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COMMUNICATION SIGNAL GENERATION AND AUTOMATIC CLASSIFICATION 
WITH DETECTION OF UNKNOWN FORMATS USING NEURAL NETWORKS 
 

1 INTRODUCTION 

Classification of communication signals based on technical analysis is an important task within 
the field of modern COM-EW. The focus for this work has been on developing a scheme for 
generating semi-realistic radio communications signals for the training and testing of 
modulation classification methods. The effort put into the signal generation set-up is an 
attempt to obtain a more realistic assessment of the classification methods than much of the 
existing research, which is often based on very simplified communication models. 
 
Another shortcoming of existing research in this field is the lack of evaluation of modulation 
classifiers' abilities to treat spurious signals or modulation types that does not belong to any 
known class. A hybrid artificial neural network based approach for modulation classification 
with reliable rejection of unknown signal types have been developed and tested.  
 
Chapter 2 provides a background on the problem area and a brief review of modulation 
classification methods. A framework and a file format for the generation of signal files are 
provided in Chapters 3 and 4. Chapter 5 addresses the estimation of bandwidth whereas 
Chapter 6 describes the feature extraction. In Chapter 7 and 8 the classifier designs and test 
results are presented. Chapter 9 concludes this report.  
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2 BACKGROUND 

2.1 Electronic Warfare 

A definition of electronic warfare (EW) is (1): 
 
Military action to exploit the electromagnetic spectrum which encompasses the interception 
and identification of electromagnetic emissions; the employment of electromagnetic energy, 
including directed energy, to reduce or prevent the hostile use of the electromagnetic spectrum 
and actions to ensure its effective use by friendly forces. 
 
Radio communication signals may be intercepted and analysed in terms of intensity, direction 
and type for counter measures such as jamming, or be demodulated for the purpose of 
intelligence and eavesdropping. In the latter case, determining the modulation type of the radio 
signal is crucial. But also for determining appropriate jamming techniques, knowledge of how 
the signal is modulated is hugely beneficial.  
 
In a non-co-operative setting, modulation recognition introduces a number of challenging 
requirements. Factors such as noise, interference, propagation effects and spread spectrum 
techniques may seriously complicate the task, especially if little or no a-priori knowledge is at 
hand. Determining modulation types under such conditions usually requires trained operators 
and advanced signal analysis tools. 

2.2 Automatic Modulation Recognition 

Automatic modulation recognition (AMR) has been an active research topic since the early 
1980s and a number of methods have been proposed. Azzouz and Nandi (2) (3) identify three 
principal categories of recognition methods: statistical methods, decision theoretic methods 
and neural networks.  
 
Statistical methods include parametric methods where data belonging to a class is assumed 
distributed in a particular form, i.e. Gaussian and maximum-likelihood methods. If non-
parametric, the distribution model is based on a set of available training data rather than a 
predefined model, i.e. k-nearest neighbour methods. Parametric methods are easy in that few 
parameters need to be optimised. The drawback is that the distribution model may not 
represent the true data distribution well. Non-parametric methods give better distribution 
models but require more parameters to be optimised. Examples of statistical approaches for 
modulation recognition are the likelihood method (4) and Bayes (5).  
 
In the decision-theoretic approach, a number of key features are extracted from the intercepted 
signals. The modulation type is then determined by traversing a decision tree where the key 
features are in turn tested against threshold values in the tree nodes. Once the decision tree is 
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set up, classification is very fast as it can be implemented simply as a set of if-then-else 
statements. It is therefore suitable for online classification and for implementation in resource-
limited systems. Due to the simplicity and good classification abilities, many have proposed 
the decision theoretic approach to modulation recognition, e.g. (6), (7), (8).  
 
Neural networks have been widely applied to AMR. Indeed, a number of studies have shown 
that neural networks outperform other techniques when it comes to classification rates and 
robustness to noise (7), (9), (10), (11).  
 
The following sections consider three central matters in pattern recognition tasks such as 
AMR. These are the nature of the training and testing data (section 2.3), the feature extraction 
(section 2.4) and the classification proper (section 2.5). 

2.3 Radio Signal Generation for Classifier Training and Testing 

Non-parametric and neural network classifiers1 learn to classify based on examples of the 
various classes. When building a classifier it is common to divide the available examples into 
two separate and non-overlapping sets for training and testing. The training set is used to train 
the classifier. The test set, which consists of examples that the classifier has not seen before, is 
used to assess the quality of the classifier. Sometimes another set, the validation set, is used to 
continuously evaluate the classifier performance during training. The use of these sets will be 
illustrated in section 2.5. 
  
An essential requirement when training a classifier is that the training examples are 
representative of the data that the classifier is to handle when used in practice. In AMR, where 
classifier training is based on radio signal segments, this can be challenging. Noise, fading, 
interference and propagation effects in the transmission channel may affect and deteriorate 
radio signals radically, and finding a representative training set may be difficult. In the AMR 
research, this has been approached in different ways. Most commonly, classifiers have been 
trained and tested on synthetically generated signals in a simple additive white Gaussian noise 
channel model with training and testing data consisting of signals with different signal-to-noise 
ratios (SNR). A measure of quality has been the SNR level at which the classifier breaks 
down, i.e. (7), (9). Others have taken account of channel distortions models in addition to the 
additive white Gaussian to obtain a more realistic picture of the classifier performance. E.g., in 
(16) and (18) the effects of AMR in channel models representing fading and multi-path effects 
in rural, small-town and urban environments are investigated. Yet another approach is to base 
the training on real off-air signals (11). The drawback of this approach is that it can be very 
time consuming and that it is not possible to control the signal and channel parameters to the 
same extent as for generated signals. In most practical applications, radio signals are pulse-
shaped to meet limited bandwidth requirements. Few have considered AMR for such band-
limited signals (17). 

 
1 Strictly speaking, neural networks are also non-parametric but are mentioned separately for clarity.  
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2.4 Key Feature Extraction 

In pattern recognition it might be necessary to reduce the dimensionality of the data before 
presenting it to the classifier. This dimensionality reduction is called feature extraction and 
consists of finding a smaller set of characteristics that helps the classifier to generalise between 
examples of the same class and to discriminate between examples of different classes. Feature 
extraction can be data independent, e.g. principal component analysis (PCA), or data 
dependent, where a-priori knowledge helps extracting useful features. 
 
