

 FFI RAPPORT

 MODELLING OF GRANULAR MATERIALS IN
THE AUTODYN HYDROCODE

 OLSEN Åge Andreas Falnes, TELAND Jan Arild

 FFI/RAPPORT-2003/02057

FFIBM/766/130

 Approved
 Kjeller 21. July 2003

 Bjarne Haugstad
 Director of Research

MODELLING OF GRANULAR MATERIALS IN
THE AUTODYN HYDROCODE

OLSEN Åge Andreas Falnes, TELAND Jan Arild

FFI/RAPPORT-2003/02057

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

 3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

 FFI/RAPPORT-2003/02057 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 55
 FFIBM/766/130 -
4) TITLE

MODELLING OF GRANULAR MATERIALS IN THE AUTODYN HYDROCODE

5) NAMES OF AUTHOR(S) IN FULL (surname first)

 OLSEN Åge Andreas Falnes, TELAND Jan Arild

6) DISTRIBUTION STATEMENT

 Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
 IN ENGLISH: IN NORWEGIAN:

 a) Two-component material a) To-komponent materiale

 b) Autodyn b) Autodyn

 c) Concrete c) Betong

 d) User subroutine d) Brukersubrutine

 e) e)

THESAURUS REFERENCE:

8) ABSTRACT

Two methods for creating a two-component material in Autodyn are described. In the first approach we fill two
separate subgrids with different materials whereas the second method fills one subgrid with two different materials.
Both methods rely on the use of special user subroutines to create an Autodyn version with extended functionality.
Instructions for using the extended Autodyn program are provided and the implementation is discussed and
documented.

9) DATE AUTHORIZED BY POSITION

 This page only
21. July 2003 Bjarne Haugstad Director of Research

ISBN-82-464-0755-4 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

 5

CONTENTS
 Page

1 INTRODUCTION 7

2 METHOD A: TWO SUBGRIDS 7

2.1 Initialisation 8

2.2 User input 9

3 INTERNAL WORKINGS OF THE USER SUBROUTINE 10

3.1 Determining the size of the individual aggregate rocks 10

3.2 Determining the positions of the individual aggregate rocks 12

3.3 Defining the subgrids based on the aggregate array 12

4 METHOD B: ONE SUBGRID 13

4.1 How to use the program 13

4.2 How the program works 14

5 COMPARISON OF AGGREGATE ROCKS FROM THE TWO
APPROACHES 16

6 SUMMARY 17

A FORMAT OF DATA FILES 17

A.1 Transformation from 3D array to a scalar 17

A.2 aggregatedata.dat 18

A.3 facelength.dat 19

A.4 seed.dat 19

B THE AUTODYN MACRO FACILITY 19

C FINDING AND LOCATING AGGREGATE ROCKS 20

D THE SOURCE CODE OF THE EXZONE PROGRAM 25

D.1 The exzone subroutine 25

E THE SOURCE CODE FOR THE MACRO GENERATING
PROGRAM 33

E.1 The main program 33

E.2 The fill_region_and_write subroutine 35

E.3 The place_aggregate_macro subroutine 40

F VARIOUS SHORT SUBROUTINES 40

F.1 The modules 40

 6

F.1.1 integer function neighbour_sum 41
F.1.2 logical function joined_node 42
F.1.3 subroutine lower_corner 42
F.1.4 subroutine upper_corner 43

F.2 The subroutine check_region 43

F.3 The subroutine fill_region 44

F.4 Subroutine write_macro_file 45

G THE EXVAL SUBROUTINE 45

H THE MAKEFILE 48

I THE 2D VERSION 50

I.1 The 2D filling subroutine 51

I.2 The aggregatedata.dat file 53

I.3 The 2D Makefile 53

 Distribution list 55

 7

MODELLING OF GRANULAR MATERIALS IN THE AUTODYN HYDROCODE

1 INTRODUCTION

Concrete consists, broadly speaking, of a mixture between two materials, namely cement paste
and aggregate. As a consequence, concrete is not homogenous as these two components have
very different material properties. In penetration simulations with numerical codes such as
Autodyn, concrete has until now been described as a single homogenous material with
“average” properties to account for the two-component structure. In this report the possibility
of modelling the different components separately is considered.

In principle, it is very easy to generate such a two-component material. It is just a matter of
creating a subgrid and filling it with the appropriate materials. However, doing this manually
would be a very tedious and time consuming task because of the large number of (single) cells
that would have to be filled one by one. Fortunately, it is possible for the user to create his
own subroutines in Autodyn, thereby creating an Autodyn version with added functionality. In
this report, we show how this can be exploited to generate two-component materials.

Two different methods for creating a two-component material are discussed. In the first, the
cement and the aggregate reside in two different subgrids, while the other approach genuinely
fills one subgrid with two different materials. A similar idea has earlier been implemented [1],
where the two-component structure was accounted for by a modification of the yield stress in
certain cells. The present report goes one step further and creates genuine two-component
materials.

We start by showing how to use the extended two-component Autodyn version and then go on
to describe the internal workings of the new user subroutines. The focus of this report is on
3D, but a 2D version has also been programmed.

2 METHOD A: TWO SUBGRIDS

The method of using two subgrids is the approach which the user is most likely to apply.
Besides being the fastest and easiest method, it also has the advantage of allowing greater
flexibility in how the cement can interact with the aggregate. One can choose between joining
the subgrids node to node or an interaction based coupling. In the latter case we may specify a
frictional constant, allowing a fairly complex interaction to be modelled. This possibility is
particularly interesting in concrete, as certain rock types provide a poor connection between
cement and aggregate.

 8

The drawback of using two subgrids in Autodyn is that aggregate rocks must be separated by
at least two cells, which limits the number of aggregate rocks that can be placed in a subgrid.
Therefore we will later look into an alternative approach where only one subgrid is used.

In this section we assume that an extended version of Autodyn containing the relevant user
subroutines has been compiled. The new executable file, by default called aggregate,
should then reside in the same directory (bin) as ordinary Autodyn. On running this program,
an extended version of Autodyn is started which incorporates the ability to easily define two-
component materials.

When the materials are placed in separate subgrids, filling the subgrids with the appropriate
materials becomes very easy. The problem is instead to define the position of the actual
elements of each subgrid, a process which is called “zoning” in Autodyn terminology. This is
where the user subroutines come in handy. A subroutine that is particularly suited to our
problem is called Exzone. It can be accessed by the user from the standard Autodyn menus:
Zoning—Predefs—User—Exzone. However, in the original Autodyn version, Exzone was
empty so nothing happened when it was selected. In the extended Autodyn version, we have
programmed our own Exzone subroutine that helps us place nodes at positions not available
from the standard menu system. In the current version, Exzone only generates rectangular
(cubical) subgrids, though.

2.1 Initialisation

Before starting Autodyn (technically only before calling the Exzone subroutine), the user
must create a small ASCII-file called aggregatedata.dat and put it in the same directory as the
modified Autodyn executable (aggregate). This file provides information to the Autodyn
Exzone subroutine about the size and distribution of the aggregate rocks.

The easiest way to created this file is by using the Matlab pre-processor aggdef.m. However,
it is also possible to define the file directly using a text editor. The file format is described in
Appendix A.2.

On running aggdef.m the user is prompted for the following input parameters:

• The volume fraction of aggregate rocks (0-100%). This number determines how much

aggregate there is in the concrete.
• Minimum distance (measured in number of cells) between the various aggregate rocks.

For technical reasons this number must be 2 or larger.
• Damage level for cement cells adjacent to an aggregate cell. This is a number between 0

(no damage) and 1 (completely damaged).
• A list of the various aggregate sizes with the corresponding percentage of aggregate rocks

that are larger than the defined size. Up to five different sizes can be defined.

When everything has been defined, the pre-processor creates the file aggregatedata.dat.

 9

The user is then prompted for the face length of each cell in the the i- ,j- and k-directions. By
default the value is 10 mm in all directions. After pressing OK, a file called facelength.dat is
created. This file can, of course, also be created with a text editor.

2.2 User input

After the aggregatedata.dat and facelength.dat files have been created, the extended Autodyn
version may be executed. The procedure for creating a two-component material is now as
follows:

1. Define two new subgrids having the names CEMENT and AGGREGATE with an
appropriate ijk-range. It is important that exactly these names are used and that the
same ijk-range is selected for both of them.

2. Select the AGGREGATE subgrid and use the Exzone command. This is found under
Zoning-Predefs-User in the Autodyn menu system.

3. The user is now prompted with “Read or generate?”. This question is slightly
misleading as the only possible answers are “yes” and “no”. Usually the answer is
“no”, as Autodyn then generates the position of each aggregate rock stochastically
(based on the data in aggregatedata.dat) and stores the result in a file called
aggpos.dat. Only if the user wants to use the aggregate positions from a previously
generated aggpos.dat file, the answer to the question is “yes”.

4. Fill the complete AGGREGATE subgrid with an appropriate material by using the
Fill-Block command.

5. Select the CEMENT subgrid and use the Exzone command again.

6. Always answer “yes” when prompted with “Read or generate?”. This makes sure that
the CEMENT subgrid completely surrounds the aggregate rocks defined under point 3.

7. Answer “yes” or “no” to the question of whether damage should be included in
surface cells.

8. Fill the complete CEMENT subgrid with an appropriate material by using the Fill-
Block command. A macro called ovrlap.mac has now been created and stored in the
bin-directory. Copy it to the data-directory. (If an old ovrlap.mac already exists, it
must be deleted or renamed before filling the subgrid.)

9. Enter the Fill menu of CEMENT, press F6 and run the macro ovrlap.mac to remove
overlapping cells between the two subgrids. A full explanation is provided in
Appendix B.

10. Join or define an interaction between the CEMENT and AGGREGATE subgrids.

 10

A typical two-component material is displayed in Figure 2.1. For a more detailed explanation
of the inner workings of the code (what is actually going on), see the next chapter.

Figure 2.1 An example of a two-component material.

3 INTERNAL WORKINGS OF THE USER SUBROUTINE

In this chapter, we describe the internal workings of the Exzone subroutine and describe
exactly what happens after it has been called from the Autodyn menu.

3.1 Determining the size of the individual aggregate rocks

In the following we assume that the user has answered “no” when prompted with “Read or
generate?”. This means that Autodyn will have to generate the position of each aggregate rock
stochastically, and then store this information in a file called aggpos.dat.

The first thing Autodyn does is read the aggregatedata.dat file which contains all the
information on the aggregate distribution. This information is then applied by the user
subroutine find_rocks2 to find the size of each individual rock. More precisely, the rock
sizes are drawn randomly until the total volume of rocks within each interval is in compliance
with the input defined in aggregatedata.dat. We are then left with an array containing the size
of each individual rock in the aggregate.

 11

Figure 3.1 may be helpful in visualising an example. Let us imagine a sieve curve with four
size intervals. The aggregate rocks are grouped in four intervals: rocks with diameter between
s1 and s0, rocks with diameter between s2 and s1, and so on. The total volume fraction of
aggregate, denoted p, is the sum of the fractions of each interval: p=f1+f2+f3+f4. In other words,
a fraction f1 of the subgrid is filled with aggregate with size between s1 and s0. Since we know
the volume of the subgrid V, it is simple to find the total volume of aggregate with diameter
inside the interval. We can then keep selecting rocks randomly inside this interval until the
volume exceeds f1·V, at which time we switch to the next interval (diameter between s2 and s1)
and repeat the process.

