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SPECTRAL ELEMENT BENCHMARK SIMULATIONS OF NATURAL
CONVECTION IN TWO-DIMENSIONAL CAVITIES

1 INTRODUCTION

The development and application of higher-order numerical schemes for fluid flow
computations has become an increasingly important activity. The primary reason for this is
that computational fluid dynamical (CFD) analyses are becoming an integral part of the
design cycle in an increasing number of industries. As the number of applications is
growing, however, the number of complex configurations that need to be predicted is also
increasing. More sophisticated turbulence models are therefore needed to predict the flow
phenomena that arise.

We are developing a parallelised two- and three-dimensional Navier-Stokes and Boussinesq
spectral element solver for incompressible fluid flow computations. The ultimate objective
of this development is two-fold. Firstly to conduct benchmark simulations by means of
highly accurate direct numerical simulations to support our ongoing efforts in turbulence
physics research. Secondly, to develop models for large-eddy simulations in an
environment where the numerical errors are very small such that the true performance of the
model can be revealed.

In this paper we consider a two-dimensional cavity where the flow is driven by the natural
convection set up by differentially heated walls. The thermal cavity flow is an important
prototype flow for a wide range of practical technological problems, including ventilation,
crystal growth in liquids, nuclear reactor safety, and the design of high-powered laser
systems. Cavity flows are furthermore often used as test cases for code verification and
validation because they are simple to set up and reliable reference solutions are readily
available. Although the flow configuration is two-dimensional, thermal cavity flows display
a plethora of interesting fluid dynamic phenomena and complex features such as impinging
boundary layers, stratification and an intricate temporal behaviour. Since these effects
depend strongly on the cavity aspect ratio, thermal boundary conditions and Prandtl
number, this test case constitutes a severe challenge for numerical schemes.

The motivation of this study is to assess the numerical accuracy of the code in a well
documented case. After a brief revisit to the classical steady state configuration of the
square cavity [1, 2], we address the slightly supercritical time-dependent flow in a tall
cavity with aspect ratio 8:1. This configuration was the subject on a recent workshop
reported by Christonet al. [3] in which a total of 31 solutions were submitted for this
problem. The numerical method we employ differ in two respects from those represented at
the workshop; the spectral element discretisation and a time integration method based on an
operator splitting of the advection-diffusion equations for momentum and temperature. As
such, the present work supplements the results presented previously and extends the data
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base of results for this particular benchmark case.

In addition to presenting a ‘best’ solution to demonstrate the accuracy of the method, we
study the impact of computational parameters such as the computational grid, time-step,
and numerical tolerance parameters on the quality of the computed solutions, as well as the
effect of the spatial filtering procedure developed by Fischer and Mullen [4] to reduce
aliasing errors.

2 NUMERICAL METHOD

The equations describing the Boussinesq approximation for the dynamics of a viscous,
incompressible fluid affected by buoyancy forces are

∇ · u = 0, (2.1a)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u + β (T − Tref) g, (2.1b)

∂T

∂t
+ u · ∇T = α∇2T, (2.1c)

whereu = (u, v) represents the velocity,p represents the pressure, andT represents the
temperature. The kinematic viscosity is denoted byν, the thermal diffusivity byα, the
coefficient of thermal expansion byβ, and the gravitational accelerationg. The Boussinesq
approximation is valid provided that the density variations,ρ(T ), are small; in practice this
means that that only small temperature deviations from the mean temperature are admitted.

The relevant non-dimensional parameters that characterize the flow are:

• The Prandtl number;Pr = ν/α,

• the Reynolds number;Re = UL/ν, and

• the Rayleigh number;Ra = gβ∆TL3/να.

Note that the free convection cases we consider below are completely determined by the
Prandtl and Rayleigh numbers.

The key to an efficient and accurate solution of the Boussinesq/Navier-Stokes system (2.1)
is a judicious use of implicit-explicit splitting for terms of different character. In particular,
if the advection-diffusion equations are solved by an implicit-explicit procedure, the
temperature equation can be decoupled from the remaining momentum equations. The
buoyancy source term can then be calculated first and fed directly to the Navier-Stokes
solver. In addition to the diffusive terms, we also treat the pressure term and the divergence
equation implicitly.