In AMR, feature extraction is essential as classification often is based on signal segments 
consisting of thousands of samples. Proposed feature extraction techniques have been based 
on: spectral analysis (19); instantaneous attributes (amplitude, phase and frequency) (7), (9); 
higher order statistical moments and cumulants (16), (18); and shape matching of signal 
constellations (20). Of these, features extracted from the instantaneous attributes and from 
higher order moments and cumulants seem to have attracted most attention.  
 
The quality of the features is very important for the classification. Good features facilitate the 
task of the classifier whereas low quality features make the classification process harder. 
Similarly, a high quality classifier may compensate for features of lower quality. Whereas the 
feature extraction usually is highly problem-dependent the classifier design is more generic. 
The next section considers neural network-based classification. 

2.5 Neural Network-based Classifiers 

The general function of a neural network is to produce an output pattern when presented to a 
particular input pattern. It can therefore simply be seen as a mapping function. The concept is 
taken from the brain's ability to recollect on the basis of certain input patterns. Learning these 
mappings is done in conceptually the same way as the brain, that is, generalising from a 
number of examples. Neural networks consist of a number of fairly simple computational 
devices that resemble the neurons in the brain interconnected with weighted connections that 
resemble dendrites and axons. 
  
Several types of neural networks exist but the most common one used for AMR has been the 
Multi-layer Perceptron. Before explaining the Multi-layer Perceptron, it is useful to look at its 
basic constituent: The Perceptron. 

2.5.1 The Perceptron 

A Perceptron models a neuron by receiving weighted inputs and returning a binary output 
depending on whether the weighted sum of inputs is less or greater than an adjustable 
threshold. The Perceptron consists of the weights, the summation processor and the adjustable 
threshold (Figure 2.1). The inputs and the weights can be positive or negative real values. If 
the sum of the weighted inputs is greater than, or equal to, the threshold, the Perceptron is said 
to fire, and outputs a 1. If the weighted sum is below the threshold the output is 0. The 
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Perceptron's ability to learn is a matter of modifying the values of the weights and the 
threshold until the required behaviour is obtained. 
 

 
Figure 2.1. A Perceptron. Inputs (xi), weights (wi), summation processor and threshold device. 

 

A Perceptron can only be used in linearly separable 2-class classification problems. This is a 
major limitation, as can be illustrated by looking at the exclusive-OR (XOR) problem. An 
XOR gate is supposed to output 0 if the two inputs are equal and 1 otherwise. The Perceptron 
cannot solve this somewhat simple problem because the output classes are not linearly 
separable (Figure 2.2). 

 

 
Figure 2.2: The XOR problem. Zeros (grey) and ones (black) are not linearly separable. 

 
The limitations of the Perceptron led to the development of the Multi-layer Perceptron with the 
back-propagation training algorithm. 

2.5.2 Multi-layer Perceptron 

A Multi-layer Perceptron (MLP) is able to handle more complex and non-linear classification 
problems. It consists of one input layer, one or more hidden layers and one output layer of 
computational nodes (Perceptrons). As opposed to the single Perceptron that outputs either 0 
or 1 depending on a threshold value, each node in the MLP can produce any real valued 
output. The nodes' outputs are determined by their activation function. The most common 
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activation functions are the s-shaped logistic sigmoid (log-sigmoid) function that ranges from 
0 to 1 and the hyperbolic tangent sigmoid (tan-sigmoid) function that ranges from –1 to 1. 
 
Each node in a layer is connected to all nodes in the layers immediately behind and in front, 
but there are no connections between nodes within a layer. The input signal is propagated 
through the network in a forward direction on a layer-by-layer basis. Figure 2.3 shows an 
example of an MLP with two hidden layers. In a classification task, such a network typically 
takes as input a number of key features that are extracted from the data. These values are then 
propagated through the network to the output layer. If each output node represents a class, the 
output node with the highest output value determines the predicted class.  
 

 
Figure 2.3. A four-input and three-output MLP with two hidden layers. 

 
The design of the MLP is highly problem-dependent and there exist no fixed rules for the 
number or structure of hidden layers and nodes. The design is often subject to the experience 
of the designer and a number of heuristics and rules of thumb. Too small a network structure 
may prevent the MLP from classifying correctly whereas a large network may cause an 
unnecessary long training- and execution time and over-fitting. Over-fitting occurs when the 
MLP has adjusted its parameters to fit the training examples to such an extent that it cannot 
handle unseen data. The result is very good classification results for the training data but poor 
results for unseen data. The goal is to learn the network to generalise such that it can recognise 
unseen data as belonging to one of the trained classes. Figure 2.4 shows when the training of 
the network should be stopped to obtain best generalisation and to avoid over-fitting. This can 
be achieved using a technique called early stopping. A separate validation set is used during 
training to evaluate the performance on the unseen validation data. If, during training, the 
performance of the validation set decreases whilst the performance of the training set continues 
to increase the training is stopped. 
 

 
Figure 2.4. Over-fitting starts where the two lines start to diverge. 
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2.5.3 Back-propagation 

Back-propagation learning is a popular algorithm for training an MLP. Basically, the learning 
consists of two passes through the different layers of the network: forward and backward. 
When an input is presented to the input layer, it is propagated through the network with fixed 
and initially random weights on the connections. This is the forward pass. When this is 
completed, the output from the network is compared with the desired output (usually 1 on the 
node that represents the class of the input and 0 on the other nodes) to create what is called an 
error-signal. This is usually the mean-squared error (MSE) – the average squared difference 
between the outputs and targets. The error-signal is then propagated back through the network 
from the output layer to the input layer. During this back-propagation, the weights are adjusted 
to make the network produce an output that is closer to the desired one (12). There are two 
principal approaches to back-propagation: incremental training and batch training. In 
incremental training, the back-propagation and weight update is applied after each training 
example. In batch training, the weights are updated after the presentation of the entire training 
set. The training time is usually measured in epochs, which represents the number of times the 
complete training set has been presented to the network during training. There exist many 
variations of back-propagation learning. The one used in this work is called resilient back-
propagation (21).  
 
Once the training is complete, the execution phase is conducted in one forward pass. This is a 
fast process that involves no other computations than summing the inputs and producing an 
output at each node in the network. 