� � � � � � � �

�
	

 �
�
� �

 �
� �
� �
	
�

� � � �� �� �� �

� � � �

� �

� �

Figure 3.1 Within each interval, the sizes of each rock is drawn randomly.

However, on moving from real coordinates to ijk-indices, the rock sizes must be given in terms
of integers rather than real numbers. Consequently, no rock can be smaller than one cell, which
means that the sieve curve might need to be amended. The actual output sieve curve may
therefore look slightly different from the input curve. The final result for the volume (number
of cells) and diameter of each rock is stored in a file called aggregate_output.dat. The data in
this file is used to create statistics on the output sieve curve and the output filling fraction,
which is output to the screen. Typical output may look like this:

Finished creating aggregates!
Input aggregate ratio: 0.1
 # of aggregate rocks: 2
 Output ratio: 7.38125E-02
 Mesh size Input fraction Output fraction
 21.00 0.00 1.00
 18.00 1.00 1.00

The column “Mesh size” is the input sieve diameter. “Input fraction” is the input residual
fraction for each mesh size, and the “Output fraction” is the corresponding output values. If
the user is unsatisfied with the output curve, changes must be attempted in the input curve until
a reasonable output result is obtained. Usually the discrepancies are fairly small, but the result
gets worse for rocks that are small compared to the cell size. Further, since the output filling

 12

fraction varies, the average density of the subgrid may differ from the measured values in the
real concrete.

3.2 Determining the positions of the individual aggregate rocks

The program then moves on to the next step, which is performed by the subroutine
place_aggregate. This subroutine selects a random position in the ijk-space for each
individual rock, and then fills the internal variable aggregate_array (which has dimension
exactly corresponding to the subgrid) with 1’s in every element that should contain rock
material. The task is non-trivial if we insist that aggregate rocks should not overlap. Indeed,
with this constraint, we may not find room for every aggregate rocks regardless of how much
we try. As a result, there are two important features of the subroutine:

• The order in which rocks are placed is random, that is, we draw a random rock from the

array created in find_rocks2, then draw a random location for this rock. We repeat until
we are done.

• If a position drawn is overlapping with previously placed rocks, the entire
aggregate_array is searched in order to find an available position. Should none be
found, the routine starts on a new rock.

3.3 Defining the subgrids based on the aggregate array

Assuming the aggregate_array has been defined, Autodyn creates corresponding subgrids
when the Exzone subroutine is invoked by the user. For the AGGREGATE subgrid, cells are
defined at all positions where the corresponding aggregate_array element has the value 1.
Similarly, the cells of the CEMENT subgrid are defined at positions where the
aggregate_array takes on a value of zero. The Exzone user subroutine is called with the
present ijk-range as formal parameters.

Generating a cell is done by defining all eight corner nodes, after which the cell is recognised
by Autodyn and included in all calculations unless explicitly declared as unused. However,
such an automatic generation of cells gives rise to a problem. An example is illustrated in
Figure 3.2. There we have two separate subgrids, and in one of them (the blue in the figure) a
single cell protrudes from the rest of the subgrid. This single cell is meant to fit into a
corresponding empty slot in the other subgrid (the red one). However, while defining the cells
surrounding this slot, it is impossible to avoid defining all four corner nodes, and as a
consequence, Autodyn inserts a cell where there should have been empty space. The result is
overlapping cells when the two subgrids are joined.

The only feasible way to avoid this problem is by defining the overlapping cells as unused in
one of the subgrids via a macro file. Therefore Autodyn (automatically) generates a macro file
called ovrlap.mac to perform this. It is based on a simple algorithm explained in Appendix D
and must be copied to the data directory before execution. It is important to keep in mind that

 13

the macro file must be used after filling the subgrids with materials, since any subsequent
fillings will override the action performed by the macro file.

Figure 3.2 The problem of overlapping cells when defining two subgrids.

4 METHOD B: ONE SUBGRID

Instead of creating two different subgrids and filling them completely with separate materials,
we here examine a different approach where a single subgrid is filled with two different
materials. This method enables us to avoid the restriction of having at least two cells between
each aggregate rock.

Instead of the difficult part being to generate the zoning for the two subgrids, we now instead
have to find an effective way of filling a single subgrid with two different materials
appropriately. This is done by automatically generating a macro file which is later executed in
Autodyn by the user.

Note that for technical reasons explained later, the aggregate rocks will not be equally nice as
in the two-subgrids method.

4.1 How to use the program

The program which generates this macro is called generate_macro and runs completely
independent of Autodyn. However, before running the program, the file aggregatedata.dat
has to be present in the same directory. This file has the same structure as in the two-subgrid
case, but a few extra input parameters have to be supplied. The easiest way to generate this
file is to use the Matlab pre-processor aggdef2.m. The user is then prompted for the following
input parameters:

 14

• Name of the macro file (exactly six characters).
• Name of the aggregate material for use in Autodyn
• Initial density of the aggregate material.
• The ijk-range of the subgrid region to be filled.

The other input parameters are identical to the two-subgrids case:

• The volume fraction of aggregate rocks (0-100%). This number determines how much

aggregate there is in the cement.
• Minimum distance (measured in number of cells) between the various aggregate rocks.
• The various aggregate sizes and the corresponding percentage of aggregate rocks having

size larger than the defined size. Up to five different sizes can be defined.

After the user has specified these input parameters, the aggregatedata.dat file appears in the
directory. Now generate_macro can be executed, which results in a macro with the chosen
filename being created. This macro must be put in the Autodyn data directory.

The regular version of Autodyn can now be started. The procedure is now to first define a
subgrid and fill it completely with cement. When the macro is executed from the Fill menu,
the aggregate rocks will be filled in as well.

Note that the file aggregate_output.dat must be removed every time the program is run.
Although the program will operate even if this file exists, the output sieve curve data will be
wrong because new rock sizes are only appended to the file.

4.2 How the program works

The macro file generator generate_macro is not linked with Autodyn in any way. A diagram
showing the general structure of the program is shown in Figure 4.1.

Things are similar to the two-subgrids case when it comes to determining the size and position
of each rock. However, there is a significant difference in the way that the subgrid is filled
with aggregate rocks. In the two-subgrids case, the rocks were spherical (or rather a discrete
version of a sphere). This could have been implemented here as well by filling each aggregate
rock cell by cell, but this would have taken a fairly long time because of screen updates after
each command. A different approach is thus needed, which minimises the number of
operations yet retains the shape of the rocks at least roughly. The chosen method is illustrated
in Figure 4.2.

The first stage is to define a central square. New cells are then added in stages as shown by the
red cells in the figure. The advantage of defining a block of cells at a time is that each block
only requires one interactive call to the block-command. For the particular case illustrated in
the figure, we would need 73 calls if the rock was filled cell by cell, whereas now we only

 15

need 1+4+4=9 calls. The extension to 3D is straightforward, in which case the starting object
is a cube instead of a square.

� � � � � �
 � � �

� �

� � � � � � � � � � � � �

� � � � � � � � ! � " � # $ �

� � � � � % � � � & ! � ' ' � & ' � (& !) � � � "

% � � � & ! � ' ' � & ' � (& !) � � � "

) � � � % � " ' � �) $ * + � " * (� & $

� � � ! � " � # $ �

� � � , � � � - � � 	
 �

� � � . � � 	 � /

� � � , � 0 	 � � � � 	 � �

� � � � � � � � � ! � & ' � " ! � � ! 1 � � (&

� 	 �
 	 � � � � � . � � 	 � /

� � � � ! � & ' � " ! � � ! 1 � � (&

, � � � � � � . � � � � � � 	 �
 �
 �
1 � � � � � 	 � � 0 � �

Figure 4.1 A sketch of the structure of the generate_macro program.

Figure 4.2 The algorithm for filling a rock in the one-subgrid case.

The corners of the square/cube are defined from the input radius r (one half the input diameter)
relative to the center element. In 3D the distance is given by / 3r , or the nearest integer to
this value. The padding is done until the diameter of the rock reaches the input value, or we

 16

have padded single cells as in the final stage of Figure 4.2. Finally, the program also writes the
map array to the file called aggpos.dat, just as in the two-subgrids case.

The disadvantages of this algorithm is that the rocks will not look exactly as spheres, and that
the code is more tedious to write and read.

5 COMPARISON OF AGGREGATE ROCKS FROM THE TWO APPROACHES

In Figure 5.1 and 5.2 we show how the aggregate rocks may look after having been created
using the two different methods. The rocks shown in the figures have all been generated with
the same aggregatedata.dat file, and with the same ranges (1 to 41 in all three directions). The
difference is quite apparent. Note that in concrete, rocks will usually be smaller compared with
the cell size.

Figure 5.1 Aggregate rocks generated in the two-subgrids case.

 17

Figure 5.2 Aggregate rocks generated using the macro file generating program.

6 SUMMARY

Two methods for generating a two-component material have been described. This might prove
very useful, particularly in penetration simulations against concrete or other heterogenous
materials. Comparison of simulations on penetration into heterogenous and homogenous
materials is beyond the scope of this report.

References

[1] Soleng H H, A Stochastic Two-Component Material Model: Documentation of an

Implementation as Fortran 90 Subroutines in Autodyn, FFI/RAPPORT-2001/01089

A FORMAT OF DATA FILES

This chapter describes the format of the various data files that are used by Autodyn.

A.1 Transformation from 3D array to a scalar

The aggregate_array is written to a direct access, unformatted file. In such a file, we can
access any value directly since we specify a record number in all read statements. Direct access
requires a record length and a unique way of addressing each record in the file. Essentially this
amounts to writing a 3D array on a 1D line, so we need a transformation rule between position
in the file and element index. Figure A.1 shows the idea behind a 2D procedure that works.

 18

�

2

Figure A.1 A sketch showing how we can count the cells in a unique way. The indicated cell

has indices (i,j), but from the lower left corner the cell number is (j-1)imax+i.

Suppose the maximum number of cells in the i-direction is imax. Also, suppose we are going to
label each cell in the grid with a unique number. Let us focus on the cell (i,j) in the figure.
There are (j-1)imax cells in the preceding rows, and i-1 preceding cells in the jth row: thus, the
indicated cell is number i in this row. Hence the cell number is (j-1)imax+i. An extension to 3D
is achieved by the following formula, if we let the maximum ranges of the grid be
(imax,jmax,kmax) and the cell number be denoted ncell:

maxmaxmaxcell kjikjkn)1()1(−+−+=
It is easily seen that for the first cell (1,1,1) ncell=1 and for the last cell (imax,jmax,kmax) the cell
number is ncell=imaxjmaxkmax.

A.2 aggregatedata.dat

The file aggregatedata.dat that is generated by the Matlab pre-processor has the following
simple structure:

1. The name of the macro file, exactly 10 characters including the .mac
extension (only relevant when using one single subgrid).

2. The name of the aggregate material in the Autodyn model, and the initial
density of this material. The name must be written in capital letters, and
must come first (only relevant when using one single subgrid).

3. The range of the subgrid region to be filled, in the following order: imin, imax,
jmin, jmax, kmin and kmax. Each number must be an integer and they must be
separated by a space. Then a text string with the name of the subgrid where
damage is to be implemented (only relevant when using one subgrid), and
finally a real number giving the damage level.

