
FFI RAPPORT

ARTIFICIAL INTELLIGENCE AND HUMAN
BEHAVIOUR IN SIMULATIONS –
Final Report from FFI-project 722 “Synthetic
Decision Making”

DAHL, Fredrik A

FFI/RAPPORT-2000/04395

FFISYS/722/161.3

Approved
Kjeller 20 October 2000

Bent Erik Bakken
Director of Research

ARTIFICIAL INTELLIGENCE AND HUMAN
BEHAVIOUR IN SIMULATIONS –
Final Report from FFI-project 722 “Synthetic
Decision Making”

DAHL, Fredrik A

FFI/RAPPORT-2000/04395

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

FFI/RAPPORT-2000/04395 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 27
FFIS/722/161.3 -

4) TITLE
ARTIFICIAL INTELLIGENCE AND HUMAN BEHAVIOUR IN SIMULATIONS –
Final Report from FFI-project 722 “Synthetic Decision Making”

5) NAMES OF AUTHOR(S) IN FULL (surname first)

DAHL, Fredrik Andreas

6) DISTRIBUTION STATEMENT

Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
IN ENGLISH: IN NORWEGIAN:

a) Artificial intelligence a) Kunstig intelligens

b) Simulation b) Simulering

c) Games c) Spill

d) Human decision making d) Menneskelig beslutningsfatning

e) Reinforcement learning e) Forsterkningslæring

THESAURUS REFERENCE:

8) ABSTRACT

The report describes the results achieved in the FFI-project 722 on synthetic decision making. It is observed how
formalised combat simulations fit the game-theoretic framework of two-player zero-sum games. The games of
Campaign, Operation Lucid and Operation Opaque are described. These games have been used for experiments with
human decision making and artificial intelligence (AI). The human experiments indicate that the game-theoretic concept
of randomisation in games of imperfect information fails to explain human decision making. Several AI techniques
were utilised in the development of automatic agents playing our three games, including rule-based systems, fuzzy
logic, genetic programming, neural nets and constraint satisfaction programming. The most significant contribution
from the project was the development of reinforcement learning (including co-evolution) algorithms for games of
imperfect information.

9) DATE AUTHORIZED BY POSITION
This page only

20 October 2000 Bent Erik Bakken Director of Research
ISBN-82-464-0445-8 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

5

CONTENTS
Page

1 INTRODUCTION 7

2 APPROACH 7

2.1 Goals 8

2.2 Why we study games 8

3 ARTIFICIAL INTELLIGENCE 8

3.1 Agents 9

3.2 Knowledge representation 9

3.3 Knowledge processing 9

3.4 Knowledge acquisition 9

3.5 Artificial intelligence and games 10

4 TWO-PLAYER ZERO-SUM GAMES 10

4.1 Games and combat simulation 10

4.2 Performance measures 11

5 GAMES STUDIED BY THE PROJECT 11

5.1 Campaign 11

5.2 Operation Lucid 12

5.3 Operation Opaque 12

5.4 Problem dimensions 13
5.4.1 Information complexity 13
5.4.2 Environment randomness 13
5.4.3 Strategic uncertainty 13
5.4.4 Comparison 14

6 AUTOMATIC AGENTS 14

6.1 Campaign 15
6.1.1 General agent design 15
6.1.2 Machine learning paradigms 15
6.1.3 Specific agent designs 16
6.1.4 Results 17

6.2 Operation Lucid 17
6.2.1 Variance reduction 17
6.2.2 General design 17
6.2.3 Construction of reasonable candidate actions 18
6.2.4 Directed search for candidate actions 18
6.2.5 Neural net agent 18
6.2.6 Fuzzy logic agent 19
6.2.7 Ad hoc agent designs 19
6.2.8 Results 19

6.3 Operation Opaque 20

6

6.3.1 Randomisation 20
6.3.2 Intelligence module 20

6.4 Discussion 20
6.4.1 Reinforcement learning 21
6.4.2 Imitation learning 21
6.4.3 Knowledge intensive methods 22

7 HUMAN EXPERIMENTS 22

7.1 Experimental design 23

7.2 Findings 23

8 CONCLUSION 24

Distribution list 27

7

ARTIFICIAL INTELLIGENCE AND HUMAN BEHAVIOUR IN SIMULATIONS –
Final Report from FFI-project 722 “Synthetic Decision Making”

1 INTRODUCTION

Despite the end of the Cold War, there is still considerable interest in modelling of military
conflict. With the rapid progress we have witnessed the last few decades in the state of the art
of hardware and software, researchers’ possibilities for creating accurate and detailed
simulation models have increased significantly. However, we believe that researchers’
understanding of human decision making has not been able to keep up with this development.
Therefore the weak spot of military simulation may have shifted from representing the physical
interaction of thousands of weapon systems, to representing human decision making.

For this reason FFI started the project with the purpose of improving our ability to simulate
human decision making, for future use in military simulation models. Two different viewpoints
were taken for this task. On the one hand, humans are superior to the state of the art of artificial
intelligence (AI) in many areas. The project should therefore study different AI techniques,
with the goal of applying, improving and combining them to achieve performance closer to that
of humans in decision problems that are typical within military simulations. On the other hand,
human decision making is far from perfect, and the project should also attempt to improve our
understanding of human decision making in synthetic environments. The first of these goals
was given the higher priority.

The report is structured as follows. Section 2 describes the approach taken in the project. In
Section 3 a brief overview of AI is given. The modelling paradigm of two-player zero-sum
games is explained in Section 4, together with performance measures for playing strategies in
such games. In Section 5 the specific games studied by the project are described. Section 6
gives an overview of the different automatic agents developed for those games, while Section 7
describes the experiments performed with human learning. In Section 8 the main conclusion
from the project are listed.

2 APPROACH

The approach taken was to work with three different games, designed specifically for the
project, and use these to study AI techniques and human decision making.

8

2.1 Goals

The main goals of the project were to:
• Define three simplified models in the form of games, and implement the game rules in

separate software modules. It should be easy to plug different decision modules into the
rule modules.