2.5.4 Detection of Unknown Data Types 

When using an MLP for classification, the network attempts to find decision boundaries to 
enable it to discriminate between the specified classes. So what happens when the network is 
presented to an input that does not belong to any of the known classes? This may not be an 
issue if we know that any input belongs to one of the known classes. We know, for example, 
that a tumour is either benign or malignant. In other cases we want to recognise one or several 
classes out of a possibly infinite number of cases. Examples of such are entry security system 
based on retina recognition, where the objective is to recognise the staff and reject all others; 
and fault diagnosis in engines, where the objective is to detect any deviation from the normal 
operation.  
 
The principal problem with detection/rejection of unknown patterns or verification of known 
patterns (general term: novelty detection) is that, most often, only positive examples are 
available. The MLP approach of determining decision boundaries between the classes is 
therefore problematical as adjoining classes are unknown. What is required for novelty 
detection is thus that decision boundaries of the classifier be closed around the examples that 
represent a class. A classifier that creates open boundaries may classify novel and possibly 
fundamentally different inputs as belonging to one of the known classes. Figure 2.5 illustrates 
how a two-dimensional classification problem may respond to novel examples. In this example 
classifiers A and B are trained to classify between squares and circles using a training data set 
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(the squares and circles in the figure). Classifier A creates an open decision boundary that 
separates the two known classes. However, the novel triangle examples will also be classified 
as circles. Classifier B forms closed decision boundaries around the two known classes. This 
prevents the novel examples being classified as any of the two known classes. Thus, classifier 
B detects that the triangles does not belong to either of the classes. 
 

 
Figure 2.5. The effect of open (A) and closed (B) decision boundaries for novelty detection. 

 
It has been shown that, despite good discriminatory properties, the MLP does not handle novel 
cases very well. Gori and Scarcelli (13) proved that determining whether an MLP forms closed 
or open decision boundaries is unfeasible (NP-hard). In problems with an unconfined class-
space this property is highly undesirable. There are, however, other pattern recognition 
methods that handle this problem. Markou and Singh (14), (15) provide an overview over a 
wide variety of both statistical and neural network-based techniques for novelty detection. The 
next section describes one of these techniques: the feed-forward auto-associative neural 
network.  

2.5.5 Feed-forward Auto-associative Neural Network 

An alternative usage of the MLP is to use it as an associative memory. Associative memory is 
a memory that can be retrieved based on an incomplete and possibly spurious version of itself. 
A dramatic example of associative memory is how people that have previously been involved 
in, say, a traffic accident can create in their minds a complete visualisation of the accident 
when they, maybe years later, see a car similar to one that was involved. A more moderate 
example is how we recognise unique and sketchy hand-written versions of characters on a 
daily basis.  
 
An MLP can be designed as an associative memory as shown in Figure 2.6. The objective is to 
recreate the input pattern at the output layer. Thus, if a pattern is presented at the input layer, 
we want the same pattern to appear at the output layer after the values are propagated through 
the network.  
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Figure 2.6. Auto-associative MLP with 5 input and output nodes and 3 nodes in hidden layer. 

 
The hidden layer, with fewer nodes than the input and output layers, plays an important role in 
the auto-association network. If the network manages to recreate the input pattern at the output 
layer, the activation values of the hidden nodes comprise of a compressed representation of the 
input pattern. This is analogous to the principal components in a principal component analysis 
(PCA)(23). The auto-association network can be used for novelty detection by training the 
network to recreate at the output layer the feature values of training examples of a class. If, 
after training, a representative example of the class is presented to the network, it will produce 
an output that is very similar to the input and hence produce a small input-output difference. If 
a fundamentally different example is presented to the network, the network will fail to 
reproduce this pattern at the output. The input-output difference will therefore be much greater. 
Consequently, an input-output difference threshold can be used to detect unrepresentative 
(novel) examples.  

3 RADIO SIGNAL GENERATION 

In the open literature concerned with AMR, the vast majority have trained and evaluated their 
classification methods on synthetically generated signals. As a step towards a more realistic 
assessment of the limitation and possibilities of classification methods, we initiate the 
generation of semi-realistic radio communication signals. Here, semi-realistic means signals 
that are created and distorted (simulated) in software but generated as a radio frequency (RF) 
signal by a signal generator. It is received and down-converted by a receiver and then sampled 
by an A/D converter. The signal simulation is convenient as it enables the user to control the 
distortion. Most practical applications have limited bandwidth and therefore have to apply 
some form of pulse shaping to the signal to reduce its bandwidth before transmission. This is 
often ignored in AMR studies, but is considered here. We also perform blind receiver 
bandwidth estimation. 

3.1 Set-up and General Operation 

The set-up of the signal generation and receiver is illustrated in Figure 3.1.  
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Figure 3.1. Signal generation set-up 

 
With reference to Figure 3.1, the components used are described in Table 3.1. 
 
Label Description 
Simulation PC Dell Inspiron 4000 PIII laptop, Windows XP, 384 MB RAM 
Simulation WinIQSIM v.4.20, I/Q simulation software, Rhode & Schwarz 
GPIB PCMCIA-GPIB, instrument control card, National Instruments2

Signal Generator SMIQ-06B, signal generator, 300kHz-6.4GHz, Rhode & Schwarz 
Receiver Compact Receiver ESMC, 20-1300 MHz, Rhode & Schwarz 
Amplifier ZKL-2R7, amplifier, Mini Circuits 
Splitter 15542 ZSC-2-1W, 3 dB splitter, Mini Circuits 
Clock Signal generator 2022D, 10kHz-1GHz, Marconi Instruments 
Spectrum Analyzer Spectrum Analyzer 8596E, 9kHz-12.8GHz, Hewlett-Packard 
A/D Converter ECDR-21X, 2-channel 14-bit A/D receiver, ECHOTEK 
Logging PC Hewlett-Packard P4 PC, Windows 2000, 512 MB RAM 

Table 3.1. Component description 

3.2 Signal Generation Stage 

The WinIQSIM software allows for the set-up of digitally modulated single and multi-carrier 
I/Q baseband signals with a wide range of simulated distortions such as phase and additive 
noise, interference and multi-path effects.  