 19

4. The volume fraction of rocks and an integer indicating the minimum
distance between rocks.

5. The number of sieve curve points.
6. This and the following lines: the sieve curve points.

This file has been designed to have the same format independent of whether one or two
subgrids are used. As a consequence, the two first lines and everything except the last number
on the third line are not relevant (and not used) in this case. However, some (dummy) data
must still be supplied to make sure Autodyn is not confused. This is done automatically by
the Matlab pre-processor.

An example of an aggregatedata.dat file for a two-subgrid case is the following:

x

x x

1 1 1 1 1 1 z 0.30

0.15 2

3

10.0 0.0

8.0 0.5

6.0 1.0

A.3 facelength.dat

The format of the file facelength.dat is very simple as it just contains the three facelength
values (i,j and k in that order), separated by a space. An example is:

10.0 5.0 8.0

which defines a length of 10 mm in the i-direction, 5 mm in the j-direction and 8 mm in the k-
direction.

A.4 seed.dat

Finally, a file called seed.dat must be present in the bin directory. This file contains 17
integers between –30000 and 30000 and are used to initialize the random generator. Each time
Autodyn is started, the random generator is initialized in the same way and therefore produces
the same random numbers. To generate different numbers, a different seed file is needed. An
example of a seed file may be generated by typing make example in the source file directory.

B THE AUTODYN MACRO FACILITY

Macros are stored sequences of keystrokes that can be executed via a single command in the
Autodyn menu. They can be defined in the interactive menus at any time by pressing F6-

 20

Macro-Define. All subsequent keystrokes are then saved in a file with the extension .mac,
until F6 is pressed again. The macro file is located in the data directory.

When this macro is run (F6-Macro-Run), Autodyn executes the same sequence of
keystrokes automatically. However, the screen is still updated, and all dialogue boxes are
displayed as usual.

It is a major disadvantage of the macros that the screen is updated after each command. As a
consequence, it takes a long time to fill a subgrid one cell at a time using this approach.
Further, this means that we can not create a long macro and let Autodyn run overnight in
batch. Macros are also fuzzy about swapping of workspaces in the CDE environment, which
may cause Autodyn to crash. (CDE=Common Desktop Environment, the interface in the HP-
UX environment used at FFI).

The format of a macro file is quite simple, and a typical example may look like this:

$Block
%
2
7
16
21
27
32
PEBBLES
%
2.9
0.0
0.0
0.0
0.0
0.0
Spherical
f6
N

On running this macro, Autodyn enters the Block command, defines the i,j,k-indices of the
region (i=2 to i=7, j=16 to j=21, and k=27 to k=32) and the material name (PEBBLES), and the
density (2,9), velocities (0,0) and the Spherical option. Obviously all macro files will end with
a F6 as this indicates that the macro has been defined. The “N” in the last line means that the
macro is not rerun. Notice that this macro can only be run from the Fill-menu. Running
from any other menus would cause an error, including the Block-menu.

C FINDING AND LOCATING AGGREGATE ROCKS

Firstly, the size of each rock is drawn. The sizes are then returned in an array. The following
subroutine handles this:

subroutine find_rocks2(rckvol, distribution)

 21

 use map_array_functions, only : rocks=>sizes_of_rocks
 use inputs, only : no_of_sieves=>sieves, sieve_data=>sieve_array

The modules contain certain variables that are tedious to pass to the subroutine as formal
parameters. The modules are documented in Appendix F. It suffices to say here that they
contain the arrays that store information on the sieve curve and the array
aggregate_array. In the module inputs, sieve_array is a 2D array. In the first
column it contains data on sieve mesh size. In the second it contains the present proportion of
residue (in other words, the relative mass left in the sieve with the given mesh size). The arrays
are stored in modules, so provided the arrays have been filled correctly in the main program
there should be no problems.

real, dimension(1:no_of_sieves), intent(out) :: distribution

distribution is an array that contains the same information as sieve_data, but for the
output values: the actual size distribution in the rocks array.

integer :: i, rocknr
real, intent(in) :: rckvol

The number rckvol is the total rock volume in the subgrid. When enough rocks have been
drawn that their total volume adds up to this value, the drawing is completed and we return to
the user subroutine again.

real :: currentvol, rocksize, this_sieve

distribution=0
rocknr=1

It is necessary to draw sizes systematically. We loop through all sieve sizes, and draw rocks
within the boundaries set by the sieves until the rock volume is consistent with the input
fraction inside each size interval.

do i=1,no_of_sieves-1

Loop through each sieve:

this_sieve=rckvol*(sieve_data(2,i+1)-sieve_data(2,i))

Find the total volume of rocks that have a size within the interval set by the sieve curve and
multiply the total rock volume with the fraction of rocks inside this sieve interval.

currentvol=0.0

Initiates the variable that keeps track of how large the total volume is.

do while (currentvol<this_sieve)

 22

We have now entered the loop that actually draws the rock sizes. random_number returns a
value between 0 and 1. Keep drawing until the volume is large enough.

call random_number(rocksize)
rocksize=(rocksize*(sieve_data(1,i)-sieve_data(1,i+1))+&
sieve_data(1,i+1))/2
currentvol=currentvol+4*3.1416*(rocksize**3)/3

We have now calculated the current volume of rock.

rocks(rocknr)=rocksize
rocknr=rocknr+1
end do
distribution(i)=rocknr

rocknr holds the number of rocks within the present interval. Distribution stores this
information.

end do
return
end subroutine find_rocks2

We now have an array called rocks that contains the size of each rock. The trouble now is
that this array contains real numbers: we can only fill rocks with a discrete volume. In the
present implementation it is even worse: the rocks are spherical but can only have a discrete
radius. This restriction drastically limits the actual size distribution we eventually see.
Still, let us move on to the main subroutine, the one that actually fills the
aggregate_array, the array that is a map of the subgrid with information in which cells
are filled with aggregate. Inside this subroutine the aggregate_array is called
aggregate_positions. Its dimensions are determined outside this subroutine, and so the
minimum and maximum index in each of the three spatial directions is passed as formal
parameters.

subroutine place_aggregate(no_of_rocks)

 use map_array_functions
 use inputs, only : safety

 implicit none

 integer, intent(in) :: no_of_rocks
 real,dimension(:),allocatable :: help
 integer :: rock,this_rock,sizeint,p1,p2,p3
 logical :: free
 integer, dimension(1:3) :: low_corner, high_corner, center

no_of_rocks is the number of rocks that were drawn in the find_rocks2 subroutine
documented above. safety is a number that determines the minimum distance between
neighbouring aggregate rocks. help is just an array used to store the values of the

 23

sizes_of_rocks array locally. This is because the array will be manipulated in this
subroutine, and I would prefer the original array to stay unchanged for other parts of the
program.

rock=no_of_rocks
 allocate(help(1:rock))
 help=sizes_of_rocks(1:rock)
 do
 call random_uniformint(1,rock,this_rock)

Return a random integer in the range (1, rock).

sizeint=nint(size_array(this_rock))+safety

Round off the radius of each rock, and add the safety margin.

!draw positions
 call random_uniformint(imn,imx,p1)
 call random_uniformint(jmn,jmx,p2)
 call random_uniformint(k_min,kmx,p3)
 center(1)=p1
 center(2)=p2
 center(3)=p3

We have now drawn a random position for a rock. We want to check if the position is such that
the rock overlaps with other rocks. In order to do this, we define a subregion of the array to
search in, and pass this on to the check_region subroutine. We also want to keep looking
for a position for the rock until we have searched the entire subgrid.

!we have to find somewhere to place the rock. If the random location
 !is occupied, we want to keep looking until we either find a location
 !or we come back to the starting point, in which case there is no free
 !location available.
 free=.false.
 do
 !define the cubic region in which the rock will be embedded.
 !first define the lower i, j and k values.
 call lower_corner(center,sizeint,low_corner)
 call upper_corner(center,sizeint,high_corner)
 !now we're ready to check if the region contains any rocks already
 call check_region(low_corner, center, high_corner, sizeint, free)

The variable free is true if the region was empty, and false otherwise. We then either exit this
do-loop, or we move on to the next array element, repeat the check, and so on until we have
looped through the entire array, or we have actually found a position for the rock.

if (free) then
 exit
 else
 center(1)=center(1)+1
 if (center(1)==imx) then
 center(1)=imn

 24

 center(2)=center(2)+1
 if(center(2)==jmx) then
 center(2)=jmn
 center(3)=center(3)+1
 if (center(3)==kmx) then
 center(3)=k_min
 end if
 end if
 end if
 if (center(1)==p1 .and. center(2)==p2 .and. &
 center(3)==p3) then
 ! If it is impossible to find a position for the rock.
 write(6,*) 'Warning: could not find room for rock ', this_rock
 exit
 end if
 end if
 end do
if (free) then!if a location has been found, then fill with a rock

The variable free is initialised as false before the previous serach loop is executed. If the
loop has been finished without any free spot available for the rock, free is still false.
Otherwise it will be true, and hence free is suited to determine whether we should fill the
aggregate_positions array with 1’s for this rock.

if (free) then!if a location has been found, then fill with a rock
 sizeint=sizeint-safety!this is the actual size of the rock
 call fill_region(low_corner, center, high_corner, sizeint)

The subroutine fill_region replaces all 0 elements with 1’s inside the rocks. Filling a rock
in the map array is done simply by looping through the cubic region around the center element
of the rock, and every element closer than the desired radius is given the value 1. Expressing
this as an equation, suppose that the center element index is given by (ic,jc,kc) and the radius of
the spherical rock is R. Then every element (i,j,k) satisfying the following condition is filled:

2222)()()(RKKJJII ccc ≤−+−+−

Only the elements inside a cube with sides 2R are checked, thus avoiding a loop through the
entire array.

We now want to avoid drawing the same rock again, and this is where the array help is
useful. We rearrange the array of rock sizes so that the last element of the array is set to 0
while all elements after the present rock is moved one index forward. By using the array help
we achieve this without altering the original sizes_of_rocks array.

!now we need to redefine some variables to make sure we don't draw
 !the same rock again
 if (rock<no_of_rocks) then !we are not at the last element in the
 !array of rock sizes
 help(this_rock:no_of_rocks-1)=help(this_rock+1:no_of_rocks)
 help(no_of_rocks)=0.0

 !now we have moved the rock already placed to the last position
in

 25

 !the array. When the rock variable is reduced by one, we are
certain
 !that this rock will never be drawn again
 end if
 rock=rock-1
 if (rock<1) then
 write(6,*) 'Finished creating aggregates!'
 exit
 end if
 else

We stop placing rocks if we encounter one there is no room for.

exit
 end if
 end do
 deallocate(help)

 return
end subroutine place_aggregate

We now have an array filled with 0’s and 1’s, where 0’s indicate a cement cell in a subgrid and
1’s indicate an aggregate cell.

The subroutines fill_region and check_region are documented in Appendix E.

D THE SOURCE CODE OF THE EXZONE PROGRAM

D.1 The exzone subroutine

We now proceed to the details.