• Perform experiments with human decision making on at least one of the games.
• Develop decision modules for each game, using a variety of AI techniques.
• Compare the applicability of different methods to our games.
• Draw conclusions about the usability of different methods on problems of varying kinds

and sizes.

2.2 Why we study games

The term “game” may trigger very different associations in laymen, such as computer games in
the tradition of Space Invaders, sports games like the Olympics, card games like black jack,
board games like chess or dice games like craps. People tend to associate games with fun,
rather than serious business like combat simulation. However, we use the term “game” in the
strict mathematical sense of a decision process with two or more decision makers. A
(mathematical) game is formalised with predefined rules specifying which decisions are
allowed at any given point, as well as the players’ utilities of the different outcomes. Note that
this concept of games includes all mathematical control problems, being games where only one
player can make non-trivial decisions. In order to study human or artificial intelligence in a
simulated combat situation, it is preferable to specify which decisions can be made, and what
the decision makers are trying to accomplish, in a formal way. This is exactly the formalism
offered by game theory.

Why then, did we choose to design new games, instead of studying decision making within
“sharp” simulation models already in use for the analysis of military operations? This is mostly
for practical reasons. Our intention was to try out a wide variety of different AI techniques.
“Sharp” simulation models tend to be very complex, which would make it unlikely that we
would be able to develop many different AI agents within the limitations of the project. By
developing our own games as testing ground, we were able to control their complexities, not
only by making them less complex than regular simulation models, but also by making them
complex along different complexity dimensions. This enabled us to compare how different AI
techniques apply do different kinds of problems.

3 ARTIFICIAL INTELLIGENCE

AI is a vast and quickly developing field, without clear boundaries to other mathematical and
computer science disciplines. Nevertheless we now attempt to classify different AI methods.
We emphasise that our classification is relative to our area of application and our experience.
For a general introduction to AI we refer to (16).

9

3.1 Agents

A relatively new perspective on AI is that of (intelligent) agents. An agent can be viewed as a
self-contained software module that communicates with its environment through some
protocol. What makes an agent different from any modular piece of software is mainly one of
interpretation. An agent is considered an active subject, which attempts to accomplish some
objective by acting on and communicating with its environment.

3.2 Knowledge representation

An established view is that an AI system must contain some element of domain knowledge,
represented in a data structure. In the very early days of the field, attempts were made to
develop general problem solvers, which used virtually no domain knowledge. This turned out
to be almost as hopeless as the late philosopher Descartes’ attempt to deduce everything in the
world from the fact that he was able to think.

We distinguish between what we call explicit knowledge representation schemes, which can
make sense to humans directly, and implicit ones that do not. Rules and facts of expert systems
are typical examples of explicit knowledge representation, while the internal weights of a
neural net are implicit knowledge. There is a large grey area of knowledge representations that
a human can read, although they are not very intuitive, such as the code of a badly structured
computer program.

3.3 Knowledge processing

Most AI applications use some kind of processing to deduce new knowledge from the
knowledge represented directly. As long as there are several ways of deducing knowledge, the
processing can be viewed as a search in some space. In a rule based system, the search is given
by the different orders in which one can apply the rules to the set of facts. In a chess-playing
program, the search space is given by the different sequences of moves that can be played.

The processing of knowledge typically incorporates meta-knowledge, which directs the search
by identifying which pieces of knowledge are likely to be relevant.

3.4 Knowledge acquisition

Given that an AI system must contain domain knowledge, the problem of knowledge
acquisition must be addressed.

The “classical” approach to knowledge acquisition is to apply an explicit representation, and
identify chunks of knowledge as if-then rules by interviewing an expert. We denote this
approach knowledge intensive.

Machine learning (ML) is a relatively recent area of AI that offers alternatives to knowledge
intensive methods of knowledge acquisition. The most common application of ML relies on a
database of some sort, from which the learning algorithm extracts knowledge. This process is

10

sometimes referred to as data mining. In our game-playing application we refer to this
approach as imitation learning, because our database consists of logs of well-played games,
and our learning agents imitate the decisions made there.

Because a game is a closed world, it is possible to design ML agents that learn from game-
playing experience. This is referred to as reinforcement learning, because behaviour which
leads to favourable outcomes are reinforced (applied more often in the future). When it works,
reinforcement learning is very attractive, because it enables agents to learn “by themselves”.

3.5 Artificial intelligence and games

An overview of AI techniques that are useful for games is given in (9). Historically games have
always been important testing-grounds for AI. However, most of the effort has gone into
deterministic games of perfect information like chess and checkers (16). For these games
massive search has proven more important than advanced knowledge representation. Although
it was a great success for AI when Deep Blue defeated Kasparov (13), it was disappointing that
this was achieved mainly with brute force calculations. Reinforcement learning has been
successful for checkers (17) and backgammon (19). These applications also benefited from
search (added after training).

For games of imperfect information (see the next section) there has been done relatively little
work in the AI community (12). The survey on game-playing ML applications found in (10)
indicates that the bias towards games of perfect information is even greater within the ML-
community.

4 TWO-PLAYER ZERO-SUM GAMES

We will now give a brief explanation of some key terms of game theory, and explain how
combat simulation models relate to two-player zero-sum games. We will also give performance
measures for evaluating agents playing two-player zero-sum games.

4.1 Games and combat simulation

A game, in the mathematical sense, is a decision problem with two or more decision makers,
called players, who all attempt to maximise their outcome. A combat situation, real or
simulated, fits this formalism well. In most combat simulation models there are two opposing
parties, with no common interest. In game-theoretic terms this means that most combat models
can be viewed as two-player zero-sum games. “Zero-sum“ means that one side’s victory is
equivalent to the other side’s defeat, so that they have no incentive to co-operate.

The formalism of two-player zero-sum games is a flexible mathematical framework. It can
represent sequences of predefined events or decisions made by the players, or uncertainty, in
the form of random events. Two-player zero-sum games can also represent strategic
uncertainty, by the use of imperfect information. This means that the players may have
different information about the state of the game, or that a player’s decision is not exposed to

11

the opponent until a later stage of the game. In games with imperfect information, bluff and
deception may be important, to keep the opponent uninformed about the true state of the game.