3.2.1 Data Source 

The user can choose the type of bit patterns that are to be modulated onto the signal. In this 
work, we consistently use a pseudo-random bit sequence (PRBS). For the training of classifiers 

                                                 
2 After installing the PCMCIA-GPIB driver on some Windows systems, we have experienced that the plug-and-
play installation process has not found the proper driver. To avoid this problem, choose to select the appropriate 
driver manually when prompted.  
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it is important to use different bit sequences to enable generalisation and prevent it from 
learning specific bit patterns. The PRBS generator integrated in WinIQSIM (feed-back shift 
register, CCITT V.52) should be avoided as it always starts off with the same initial shift 
register status. A detached PRBS generator application has therefore been developed (Figure 
3.2). It is based on the same CCITT V.52 standard but starts off with a time-seeded random 
initial shift register status. Alternatively, the user can manually specify an initial shift register 
status. The PRBS generator creates files containing the bit sequence in a format suitable for 
WinIQSIM data source import. Thus, the user should create and import a unique bit sequence 
file for each signal sequence to generate.  
 

 
Figure 3.2. Pseudo-random bit sequence generator. 

 
Note that the number of bits to generate ("sequence length" in Figure 3.2) is related to the 
symbol length and the modulation type's bit-rate. It is important to choose a sequence length 
long enough to avoid repeated bit sequences. E.g., a 2FSK sequence of 20000 symbols carries 
20000 bits (1 bit/symbol * 20000), whereas a 16QAM sequence of 20000 symbols carries 
80000 bits (4 bit/symbol * 20000).  

3.2.2 Modulation Types 

Through the WinIQSIM graphical user interface, the user has a choice of variations of PSK, 
QAM and FSK modulation types. Other modulation types, such as ASK modulations, must be 
defined by the user and stored to file according to a specific format. Details about the 
definition of modulation types can be found in the WinIQSIM help files. Appendix C shows 
examples of 2ASK and 4ASK definitions.  

3.2.3 Signal Distortion 

Only white noise is added to the signals used in this work. Noise can be defined as signal-to-
noise ratio (SNR) or as a bit-energy-to-noise-energy ratio (Eb/N0). Eb can be defined as: 
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R
SEb = , (3.1)

 
where Eb is the energy per bit, S is the signal power and R is the bit rate. Bit rate is defined as 
the number of data bits per second. E.g., the bit rate of 2PSK is 1 * symbol rate, whereas the 
bit rate of 4PSK is 2 * symbol rate. N0 can be defined as: 
 

W
NN =0  (3.2)

 
where N is the noise power and W is the receiver bandwidth. Now, Eb/N0 can be written as: 
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Rewriting (3.3) we get: 
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which in a dB-scale defines the relationship between Eb/N0 and the signal-to-noise ratio 
(SNR): 
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The receiver bandwidth (W) is not known at the transmitter. When generating signals, the user 
therefore has to specify noise as Eb/N0 and provide a noise bandwidth. We consistently choose 
"full" noise bandwidth, which in WinIQSIM is defined as half of the sampling rate (125 kHz). 
For the evaluation and comparison of classifiers it is convenient to group signals according to 
SNR. Since 2- and 4-level modulation types with the same Eb/N0 give a 3 dB difference in 
SNR (assuming that the bandwidth is constant), we choose to generate signals with 3 dB 
intervals. 2ASK, 4ASK, 2PSK, 4PSK, 2FSK and 4FSK sequences, each with 0, 3, 6, 9, 12, 15, 
18, 21, 24, 27, 30 and 33 dB Eb/N0 are generated. In addition, we generate MSK and 16QAM 
signals in the same Eb/N0-range that will only be used in some testing scenarios.  
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3.2.4 Generation 

Table 3.2 shows some of the parameters that are kept constant for all the generated signals. 
Note that the signal files' header contain this and other information. 
 
 
Parameter Values 
Symbol rate 10 kHz 
Sampling rate 250 kHz 
Pulse shaping filter Cosine (roll-off: 0.95) 
Window function Hanning (impulse length: 50) 
Sequence length 20000 symbols 
No. of samples (A/D card) 500000 

Table 3.2. Summary of fixed parameter values  

 
20000 symbols at a rate of 10 kHz sampled at 250 kHz produce a 2 seconds long sequence 
consisting of 500000 samples. The SMIQ signal generator receives the baseband signal from 
WinIQSIM using the GPIB protocol. SMIQ then generates a 100 MHz RF signal 
corresponding to the received signal and with a power level of –25 dBm. 

3.3 Receiver Stage 

At the receiver the signal is down-converted to an intermediate frequency (IF) of 21.4 MHz/ -
14 dBm. The signal is then amplified with a gain of approximately 24 dB before it arrives at a 
3 dB splitter. The power of the signal at the A/D converter and the spectrum analyser is thus 
approximately +7 dBm. The power level is chosen in order to utilise the full dynamic range of 
the A/D card (± 32768). The clock signal of the A/D card is 64.8 MHz. With a decimation 
factor of 256, the I/Q sample frequency is 253125 Hz (64.8 MHz/256). The A/D card has been 
set up with a numerical controlled oscillator (NCO) frequency of 21.35 MHz, which gives an 
effective centre frequency of 50 kHz (21.4 MHz – 21.35 MHz) on the digitised signal. We 
choose to take a sequence of 500000 samples. With the 253125 Hz sample rate of the A/D card 
this becomes a segment of 1.975 seconds length (500000 samples /253125 Hz). These 
segments are then stored to files and given names to reflect the modulation type and the Eb/N0 
value. The total file size is approximately 6.8 MB. A signal sample file can now be created 
using the approach described in the following chapter.  
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4 RADIO SIGNAL SAMPLES FILE FORMAT 

To facilitate fair comparisons and data exchange across different platforms we propose a 
generic signal sample file format and develop an application to create files of this format.  

4.1 General Structure 

A file consists of radio communication signal samples with a given modulation format and 
given signal distortion properties (additive noise, fading, multi-path etc.). It is convenient that 
the file names consist of the modulation name and the noise level, and that other design 
specifications are indicated in the folder structures. 
 
The files are in ASCII format. This format is readable and thus convenient for manual file 
inspection and is easy to import into other software applications. It is not optimal with respect 
to size, but the availability and price of data storage makes this a minor problem. The file size 
can, of course, be reduced using standard file compression programs. 
  
Each file consists of a header that contains information about the samples, and a body that 
contains the signal samples. A separate and unalterable version definition file defines the 
structure of the sample file, that is, the number of fields in the header, the field delimiter and 
the contents. The header fields contain general information such as version number, date and 
author and, when available, information about the signal generation process, filtering, 
modulation type, distortion properties and receiver properties. The availability of this 
information will allow for fairer comparisons as one can take account of signal generation 
design choices etc. 
 