First, some declarations:

SUBROUTINE EXZONE (SUBGRD,I1,I2,J1,J2,K1,K2)

USE mdgrid
USE kindef

use map_array_functions
use inputs

IMPLICIT NONE

INTEGER (INT4) :: IJK,I, J, K
INTEGER (INT4) :: I1, I2, J1, J2, K1, K2
CHARACTER (LEN=10) SUBGRD
integer :: jj, map_sum
integer :: openstat,readstat
real :: stepi,stepj,stepk,rockvol
real, allocatable, dimension(:,:) :: output_distr
real, allocatable, dimension(:,:) :: output_sieve_array

 26

integer :: rocknumber
character :: yes_or_no

imn=i1
jmn=j1
k_min=k1
imx=i2
jmx=j2
kmx=k2

Ask whether to generate an aggregate_array. If the user wants to generate the array, we
first need to read the input file:

call getyon(yes_or_no,'$Read or generate (read=yes, generate=no)$')
if (yes_or_no=='N') then
 allocate(aggregate_array(imn:imx,jmn:jmx,k_min:kmx))
 aggregate_array=0
 open(11,file='aggregatedata.dat',form='formatted',&
 iostat=openstat,status='old')
 if (openstat==0) then
 readstat=0
 read(11,*,iostat=jj)!the strange reading makes it possible to read
 readstat=readstat+jj!the same aggregatedata.dat file in both the
 read(11,*,iostat=jj)!this and the EXVAL user subroutine.
 readstat=readstat+jj
 read(11,*,iostat=jj) sieves, sieves, sieves, sieves, sieves, sieves, &
 subgrid_name, damage_level
 readstat=readstat+jj
 read(11,*,iostat=jj) rockratio, safety
 readstat=readstat+jj
 read(11,'(I4)',iostat=jj) sieves
 readstat=readstat+jj
 allocate(sieve_array(1:2,1:sieves))
 read(11,*,iostat=jj) sieve_array
 readstat=readstat+jj
 close(11)
 if (readstat==0) then
 call read_seed_data()
 allocate(distr(1:sieves))
 rockvol =rockratio*real((i2-i1)*(j2-j1)*(k2-k1))
 rocknumber=int(rockvol)
 allocate(sizes_of_rocks(1:rocknumber))
 call find_rocks2(rockvol, distr)
 rocknumber=int(distr(sieves-1))
 if (rocknumber<=1) then
 call messag('$Rocknumber defaults to 1$')
 rocknumber=1
 end if

And now we have allocated all the memory we need, and we are ready to start filling the
aggregate_array:

 call place_aggregate(rocknumber)
 call messag('$Aggregate generated. See screen for details.$')

Write the output to a file. This is data on how the actual sieve curve looks, and how large
fraction of the target have been filled with aggregate.

 27

The output data is stored in the file aggregate_output.dat by the subroutine fill_region
during the filling phase. The file contains one column of numbers indicating the volume of
each rock (in numbers of cells), and one column containing the diameter. The volume is used
to calculate the mass fraction, and the diameter is used to calculate sieve interval relevant for
each rock.

First we find how many rocks that have been generated. We need this number in order to
allocate memory for the array output_distr.

 open(43,file='aggregate_output.dat',form='formatted')
 i=1
 do
 read(43,*,iostat=readstat)
 if (readstat/=0) exit
 i=i+1
 end do
 i=i-1
 close(43)
 allocate(output_distr(1:2,1:i))

We now read the rock data. For each rock we find the relevant sieve interval, and add the rock
volume to the total volume within that sieve interval. Finally we calculate fractions by dividing
with the total number of cells in the target.

open(43,file='aggregate_output.dat',form='formatted')
 j=0
 allocate(output_sieve_array(1:2,1:sieves))
 output_sieve_array=sieve_array
 output_sieve_array(2,1:sieves)=0.0
 do k=1,i
 read(43,*,iostat=readstat) output_distr(1,k),&
 output_distr(2,k)
 j=j+output_distr(1,k)
 do rocknumber=1,sieves
 if (sieve_array(1,rocknumber)<&
 output_distr(2,k)) then
 output_sieve_array(2,rocknumber)=&
 output_sieve_array(2,rocknumber)+&
 real(output_distr(1,k))
 end if
 if (rocknumber==sieves .and. sieve_array(1,rocknumber)==&
 output_distr(2,k)) then
 output_sieve_array(2,rocknumber)=&
 output_sieve_array(2,rocknumber)+&
 real(output_distr(1,k))
 end if
 end do
 end do
 close(43)
 do k=1,sieves
 output_sieve_array(2,k)=&
 output_sieve_array(2,k)/real(sum(output_distr(1,1:i)))
 end do
 write(6,*) 'Input aggregate ratio: ',rockratio
 write(6,*) '# of aggregate rocks: ',i

 28

 write(6,*) 'Output ratio: ',real(j)/&
 (real((i2-i1)*(j2-j1)*(k2-k1)))
 write(6,'(3a20)') 'Mesh size','Input fraction','Output fraction'
 do j=1,sieves
 write(6,'(3(12x,f5.2,3x))') sieve_array(1,j),&
 sieve_array(2,j),&
 output_sieve_array(2,j)
 end do
 deallocate(sieve_array)
 deallocate(sizes_of_rocks)
 deallocate(distr)
 else
 write(6,*) 'Readstat error ', readstat
 end if
 else
 write(6,*) 'Openstat error ', openstat
 end if
 close(11)

We must store the aggregate_array in a file so that it is possible to make another subgrid
later based on the same aggregate_array. For this purpose we use a direct access,
unformatted file.

 inquire(iolength=jj) openstat
 open(31,file='aggpos.dat',form='unformatted',access='direct',recl=jj,&
 iostat=openstat)
 if (openstat/=0) then
 call messag('$Could not open file aggpos.dat.$')
 else
 do i=1,i2-i1+1
 do j=1,j2-j1+1
 do k=1,k2-k1+1
 write(31,rec=k+(j-1)*(k2-k1+1)+(i-1)*(j2-j1+1)*(k2-k1+1))&
 aggregate_array(i+i1-1,j+j1-1,k+k1-1)
 end do
 end do
 end do
 close(31)
 end if

We also need to generate a macro file which is to be used to declare overlapping cells unused.
We declare cells unused if all corner nodes have been defined in the CEMENT subgrid, that is,
each of the eight corner nodes are also a corner of at least one element containing a 0 in the
aggregate_array. The way we find unwanted cells is shown schematically in Figure 6.1
for the 2D case. The extension to 3D is straightforward, the only difference being that each
node in 3D is common to eight cells.

 29

3 � 4 � 2 5

�

6
�

�

Figure D.1 Let the center cell, shown here with index (i,j), be a cell with element value 1.

The node (i,j) is common to the four cells a, b, c and d. If at least one of the four
cells have element value 0, then the node (i,j) will be defined in both subgrids.
Furthermore, if all four corner nodes to the cell (i,j) are defined in both
subgrids, then a cell overlap will occur.

The code below is a realisation of that algorithm. The logical function joined_node returns
.true. if one or more of the eight cells that share the input node has the value 0. If this is the
case, the node will be defined in both subgrids. Thus we test all eight corner nodes to find how
many are defined in both subgrids: if all eight nodes are, then the cell must be declared unused
in one of the subgrids.

 open(31,file='ovrlap.mac',form='formatted',iostat=openstat,&
 status='new')
 if (openstat/=0) then
 call messag('$Trouble with overlap-files.$')
 else
 readstat=0
do i=i1+1,i2
 do j=j1+1,j2
 do k=k1+1,k2
 if (aggregate_array(i,j,k)==1 .and. &
 neighbour_sum(i,j,k)>1) then
 if ((joined_node(i,j,k)) .and. &
 (joined_node(i-1,j,k)) &
 .and. (joined_node(i-1,j-1,k)) .and. &
 (joined_node(i,j-1,k)) &
 .and. (joined_node(i,j,k-1)) .and. &
 (joined_node(i-1,j,k-1)) &
 .and. (joined_node(i-1,j-1,k-1)) .and. &
 (joined_node(i,j-1,k-1)))&
 then
 write(31,'(A7)') '$Unused'
 write(31,'(A1)') '%'
 write(31,*) i-1
 write(31,*) i
 write(31,*) j-1
 write(31,*) j
 write(31,*) k-1
 write(31,*) k
 end if
 end if
 end do
 end do
 end do write(31,'(A2)') 'f6'

 30

 write(31,'(A1)') 'N'
 end if
 close(31)
else

The reader is perhaps a little desoriented at this point. The else-branch we are about to enter, is
the alternative to generating the aggregate_array. In other words, all the previous code is
executed only if the user replyed NO in the prompt. In case the answer was yes, we assume
that the unformatted file containing the aggregate_array exists, and that the macro file
has been generated already.

So, first we need to read the data in the aggpos.dat file.

 do i=1,i2-i1+1
 do j=1,j2-j1+1
 do k=1,k2-k1+1
 read(31,rec=k+(j-1)*(k2-k1+1)+(i-1)*(j2-j1+1)*(k2-k1+1),&
 iostat=readstat)&
 aggregate_array(i+i1-1,j+j1-1,k+k1-1)
 end do
 end do
 end do
 close(31)
 end if
 if (readstat/=0) then
 call messag('$File reading error. See screen for more info.$')
 write(6,*) 'The file aggpos.dat could not be read. '
 write(6,*) 'Make sure the file exists, if not, choose ',&
 'NO when prompted READ OR GENERATE. '
 write(6,*) 'A further mistake can be a mismatch between the ',&
 'i,j,k-range'&
 ,' in this subgrid and the one used when the file was '&
 ,'generated.'
 aggregate_array=0
 end if
end if

If the user has specified a file called facelength.dat, containing the lengths of the cell faces in
all three directions, then use these values when the subgrid is generated. In fact, it does not
really matter what these cell face lengths are, since it is possible to scale any subgrid from the
Autodyn menus.

open(12,file='facelength.dat', form='formatted', status='old',&
 iostat=openstat)
read(12,*, iostat=readstat) stepi, stepi, stepk
close(12)
if(readstat/=0 .or. openstat/=0) then
 call messag('$Cell size defaults to 10 mm$')
 stepi=10.0
 stepj=10.0
 stepk=10.0
end if

We are now ready to embark on the main part of the program. We have an
aggregate_array, either generated or read from a file, and we know the cell faces.

 31

if (subgrd=='CEMENT') then

This is if the present subgrid is the cement subgrid. Loop through all prospective cells. If the
aggregate_array contains a 0 at the element corresponding to the present cell, then
generate all eight nodes necessary to define this cell. Otherwise, do nothing.