By the famous minimax theorem (15), any (finite) two-player zero-sum game has a numeric
value. For both players there exist behavioural patterns, called minimax solution strategies,
which guarantee their expected outcomes to be at least as good as the value. If both sides apply
minimax solution strategies, the game is in equilibrium, as neither side can improve his
expected outcome by changing his strategy. For a classical treatment of game theory, we refer
to (15).

4.2 Performance measures

One of the main goals for the project has been to develop computer programs that play our
games well. Although game theory gives the strong solution concept of minimax play, and also
defines a game’s value, it does not provide evaluation measures for sub-optimal players.

We have therefore developed a set of evaluation criteria (10). In doing this, we realised that
there exists no completely consistent evaluation measure. Ideally we would prefer a
performance measure which evaluates an agent’s playing strength, such that a weaker agent
loses against a stronger agent, at least in the long run. However, such measures do not in
general exist, because agents may beat each other in circle. Instead we have focused on
developing measures that conform to game theory, in the sense that agents applying minimax
solutions receive the maximum score.

Our strictest evaluation criterion is denoted by Geq (equity against globally optimising
opponent). The Geq of an agent is defined as its average outcome against the opponent that is
the most effective against it (the best response strategy, in game-theoretic terms). The
maximum Geq score is equal to the game’s value, and an agent receives this if and only it
applies a minimax strategy.

A milder evaluation measure is denoted Peq (equity against perfect opponent). The Peq of an
agent gives the agent’s average outcome against an opponent that applies a given minimax
strategy. The maximum Peq score is also equal to the game’s value. Maximum Peq
performance is necessary, but not sufficient, for minimax play.

5 GAMES STUDIED BY THE PROJECT

In this chapter we give a brief introduction to the games that have been defined and studied in
the project. A more thorough explanation of game rules and mathematical properties can be
found in (6). All three games are two-player and zero-sum.

5.1 Campaign

Campaign is a simplified air campaign model, where the two sides allocate their air combat
resources between the three roles of defence, profit and attack. The rules are deterministic, so

12

that if the players act deterministically, the course of the game is determined. The allocations
are performed in a sequence of consecutive stages, and at each stage the players choose their
allocations simultaneously. This simultaneity implies that the game features imperfect
information. In games with imperfect information, optimal play (in the minimax sense) may
require randomised actions from the players, and this is the case with Campaign. The goal of
the game is a combination of taking profit, destroying enemy resources and preserving friendly
ones.

Before each stage both players are informed about the current game state and the opponent’s
previous action. This property implies that there exist minimax strategies that only depend on
the current game state, disregarding the sequence of actions that produced it. This in turn makes
it possible to decompose Campaign into a sequence of related matrix games. In (6) we explain
how this property enables us to calculate a minimax solution, using a computer.

The class of two-player zero-sum games with sequences of simultaneous decisions and perfect
information prior to each stage has been studied by game theorists, and is denoted Markov
games (14). Our strategy of decomposing the game to a collection of interrelated matrix games
is standard for solving such games.

It should be noted that we developed Campaign as a Markov game only to be able to calculate
its solution, which gave us a point of reference for our AI-based agents. Ideally we would have
defined Campaign without the Markov property, to make it more challenging, and therefore we
are more interested in AI methods that do not utilise the Markov property.

5.2 Operation Lucid

Operation Lucid is a simplified land-combat model. The combat area is modelled as a 5x5
rectangular grid with some edges removed. Each of the two armies is represented as a
collection of units, which move along edges. Blue’s goal is to break through Red’s defence, and
Red’s goal is to prevent this. The game models randomness in combat outcomes, randomness
in movement, the effect of force concentration, the advantage of defensive posture and supply
lines, in a simple way.

In Operation Lucid there is perfect information, which means that both sides have the same
information about the game state, at all times. Therefore optimal play does not require random
actions. However, the state space of the game is extremely large, and well above the
computational limits of present-day computers. In fact, even the calculation of the set of legal
actions for a player is infeasible for some game states. This is because a player is allowed to
move all units independently of each other.

5.3 Operation Opaque

Operation Opaque is equivalent to Operation Lucid, except for the information perfection. In
Operation Opaque a player only receives information about nodes where he has units present,
and neighbouring nodes. Therefore, the game features imperfect information, and optimal

13

strategies most likely include random actions (although we are not able to prove it, because the
game is too complex to solve). Note that Operation Opaque is not a Markov game, as actions
taken by a player may not be revealed until a much later stage of the game.

5.4 Problem dimensions

A purpose in defining our games has been to span as many dimensions of problem complexity
in combat simulation as possible, and relate the usefulness of different AI methods to these
dimensions. We consider the dimensions of information complexity, environment randomness
and strategic uncertainty, to be explained below. We do not give formal definitions of these
concepts, but their meaning should hopefully be clear.

5.4.1 Information complexity

By information complexity we mean the amount of information that an agent must consider,
including the game rules, combined with the number of actions that a player can choose from
(the game’s branching factor). Campaign has a low information complexity, as the game state
is specified by only four parameters, the rules are simple, and there are no more than 21 legal
actions. Operation Lucid clearly has far more complex information, as the location of all units
may affect the optimal strategy, and the number of legal actions can be extremely high. Note
that in Campaign and Operation Lucid the states visited earlier in a game do not contribute to
the information complexity, because the current game state contains all relevant information.

It is less obvious how Operation Opaque relates to Operation Lucid. In the early stage of a
game a player will have little information about the location of the opponent’s units, and
therefore low information complexity. Later in the game, however, a player should consider not
only the present information about the location of the opponent, but also observations made
earlier, as they may give a clue about the current location of the opponent’s units. Summed
over the course of a game, the latter problem of fusing old and new information appears to be
more important than the reduction in early-game information, making Operation Opaque more
complex information-wise than Operation Lucid.