In the temporal discretisation based on the implicit-explicit time splitting we treat the
advection-diffusion equations for the temperature and the velocities according to the
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operator-integration-factor (OIF) method of Madayet al. [5]. The advective terms are
integrated explicitly by an adaptive second-order accurate Runge-Kutta method, while the
viscous terms are integrated by the implicit second order backward difference scheme
(BDF2), given by

∂u

∂t
=

3un+1 − 4un + un−1

2∆t
+O(∆t2).

After discretisation in time we can write (2.1) in the form

3T n+1 − 4T n + T n−1

2∆t
− α∇2T n+1 =

fT

(
(u · ∇T )n, (u · ∇T )n−1, . . .

)
,

(2.2a)

3un+1 − 4un + un−1

2∆t
− ν∇2un+1 =

−∇p+ fu(un,un−1, . . . ) + β (T − Tref) g,
(2.2b)

∇ · un+1 = 0, (2.2c)

in which the explicit treatment of the advection term is included in the source termsfT and
fu. Note that we have changed the ordering of the equations in (2.2) to emphasize that the
temperature at the new time level,T n+1, can be obtained from known velocity data.

The spatial discretisation is based on a spectral element method [6, 7]; the computational
domain is sub-divided into non-overlapping quadrilateral (in 2D) or hexahedral (in 3D)
cells or elements. Within each element, a weak representation of (2.2) is discretised by a
Galerkin method in which we choose the test and trial functions from bases of polynomial
spaces, i.e.

uh
i ∈ PN(x) ⊗ PN(y) ⊗ PN(z), (2.3a)

ph ∈ PN−2(x) ⊗ PN−2(y) ⊗ PN−2(z), (2.3b)

wherePN(x) denotes the function space spanned by polynomials of degreeN . Note that
we employ a lower order basis for the pressure spaces to avoid spurious pressure modes in
the solution [7]. The velocity variables areC0-continuous across element boundaries and
they are represented at the Gauss-Lobatto-Legendre (GLL) points for the numerical
integration, whereas the pressure variable is discontinuous across element boundaries and
are represented at the interior Gauss-Legendre (GL) points. The one-dimensional
polynomial basis functions,hj(ξ), are defined as the Lagrange interpolants that vanish at all
but one of the Gauss-Lobatto-Legendre and Gauss-Legendre points, respectively, such that

hj(ξi) = δij , (2.4)

whereξi represents the GLL or GL grid point positions.

The GLL grid corresponding to the Legendre polynomial of degreeN has (N + 1) points.
Gauss-Lobatto-Legendre quadrature at the (N + 1) GLL points is exact for polynomial of
degree (2N − 1). Hence, the computation of the inner products corresponding to the
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diffusive terms in (2.1) are calculated exactly, whereas the evaluation of the non-linear
advective terms incurs quadrature (aliasing) errors. These errors can be detrimental to the
stability of the method and must be controlled. The most fundamental approach to
de-aliasing is to perform over-integration [8, 9] – that is, to over-sample and to use more
quadrature points to evaluate the inner products containing non-linear terms. An
computationally more efficient alternative approach is to use polynomial filtering of the
solutions as proposed by Fischer and Mullen [4]. The filtering comprises a weighted sum of
the original unfiltered field,uN and its projection onto the space of polynomials of degree
N − 1. If Im

n is the interpolation operator from then-point to them-point
Gauss-Lobatto-Legendre grid, the one-dimensional projection operator can be written
ΠN−1 = IN

N−1I
N−1
N , and the filter is defined by.

Fη ≡ ηΠN−1 + (1 − η)I, (2.5)

whereη is a filter parameter. Higher dimensional filter functions are constructed by tensor
products of the one-dimensional filter.

