding colors
XRANGE=

_EXTRA= Additional parameters is passed on to "contour”

51

B.16 Data loading routines

PROCEDURES /FUNCTIONS :
read_gsm

filename
o
theta
data
TARGET_DEPTH=
LATITUDE=
LONGITUDE=
DATE=
TIME=
CLOSED=
REFLECT=

PURPOSE:
read_xdr is a procedure to reacd 3D data stored in binary xdr formac

(single presicion floating point).

The format is:

inc diml
int dim2
int dim3 Number of data points in each dimension
£1t x.1
S 3 Array of n=diml points
flt x_n
flt v 1

H Array of m=dim2 points
flc y_m
flt 2. 1

Array of p=dim3 points

flc 2. p
flc data[n*m*p] Array of n*m*p floats

MODIFICATION HISTORY:
Written by Erik Hamran Nilsen, 23 Feb 1998

PROCEDURES/FUNCTIONS :
read_xdr

filename Name of file to read
range OUT: Range axis (1D array)
theta OUT: Theta axis
depth OUT: Depth axis
data OUT: 3D data array
SYMMETRIC=

CLOSED=

52

B.17 Utilities

This section contains descriptions of procedures/classes which can be used to generate po-
lar contour plots of signal excess data. The result can be stored on postscript files.

PROCEDURES /FUNCTIONS:
xds_report

server

gsmreport Creates a GsMServer object and calls the procedure
¥ds_report which prints a collection of polar
contour plots to PostScript files - 12 plots on

each page.

FILE: plotarr__define.pro

OBJECT: PLOTARR

PURPOSE:
The object provides methods to pleot several polar contour plots
on a single page, together with a color bar. The color bar can be
placed horizontally below the plots or vertically on the left hand
side.

The data to plot must be given in a 3D array of dimension
[n, n_range, n_theta]
where n is the total number of plots on the page, and
| n_range, n_theta] is the dimension of the data for each plot,

i.e. all plots must have the same grid / number data points.
The class has been tested only for the layouts [3,4] and [3,1]).
SEE ALSO:

MODIFICATION HISTORY :
Written by Erik Hamran Nilsen, 6 May 1998

OBJECT DEFINITION:
struct = { PLOTARR, $

config: ([0, 0}, § ; layout of plats [N_x, N_y]
data: PTR_NEW(), % ; data array In, r, thecal
rad: PTR_NEW(), ¢ ; radial axix values

theta: PTR_NEW(), $; arg. values

title: ‘*, & ; Main ticle string

subtitle: PTR_MNEW{),$; List of subtitles
TextSize: 0.0, § ; size of titles

NLevels: 0, $; number of levels in contour plots

53

Zmin: -15.0, 5 ; max and
Zmax: 15.0., S min level
Range: 50.0, £ ; radial range
PlotXSize: 2RO, &
PlotYsize: 250, 7 :)} defines the relative sizes of
CScalewidch: 120, 2 ; | cthe different parts
BottomMargin: 20, I ;
CScaleHor: 1B, 5 ;i l: horizonral, 0: vertiecal
PaperX: 22.0, $; Papersize (far PostScript output)
Papery: 4.0 5
}
MEMBER PROCEDURES/FUNCTICNS:
DRAW Draw multiple plots and -~aler Lar
CTSIZE= max colorcable sntry o uses
DRAW_PS Plot to color PostS3eript file
PSFILE= Name of file
SET_PROPERTY Set abject properties
CONFIG= plotarr layout [N_x, N_y]
DATA= data array [n, n_range, n_theta]
RAD= radial axis
THETA= arg.
TITLE= main title string
SUBTITLE= list of titles for each plot
TEXTSIZE= size of text (default = 1.0)
RANGE= radial range
INIT() Initialization of object

FILE: xspslide.pro

PROCEDURES/FUNCTIONS :
xsp_slide_report

server

xspslide

Creates a postscript file with three contour
plots and a color bar. The sensor used is hull
mounted, 3.5 kHz, and the three contour

plots shows the signal excess at 10, 15 and

20 kts for the location "Marsteinen” in January,
sea state SS2 and 30 m target depth.

FILE: xspslide__define.pro

OBJECT: XSPSLIDE

PURPOSE:

XSPSLIDE is a 3.5 kHz Hull mounted sonar. This eobject provides tormat

and filenames for SE data created by "Generic Sonar Model”.

54

Name of data files:

data_dir/XSP4/XSF|[spesd|F0405 [ocean] |seasonlE22.3E

where the brackets should be substituted with each element in the arrays:

[speed] = 2034 202¢; Q¥ factually 10, 15 and 20 kts)
[ocean] = "'MT’
[season] = "W, s’

Each file should be a binary data file of the format specified in
*read_xdr”, with

range = 0.5, 1.0, ..., 50.C

bearing 2 0; 20; wewyp 340

target_depth = 10, 3n, 75, 150

MODIFICATION HISTORY:
wWritten by Erik Hamran Nilsen, 07 May 199=

OBJECT DEFINITICN:
struct = { XSPSLIDE, %
INHERITS sensor $

MEMBER PROCEDURES/FUNCTIONS:
GET_FILENAME{) Returns filename of SE data file

TARGET_DEPTH=
SENSOR_PAR1=
SENSOR_PAR2=
SHIP=
SPEED=
OCEAN=
SEASON=
SEASTATE=
_EXTRA=

INIT()
DATA_DIR= location of data

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055