5.4.2 Environment randomness

A complexity dimension that is an aspect of uncertainty is that of environment randomness. By
this we mean the presence of random events that neither player can predict or affect. While
Campaign has no such uncertainty, both versions of Operation have, making them more
complex with respect to environment randomness. The environmental randomness of Operation
Lucid and Opaque are identical.

5.4.3 Strategic uncertainty

Strategic uncertainty is another complexity dimension related to information, referring to
uncertainty about the opponent’s behaviour. Campaign has some level of strategic uncertainty,
as the main problem in this game is to predict which action the opponent is taking at a given
stage. Yet, we evaluate the strategic uncertainty only as medium level, as the Markov game
property implies that there is uncertainty only about the current action taken by the opponent.

14

In Operation Lucid there is no strategic uncertainty, at least in theory, as there is perfect
information: A player does not have to commit to a plan beforehand, and each action is
revealed to the opponent immediately. In practice a player (human or automatic) may have
decided on a given plan early on, and stick to it even if it is not optimal, in which case there is
some element of strategic uncertainty in guessing the opponent’s plan. Against a perfectly
rational opponent, however, there is no point in guessing his plan, because he is free to change
it whenever that is profitable.

Operation Opaque, on the other hand, has a high degree of strategic uncertainty. If Blue
chooses to attack in one area of the board, he will be committed to this choice for some time,
and Red may not be aware of Blue’s choices until several turns later. Because an action may
not be exposed until several turns later, the strategic uncertainty of Operation Opaque concerns
not only the current, but also the previous, actions taken by the opponent. We therefore
consider Operation Opaque as more complex than Campaign with respect to strategic
uncertainty.

5.4.4 Comparison

We summarise our evaluations of the complexities for our three games in Table 5.1. The labels
“Low”, “Medium” and “High” are relative quantities interpreted so as to distinguish between
the games.

Campaign Operation L Operation O

Information complexity Low Medium High

Randomness No High High

Strategic uncertainty Medium Low High

Table 5.1 Comparison of the complexity dimensions of games.

The complexity of Operation Opaque dominates those of the two other games. Note that
although Operation Lucid scores higher than Campaign in most dimensions, Campaign has the
higher strategic complexity.

6 AUTOMATIC AGENTS

In this chapter we give a brief overview of the methods used in our development of automatic
agents for Campaign and Operation.

15

6.1 Campaign

Several different AI techniques have been applied to construct automatic agents for Campaign.
We give only the main points, and refer to (5) for details.

6.1.1 General agent design

The dominant complexity dimension of Campaign is that of strategic uncertainty. To handle
this kind of uncertainty in a rational way, game theory demands that an agent must behave
randomly, in order to be unpredictable. The general agent design shared by (virtually) all of our
Campaign agents relies on evaluation of candidate actions. For a given game state the agent
evaluates the playability of each legal action, and then draws a random action using these
playability evaluations as probability weights. The core element of this design is a function that
takes a game state and a candidate action as input, and produces a probability weight as output.

6.1.2 Machine learning paradigms

Although it was not planned beforehand, all the agents implemented utilised some kind of
machine learning method. (Note, however, that we use this term in a somewhat weak sense.)
We have applied the learning paradigms of optimisation, imitation and reinforcement learning.

By optimisation we mean methods that take our performance measures Geq and Peq as
feedback, and tune the agent’s probability-weight function directly. These methods are
applicable only because Campaign has a low complexity, and serve mainly to establish upper
limits of the performance of the different agent designs.

With imitation learning we use a set of perfectly played games, sampled from the calculated
solution, and tune our agents to imitate the actions seen in these. In this form, imitation learning
requires access to the game solution, but the paradigm would also be applicable if one has
access to samples of high-quality games played by humans. For an application of this paradigm
to the Asian game of go, see (4).

Reinforcement learning may be the most interesting approach to agent training, as it relies only
on game outcomes as feedback. Reinforcement learning therefore has the potential to discover
playing strategies on its own, by experimenting with the game. The most celebrated
reinforcement learning application is Tesauro’s backgammon program TD-Gammon (19),
which has reached a very high playing level, challenging the best human players. TD-learning
is not applicable to Campaign due to the strategic uncertainty, but the project has succeeded in
developing different reinforcement learning methods that work for games with imperfect
information (3, 7 and 11).

Under a learning paradigm, an update mechanism must be used to adjust an agent’s probability-
weight function according to feedback, be it derived from the performance measure, from
imitation or from game outcome. We have applied update mechanisms from evolutionary
algorithms and gradient search.

16

6.1.3 Specific agent designs

The agents were implemented using the techniques of rule-based systems, fuzzy logic, genetic
programming and neural nets. It is beyond the scope of this report to explain the algorithmic
details, so we will only give a brief explanation of the different methods.

A rule-based system consists of a collection of facts and a collection of if-then rules, together
with a mechanism for deriving new facts by applying rules to the current set of facts. Rule-
based systems may include certainty factors associated with facts and rules, but there appears to
be no universally sound way of handling them. In the 1980’s rule-based systems (with
extensions) were often referred to as expert systems, and this was close to synonymous with AI
at that time. Expert systems did not quite live up to researchers’ expectations, and is currently
somewhat “out of fashion”, although the technique can be useful for many different tasks. In
our rule-based agent the initial collection of facts is a game state and a suggested action. Our
rule base represents a common sense description of good play, and the inference engine
attempts to deduce from them that the action is playable. Certainty factors are used in a
pragmatic way, and machine learning techniques are used to tune them. Our rule-based agent
was developed using the framework ExperTalk (2).

In a fuzzy logic system there is also a set of if-then rules, but uncertainty is handled in a more
systematic way. Our fuzzy logic agent consists of two fuzzy rule bases: a planning base and a
course-of-action base. For a given game state the planning base is used to derive a suggested
“average action”. Then the playability of a legal action is computed, using the course-of-action
base, by calculating how compatible the action is with the average allocation.