For the spatial discretization of the Boussinesq/Navier-Stokes system (2.1), we introduce
the discrete Helmholtz operator,

Hε = κB + εA,

whereA andB are the stiffness- and mass matrices ind spatial dimensions,κ = 3/2∆t is a
time discretization parameter, andε is the diffusivity coefficient. Further, letG andD = GT

denote the discrete gradient and divergence operators, respectively. Appropriate boundary
conditions are included in these discrete operators. This gives the discrete equations

HαT
n+1 = BfT (un, T n,un−1, T n−1, . . . ), (2.6a)

Hνu
n+1 −Gpn+1 = Bfu(un,un−1, . . . , T n+1), (2.6b)

−Dun+1 = 0. (2.6c)

Note that the change of sign in the pressure gradient term in (2.6b) is caused by an
integration by parts in the construction of the weak form of the problem. The temperature
equation is, as we noted above, essentially de-coupled from the momentum equation and
can hence be solved separately. The remaining dependent variables, velocities and pressure,
are computed efficiently by a second order accurate pressure correction method [10, 11]
that can be written [12, 13]

Hu∗ = Bf +Gpn, (2.7a)

DQG(pn+1 − pn) = −Du∗, (2.7b)

un+1 = u∗ +QG(pn+1 − pn), (2.7c)

whereu∗ is an auxiliary velocity field that not necessarily satisfies the continuity equation
Du∗ = 0.

The discrete Helmholtz operator is symmetric and diagonally dominant, since the mass
matrix of the Legendre discretisation is diagonal, and can be efficiently solved by the
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Figure 3.1: Computed velocity field at t = 0.2 for the Taylor vortices (3.1).

conjugate gradient method with a diagonal (Jacobi) preconditioner. Whereas the pressure
operatorDQG is easily computed; it is ill-conditioned. The pressure system is solved by
the preconditioned conjugate gradient method, with a multilevel overlapping Schwarz
preconditioner [14].

3 VERIFICATION OF THE NAVIER-STOKES SOLVER

In this section we present a verification of the Navier-Stokes solver in an isothermal case.
As the test problem we use theTaylor vortices [15], an exact analytical solution of the
two-dimensional Navier-Stokes equations in which all variables have non-trivial solutions:

u = − cos(πx) sin(πy)e−2π2νt,

v = sin(πx) cos(πy)e−2π2νt,

p = −1

4
[cos(2πx) + cos(2πy)] e−4π2νt.

(3.1)

Although this example is artificially constructed, such that the pressure gradient balances
the convective terms and the unsteady terms balance the diffusion, it is useful because both
spatial and temporal accuracy in all variables can be checked simultaneously. The exact
velocity field is used as initial condition, and the boundary conditions are either periodic, or
time-dependent Dirichlet conditions. The velocity field att = 0.2 is shown in Fig. 3.1.
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We performed grid convergence studies by independently increasing the number of grid
points,N , per element (p-refinement) and the number of elements,M (h-refinement).
Fig. 3.2 shows the grid convergence results forp-refinement. As expected, we observe
exponential convergence whenN increases to the point where time-integration errors
dominate. Furthermore, we show in Fig. 3.3 that we obtain algebraic convergence for
h-refinement (i.e. constantN and increasingM). Hence, for a fixedN the spectral element
method converges similarly to a finite element method of order(N − 1).

We then consider the time accuracy of the computed solutions. The time integration method
includes two operator splitting methods; the OIF splitting of advective and diffusive terms
and the pressure correction method to compute the velocity and pressure. We performed
computations in which we only employed the OIF splitting and solved the velocity-pressure
coupling by an exact blockLU-decomposition of the discretised Stokes problem known as
the Uzawa method, and computations in which we used both splittings. In both cases the
method is indeed second-order accurate in the implicit time step,∆t, as we show in
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with M = 4 × 4 elements and N = 12 × 12 points in each element.
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Fig. 3.4.