Appendix A shows the version 1.0 definition file that defines the file structure used for the 
signal generation in this work, and an example of a portion of a complete signal file.  

4.2 Software Application: SignalFileCreator 

An application has been developed that lets the user easily create files with header and samples 
according to a version definition file. The graphical user interface is shown in Figure 4.1. 
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Figure 4.1. Screenshot of SignalFileCreator 

 
The SignalFileCreator requires three files: 

• Version definition file (*.def). This file contains information on the number of fields 
and a description of the field contents. 

• Header template file (*.tem). This file contains a header template that the user defines 
in advance, which is specific to the signal generation. The user can then make the 
required changes to specific fields in the template and avoid rewriting all the static 
header information for each file.  

• Signal sample file (*.dat). This is the file that contains only the raw samples.  
 
The SignalFileCreator works as follows: 

• Open and view the version definition file. The file contents are viewed in the leftmost 
window. Comment lines in the file that starts with "#" are not displayed.  

• Load the header template file. The contents are displayed in the window next to the 
version definition contents. The fields in the two windows are aligned. Thus, the 
display of the version definition file is just to make it easier for the user to see what 
information each field requires. 

• Make the required changes to the header template file and register changes using the 
"register" button. These changes are only stored in memory, thus no changes are stored 
back to the template file. 

• Specify the location of the signal sample file. A handle to this file is stored. 
• Specify a file name for the storage of the new file that contains the header and the 

samples. 
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When the above steps are completed, the application streams the header contents followed by 
the samples to the new file. The first 200 samples in the sample file are ignored to avoid 
transient fluctuations at the start of the signal generation (made by the signal generation 
equipment). It is important to note that the new file cannot overwrite the original sample file. 

5 SEGMENTATION AND BANDWIDTH ESTIMATION 

Classification is based on signal segments much smaller than the 500000-samples segment. To 
be comparable with similar AMR studies (e.g., (7), (9)), it is chosen to operate with 2048-
sample segments. One such segment is approximately 8 ms (2048 samples/ 253125 Hz) and 
will contain approximately 80 symbols (0.008 s * 10000 Hz), which is believed to be adequate 
for bandwidth estimation and feature extraction. 
 
The bandwidth is estimated based on an analysis of the spectral power density of each 2048-
samples segment. It works as follows: Assume we have a symmetric power spectrum plot P 
with length N and where the centre frequency is: 
 

⎥⎥
⎤

⎢⎢
⎡=

2
NC  (5.1)

 
Then we compute the integral S of P by starting at C and working outwards alternating on both 
sides. If initially S1=PC, then: 
 

)1(3222 −+−− += iCii PSS , and )1(2212 −−−− += iCii PSS , for all i = 2, 3, …, C (5.2)
 
A typical P curve will have crests where the signal is located and drop sharply down to the 
noise floor and level out. The S curve will consequently rise with a variable slope and level out 
with a constant slope when P contains no signal and only noise. We now take the derivative S' 
of S. S' will always be positive but the curve will typically have two or three plateaux 
(depending on the modulation type), the lowest of which will represent only noise and no 
signal. The double derivative, S'', will be most negative at the transition to the lowest plateau 
of the S' curve and approach zero when the plateau is reached. If imin is the point at the 
minimum S'', T is a threshold that indicates that S'' approaches zero and A is a constant, the 
estimated bandwidth, W, is chosen thus: 
 

AiW += , where and minii > TS i >''  (5.3)
 
Using this approach, the bandwidths of the generated signals have been estimated. The results 
are presented in Figure 5.1. 
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Figure 5.1. Bandwidth estimates of received signals. 

 
Each point of the curve is the average bandwidth estimate of 243 2048-samples segments. The 
figure shows that the estimates are reasonable down to a noise level of about 6 dB Eb/N0. 
With the bandwidth now known, signal-to-noise ratio (SNR) can be calculated according to 
equation 3.5. The SNR levels are presented in Table 5.1. The values outside the brackets are 
the true SNR calculations. The bracketed values are rough, generalised estimates, which we 
refer to when stating SNR levels in the remainder of this report.  
 

Modulation Type  
Eb/N0 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 

33 26.7 (27) 29.5 (30) 26.6 (27) 29.6 (30) 23.5 (24) 26.6 (27) 
30 23.8 (24) 26.7 (27) 23.7 (24) 26.6 (27) 20.6 (21) 23.7 (24) 
27 20.9 (21) 23.8 (24) 20.8 (21) 23.7 (24) 17.7 (18) 20.8 (21) 
24 18.0 (18) 20.9 (21) 17.9 (18) 20.8 (21) 14.8 (15) 17.9 (18) 
21 15.1 (15) 18.0 (18) 14.9 (15) 17.9 (18) 11.9 (12) 15.0 (15) 
18 12.2 (12) 15.1 (15) 12.0 (12) 14.9 (15) 9.0 (9) 12.1 (12) 
15 9.3 (9) 12.2 (12) 9.1 (9) 12.0 (12) 6.1 (6) 9.2 (9) 
12 6.4 (6) 9.3 (9) 6.2 (6) 9.1 (9) 3.2 (3) 6.3 (6) 
9 3.6 (3) 6.5 (6) 3.3 (3) 6.2 (6) 0.3 (0) 3.3 (3) 
6 0.9 (0) 3.7 (3) 0.4 (0) 3.3 (3) -2.9 (-3) 0.4 (0) 
3 -3.4 (-3) 1.0 (0) -2.7 (-3) 0.4 (0) -6.5(-6) -3.1 (-3) 
0 -8.7 (-6) -3.7 (-3) -7.6(-6) -2.7 (-3) -9.8 (-9) -6.7(-6) 

Table 5.1. Calculated SNR for the six modulation types (generalised estimates in brackets). 
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5.1 Bandwidth and SNR of Unknown Signals 

The bandwidth estimates and SNR of the MSK and 16QAM signals are presented in Figure 
5.2. 
 

 
Figure 5.2. Bandwidth estimates of received signals. 

 
Similar to the ASK, PSK and FSK signals, the bandwidth estimation of the MSK and 16QAM 
signals seems reasonable down to a low Eb/N0 level.  The SNRs are presented in Table 5.2. 
 