In genetic programming, evolutionary algorithms are applied to parse trees, which are graphical
representations of calculation procedures. The nodes of the tree represent input values or
calculation of values, which may be logical (true/false) or numerical. The edges combine
values in operations such as logical ones (and, or, if-then, =, <, >) or numerical ones (+, -, *, /).
When a parse tree evaluates a given combination of game state and suggested action, the
attributes of the state and action are inserted in input nodes of the tree. Then the values of all
nodes are computed, and the value of the tree’s root is taken as output. Because neither the
shape, nor size, nor content of the parse tree is predefined, only evolutionary algorithms are
applicable to them.

Neural nets can be viewed as synthetic brain cells, neurons, trained to solve some task, but we
prefer to see them as flexible non-linear functions. The “knowledge” of a neural net lies in the
weights associated to connections between neurons. Our simplest neural net agent conforms
directly to our general agent design, taking the state and suggested action as input, and giving
probability-weight as output.

A different neural net design has also been tested, where the net only takes a game state as
input. This net estimates the expected outcome for a given starting state of the game. The state-
evaluating function represented by the net must be combined with a matrix-game algorithm to

17

produce action probabilities. This design exploits the Markov property of Campaign, and
therefore cannot be applied to non-Markov games.

6.1.4 Results

The rule-based approach was by far the easiest one to implement, and the performance of this
agent was relatively good. The advantage of having a system that can be explained to a human
in a simple way is important. The fuzzy logic agent required more work than the rule-based
agent, while not producing stronger results. However, one should not draw too firm conclusions
from a single test game. Like the rule-based agent, it has the advantage of being easy to
comprehend by a human. The parse tree agent using genetic programming also achieved
relatively low scores, relative to the amount of work invested in them. The neural net agents
scored relatively well, in particular the one that utilised Campaign’s Markov property.

6.2 Operation Lucid

In this section, the work done on Operation Lucid is described. Again, we give only the main
points, and refer to (18) for details.

6.2.1 Variance reduction

To evaluate the relative merits of agents playing Operation Lucid we use Monte Carlo (MC)
simulations. This essentially means that we run a sequence of independent pseudo-random
simulations of the game, and take the average output as an estimate of the expected outcome. A
problem with this method is that the random error is inversely proportional to the square root of
the number of simulation runs, which means that one must increase the number of simulations
by a factor 100 to reduce the error by a factor 10. We are therefore interested in methods that
can reduce the variance of the estimate.

We have implemented a variance reduction technique known as control variates, which is based
on the idea of modifying the actual outcome of a game by subtracting an estimate of Blue’s
“accumulated luck”. This estimator – a control variate – is constructed in a way that guarantees
it to have expected value 0, which ensures that the modified output is an unbiased estimate of
the actual outcome. The effect of the variance reduction depends on the agents that play the
game, but in most of our cases the method reduces the variance by a factor approximately equal
to 4.0.

6.2.2 General design

Because Operation Lucid features perfect information, perfect play does not require random
actions. It may still be a good idea to introduce some randomness in an agent, if it should play
against an opponent that has the opportunity to seek out its weaknesses. Nevertheless our
general design is deterministic, and randomisation is added to it in an ad hoc manner.

The most obvious design of an agent playing a game with perfect information is that of a state
evaluator, which is a function taking the game state as input, and giving expected outcome as
output. Such an evaluator might then be combined with lookahead, such as alpha-beta or

18

expectimax search, which investigates the consequences of different sequences of actions for
the players. This is essentially how commercial software for chess and backgammon works.
However, this design is not feasible in itself for Operation Lucid, because the branching factor
of the game tree is far too high.

We therefore apply a hybrid design, in which one module is given the task of identifying a
reasonably small set of candidate actions, and another module chooses between these, possibly
using a state evaluator function.

6.2.3 Construction of reasonable candidate actions

For the task of constructing sets of reasonable candidate actions, the technique of constraint
satisfaction programming (CSP) was used. In a CSP system, the problem is formulated by a set
of numeric variables and a set of constraints. The constraints represent the knowledge of the
system, in much the same way as the rules of a rule-based system do. The inference process of
the CSP system consists of a search for value assignments for the variables, such that all the
constraints are satisfied.

In our initial design we implemented what we believed to be general rules for reasonable play,
with constrictions like “do not spread your units over more than n nodes” and “do not move
forward along more than m lines”. To make these rules work properly, we added some meta-
reasoning outside of the CSP module to find appropriate values of parameters like n and m. In
some cases the meta-reasoning would include a trial and error process of testing different
parameter values, until the set of candidates was of reasonable size.

6.2.4 Directed search for candidate actions

The approach of formulating general constraints describing reasonable play worked quite well,
together with action-selecting methods. Under this design, most of the agent’s knowledge is
implemented in the module that selects the action. From experience we realised that it might be
advantageous to implement more knowledge into the candidate selection process, so that the set
of candidate actions could be constructed with more specific intentions than reasonable play.

We therefore developed an “area language” (ALA), with a syntax that enables a separate
module to describe the desired set of candidate actions to the CSP module in more detail. The
ALA syntax allows a set of area constraints, where each area constraint specifies a set of nodes
and a number. The interpretation of a constraint { }()1 2 3, , ,... ,n n n m is that there should be at

least a total of m units inside the nodes ()1 2 3, , ,...n n n .

6.2.5 Neural net agent

In our neural net agent, a neural net is used for evaluating game states. The net takes an
encoding of the game state as input, and produces an output interpreted as the expected
outcome of the game. The neural net was trained by the reinforcement learning algorithm of
TD-learning. In the learning phase the CSP module was used with the general constraints set
for reasonable play.

19

Although the neural net agent was quite successful, there were aspects of the game that it was
unable to learn, such as the utility of maintaining unbroken supply lines. After the training
process we therefore implemented a separate module with the purpose of guiding the agent
towards better play. This module communicates with the CSP module using ALA, and
successfully rectified some of the flaws in the agent.

6.2.6 Fuzzy logic agent

A fuzzy logic agent was developed using the same general design as for Campaign. A fuzzy
rule base, called the planning base, is used to derive an approximate description of a desired
game state in ALA-syntax. The CSP module then generates a set of candidate actions from the
ALA-constraints. A fuzzy course-of-action rule base, which evaluates the candidates, is used to
choose an action.