Finally, we investigate the effect of employing the filter, given by Eq. (2.5), proposed by
Fischer and Mullen [4]. We compare the time evolution of the errors for filtered and
unfiltered simulations, respectively. In the filtered computations, the filter parameter was set
to η = 0.05. In Fig. 3.5 we can observe that the error in the unfiltered calculations grows
exponentially in time for small viscosity, and that this growth occurs already from the start
of the calculation on a coarse grid. For refined grids, the effects of this error growth is felt at
a later time as shown in Fig. 3.6. In both figures we observe that application of the filter
eliminates the unphysical error growth.

The spatial convergence of the filtered calculations is depicted in Fig. 3.7, where
exponential convergence is observed in both the filtered and non-filtered case. When the
accuracy is limited by the spatial resolution, the errors are however several orders of
magnitude smaller when filtering is employed.
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To establish whether the additional dissipation induced by the filtering actually has the
same effect as increasing the viscosityν, thus lowering the Reynolds number, we compared
the computed solution forM = 3,N = 10, ν = 10−3, η = 0.05, att = 0.2 against the exact
solutions based on a scaled viscosityδν whereδ is a scaling factor close to unity. The
results are shown in Fig. 3.8, and shows that the method with filtering does indeed solve the
equations at the correct Reynolds number, and moreover that it performs significantly better
than the non-filtered method.

We have also performed a similar verification of the three-dimensional implementation
against a Beltrami flow, given in [16], that also have non-trivial solutions in all variables.

4 CAVITY SIMULATIONS

We have performed simulation of the free convection in two-dimensional square and
rectangular cavities. The problem comprises a box of side lengthLx andLy filled with a
Boussinesq fluid characterized by a Prandtl number, Pr=0.71. The vertical walls are kept at
constant temperatureThot andTcold, respectively, while the horizontal lid and bottom are
insulated with zero heat flux. The direction of gravity is downward, parallel to the heated
walls. The cavity flow exhibits a centro-symmetric property [17] in that, for the steady-state
base flows, the velocity and temperature fields are skew-symmetric with respect to the
diagonal of the cavity, whereas the unstable eigenmodes either share this skew-symmetry or
have the opposite symmetry.

The most important diagnostic connected to the free convection cavity flow is the average
Nusselt number, which expresses the non-dimensional heat flux across the cavity. The
Nusselt number is usually calculated at a vertical line, typically the hot and the cold wall, or
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Table 4.1: Computed Nusselt numbers for the square cavity compared to the extrapolated
results of the reference solutions of de Vahl Davis (1983) and Hortmann et al. (1990).

Ra: 104 105 106

Present results: 2.24482 4.52164 8.82520

de Vahl Davis [1] : 2.243 4.519 8.800
Hortmannet al. [2]: 2.24475 4.52164 8.82513

as a global average over the entire cavity. The Nusselt number is given by

Nu =
Q

Q0

, (4.1a)

whereQ is the computed heat flux through the cavity

Q =

∫ Ly

0

(
uT − α

∂T

∂x

)
dy, or Q =

∫ Lx

0

∫ Ly

0

(
uT − α

∂T

∂x

)
dxdy, (4.1b)

for line and volume averages, respectively. The reference value,Q0, is the corresponding
heat flux if the heat transfer were by pure conduction

Q0 = Ly
α∆T

Lx

, or Q0 = LxLy
α∆T

Lx

= Lyα∆T. (4.1c)

4.1 Square cavity simulations

The steady-state differentially heated square cavity flow was the subject of one of the first
benchmark comparison exercises, reported in de Vahl Davis and Jones [18]. The reference
results produced in that exercise are given by de Vahl Davis [1]. The results of de Vahl
Davis were produced, for Rayleigh numbers in the range103–106, using a
stream-function/vorticity formulation discretised by a second-order finite difference method
on a regular mesh. Later, more accurate results obtained by a second order finite volume
method on higher resolution non-uniform grids were presented by Hortmannet al. [2].