Modulation Type  
Eb/N0 MSK 16QAM 

33 26.6 (27) 32.5 (33) 
30 23.8 (24) 29.6 (30) 
27 21.0 (21) 26.7 (27) 
24 18.2 (18) 23.7 (24) 
21 15.2 (15) 20.8 (21) 
18 12.3 (12) 17.9 (18) 
15 9.4 (9) 15.0 (15) 
12 6.5 (6) 12.0 (12) 
9 3.5 (3) 9.1 (9) 
6 0.7 (0) 6.2 (6) 
3 -2.3 (-3) 3.3 (3) 
0 -7.2 (-6) 0.4 (0) 

Table 5.2. Calculated SNR for the MSK and 16QAM (generalised estimates in brackets). 
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6 FEATURE EXTRACTION 
Features must be chosen on the basis of what modulation schemes the classifier should handle. 
Features extracted from the instantaneous attributes (amplitude, phase and frequency) have 
been successfully used in the past (7), (9), (11) for the classification of low-level ASK-, PSK- 
and FSK signals. Features used in this work are shown in Table 6.1. These are extracted from 
signal segments that have been filtered using the bandwidth estimates described in chapter 5.  
 
No. Feature Name Description 

1 γmax Maximum power spectral density of normalised-centred instantaneous 
amplitude (7). 

2 σap Standard deviation of the absolute value of the centred instantaneous 
phase, evaluated over the non-weak intervals3 of the signal segment (7).

3 σdp Standard deviation of the direct (not absolute) value of the centred 
instantaneous phase, evaluated over the non-weak intervals of the 
signal segment (7). 

4 σaa Standard deviation of the absolute value of the normalised-centred 
instantaneous amplitude (7). 

5 σaf Standard deviation of the absolute value of the normalised-centred 
instantaneous frequency (9). 

6 σda Standard deviation of the direct (not absolute) value of the normalised-
centred instantaneous amplitude (9). 

7 σdf Standard deviation of the direct (not absolute) value of the normalised-
centred instantaneous frequency (9). 

8 γmaxf Maximum power spectral density of normalised-centred instantaneous 
frequency (9).  

Table 6.1. Key Features 

6.1 Feature Analysis 

In the transition of symbols, the instantaneous attributes have a tendency to contain spikes, 
which may have a significant effect on the features. To reduce this effect, one can use a 
median filter window that moves over the instantaneous attributes. The eight features in Table 
6.1 have been extracted from the signal segments with SNR ranging from -3 dB to 24 dB and 
the effects with and without the median filter have been observed. Figure 6.1 shows the feature 
values when the median filter has not been applied to the instantaneous attributes. Figure 6.2 
illustrates the same when a median filter has been applied. Not surprisingly, the feature values 
tend to come together as the SNR level is reduced for both approaches. However, we clearly 
see that most of the features separate modulation schemes more clearly when a median filter 
has been applied. The variations of the feature values, which are displayed as the 10th and 90th 
percentiles of 243 signal segments, are in both the non-filtered and filtered cases reasonably 
small.  

                                                 
3 Non-weak intervals are the samples where the instantaneous amplitude is above a certain threshold. 
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Based on these results, we choose to use a median filter. The eight features will serve as inputs 
to the classifiers that are covered in the next chapter. 
 

 
Figure 6.1. Plot of features extracted from non-filtered instantaneous attributes. 
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Figure 6.2. Plot of features extracted from median-filtered instantaneous attributes. 

7 CLASSIFIER DESIGN 

Studies of the classification of modulation types similar to the ones considered here have 
shown that Multi-layer Perceptrons (MLPs) are well suited for the task (7), (9), (10), (22). 
However, we are not familiar with any work that investigates the MLPs' abilities to reject 
signals that they have not been trained to classify. How will, for example, a classifier trained 
on the six modulation types we consider react to a QAM or a MSK signal?  
 
In this chapter, we develop a standard MLP classifier and investigate both its classification 
abilities and its behaviour to unknown signal types. We also investigate the potential of auto-
association MLPs. 

7.1 Standard MLP Classifier 

7.1.1 Classifier Structure 

The MLP classifier has the following specifications (Table 7.1): 
 

   



 28  
 

 

 
Inputs 8 inputs representing the 8 features in Table 6.1 
Hidden layers 2 hidden layers with 6 nodes in each layer 
Outputs 6 nodes, each representing one of the 6 modulation types 
Activation functions Tan-sigmoid in hidden layers, log-sigmoid in output layer 
Target activation values 0.9 for active outputs, 0.1 for inactive outputs 
Training algorithm Resilient back-propagation with validation set 
Pre-processing Normalise network inputs (features) so that they have zero 

mean and unity standard deviation 

Table 7.1. MLP specifications 

 
The MLP classifier consists of eight inputs, one for each feature, two hidden layers with six 
nodes each and an output layer with six nodes representing the six modulation types. A 
network structure consisting of two hidden layers has in comparative studies shown to be 
advantageous, e.g. (10). Some of the specifications in Table 7.1 are performed to increase the 
learning speed of the network. The tan-sigmoid is anti-symmetric around zero and creates a 
better balance of weights than the log-sigmoid. This normally leads to faster convergence. A 
log-sigmoid was chosen at the output nodes as it produces convenient values in the range 0 to 
1. However, the target values, which are used during the supervised training, are offset from 
[0, 1] to [0.1, 0.9]. The offset targets will be reached faster and hence improve the training 
speed. As can be seen in Figure 6.2, the range of the features varies greatly. E.g., feature 1 
ranges from 0 to 40, whereas feature 8 ranges from 0 to 3*10-7. During training, this difference 
of resolution will cause conflicting weight adjustments. Features are therefore normalised 
before they are fed into the network. The normalisation parameters are based on the training 
data but must also be used to normalise all consecutive inputs to the network after training is 
completed.  