The user is prompted whether to include damage in the cells close to the aggregate rocks. The
damage is stored in the user variable var01, and this variable must be defined in the menus
before generating the subgrid.

call getyon(yes_or_no,'$Include damage in surface cells$')
 if (yes_or_no=='Y') then
 write(6,*) 'Damage level is ',damage_level
 end if
 do i=i1+1,i2
 do j=j1+1,j2
 do k=k1+1,k2
 if (aggregate_array(i,j,k)==0) then
 ijk=ijkset(i,j,k)!Corner node #1
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i-1,j,k)!Corner node #2
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i-1,j-1,k)!Corner node #3
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i,j-1,k)!Corner node #4
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i,j,k-1)!Corner node #5
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-2)
 ijk=ijkset(i-1,j,k-1)!Corner node #6
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-2)
 ijk=ijkset(i-1,j-1,k-1)!Corner node #7
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-2)
 ijk=ijkset(i,j-1,k-1)!Corner node #8
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-2)
 if (yes_or_no=='Y') then

The function neighbour_sum is found in the map_array_functions module.

 map_sum=neighbour_sum(i,j,k)
 if (map_sum/=0) then
 var01(ijkset(i,j,k))=damage_level
 else

 32

 var01(ijkset(i,j,k))=0.0
 end if
 end if
 end if
 end do
 end do
 end do
end if

Now do exactly the same if the subgrid is called aggregate, only this time generate cells when
aggregate_array contains a 1 in the relevant element.

if (subgrd=='AGGREGATE') then
 do i=i1+1,i2
 do j=j1+1,j2
 do k=k1+1,k2
 if (aggregate_array(i,j,k)==1) then
 ijk=ijkset(i,j,k)!Corner node #1
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i-1,j,k)!Corner node #2
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i-1,j-1,k)!Corner node #3
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i,j-1,k)!Corner node #4
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-1)
 ijk=ijkset(i,j,k-1)!Corner node #5
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-2)
 ijk=ijkset(i-1,j,k-1)!Corner node #6
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-1)
 zn(ijk)=stepk*(k-2)
 ijk=ijkset(i-1,j-1,k-1)!Corner node #7
 xn(ijk)=stepi*(i-2)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-2)
 ijk=ijkset(i,j-1,k-1)!Corner node #8
 xn(ijk)=stepi*(i-1)
 yn(ijk)=stepj*(j-2)
 zn(ijk)=stepk*(k-2)
 end if
 end do
 end do
 end do
end if
deallocate(aggregate_array)

RETURN

END SUBROUTINE EXZONE

 33

E THE SOURCE CODE FOR THE MACRO GENERATING PROGRAM

E.1 The main program

The main program consists of three main parts: initialisations, calls to subroutines that actually
do the job, and then a summary part that writes output regarding the filling fraction and size
distribution of the rocks stored in the macro file.

program macrofill

 use inputs
 use map_array_functions

 integer :: jj
 integer :: i,j,k,openstat,readstat
 real :: rockvol, density_cement
 integer, allocatable,dimension(:,:) :: output_distr
 real, allocatable, dimension(:,:) :: output_sieve_array
 integer :: rocknumber

 open(11,file='aggregatedata.dat',form='formatted',&
 iostat=openstat,status='old')
 if (openstat==0) then
 read(11,*,iostat=jj) macrofile
 readstat=readstat+jj
 read(11,*,iostat=jj) aggregate_name, density_aggregate
 readstat=readstat+jj
 read(11,*,iostat=jj) imn,imx,jmn,jmx,k_min,kmx
 readstat=readstat+jj
 read(11,*,iostat=jj) rockratio, safety
 readstat=readstat+jj
 read(11,'(I4)',iostat=jj) sieves
 readstat=readstat+jj
 allocate(sieve_array(1:2,1:sieves))
 read(11,*,iostat=jj) sieve_array
 readstat=readstat+jj
 close(11)
 allocate(aggregate_array(imn:imx,jmn:jmx,k_min:kmx))
 aggregate_array=0
 if (readstat==0) then
 call read_seed_data()
 allocate(distr(1:sieves))
 rockvol =rockratio*real((imx-imn)*(jmx-jmn)*(kmx-k_min))
 rocknumber=int(rockvol)
 allocate(sizes_of_rocks(1:rocknumber))

Now we have completed all initialisations. We first call the find_rocks2 subroutine, which
is identical to the one used in the exzone program, and thereafter the
place_aggregate_macro subroutine, which is a modified version of the subroutine
place_aggregate.

 call find_rocks2(rockvol, distr)
 rocknumber=int(distr(sieves-1))

 if (rocknumber<=1) then

 34

 write(6,*) '$Rocknumber defaults to 1$'
 rocknumber=1
 end if
 call place_aggregate_macro(rocknumber-1)
 deallocate(sizes_of_rocks)
 deallocate(distr)
 end if
 end if

Now write the array of rock positions to the file aggpos.dat, exactly as in the exzone
subroutine. Also finish the macro file by adding lines to it that will tell Autodyn to plot a
material plot when the fill session is completed.

open(31,file='aggpos.dat',form='unformatted',access='direct',&
 iostat=openstat,recl=4)
 do i=1,imx-imn+1
 do j=1,jmx-jmn+1
 do k=1,kmx-k_min+1
 write(31,rec=k+(j-1)*(kmx-k_min+1)+(i-1)*(jmx-jmn+1)*(kmx-
k_min+1))&
 aggregate_array(i+imn-1,j+jmn-1,k+k_min-1)
 end do
 end do
 end do
 close(31)
 open(31,file=macrofile,form='formatted',position='append'&
 ,iostat=openstat)
 if (openstat/=0) then
 write(6,*) 'Could not open the macrofile ',macrofile,'. '
 else
 write(31,'(a5)') '$View'
 write(31,'(a10)') '$Materials'
 write(31,'(a9)') '$Location'
 write(31,'(a2)') 'f6'
 write(31,'(a1)') 'N'
 end if
 deallocate(aggregate_array)
 close(31)

Lastly, write the output data to the screen. The code is exactly as in the exzone subroutine.

open(43,file='aggregate_output.dat',form='formatted')
 i=1
 do
 read(43,*,iostat=readstat)
 if (readstat/=0) exit
 i=i+1
 end do
 i=i-1
 close(43)
 allocate(output_distr(1:2,1:i))
 open(43,file='aggregate_output.dat',form='formatted')
 j=0
 allocate(output_sieve_array(1:2,1:sieves))
 output_sieve_array=sieve_array
 output_sieve_array(2,1:sieves)=0.0
 do k=1,i
 read(43,*,iostat=readstat) output_distr(1,k),output_distr(2,k)
 j=j+output_distr(1,k)

 do rocknumber=1,sieves

 35

 if (sieve_array(1,rocknumber)<&
 output_distr(2,k)) then
 output_sieve_array(2,rocknumber)=&
 output_sieve_array(2,rocknumber)+real(output_distr(1,k))
 end if
 if (rocknumber==sieves .and. sieve_array(1,rocknumber)==&
 output_distr(2,k)) then
 output_sieve_array(2,rocknumber)=&
 output_sieve_array(2,rocknumber)+real(output_distr(1,k))
 end if
 end do
 end do
 close(43)
 do k=1,sieves
 output_sieve_array(2,k)=&
 output_sieve_array(2,k)/real(sum(output_distr(1,1:i)))
 end do
 write(6,*) 'Input aggregate ratio: ',rockratio
 write(6,*) '# of aggregate rocks: ',i
 write(6,*) 'Output ratio: ',real(j)/&
 (real((imx-imn)*(jmx-jmn)*(kmx-k_min)))
 write(6,'(3a20)') 'Mesh size','Input fraction','Output fraction'
 do j=1,sieves
 write(6,'(3(12x,f5.2,3x))') sieve_array(1,j),sieve_array(2,j),&
 output_sieve_array(2,j)
 end do
 deallocate(output_distr)
 deallocate(output_sieve_array)
 deallocate(sieve_array)
end program macrofill

E.2 The fill_region_and_write subroutine

There are probably better ways to realise the macro file needed for this, but the following code
is a suggestion. Unfortunately, it is fairly long and perhaps a little confusing, possibly because
we want to achieve a couple things simultaneously:

1. find the i-, j- and k-ranges for each new layer
2. make sure that the program does not loop outside the array boundaries.
3. update the aggregate_array for every cell that is filled with aggregate material
4. write the macro file

As usual, some initial code is needed, this time to read the name of the macro file, the
aggregate material and the density of the aggregate material from the file aggragedata.dat. The
initial lines are as follows, first the declarations:

subroutine fill_region_and_write(lower, center, upper, mindist)

 use map_array_functions

 implicit none

 real, intent(in) :: mindist
 integer, dimension(1:3), intent(in) :: lower, center, upper
! lower(x) give minimum boundary of the region.
! upper(x) give maximum boundary of the region.

 36

! center(x) give center of the region.
 integer, dimension(1:3,1:3) :: ranges
 integer :: i,j,k, maxi, rangek1, rangej1,cornerpos,plane_no
 integer :: plane,rangek2, rangej2,size_this_rock
 logical :: skip

The necessary material data we need in order to write a macro file are stored in variables
accessible via the inputs module.

The distance in i-, j- or k-directions of the cube boundaries from the cube center. I now define
the region in which the cubical center is defined.

size_this_rock=0
 maxi=nint(2*mindist)
 ranges(1,1:3)=lower
 ranges(2,1:3)=upper
 ranges(3,1:3)=center
!ranges will contain the ijk-indices that describe the inner cube of each
rock.
 if (mod(maxi,2)==0) then
 maxi=nint(2.0*mindist/sqrt(3.0))
 if (mod(maxi,2)/=0) then
 maxi=maxi+1
 end if
 else
 maxi=nint(2.0*mindist/sqrt(3.0))
 if (mod(maxi,2)==0) then
 maxi=maxi+1
 end if
 end if

The if-loop above defines the length of the sides (the variable maxi) of the central cube. If the
number of cells in the diameter is even, then the number of cells in maxi is rounded up to the
nearest even integer. Otherwise, if the number of cells in the diameter is odd, the sides of the
central cube is also odd. This is to ensure that there is an even number of cells remaining to be
defined outside the central cube in the diameter. This is because planes are defined pairwise: if
there is one plane padded on the cube on one side, then the same happen also on the opposite
side (see Figure 4.2).

call lower_corner(ranges(3,1:3), int(real(maxi)/2.0), ranges(1,1:3))
 if (mod(maxi,2)==0) then
 call upper_corner(ranges(3,1:3), int(real(maxi)/2.0)-1, ranges(2,1:3))
 else
 call upper_corner(ranges(3,1:3), int(real(maxi)/2.0), ranges(2,1:3))
 end if

The subroutines lower_corner and upper_corner define the ijk-index of those corners,
taking into account the possibility that we are outside the array boundaries. The if-branching
controls the two different cases of even and odd side lengths. An odd number of cells means
that there is a well defined center cell, and to find the corners we can simply add the distance
maxi/2 to the ijk-index for the upper corner, and the subtract the same value to find the lower
corner. For an even number of cells on each side we must add maxi/2-1.