Within the fuzzy rule bases there is a set of adjustable parameters, and optimisation techniques
were used to search the space of parameter value assignments. In this optimisation process a
given benchmark opponent was used. Despite the use of variance reduction, the optimisation
was very computationally expensive, due to the randomness of the game outcomes.

6.2.7 Ad hoc agent designs

Because Operation Lucid is too complex to be solved on a present-day computer, we were not
able to calculate the true performance values of our agents directly. We therefore implemented
a set of benchmark agents to be used as reference opponents. These agents are mostly very
simple, with strategies like “always move forwards”. They work by constructing an action
directly, instead of having the CSP module generating a set of candidate actions to choose
from, so they do not follow our general agent design.

Some of these agents were more advanced, and utilised rule-based techniques. The rules would
typically state tactical advice like “Do not move into a node where the opponent has more units
than you”. These agents also included graph calculations to identify likely attacking routes for
Blue.

6.2.8 Results

The ad hoc agents using graph calculations and rule based systems were rather successful
compared to the limited effort invested in them. However, they relatively quickly reached a
point where it was difficult to improve them further.

The neural net-based agent was successful, in particular after the ALA-based correction module
was added. This combination of a CSP module utilising human domain knowledge, and a
neural net-based black box module trained from the agent’s own experience, is strong.

20

The fuzzy logic agent was less effective, according to our tests against benchmark opponents,
but has the advantage of a transparent design with knowledge that can be interpreted by a
human.

6.3 Operation Opaque

Several of the agents developed for Operation Lucid were modified for handling the imperfect
information of Operation Opaque.

6.3.1 Randomisation

Because Operation Opaque features imperfect information, agents should apply random actions
to keep the opponent uninformed about the true game state. This was mainly achieved by
adding some randomising strategy outside of the Operation Lucid-agents’ reasoning. For the
Blue side this approach appeared to work quite well: A Blue agent that chooses an attacking
line randomly, and sticks to it until the endgame, utilises Red’s lack of information rather
successfully. A similar Red strategy of randomly choosing an area for defence is too risky, as
the loss when Blue attacks in a different area outweighs the gain when he does not.

6.3.2 Intelligence module

To improve our Red agents’ ability to defend, we saw the need for a module handling
intelligence (in the military sense of the word). Although it seemed less crucial, Blue would
also benefit from intelligence, particularly in the endgame. The intelligence module should
draw conclusions about the location of the opponent’s units from the observations made earlier
in the game.

An intelligence module was defined, although not fully implemented, using CSP. The module
would take input in the ALA-syntax. In this context the interpretation of an ALA-constraint
{ }()1 2 3, , ,... ,n n n m is as a query about whether the opponent may have at least m units in the

area { }1 2 3, ,n n n . The history of observations in the game is included as constraints on the

locations of the opponent’s units.

6.4 Discussion

A general observation is that more specialised methods appear to work better. The most
extreme example of this is the neural net design that utilises the Markov property of Campaign,
which significantly outperformed the other agents. In the other end of the spectrum, the genetic
programming Campaign agent learned rather slowly, and did not reach a very high performance
relatively to the CPU time spent for training. This can be explained by the fact that
evolutionary algorithms are a class of blind search algorithms that utilise no differentiability or
other problem structure, and can therefore be applied to any problem.

A very clear result from the work with Campaign that it is far easier to achieve a high Peq than
Geq performance. It is therefore far simpler to perform well against an opponent that plays the
game’s solution, than it is against an opponent that exploits your weaknesses.

21

Ideally we would like to discuss the dimensions of representation, processing and acquisition of
knowledge separately, and relate them to our different game complexity dimensions. This can
not easily be done, because a given representation restricts the possible processing and
acquisition strategies available. For the rest of this section we focus on the knowledge
acquisition dimension, discussing reinforcement learning, imitation learning and knowledge
intensive methods.

However, we can make an interesting observation regarding knowledge processing. The reader
may have observed that none of our agents apply so-called lookahead strategies like alpha-beta
search. This may be a surprise, because chess has been the most popular arena for AI game-
applications historically, and chess programs tend to rely almost entirely on lookahead search.
For Campaign and Operation Opaque the explanation to this is that they feature imperfect
information, which makes lookahead search meaningless. Lookahead search is in theory
applicable to Operation Lucid, but the branching factor of this game is so enormous that
searching even a single move (ply) beyond the immediate move is out of the question. Our
experience therefore supports the view that although alpha-beta search is very successful for
chess, it is not very relevant for games that are closer to representing problems of the “real
world”.

6.4.1 Reinforcement learning

A game is a closed world with formalised rules, which makes it possible for an agent to learn
from experience. This learning paradigm is called reinforcement learning. Note that we include
evolutionary algorithms as reinforcement learning as long as they learn only from game
outcomes. Reinforcement learning is an attractive paradigm for training agents in two-player
zero-sum games, because it enables agents to develop strategies without the use of an external
source of knowledge. In isolation this paradigm scales badly with problem size, in the sense
that it quickly fails when the information complexity increases. With larger problems like
Operation Lucid, one should therefore combine reinforcement learning with complexity-
reducing techniques, such as CSP.

Reinforcement learning scales very favourably with environment randomness. In fact,
randomness in the game rules is often advantageous, as it forces the agent to explore a larger
portion of the game’s state space, making it more likely that good strategies will be discovered.

Prior to the synthetic decision making project, one would say that reinforcement learning scales
extremely badly with strategic uncertainty, as there were virtually no known reinforcement
learning algorithms for games with imperfect information. However, algorithms developed by
the project have changed this.

6.4.2 Imitation learning

The general trend with Campaign is that reinforcement learning worked better than imitation
learning. This may sound surprising, as imitating the behaviour of a perfect teacher appears
promising. We believe that this can be explained by the fact that reinforcement learning uses

22

game outcomes as feedback, while imitation does not. If the imitating agent is unable to
reproduce the behaviour of the teacher completely, it will have to make compromises. Logs of
expert play do not contain information about the relative importance of the decisions made, and
therefore the imitating agent is likely to make bad compromises. One can say that imitation
learning is syntax without semantics, because it does not incorporate the consequence or
meaning of an action.