7.1.2 Training Results 

The network was trained using the resilient back-propagation algorithm with early stopping 
based on the validation set error. From Figure 6.2 we see that some features at as low as 0 dB 
SNR still show a distinct difference between certain modulation types. We train the classifier 
on signals in the range 3 dB SNR to 24 SNR with 3 dB intervals (8 levels). At each level, we 
use 50 segments. Thus, with the 6 modulation types the complete training set consists of 
6*50*8 = 2400 examples. Each example consists of 8 features extracted according to the 
description in Chapter 6. Similarly, the validation set consists of 2400 different examples. The 
training result is presented in Table 7.2 and was obtained on the first training attempt.  
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Epochs 370 
Training set error (MSE) 0.0045 
Validation set error (MSE) 0.0045 
Training time4 (seconds) 63.7 

Table 7.2. Training results 

 
Training was stopped after 370 epochs when the validation set error was at a minimum. Note 
that the training time (in seconds) is highly system dependent and is shown only to give an 
indication on the elapsed time.  

7.1.3 Classification Results 

The classifier was tested on signal segments ranging from –3 dB to 24 dB SNR with 3 dB 
intervals (10 levels). At each level, we use 143 segments. Thus, with the 6 modulation types 
the complete test set consists of 6*143*10 = 8580 examples. We perform separate tests on 
each noise level and obtain the results presented in Figure 7.1. 
 

 
Figure 7.1. Test results. 

 
We see that the classification rate is about 89 % for SNR of 3 dB and close to 100 % for signal 
segments with SNR of 6 dB and above. At lower SNR levels, the performance drops off 
significantly, to about 50 % at –3 dB SNR. This drop is expected because of the reduction of 
the features' discriminatory qualities and the fact that the network is trained only on signals of 
3 dB SNR and above. Focusing on test signals of 3 dB SNR and above, we can see what 
modulation types the classifier mixes up. The confusion matrix presented in Table 7.3 shows 
that the classifier mainly confuses the 2- and 4-level types of the same modulation type. This is 
also expected, as their feature values are generally closer to each other (Figure 6.2) than to 
other modulation types.  

                                                 
4 Measured on the Simulation PC (Table 3.1).  
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Predicted type (%)  

Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK 
2ASK 96.15 3.76 0.09 0.00 0.00 0.00 
4ASK 3.41 96.07 0.17 0.17 0.17 0.00 
2PSK 0.00 0.00 96.94 3.06 0.00 0.00 
4PSK 0.00 0.00 2.10 97.90 0.00 0.00 
2FSK 0.00 0.00 0.00 0.00 99.39 0.61 
4FSK 0.00 0.00 0.00 0.00 0.00 100.00 

Table 7.3. Confusion matrix for signals of 3 dB and above. 

7.1.4 Behaviour to Unknown (Novel) Signals 

Especially in a non-co-operative AMR setting, there is no guarantee that the modulation of a 
received signal is of a type that the classifier is trained on. It is therefore of interest to know 
how the classifier behaves when presented with such novel signals. E.g., the classifier under 
consideration has been trained on 2ASK, 4ASK, 2PSK, 4PSK, 2FSK and 4FSK signals. When 
tested on signals of those types it performs very well. We then present MSK or 16QAM signal 
segments to the classifier. The ideal situation would be a classifier that produces zero on all 
outputs to indicate that the input does not match any of the six known modulation types. An 
alternative approach is to make use of the classification confidence: If, for example, the 
highest output is 0.99 we might assume that the classifier is very confident. A highest output of 
0.5 on the other hand might indicate that the classifier is less confident of the classification 
(which might indicate an unknown modulation format). Based on this assumption we can set a 
threshold below which the input is rejected as the output indicates too much uncertainty.  
 
To see if this approach is feasible, we investigate this classification certainty in order to see if 
unknown signal formats produce low outputs whereas known formats produce high outputs. 
The distribution of the magnitudes of the highest output for the various signal formats are 
presented in Figure 7.2 and are based on 1144 test examples for each modulation type in the 
range 3-24 dB SNR. 
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Figure 7.2. Magnitude distribution of the highest output for known and unknown signals. 

 
When the classifier is presented with 16QAM signals, the highest output is usually lower than 
that of known signals. In this case, it could be possible to set a threshold, below which we 
reject the input. The MSK signals, however, cause outputs that are very similar to the known 
signals. In this case it is impossible to tell a known modulation type from an unknown one.  
 
Yet another approach for detecting novelty is possible. One of the findings in (22) was that the 
difference between the two highest outputs in a correct classification was higher than that of 
wrong classifications. Figure 7.3 shows the average difference between the two highest outputs 
of the known and novel examples. 
 

 
Figure 7.3. Average difference between the two highest outputs. 
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The figure indicates that the average difference for MSK signals is slightly lower than that of 
the known signal types. 16QAM has a noticeably smaller difference. The distribution of the 
highest output magnitude and the output differences are used below to investigate the MLP's 
ability to detect/reject the unknown signal types (MSK and 16QAM).  
 
From Figure 7.3 we see that by only accepting outputs of more than 0.75 and rejecting outputs 
below that threshold, we might be able to reject at least some of the novel examples (16QAM). 
The result of this thresholding is shown in Table 7.4. 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 89.51 0.52 0.00 0.00 0.00 0.00 9.97 
4ASK 1.14 89.42 0.00 0.00 0.17 0.00 9.27 
2PSK 0.00 0.00 92.22 0.79 0.00 0.00 6.99 
4PSK 0.00 0.00 0.00 92.48 0.00 0.00 7.52 
2FSK 0.00 0.00 0.00 0.00 99.21 0.52 0.26 
4FSK 0.00 0.00 0.00 0.00 0.00 99.91 0.09 
MSK 0.00 0.00 0.00 84.00 0.00 0.35 15.65 

16QAM 8.39 0.26 0.00 3.93 0.00 0.00 87.41 

Table 7.4. Confusion matrix for known and novel signals with highest-output thresholding. 

 
We see that 87.41 % of the 16QAM signals have been rejected, whereas only 15.65 % of the 
MSK-signals have. We also make two other observations: There is a reduced mix-up between 
the known modulation types but also a reduced rate of correct classification (compared to 
Table 7.3). The latter is the inevitable cost of the constraints that are introduced. 
 
Figure 7.3 indicates that a difference-threshold of 0.7 could separate novel from known 
examples. Results are shown in Table 7.5.  
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 91.26 0.17 0.00 0.00 0.00 0.00 8.57 
4ASK 1.40 77.97 0.00 0.00 0.00 0.00 20.63 
2PSK 0.00 0.00 92.05 0.44 0.00 0.00 7.52 
4PSK 0.00 0.00 0.00 85.84 0.00 0.00 14.16 
2FSK 0.00 0.00 0.00 0.00 98.95 0.35 0.70 
4FSK 0.00 0.00 0.00 0.00 0.00 95.46 4.55 
MSK 0.00 0.00 0.00 46.42 0.00 0.00 53.58 

16QAM 9.18 0.09 0.00 1.05 0.00 0.00 89.69 

Table 7.5. Confusion matrix for known and novel signals with output difference thresholding. 
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This approach manages to reject more of the unknown signals on the cost of more known 
signal types being misclassified as unknown.  
 