 37

The cubical central part is now defined in the map array with the following code, the first if-
statement controls that the cubic region is well defined:

!First fill the rock in the aggregate_array
 if (ranges(2,1)-ranges(1,1)<=0 .or. ranges(2,2)-ranges(1,2)<=0 .or. &
 ranges(2,3)-ranges(1,3)<=0) then
!Do nothing since the ranges are invalid
 else
 do i=ranges(1,1)+1,ranges(2,1)
 do j=ranges(1,2)+1,ranges(2,2)
 do k=ranges(1,3)+1,ranges(2,3)
 aggregate_array(i,j,k)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 end do
 !now start creating the rock, first the center cube

and then the macro file lines are written which defines the cube:

call write_macro_file(ranges(1,1),ranges(1,2),ranges(1,3),ranges(2,1),&
 ranges(2,2),ranges(2,3))
 plane_no=1

We are now ready to start padding the surfaces outside the cube, as explained previously.
Firstly, we need a way to define the surfaces that are going to be padded. We do this by
looking for a position for one of the corners, and creating a square of thickness one. The
variable plane_no indicates the layer number, or stage number to use the terminology
adopted in Figure 4.2. The middle figure has plane_no=1, while the right figure has
plane_no=2. The variable cornerpos indicates how many elements away from the cubical
corner the square begins. In the figure cornerpos=1 in the middle and cornerpos=3 in
right figure.

 do
 cornerpos=1
 do
 if ((real(maxi)/2+real(plane_no))**2+&
 (real(maxi)/2.0-real(cornerpos))**2+&
 (real(maxi)/2.0-real(cornerpos))**2<=(mindist)**2) then
 exit
 else
 cornerpos=cornerpos+1
 end if
 if (cornerpos>nint(mindist)) exit
 end do
 if (cornerpos>nint(mindist)) exit

The value of cornerpos is found by requiring the distance between the cube center and the
corner element be less than the sphere radius.
The next part of the code performs the padding now that we know the relative position of the
square corner. The select case construct is not necessary here, but I thought it was

 38

slightly easier to see what is going on with it, and it also makes it easier to skip any surfaces
that extend beyond the subgrid boundaries.
Basically, I place a square on each of the six sides of the cube. Notice that the variables
rangej1, rangej2, rangek1 and rangek2 have nothing to do with i, j or k indices, but
changes meaning according to which of the six sides we are on. For example, if we pad a plane
which is constant in the k-direction, then the range definition refers to the i- and j-direction.

do i=1,6
 skip=.false.
 select case(i)
 case (1)
 plane=ranges(1,1)-plane_no !Let imin be one less than in the
cube
 if (plane<imn) skip=.true.
 rangej1=ranges(1,2)+cornerpos
 rangek1=ranges(1,3)+cornerpos
 rangej2=ranges(2,2)-cornerpos
 rangek2=ranges(2,3)-cornerpos
 if (rangej2-rangej1<=0 .or. rangek2-rangek1<=0) skip=.true.
 if (skip) then
 else
 do j=rangej1+1,rangej2
 do k=rangek1+1,rangek2
 aggregate_array(plane+1,j,k)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 call
write_macro_file(plane,rangej1,rangek1,plane+1,rangej2,&
 rangek2)
 end if
 case (2)
 plane=ranges(2,1)+plane_no
!Let imax be one greater than in the cube
 if (plane>imx) skip=.true.
 rangej1=ranges(1,2)+cornerpos
 rangek1=ranges(1,3)+cornerpos
 rangej2=ranges(2,2)-cornerpos
 rangek2=ranges(2,3)-cornerpos
 if (rangej2-rangej1<=0 .or. rangek2-rangek1<=0) skip=.true.
 if (skip) then
 else
 do j=rangej1+1,rangej2
 do k=rangek1+1,rangek2
 aggregate_array(plane,j,k)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 call write_macro_file(plane&
 -1,rangej1,rangek1,plane,rangej2,&
 rangek2)
 end if
 case (3)
 plane=ranges(1,2)-plane_no
!Let jmin be one less than in the cube
 if (plane<jmn) skip=.true.
 rangej1=ranges(1,1)+cornerpos
 rangek1=ranges(1,3)+cornerpos
 rangej2=ranges(2,1)-cornerpos

 39

 rangek2=ranges(2,3)-cornerpos
 if (rangej2-rangej1<=0 .or. rangek2-rangek1<=0) skip=.true.
 if (skip) then
 else
 do j=rangej1+1,rangej2
 do k=rangek1+1,rangek2
 aggregate_array(j,plane+1,k)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 call write_macro_file(rangej1,plane,rangek1,&
 rangej2,plane+1,&
 rangek2)
 end if
 case (4)
 plane=ranges(2,2)+plane_no
!Let jmax be one greater than in the cube
 if (plane>jmx) skip=.true.
 rangej1=ranges(1,1)+cornerpos
 rangek1=ranges(1,3)+cornerpos
 rangej2=ranges(2,1)-cornerpos
 rangek2=ranges(2,3)-cornerpos
 if (rangej2-rangej1<=0 .or. rangek2-rangek1<=0) skip=.true.
 if (skip) then
 else
 do j=rangej1+1,rangej2
 do k=rangek1+1,rangek2
 aggregate_array(j,plane,k)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 call write_macro_file(rangej1,plane-&
 1,rangek1,rangej2,plane,&
 rangek2)
 end if
 case (5)
 plane=ranges(1,3)-plane_no
!Let kmin be one less than in the cube
 if (plane<k_min) skip=.true.
 rangej1=ranges(1,1)+cornerpos
 rangek1=ranges(1,2)+cornerpos
 rangej2=ranges(2,1)-cornerpos
 rangek2=ranges(2,2)-cornerpos
 if (rangej2-rangej1<=0 .or. rangek2-rangek1<=0) skip=.true.
 if (skip) then
 else
 do j=rangej1+1,rangej2
 do k=rangek1+1,rangek2
 aggregate_array(j,k,plane+1)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 call write_macro_file(rangej1,rangek1,&
 plane,rangej2,rangek2,&
 plane+1)
 end if
 case (6)
 plane=ranges(2,3)+plane_no
!Let kmax be one greater than in the cube
 if (plane>kmx) skip=.true.
 rangej1=ranges(1,1)+cornerpos

 40

 rangek1=ranges(1,2)+cornerpos
 rangej2=ranges(2,1)-cornerpos
 rangek2=ranges(2,2)-cornerpos
 if (rangej2-rangej1<=0 .or. rangek2-rangek1<=0) skip=.true.
 if (skip) then
 else
 do j=rangej1+1,rangej2
 do k=rangek1+1,rangek2
 aggregate_array(j,k,plane)=1
 size_this_rock=size_this_rock+1
 end do
 end do
 call write_macro_file(rangej1,rangek1,plane-1,rangej2,&
 rangek2,plane)
 end if
 end select
 end do !End the select case loop.

We have now padded a plane on each side of the cube. We increase plane_no by one, and
repeat the whole process until the maxi+plane_no is equal to or greater than the diameter
of the rock.

plane_no=plane_no+1
 if ((2*plane_no+maxi)>nint(2.0*mindist)) exit
 end do
 open(13,file='aggregate_output.dat',form='formatted',position='append')
 write(13,*) size_this_rock,maxi+2*plane_no
 close(13)
 end if
 return
end subroutine fill_region_and_write

The file aggregate_output.dat contains the sizes of each of the rocks filled in this subroutine,
and can later be accessed by other parts of the program (see the last lines in the main program
code).

E.3 The place_aggregate_macro subroutine

This subroutine is very similar to the place_aggregate subroutine. The only difference is
that rather than calling the fill_region subroutine, it calls the
fill_region_and_write subroutine. That subroutine was documented in the previous
section.

F VARIOUS SHORT SUBROUTINES

F.1 The modules

The module map_array_functions contains some short subroutines and a function, and
also some declarations that are used in several different subroutines. Among the variables
declared here is the aggregate_array.

 41

module map_array_functions

 implicit none

 real, allocatable, dimension(:,:,:) :: aggregate_array
 real, allocatable, dimension(:) :: sizes_of_rocks
 integer :: imn, jmn, k_min, imx, jmx, kmx

 contains
 integer function neighbour_sum

 logical function joined_node

 subroutine lower_corner

 subroutine upper_corner

end module map_array_functions

The following module contains input variables. They are used in several different subroutines,
and to avoid passing values around as formal parameters I have included them in this module.
That makes subroutine calls much easier.

module inputs

 implicit none

 character(len=10) :: macrofile, aggregate_name, subgrid_name
 real :: density_aggregate, damage_level, rockratio
 real, allocatable, dimension(:,:) :: sieve_array
 real, allocatable, dimension(:) :: distr
 integer :: safety, sieves

end module inputs

F.1.1 integer function neighbour_sum

The function adds the 27 elements in a 3x3x3 subset of the aggregate array.

integer function neighbour_sum(posi,posj,posk)
!The function returns the sum of 27 elements in an integer array; those
!elements that form a 3x3x3 subset of the array centered on
(posi,posj,posk).
 implicit none
 integer, intent(in) :: posi, posj, posk
 integer :: ix, in, jx, jn, kx, kn

 ix=posi+1
 in=posi-1
 jx=posj+1
 jn=posj-1
 kx=posk+1
 kn=posk-1
 if (posi==imx) ix=posi
 if (posj==jmx) jx=posj

 42

 if (posk==kmx) kx=posk
 if (posi==imn) in=posi
 if (posj==jmn) jn=posj
 if (posk==k_min) kn=posk
 neighbour_sum=sum(aggregate_array(in:ix,jn:jx,kn:kx))

 return
 end function neighbour_sum

F.1.2 logical function joined_node

The function returns .true. if one or more of the eight neighbouring cells that share the
node (posi,posj,posk) contains a 0.

logical function joined_node(posi,posj,posk)

 implicit none

 integer, intent(in) :: posi, posj, posk

 integer :: ix, jx, kx

 ix=posi+1
 jx=posj+1
 kx=posk+1
 if (posi==imx) ix=posi
 if (posj==jmx) jx=posj
 if (posk==kmx) kx=posk
 if (sum(aggregate_array(posi:ix,posj:jx,posk:kx))<8) then
 joined_node=.true.
 else
 joined_node=.false.
 end if

 return
 end function joined_node

F.1.3 subroutine lower_corner

This subroutine finds the lower corner in a cubical (in ijk-space) subset of the aggregate array.
It checks if any of the three indices run beyond the array extent.

subroutine lower_corner(center_indices, rad, corner_indices)
!When looping occurs outside the borders of an array, any program will
crash.
!This routine checks that the lower corner in a subset is inside the array
!boundaries.
 implicit none
 integer, intent(in) :: rad
 integer, dimension(1:3), intent(in) :: center_indices
 integer, dimension(1:3), intent(out) :: corner_indices

 43

 if (center_indices(1)-rad<imn) then
 corner_indices(1)=imn
 else
 corner_indices(1)=center_indices(1)-rad
 end if
 if (center_indices(2)-rad<jmn) then
 corner_indices(2)=jmn
 else
 corner_indices(2)=center_indices(2)-rad
 end if
 if (center_indices(3)-rad<k_min) then
 corner_indices(3)=k_min
 else
 corner_indices(3)=center_indices(3)-rad
 end if

 return
 end subroutine lower_corner

F.1.4 subroutine upper_corner

This subroutine performs the same action as the previous one, but in order to find the upper
corner of the same cubical subset.

subroutine upper_corner(center_indices,rad, corner_indices)
 !This is identical to the above, only for the maximum limits.
 implicit none
 integer, intent(in) :: rad
 integer, dimension(1:3), intent(in) :: center_indices
 integer, dimension(1:3), intent(out) :: corner_indices

 if (center_indices(1)+rad>imx) then
 corner_indices(1)=imx
 else
 corner_indices(1)=rad+center_indices(1)
 end if
 if (center_indices(2)+rad>jmx) then
 corner_indices(2)=jmx
 else
 corner_indices(2)=rad+center_indices(2)
 end if
 if (center_indices(3)+rad>kmx) then
 corner_indices(3)=kmx
 else
 corner_indices(3)=rad+center_indices(3)
 end if

 return
 end subroutine upper_corner

F.2 The subroutine check_region

The subroutine finds if the region with diagonally opposite corners lower and upper is free
of any rock elements (i.e. elements with value 1).