We performed simulations usingM = 4 × 4 elements varying the resolution in each
element fromN = 6× 6 toN = 24× 24. In Figs. 4.1–4.3 we show the grid convergence of
the computed global Nusselt numbers compared to the previously reported benchmark
results [1] and [2]. Note the excellent agreement with the reference data; even the coarsest
resolution (i.e.21 × 21 grid points) produces solutions that are essentially converged except
at the largest Rayleigh number. In Table 4.1 we compare the Nusselt numbers obtained at
the finest grid with the ‘grid-independent’ values from the reference solutions obtained by
Richardson extrapolation.
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4.2 Tall cavity simulations

Christonet al. [3] summarise the results of a workshop discussing the free convection in a
tall cavity with aspect ratio 8:1. The comparison was performed for a Rayleigh number
Ra = 3.4 × 105 which is slightly above the transition point from steady-state to
time-dependent flow atRa ≈ 3.1 × 105. A total of 31 solutions were submitted to the
workshop, of these a pseudo-spectral solution, contributed by Xin and Le Qu´eré [19] using
a spatial resolution of48 × 180 modes was selected as the reference solution.

In addition to the wall and centre-line Nusselt number (4.1), we will employ several global
and point measures of the solution for the comparison with the benchmark. The global
velocity metric is related to the total kinetic energy and is given by

U =

√
1

2LxLy

∫ Lx

0

∫ Ly

0

u · u dxdy, (4.2)

while the vorticity metric is

Ω =

√
1

2LxLy

∫ Lx

0

∫ Ly

0

(vx − uy)2 dxdy. (4.3)

Furthermore point values for non-dimensional temperature,θ, velocity components,u and
v, and vorticity,ω, were monitored at the location (x1 = 0.181 ×W , y1 = 7.37 ×W ). The
skew-symmetry of the solution was monitored by the skewness metric
ε12 = θ(x1, y1) + θ(x2, y2), wherex2 = W − x1 andy2 = H − y1. Finally, we monitored
two pressure differences in the flow; one across the top of the cavity (∆p14), and one in the
boundary layer along the hot wall (∆p35). We employed spectral interpolation, using the
GLL Lagrange interpolant functions, to compute the function values at the monitor
locations. For each diagnostic variable we computed the mean value and peak-to-valley
oscillation amplitudes by averaging over several periods after the flow reached a statistically
steady state.

The computed results depend on the governing equations and the boundary conditions and
the spatial and temporal resolution, given by the grid size and time step. Furthermore,
several algorithmic parameters – such as the weight factor in the filter given by Eq. (2.5)
and different tolerance parameters related to the iterative solvers and the adaptive time
integration of the advective terms – influence the solution. We have investigated the
sensitivity of the diagnostic variables to variations in several of these parameters, viz

• Grid size. We used a uniformM = 4× 20 element grid in all simulations, varying the
number of points per element fromN = 6 × 6 up toN = 18 × 18. The coarsest grid
we employed thus comprised21 × 101 velocity grid points, whereas the finest grid
had69 × 341 points.

• Time step,∆t.
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Figure 4.4: Time evolution of the global Nusselt number for the tall cavity simulation at
Ra = 3.4 × 105.

• Tolerance parameter for the solution of the velocity and temperature Helmholtz
problems,htol.

• Tolerance parameter for the solution of the pressure equation,ptol.

• Filter parameter,η.

For most of the simulations we performed, the implicit time steps were so short that the
errors in the explicit integration of the advective terms were much smaller than any
meaningful choice of the integration toleranceatol. We have therefore not considered the
impact of this parameter on the computed solutions.

4.2.1 Baseline solution

For the baseline solution we consider a series of simulations performed with the the
tolerance parameters for the Helmholtz and pressure solvers were both set to strict values
htol = ptol = 10−9. We used a regular element grid withM = 4 × 20 elements, and
performed spatial and temporal refinement by varying the number of points per element,N ,
and time step,∆t, respectively.

In Fig. 4.4 we show a typical time history for the global Nusselt number; after the initial
transient the flow reaches a statistically steady oscillatory state after about 2500 buoyancy
time units,τ0 =

√
Pr/ν2Ra. Furthermore, Fig. 4.5 shows the instantaneous and fluctuating

temperature fields for the final state. Note the skew-symmetry of the solution, the shape and
sign of the traveling wave structures are mirrored about the diagonal of the cavity.