However, experience with the game of go (4) indicates that imitation learning can produce
modules that are useful for identifying playable candidate moves, as a filter for other more
computationally expensive methods.

Imitation learning is likely to scale relatively badly with information complexity. In the go
application, this was controlled by feeding the learning module only partial information about
the game state. This was reasonable because the module was only intended for producing
partial conclusions. Imitation learning only learns to identify correlation between game state
information and possible actions. It is therefore not directly affected by the semantic
complexity dimensions of environment randomness and strategic uncertainty.

6.4.3 Knowledge intensive methods

By knowledge intensive methods we mean methods that formally represent human domain
knowledge. In cases where one has access to human domain knowledge, rule-based systems
appear to be a cost-effective way of implementing agents of a reasonable quality. Fuzzy rule-
based systems are closely related, and treat uncertainty in a more systematic way. The variables
and constraints of our CSP module is also a way of encoding human domain knowledge, which
has proven very useful.

From our experience with Campaign and Operation Lucid, knowledge intensive methods
appear to scale relatively favourably with information complexity. The same is likely to be true
for the other complexity dimensions, unless the game is so complex that high quality human
domain knowledge cannot be acquired.

7 HUMAN EXPERIMENTS

Experiments with human decision making were performed with Campaign. The game was
played with only three stages, as opposed to five, which was used for the automatic agents. The
experiments are thoroughly documented in (1).

The purpose of the experiments was to test the correspondence between the human concept
forming, decision making and learning on one side, and the predictions of game theory on the
other. Experiments with human decision making have been published earlier (8), some of
which support the hypothesis that human decision making tends towards the predictions of the
theory, even in games that require randomisation. However, these studies were performed on
very simple games, and we intended to test if these conclusions remain valid for games as

23

complex as Campaign. Our ambition of sampling the conceptual development of the subjects
through playing experience also separates our study from previously published ones.

Our hypotheses were that after playing a sequence of Campaign games the subjects would:

• move towards applying strategies predicted by game theory
• develop elementary concepts of game theory

These general hypotheses were broken down to more concrete and testable ones.

7.1 Experimental design

The subjects were recruited on a voluntary basis, and money prizes were used to create extra
incentives for the players. The subjects were paired randomly one-on-one, and played two
sequences of 25 games each. Before the first session, the subjects filled in questionnaires that
were designed to measure their game-theoretic concepts. After the second session, the subjects
filled in identical copies of these forms.

The games played by the subjects were logged, and for each subject, mathematical tests of the
playing strategies were performed. We thereby compared the correspondence with game theory
in the first and second 25-game sequence for each subject.

7.2 Findings

The overall findings of the experiments were negative. The subjects did not tend towards
thinking about the games in the terms used by game theory. This was particularly true for the
concept of randomisation. In game theory, randomisation is a purely defensive measure taken
to ensure that the opponent will not be able to figure out the player’s strategy. To be in line
with game theory, one should therefore act randomly if, and only if, the opponent is considered
“smarter” than oneself. The questionnaires were carefully designed to measure this. The
subjects apparently moved in the opposite direction, evaluating random actions as relatively
more useful against a less smart opponent after the game-playing experience. The absolute
values were also largely negative, as the subjects on average evaluated random actions as
almost equally useful against more and less capable opponents. This surprised us, because there
really is very little reason to behave randomly against a weaker opponent. Our conclusion must
be that the concept of randomisation as a defensive measure against a clever opponent is
unnatural for humans. If our pre-stated hypothesis had been that there would be “negative
learning”, the data would have supported this conclusion with a significance level of 0.05.
However, our pre-stated hypothesis was that of positive learning, so this significance level
should not be taken literally.

In terms of actual randomisation the subjects also showed negative development on average,
from the first to the second sequence of 25 games. This was measured by sampling the players’
distributions of opening moves, which tended towards being more vulnerable (predictable) in
the last 25-game sequence. These results were not statistically significant.

24

Positive learning was found only in the subjects’ ability to find playable moves. This means
that although the subjects drifted towards more vulnerable strategy profiles, which is contrary
to game theory, the building blocks of their strategies improved. In games of perfect
information, like chess, finding playable moves is sufficient for playing according to game
theory, because no randomisation is then required. We therefore conclude that it is the presence
of imperfect information, which implies the need for random actions, which is the problem for
the subjects.

8 CONCLUSION

On the whole, the project has been a success: Simplified combat models in the form of two-
player zero-sum games have been defined and implemented in an object-oriented way.
Network software for connecting human and automatic player agents has been developed.
Human decision making has been studied with experiments, establishing limitations of game
theory’s ability to explain human behaviour. Several techniques in artificial intelligence and
machine learning have been applied successfully in the development of automatic players, and
the project has succeeded in developing new algorithms.

Our main conclusions concerning simulations, games, artificial intelligence and human
decision making are the following:

• Two-player zero-sum games are a natural paradigm for modelling combat
• Game theory does not succeed in describing human decision making, nor learning, in

complex games of imperfect information
• When human knowledge is available, knowledge intensive methods like rule-based

systems, fuzzy logic systems or constraint satisfaction programming systems will often be
cost-effective for developing automatic agents of reasonable quality

• It is much harder for an agent to succeed against an opponent that exploits the agent’s
weaknesses, than to succeed against an opponent applying the game-theoretic solution

• A game is a closed world, which makes reinforcement learning possible, and it appears
successful for two-player zero-sum games

• With algorithms developed by the project, reinforcement learning (including co-evolution)
is made possible also for games of imperfect information

• Neural nets work well with reinforcement learning, unless the information complexity
(branching factor) is too high

• With high information complexity, reinforcement learning should be combined with a
complexity-reducing technique, such as constraint satisfaction programming

• Evolutionary algorithms appear preferable mostly with agent representations that do not
allow gradient search