 44

subroutine check_region(lower, center, upper, mindist,free)

 use map_array_functions, only: nn_array=>aggregate_array

 implicit none
 integer, intent(in) :: mindist
 integer, dimension(1:3), intent(in) :: lower, center, upper
 ! low_corner(x) give minimum boundary of the region.
 ! upper(x) give maximum boundary of the region.
 ! center(x) give center of the region.
 logical, intent(out) :: free
 integer :: i,j,k

 free=.true.
 do i=lower(1),upper(1)
 do j=lower(2),upper(2)
 do k=lower(3),upper(3)
 if ((i-center(1))**2+(j-center(2))**2+&
 (k-center(3))**2<=mindist**2 .and. &
 nn_array(i,j,k)==1) then
 free=.false.
 end if
 end do
 end do
 end do
 return
end subroutine check_region

F.3 The subroutine fill_region

The subroutine fills a region defined with lower and upper corner given by lower and
upper, respectively, with a spherical rock. Its diameter is mindist.

subroutine fill_region(lower, center, upper, mindist)

 use map_array_functions, only : nn_array=>aggregate_array

 implicit none
 integer, intent(in) :: mindist
 integer, dimension(1:3), intent(in) :: lower, center, upper
! lower(x) give minimum boundary of the region.
! upper(x) give maximum boundary of the region.
! center(x) give center of the region.
 integer :: volume, i, j, k

 volume=0
 do i=lower(1),upper(1)
 do j=lower(2),upper(2)
 do k=lower(3),upper(3)
 if ((i-center(1))**2+(j-center(2))**2+&
 (k-center(3))**2<=mindist**2) then
 nn_array(i,j,k)=1
 volume=volume+1
 end if
 end do
 end do

 end do

 45

 open(13,file='aggregate_output.dat',form='formatted',position='append')
 write(13,*) volume,2*mindist+1
 close(13)
 return
end subroutine fill_region

F.4 Subroutine write_macro_file

The subroutine write macro file lines for a fill command in the block (in,jn,kn) to
(ix,jx,kx). The variable name is the material name, macrofile is the name of the macro
file, and dens is the density that the material should be filled with.

subroutine write_macro_file(in,jn,kn,ix,jx,kx)

 use inputs, only : name=>aggregate_name, dens=>density_aggregate,
macrofile

 implicit none

 integer, intent(in) :: in,jn,kn,ix,jx,kx
 integer :: i

 open(91,file=macrofile,form='formatted',position='append')
 write(91,'(A6)') '$Block'
 write(91,'(A1)') '%'
 write(91,*) in
 write(91,*) ix
 write(91,*) jn
 write(91,*) jx
 write(91,*) kn
 write(91,*) kx
 write(91,'(A10)') name
 write(91,'(A1)') '%'
 write(91,*) dens
 do i=1,5
 write(91,*) 0.0
 end do
 write(91,'(A9)') 'Spherical'
 close(91)
 return
end subroutine write_macro_file

G THE EXVAL SUBROUTINE

I mentioned in the introduction that in 3D I have not yet been able to fill a subgrid with two
materials from the exval subroutine. Even though it does not work satisfactorily, I have written
a suggestion for a program that would work in 2D. If someone finds a way to reset the material
from the exval subroutine, then only a few lines need be modified in this program to make it
work.

SUBROUTINE EXVAL (NS,I,J,K,IJK,MATI,NP,RHOI,RREF,SIEI,UXI,UYI,UZI,URI)

 46

 USE kindef
 USE bnddef

 use subdef
 use mdgrid
 use map_array_functions
 use inputs

 IMPLICIT NONE

 INTEGER (INT4) :: IJK, I, J, K, MATI, NP
 INTEGER (INT4) :: NS
 REAL (REAL8) :: RHOI, RREF, SIEI, URI, UXI, UYI, UZI

 character :: yes_or_no, read_old
 integer(int4) :: filestat, subnumber, matnumber, actual_fill
 integer(int4) :: rocknumber, ii, jj, kk, aggpos_element
 real(real8) :: rockratio_out
 real :: rockvol
 logical :: no_aggpos_file

 var01(ijk)=var01(ijk)
 if (i==2 .and. j==2 .and. k==2) then
 imn=1
 jmn=1
 k_min=1
 imx=imax
 jmx=jmax
 kmx=kmax
 yes_or_no='N'
! call getyon(yes_or_no, &
! '$Do you wish to fill this subgrid with two materials$')

To activate the program, uncomment the two lines above.

 if (yes_or_no=='Y') then

open(11,file='aggregatedata.dat',form='formatted',&

 iostat=filestat)
 if (filestat==0) then
 read(11,*,iostat=jj)
 read(11,*,iostat=jj) aggregate_name, density_aggregate
 filestat=filestat+jj
 matnumber=0
 do ii=1,nummat
 if (nammat(ii)==aggregate_name) then
 matnumber=ii
 exit
 end if
 end do
 read(11,*,iostat=jj) ii,ii,ii,ii,ii,ii,subgrid_name
 filestat=filestat+jj
 read(11,*,iostat=jj) rockratio, safety
 filestat=filestat+jj
 read(11,'(I4)',iostat=jj) sieves
 filestat=filestat+jj
 allocate(sieve_array(1:2,1:sieves))

 read(11,*,iostat=jj) sieve_array

 47

 filestat=filestat+jj
 close(11)
 write(6,*) ' '
 write(6,*) 'Aggregate material: ',aggregate_name
 write(6,*) 'Target subgrid: ', &
 namsub(ns)
 write(6,*) rockratio
 write(6,*) sieves
 write(6,*) sieve_array
 call getyon(read_old,'$Use existing aggregate array file$')
 if (read_old=='Y') then
 no_aggpos_file=.false.
 inquire(iolength=jj) jj
 open(34,file='aggpos.dat',form='unformatted',&
 access='direct',recl=jj,&
 status='old',iostat=actual_fill)
 if (actual_fill/=0) then
 call messag('$Could not open file aggpos.dat.$')
 no_aggpos_file=.true.
 end if
 else
 if (filestat==0 .and. matnumber/=0) then
 call read_seed_data()
 allocate(distr(1:sieves))
 rockvol =rockratio*real(imax*jmax&
 *kmax)
 rocknumber=int(rockvol)
 allocate(sizes_of_rocks(1:rocknumber))
 allocate(aggregate_array(1:imax,&
 1:jmax,1:kmax),stat=filestat)
 if (filestat/=0) write(6,*) 'Allocation error ',filestat
 call find_rocks2(rockvol, distr)
 rocknumber=distr(sieves-1)
 call place_aggregate(rocknumber)
 write(6,*) 'Aggregate database completed'
 inquire(iolength=jj) jj
 open(31,file='aggpos.dat',form='unformatted',&
 access='direct',recl=jj,&
 iostat=actual_fill)
 if (actual_fill/=0) then
 call messag('$Could not open file aggpos.dat.$')
 else
 do ii=1,imax
 do jj=1,jmax
 do kk=1,kmax
 write(31,rec=kk+(jj-1)*(kmax)+&
 (ii-1)*(jmax)*(kmax))&
 aggregate_array(ii,jj,kk)
 end do
 end do
 end do
 close(31)
 end if
 deallocate(aggregate_array)
 deallocate(sizes_of_rocks)
 deallocate(distr)
 deallocate(sieve_array)
 inquire(iolength=jj) jj
 open(34,file='aggpos.dat',form='unformatted',&
 access='direct',recl=jj,&
 status='old')

 48

 end if
 end if
 end if
 actual_fill=0
 else
 call messag('$This subgrid will only be filled with one '//&
 'material.$')
 end if
 end if
 if (i==imax .and. j==jmax .and. k==kmax) then
 if (yes_or_no=='Y') then
 do ii=1,imax
 do jj=1,jmax
 do kk=1,kmax
 if (no_aggpos_file) then
 aggpos_element=0
 else
 read(34,rec=kk+(jj-1)*(kmax)+(ii-1)*(jmax)*(kmax),&
 iostat=filestat)&
 aggpos_element
 end if
 if (aggpos_element==1) then
 npkmn(ijkset(ii,jj,kk))=matnumber
 end if
 end do
 end do
 end do
 end if
 close(34)
 rockratio_out=REAL(actual_fill)/REAL(numi(ns)*&
 numj(ns)*numk(ns))
 open(22,file='fillingdata.txt',form&
 ='formatted',position='append')
 write(22,*) '---'
 write(22,*) 'Subgrid name: ', &
 namsub(ns)
 write(22,*) '# cells filled with ', aggregate_name, ': ',&
 actual_fill
 write(22,*) 'Desired fraction: ', rockratio
 write(22,*) 'Actual fraction: ', &
 rockratio_out
 write(22,*) '---'
 close(22)
 end if !The last cell

 RETURN

END SUBROUTINE EXVAL

H THE MAKEFILE

A makefile has been written to make it easier to compile the program. As it stands, it must be
used in a directory called Aggregate, with the path ~/autodyn/3dv42/usrsub/Aggregate (in fact,
the name of the directory is not important in this case, but level in the directory hierarchy is).
The syntax for using the make utility is

make <keyword>

 49

The Makefile accepts the following keywords:

• Nothing or auto_aggregate: compiles the .f90 files aggregate.f90, random.f90 and

2mat.f90, and links them with the Autodyn object file and libraries/modules.
• adslav3: compiles the same files, and links them to make the slave processor for 3D

parallell processing. I can not see how this is necessary to do at present, but if it would be
possible to achieve a two-material filling from the exedit subroutine as in 2D, then it might
be necessary to make a slave process.

• generate_macro: compiles and links the files used to create the generate_macro program.
• example: generates examples of the seed.dat-file and the aggregatedata.dat-file.
• cleandir: removes all .mod- and .o-files in the directory, as well as the executable files.
• clean: the same as clean, but it also removes generated files from the ~/autodyn/3dv42/bin/

directory.
• cleanzip: the same as clean, but in addition it gzips the .f90 files.

The Makefile can be rewritten, of course, to allow for different directory structures and
different filenames and output program names. To aid in such rewriting, the most important
definitions in the Makefile are written in the top lines.

Here are the lines in the Makefile:

.SUFFIXES: .f90 .o .a

PATH1= /user/aao/autodyn/3dv42
PROGRAM= auto_aggregate
SLAVE= adslav3
F90FILE= aggregate
#Declaring filenames etc for the macrofile generating program
MACROPROG= generate_macro
MACROSRC= random.f90 2mat.f90 macrofill.f90
MACROOBJ= ${MACROSRC:.f90=.o}
DATADIR= $(PATH1)/data/

FILES1= $(PATH1)/usrsub/admain3.o $(PATH1)/usrsub/autodyn3.a
ADSLAVES= $(PATH1)/usrsub/adslav3.o $(PATH1)/usrsub/autodyn3.a
FILES2= random.f90 2mat.f90 $(F90FILE).f90
OBJFILES= ${FILES2:.f90=.o}
GKSDIR= $(gksdir)
PVM_DIR= $(PVM_ROOT)/lib/HPPA/
FLAGS= -L$(GKSDIR) -lgksflb -lgksw5300 -lgksw1900 -lgkswiss \
 -lgksgksm -lgksmsc -L$(PVM_ROOT)/libfpvm/HPPA -lX11 -lm
FLAGS2= +save +noshared +O2 +DA2.0 -I $(PATH1)/usrsub
FLAGS3= -Wl,-ashared -lnsl -ldld -I $(PATH1)/usrsub
PVM_LIB1= $(PVM_ROOT)/libfpvm/HPPA/libfpvm3.a
PVM_LIB2= $(PVM_DIR)libpvm3.a $(PVM_DIR)libgpvm3.a

.f90.o : $(FILES2)
 f90 -c $< $(FLAGS2)

$(PROGRAM) : $(OBJFILES)
 f90 -o $(PROGRAM) $(FLAGS3) $(OBJFILES) $(FILES1) $(FLAGS) \

 50

 $(PVM_LIB1) $(PVM_LIB2)
 cp $(PROGRAM) $(PATH1)/bin/.