We display the spatial and temporal convergence of some key quantities in Figs. 4.6–4.9. In
general, both integral and point measures are close to their converged values already at the
second coarsest grid, i.e. forN = 10 × 10. The only exception is the mean of the pressure
differences –∆p14, ∆p35, and∆p51 – which are not completely converged even for the
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Figure 4.5: Computed instantaneous and fluctuating temperature field for the tall cavity
simulation at Ra = 3.4 × 105.



21

4.4

4.5

4.6

4.7

4.8

2000 4000 8000 16000 32000

N
us

se
lt 

nu
m

be
r 

at
 th

e 
co

ld
 w

al
l (

M
ea

n)

Velocity degrees of freedom

∆t=6.92×10-3

∆t=3.46×10-3

∆t=1.73×10-3

Reference solution

0.005

0.0075

0.01

2000 4000 8000 16000 32000

N
us

se
lt 

nu
m

be
r 

at
 th

e 
co

ld
 w

al
l (

A
m

pl
itu

de
)

Velocity degrees of freedom

∆t=6.92×10-3

∆t=3.46×10-3

∆t=1.73×10-3

Reference solution

Figure 4.6: Grid convergence for the mean and oscillations amplitude of the hot wall Nusselt
number for the tall cavity simulation at Ra = 3.4 × 105.

finestN = 18 × 18 grid. Keep in mind that the pressure discretization is discontinuous
across element interfaces, and that the pressure in each element is determined only up to a
constant. As this constant may vary from element to element, we can not really expect that
the method computes reasonable pressure differences across elements. We can at present
only speculate that the overlapping preconditioner, which is based on linear finite elements,
provides a weak coupling between the elements such that the computed pressure differences
appear to converge slowly to sensible values. We will investigate this issue further and
report any conclusions later.

The computations on the coarsest (N = 6 × 6) grid are clearly under-resolved, as can be
seen both in the convergence plots and particularly in the time history of the pressure
difference shown in Fig. 4.10 in which we see that large spurious pressure spikes
contaminate the solution at the coarsest grid. Nevertheless, several of the integral and point
measures are fairly well approximated even for this coarse resolution. We see little
dependence on the time step in the computed results, this indicates that the temporal
resolution sufficient. Note however that we could only use the largest time step on the two
coarsest grids because of CFL-like restrictions in the explicit integration of the advective
terms.

4.2.2 Dependence on tolerance parameters

We performed a series of simulations in which we varied the numerical tolerance
parameters for the iterative solution of the Helmholtz problems for the velocities and
temperature, and the pressure operator. We see little dependence on pressure tolerance in
the computed results. This is fortunate because the poor conditioning of the pressure
operatorDQG in (2.7) means that sharpening the pressure tolerance can lead to a
significant increase in the iterations needed to converge, and hence in the CPU time
required to compute the solution. There is, on the other hand, a definite dependence on the
Helmholtz tolerance. In this case, sharpening the tolerance clearly leads to improved
solution quality, and this improvement is obtained at reasonable cost as the Helmholtz
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Figure 4.7: Grid convergence for the mean and oscillation amplitude of the velocity metric
for the tall cavity simulation at Ra = 3.4 × 105.
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Figure 4.8: Grid convergence for the mean and oscillation amplitude of the point tempera-
ture for the tall cavity simulation at Ra = 3.4 × 105.

-0.002

0

0.002

0.004

2000 4000 8000 16000 32000

pr
es

su
re

 d
iff

er
en

ce
 (

14
) 

(M
ea

n)

Velocity degrees of freedom

∆t=6.92×10-3

∆t=3.46×10-3

∆t=1.73×10-3

Reference solution

0

0.1

0.2

0.3

0.4

0.5

2000 4000 8000 16000 32000

pr
es

su
re

 d
iff

er
en

ce
 (

14
) 

(A
m

pl
itu

de
)

Velocity degrees of freedom

∆t=6.92×10-3

∆t=3.46×10-3

∆t=1.73×10-3

Reference solution
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ence (∆p14) across the top of the cavity.
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Figure 4.10: Time history of the pressure difference oscillations along the hot wall boundary
(∆p35) when the flow is in the statistically steady state.

operators are diagonally dominant and thus converge rapidly Based on these experiments,
we arrive at a set ofpractical settings for the tolerance parameters,htol = 10−9 and
ptol = 10−6, as a reasonable compromise between solution accuracy and efficiency. With
these settings both the predicted means and oscillation amplitudes differ from the baseline
solution by less than one per cent for all quantities.