• In general, algorithms that utilise specific properties of the given problem, tend to work
better than those that do not

25

References

(1) Bakken B T, Dahl F A (2000): AN EMPIRICAL STUDY OF DECISION MAKING
AND LEARNING IN A COMPLEX TWO-PERSON ZERO-SUM GAME WITH
IMPERFECT INFORMATION, FFI/NOTAT-2000/03919

(2) Bergli J (1998): EXPERTALK FFI-VERSJON 1.0 - Teknisk dokumentasjon og
brukerveiledning (in Norwegian), FFI/NOTAT-98/04152

(3) Dahl F A (1999): THE LAGGING ANCHOR ALGORITHM - Learning games with
imperfect information by self play, FFI/NOTAT-99/01852 (submitted for possible
publication in the journal Machine Learning)

(4) Dahl F A (1999): Honte, a Go-Playing Program Using Neural Nets, International
Conference on Machine Learning 1999,Workshop on Machine Learning in Game
Playing

(5) Dahl F A (2000): MACHINE LEARNING IN CAMPAIGN - Comparing machine
learning techniques used for a two-player zero-sum game with imperfect information,
FFI/RAPPORT-2000/04400

(6) Dahl F A, Halck O M (1998): THREE GAMES DESIGNED FOR THE STUDY OF
HUMAN AND AUTOMATED DECISION MAKING – Definitions and properties of
the games Campaign, Operation Lucid and Operation Opaque, FFI/RAPPORT-
98/02799

(7) Dahl F A, Halck O M (2000): MINIMAX TD-LEARNING WITH NEURAL NETS IN
A MARKOV GAME - A paper presented at the ECML-2000 conference, FFI/NOTAT-
2000/01126

(8) Erev I, & Roth A E (1998): Predicting How People Play Games: Reinforcement
Learning in Experimental Games with Unique, Mixed Strategy Equilibria, The
American economic review, Volume 88, pp 848-881.

(9) Hagenson N (1997): ARTIFICIAL INTELLIGENCE TECHNIQUES WITH
POTENTIAL FOR USE IN TWO PERSON ZERO SUM GAMES, FFI/RAPPORT-
97/05291

(10) Halck O M, Dahl F A (1999): ON CLASSIFICATION OF GAMES AND
EVALUATION OF PLAYERS - WITH SOME SWEEPING GENERALIZATIONS
ABOUT THE LITERATURE - A paper presented at the ICML-99 Workshop on
Machine Learning in Game Playing, FFI/NOTAT-99/04875

(11) Halck O M, Dahl F A (2000): ASYMMETRIC CO-EVOLUTION FOR IMPERFECT-
INFORMATION ZERO-SUM GAMES - A paper presented at the ECML-2000
conference, FFI/NOTAT-2000/01124

(12) Koller D, & Pfeffer A (1997): Representation and solutions for game-theoretic
problems, Artificial Intelligence, 94 (1), July 1997, 167-215.

(13) Korf R E (1997): Does Deep Blue Use Artificial Intelligence?, ICCA Journal, Vol 20,
No 4, 1997

26

(14) Littman M L (1994): Markov Games as a Framework for Multi-Agent Reinforcement
Learning, Proceedings of the 11th International Conference on Machine Learning, 157-
163. Morgan Kaufmann, New Brunswick.

(15) Luce R D, & Raiffa H (1957): Games and Decisions, Wiley, New York.

(16) Russell S, Norvig P (1995): Artificial Intelligence: A Modern Approach, Prentice Hall,
Upper Saddle River, New Jersey

(17) Samuel A L (1959): Some studies in machine learning using the game of checkers,
IBM J Res. Develop. 210-229.

(18) Sendstad O J, Halck O M, Dahl F A, Braathen S (2000): DECISION MAKING IN
SIMPLIFIED LAND COMBAT MODELS – On design and implementation of
software modules playing the games of Operation Lucid and Operation Opaque,
FFI/RAPPORT-2000/04403

(19) Tesauro G J (1992): Practical issues in temporal difference learning, Machine
Learning 8, 257-277.

27

DISTRIBUTION LIST

FFISYS Dato: 20 oktober 2000
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

X RAPP NOTAT RR 2000/04395 FFIS/722/161.3 20 oktober 2000
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS

UTSTEDT
ANTALL SIDER

Unclassified 40 27

RAPPORTENS TITTEL FORFATTER(E)

ARTIFICIAL INTELLIGENCE AND HUMAN
BEHAVIOUR IN SIMULATIONS –
Final Report from FFI-project 722 “Synthetic Decision
Making”

DAHL, Fredrik A

FORDELING GODKJENT AV FORSKNINGSSJEF: FORDELING GODKJENT AV AVDELINGSSJEF:

EKSTERN FORDELING INTERN FORDELING
ANTALL EKS NR TIL ANTALL EKS NR TIL

1 Tekn dir R Fjellheim 14 FFI-Bibl
Computas AS 1 Adm direktør/stabssjef
Pb 444 1 FFIE
1301 Sandvika 4 FFISYS

1 FFIBM
1 F aman J Frihagen 1 R H Solstrand, FFISYS

Krigsskolen 1 B E Bakken, FFISYS
Pb 42 Linderud 1 J E Torp, FFISYS
0517 Oslo 1 B T Bakken, FFISYS

1 S Braathen, FFISYS
1 Prof O Hallingstad 5 F A Dahl, FFISYS

UNIK 1 O M Halck, FFISYS
2027 Kjeller 1 O J Sendstad, FFISYS

1 K A Veum, FFIE
1 Prof H R Jervell FFI-veven

Inst for lingvistiske fag
Universitetet i Oslo
P A Munchs hus
Pb 1102 Blindern
0317 Oslo

1 Prof T Lensberg
Inst for samfunnsøkonomi
Norges handelshøgskole
Helleveien 30
5035 Bergen

1 KK J K Nyhus
Forsvarets stabsskole
Oslo mil/Akershus
0015 Oslo

www.ffi.no
FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind I, Bestemmelser om publikasjoner

for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nødvendig.