$(SLAVE) : $(OBJFILES)
 f90 -o $(SLAVE) $(FLAGS3) $(OBJFILES) $(ADSLAVES) $(FLAGS) \
 $(PVM_LIB1) $(PVM_LIB2)
 cp $(SLAVE) $(PATH1)/bin/.

$(MACROOBJ) : $(MACROSRC)
 f90 -c $< $(FLAGS2)

$(MACROPROG) : $(MACROOBJ)
 f90 -o $(MACROPROG) $(MACROOBJ) $(FLAGS3)
 cp $(MACROPROG) $(PATH1)/bin/.
 echo rm -f aggregate_output.dat > macrogen.sh
 echo $(MACROPROG) >> macrogen.sh
 echo mv $(MACROFILE) $(PATH1)/data/$(DATADIR)/. >>\
 macrogen.sh
 chmod +x macrogen.sh
 mv macrogen.sh $(PATH1)/bin/.

input_example_aggregate : example_gen.f90
 f90 -o input_example_aggregate example_gen.f90

example : input_example_aggregate
 input_example_aggregate
 mv seed.dat aggregatedata.dat $(PATH1)/bin/.

cleandir :
 rm -f $(PROGRAM) $(SLAVE) *.mod *.o input_example_aggregate
 rm -f *~ $(MACROPROG)

clean : cleandir
 rm -f $(PATH1)/bin/$(SLAVE) $(PATH1)/bin/$(PROGRAM) \
 $(PATH1)/bin/seed.dat $(PATH1)/bin/aggregatedata.dat
 rm -f $(PATH1)/bin/macrogen.sh $(PATH1)/bin/$(MACROPROG)

cleanzip : clean
 gzip $(FILES2)

I THE 2D VERSION

In 2D, it is possible to use the exval user subroutine to set the material number in each cell
through the nkpmn-array. This has the advantage of allowing us to access this array from
other user subroutines. In particular, if we reset the material number in the exedit subroutine
then we are able to run a large number of simulations with different realisations of the
aggregate, and thereby obtain better statistics on the effect of the aggregate. This is
unfortunately not possible to achieve in Autodyn-3D. A workaround suggested by Century
Dynamics is to use a macro file to fill the subgrid interactively, as has been described in
Chapter 4.

Generally, the differences are small between the 3D version and the 2D version. From a
technical point of view there is a difference in the programming structure. The 2D version is
programmed without the use of modules, and consequently all variables used in subroutines

 51

must be passed as formal parameters. In addition, we can fill any subgrid in 2D from the
exval subroutine in the present implementation. It is even possible to fill from exedit by
accessing grid variables from the putnpks subroutine (see the Autodyn User Subroutine
Tutorial for details).

Despite the small differences, the basic idea remains the same in that a map array is created
that contains information on which cells are filled with an aggregate material. We leave most
of the code uncommented.

I.1 The 2D filling subroutine

The subroutine resembles the place_aggregate subroutine used in 3D.

Initialisations and declarations:

subroutine place_rocks_2D(rcknr, imx, jmx, separation, sizearr, rock_or_not)

!Without due care, some of the loops in this subroutine will go outside the
!range of the array. What has been done, is to let the array have a frame of
!elements arounf the main part, which are not used for anything. The looping
!never extends beyond the range in this way. However, it means we have to be
!careful about what values are sent with this routine from the outside:
notice
!that imx and jmx are used to define the array dimensions as well as
defining
!the range from which the positions of rocks are drawn. These problems do
not
!occur in 3D because there I am specifically checking the ranges before
!all loops.
 implicit none
 real, dimension(1:*), intent(in) :: sizearr
 integer, intent(in) :: rcknr, imx, jmx, separation
 integer, dimension(0:imx+1,0:jmx+1), intent(out) :: rock_or_not
 integer :: pos1, pos2, telle1, telle2, telle3, sizeint, cell_no
 integer :: unplaced_rocks
 real :: rock_vol
 logical :: occupied_space

 unplaced_rocks=0
 rock_or_not=0

Loop through every rock:

 do telle1=1,rcknr

The first step is to find the radius of the current rock in number of cells. Thereafter, draw a
random position in the subgrid.

 rock_vol=sizearr(telle1)
!The sizes in the array are radii.
 sizeint=nint(rock_vol)
 call random_uniformint(1+sizeint+separation,imx-sizeint-
separation,pos1)

 52

 call random_uniformint(1+sizeint+separation,jmx-sizeint-separalife
insution,pos2)

Now check if the drawn position is free, that is, make sure there are no overlap with existing
rocks. If there is overlap, then loop through the entire subgrid looking for an available spot.

 do cell_no=1,imx*jmx
 occupied_space=.false.
 do telle2=pos1-sizeint-separation,pos1+sizeint+separation
 do telle3=pos2-sizeint-separation,pos2+sizeint+separation
 if ((telle2-pos1)**2+(telle3-
pos2)**2<=(sizeint+separation)**2&
 .and. rock_or_not(telle2,telle3)==1) then
 occupied_space=.true.
 end if
 end do
 end do
 if (occupied_space) then
 pos1=pos1+1
 if (pos1==imx-sizeint) then
 pos1=1+sizeint
 pos2=pos2+1
 if (pos2==jmx-sizeint) then
 pos2=1+sizeint
 end if
 end if
 if (cell_no==imx*jmx) then

If we ever come this far, there will not be any room available for this rock. If so, write a
message to the file unplaced.log, and a warning message to the screen.

 unplaced_rocks=unplaced_rocks+1
 if (unplaced_rocks==1) then
 open(21,file='unplaced.log',form='formatted')
 write(21,'(a18,i4)') 'No place for rock ', &
 telle1
 close(21)
 write(6,*) 'Warning: some rocks can not be placed. '
 write(6,*) 'See the file "unplaced.log" for details.'
 else
 open(21,file='unplaced.log',form='formatted',&
 position='append')
 write(21,'(a18,i4)') 'No place for rock ', &
 telle1
 close(21)
 end if
 end if
 else

On the other hand, if the original position was available, or a different position has been found,
then fill the aggregate array called rock_or_not with this rock in the relevant elements.

 if (sizeint>0) then
 do telle2=pos1-sizeint,pos1+sizeint
 do telle3=pos2-sizeint,pos2+sizeint
 if ((telle2-pos1)**2+(telle3-pos2)**2<=(sizeint)**2)
then
 rock_or_not(telle2,telle3)=1

 end if

 53

 end do
 end do
 end if
 exit
 end if
 end do
 end do
 open(21,file='unplaced.log',form='formatted',position='append')
 write(21,'(a9,i4,a20)') 'In total ', unplaced_rocks, &
 'could not be placed.'
 close(21)
 return
end subroutine place_rocks_2D

I.2 The aggregatedata.dat file

The first lines in the input file looks very different though. The following file is a typical
example:

PEBBLES
TARGET
1
0.2
4
8.0 0.0
6.0 0.053
4.0 0.56
2.0 1.0

The information in each line is as follows:

1. Aggregate material name
2. Name of the subgrid to be filled with two materials.
3. Wrap-up cycle number for exedit.
4. Filling fraction
5. This line and the following lines are the sieve curve data, exactly as in 3D.

The program also requires a seed.dat file which looks exactly as in 3D.

I.3 The 2D Makefile

The Makefile in 2D has some keywords, just as the 3D Makefile:

• Nothing or auto_aggregate: compiles and links the necessary files to generate the modified

Autodyn executable.
• example: creates example versions of the input files
• cleandir: removes the object files and executables in the current directory.

 54

• clean: the same as above, but also removes executables from the ~/autodyn/2dv42/bin/

directory.

The Makefile looks like this:

.SUFFIXES: .f90 .o .a

PROGRAM= auto_aggregate
#Name of output program
F90FILE= aggregate2D.f90
#Name of .f90 sourcecode
PATH1= /user/aao/autodyn/2dv42
MODPATH= $(PATH1)/usrsub
#Path to Autodyn modules.
BINDIR= $(PATH1)/bin
#Path to Autodyn bin directory

FILES1= $(MODPATH)/admain2.o $(MODPATH)/autodyn2.a
FILES2= random.f90 subroutines.f90 $(F90FILE)
FILES3= ${FILES2:.f90=.o}

GKSDIR= /user/aao/autodyn/gks
FLAGS= -L$(GKSDIR) -lgksflb -lgksw5300 \
 -lgksw1900 -lgkswiss -lgksgksm -lgksmsc \
 -L$(PVM_ROOT)/libfpvm/HPPA -lX11 -lm
FLAGS2= +save +noshared +O2 +DA2.0 -I $(MODPATH)/
FLAGS3= -Wl,-ashared -lnsl -ldld -I $(MODPATH)/

.f90.o : $(FILES2)
 f90 -c $< $(FLAGS2)

$(PROGRAM) : $(FILES3)
 f90 -o $(PROGRAM) $(FLAGS3) $(FILES3) $(FILES1) $(FLAGS) $(FLAGS2)
 mv $(PROGRAM) $(PATH1)/bin/.

example_inputs : example2D.f90
 f90 -o example_inputs $?

example : example_inputs
 example_inputs
 mv seed.dat $(PATH1)/bin/.
 mv aggregatedata.dat $(PATH1)/bin/.

cleandir :
 rm -f *.o *~ $(PROGRAM)

clean : cleandir
 rm -f $(PATH1)/bin/$(PROGRAM)
 rm -f $(PATH1)/bin/seed.dat
 rm -f $(PATH1)/bin/aggregatedata.dat

 55

DISTRIBUTION LIST

 FFIBM Dato: 21. juli 2003
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

X RAPP NOTAT RR 2003/02057 FFIBM/766/130 21. juli 2003
RAPPORTENS BESKYTTELSESGRAD ANTALL TRYKTE

UTSTEDT
ANTALL SIDER

Unclassified 21 55

RAPPORTENS TITTEL FORFATTER(E)

MODELLING OF GRANULAR MATERIALS IN THE
AUTODYN HYDROCODE

OLSEN Åge Andreas Falnes, TELAND Jan Arild

FORDELING GODKJENT AV FORSKNINGSSJEF FORDELING GODKJENT AV AVDELINGSSJEF:

Bjarne Haugstad Jan Ivar Botnan

 EKSTERN FORDELING INTERN FORDELING

ANTALL EKS NR TIL ANTALL EKS NR TIL
1 Eirik Svinsås 9 FFI-Bibl
 Paulus Plass 5 1 Adm direktør/stabssjef
 0554 Oslo 1 FFIE
 1 FFISYS

1 Åge Andreas Falnes Olsen 1 FFIBM
 Fysisk institutt 2 Jan Arild Teland, FFIBM
 Postboks 1048 – Blindern 1 John F Moxnes, FFIBM
 0316 Oslo
 Elektronisk fordeling:

1 Otto Munthe FFI-veven
 Anker Zemer Engineering
 Grindbakken 1 Lars Kvifte (LKv), FFIBM
 0764 Oslo Bjarne Haugstad (BjH), FFIBM
 Svein Rollvik (SRo), FFIS

1 Jim Sheridan Ove Dullum (OSD), FFIBM
 DSTL Henrik Sjøl, (HSj) ,FFIBM
 Missiles and Countermeasures Dept.
 Room G056, Building A2
 Ively Road
 Farnborough, Hants., Gu14 0LX
 England

1 Jaap Weerheijm
 TNO
 Lange Kleiweg 137
 P. O. Box 45
 2280 AA Rijswijk
 Nederland

 Benytt ny side om nødvendig.