4.2.3 The skewness metric

Because of the centro-symmetric property of the base flow, the skewness metricε12 will, in
principle, be identically zero for unstable modes that preserve the skew-symmetry. Xin and
Le Quéré [19] showed that only one unstable mode exists at the Rayleigh number
considered by the benchmark,Ra = 3.4× 105, and this mode is skew-symmetry preserving.

In all our simulations, the skew-symmetry metric,ε12, oscillates with small mean and
amplitude. Two factors appear to contribute to the magnitude of the oscillations. Firstly,
and most importantly, the oscillation mean and amplitude depend directly on the Helmholtz
tolerance as we show in Fig. 4.11. Reducinghtol leads to a decrease inε12. Secondly, the
monitor locations do not coincide with the grid points. The solution must therefore be
interpolated, and we can detect a small influence of the interpolation errors onε12. We
therefore conclude thatε12 is zero within the accuracy of the numerical method, and hence
that the computed solutions do indeed preserve the skew-symmetry of the base flow.

4.2.4 Impact of filtering

We can clearly see the importance of controlling the aliasing errors in Fig. 4.12 in which we
show the evolution of the velocity metric during the initial transient. For these simulations
we usedM = 4× 20 andN = 10 which, we have seen above, is sufficient to converge most
quantities of interest, in particular the integral measures such as the Nusselt number. If we
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Figure 4.12: Effect of filtering on the time history of the velocity metric, U , during the initial
transient.

perform this simulation with no filtering, the kinetic energy blows up early in the transient
whereas a small amount of filtering is sufficient to suppress the error growth and to stabilize
the simulation. To demonstrate that the filtering does not impact the computed solutions
much, we show in Figs. 4.13 and 4.14 that there is no visible dependence on the value of the
filter parameter for the oscillations of integral and point values, represented by the global
Nusselt number and the temperature, respectively. There is however one notable exception
that we show in Fig. 4.15; we can observe a slight increase in the kinetic energy norm with
increasingη.

4.2.5 Finally; the benchmark results

Based on the discussion above we present our best shot at the solution, in Table 4.2. As we
observed a stronger dependence on spatial than temporal resolution, we use the results from
the baseline simulation withM = 4 × 20 elements,N = 18 × 18 points per element,
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Figure 4.13: Time history of the Nusselt number for different filter parameters, η, when the
flow is in the statistically steady state.
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Figure 4.14: Time history of the point temperature for different filter parameters, η, when
the flow is in the statistically steady state.
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Figure 4.15: Time history of the velocity metric for different filter parameters, η, when the
flow is in the statistically steady state.
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∆t = 3.46 × 10−3, and the filter parameterη = 0.5 to produce the table. Note that not all
the quantities we consider are available in the reference solution provided by Xin and Le
Quéré [19]. For these quantities we compare with the average of 29 solutions that were
presented at the workshop [3]. For most quantities, the present solution corresponds very
well with the reference data with differences less than one per cent. There are some
exceptions though; we under-predict for example the oscillation amplitude for the
centre-line Nusselt number with a factor of almost ten. The pressure difference across the
top of the cavity,∆p14, is not fully converged as we saw in Fig. 4.9, and this explains at
least in part the large deviations in the mean values for this quantity. For some of the other
quantities for which we have large deviations, such as the velocity metric amplitude and the
point vorticity data, the predictions are nevertheless well within the scatter of the available
solutions. The predicted stream function data are however wide off the mark compared to
the other solutions. We do not at present know the reason for this discrepancy.
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