An important aspect is that the above analyses were based on the test data, containing both 
known and "unknown" signal types. In reality we have no a priori knowledge of the nature of 
the unknown data and there is no guarantee that they will have properties such as those shown 
here. Classifier design should therefore be based only on the obtained and known training data. 
This challenge will be handled in the remaining part of this report.  

7.2 Auto-association MLP 

To investigate the properties of the auto-association MLP (AaMLP) we build six networks that 
are trained on each of the six known modulation schemes: 2ASK, 4ASK, 2PSK, 4PSK, 2FSK 
and 4FSK. The AaMLPs have the following specifications (Table 7.6): 
 
Inputs 8 inputs representing the 8 features in Table 6.1 
Hidden layers 1 hidden layers with 5 nodes 
Outputs 8 nodes, corresponding to the 8 inputs 
Activation functions Tan-sigmoid in hidden layer, linear function in output layer 
Target activation values Target = Input 
Training algorithm Resilient back-propagation with validation set 
Pre-processing Normalise network inputs (features) so that they have zero 

mean and unity standard deviation 

Table 7.6. AaMLP specifications 

 
Each network is trained to reproduce the input at the output pattern. The error that is attempted 
reduced during training is thus the mean of the square of the differences between the input and 
the output values. Apart from the target values, the AaMLP operates in the same manner as the 
classifier in Section 7.1.  

7.2.1 Training Results 

Each network is trained on signals of one modulation type with SNR ranging from 3 to 24 dB 
SNR with 3 dB intervals (8 levels). At each level, we have 50 signal segments. Thus, the 
complete training set consists of 50*8 = 400 examples. We name the six networks after the 
modulation types they are trained on and achieve the following training results (Table 7.7): 
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AaMLP-2ASK AaMLP-4ASK 

Epochs 688 Epochs 1509 
Training set error (MSE) 0.0318 Training set error (MSE) 0.0318 
Validation set error (MSE) 0.0359 Validation set error (MSE) 0.0303 
Training time5 (seconds) 39.247 Training time (seconds) 81.577 

AaMLP-2PSK AaMLP-4PSK 
Epochs 278 Epochs 951 
Training set error (MSE) 0.03 Training set error (MSE) 0.0245 
Validation set error (MSE) 0.039 Validation set error (MSE) 0.0262 
Training time (seconds) 14.681 Training time (seconds) 47.398 

AaMLP-2FSK AaMLP-4FSK 
Epochs 1866 Epochs 486 
Training set error (MSE) 0.0124 Training set error (MSE) 0.0251 
Validation set error (MSE) 0.0129 Validation set error (MSE) 0.0282 
Training time (seconds) 104.25 Training time (seconds) 20.379 

Table 7.7. AaMLP training results. 

 
An important parameter is the networks' training set error. This parameter tells us what MSE 
can be expected when the network is presented to a signal similar to the one it is trained to 
reproduce. E.g., if the AaMLP-4PSK is presented with an unknown signal segment, and the 
MSE is 0.0250, we can assume that the signal is a 4PSK signal. If the MSE is, say, 0.80, we 
can assume that the signal is not a 4PSK. 

7.2.2 AaMLP Performance 

The six AaMLP networks are tested on signals of 8 modulation types. The results indicate that 
the networks are able to discriminate between known and unknown modulation types. Figure 
7.4 shows the results from AaMLP-2ASK, which is trained on 2ASK signals. The network 
produces a markedly lower MSE on 2ASK signals than other signals.  
 

                                                 
5 Measured on the Simulation PC (Table 3.1). 
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Figure 7.4. AaMLP-2ASK mean-squared error. 

 
Figure 7.5 shows the results from AaMLP-4ASK. Here, 16QAM signal give a MSE that is 
fairly close to that of 4ASK signals. However, when at the closest, the MSE of 16QAM are 
still more than 2.6 times larger than the MSE of 4ASK signals. 
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Figure 7.5. AaMLP-4ASK errors. 

 
Figures 7.6 to 7.9 display the results of AaMLP-2PSK, AaMLP-4PSK, AaMLP-2FSK and 
AaMLP-4FSK respectively. All show favourable results down to a SNR level of about 3 dB (6 
dB for AaMLP-4PSK).  
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Figure 7.6. AaMLP-2PSK errors. 

 

 
Figure 7.7. AaMLP-4PSK errors. 
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Figure 7.8. AaMLP-2FSK errors. 

 

 
Figure 7.9. AaMLP-4FSK errors. 
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Table 7.8 shows the absolute difference between the training MSE and the mean MSE of test 
signals of the same type the networks were trained on (labelled "Corresponding signal type"). 
The table also shows the mean MSE of the signal type that gave the second lowest MSE 
("Closest non-corresponding signal type"). 
 

Absolute training and testing MSE difference  
Network Corresponding signals Closest non-corresponding signals

AaMLP-2ASK 0.00433 0.183 
AaMLP-4ASK 0.00362 0.086 
AaMLP-2PSK 0.00370 0.312 
AaMLP-4PSK 0.00217 0.481 
AaMLP-2FSK 0.00005 0.573 
AaMLP-4FSK 0.00318 1.758 

Table 7.8. Absolute training and testing MSE difference (average over 3-24 dB SNR range) 

 
The results indicate that it should be possible to determine a threshold that can be used to 
accept or reject an incoming signal. The magnitude may also tell how similar an incoming 
signal segment is to the signals the network has been trained on. In the next chapter we 
propose a way of integrating the auto-associative networks into a classifier system to enhance 
its capabilities to reject novel signals.  

8 HYBRID CLASSIFIER WITH CLASS INHERENCE VERIFICATION 

The preceding chapter showed that the standard MLP, though exhibiting excellent 
classification capabilities, have problems handling inputs that does not belong to any of the 
known classes (novel examples). This problem has also been confirmed by other studies, e.g. 
(13) and (24). We have also investigated the auto-associative networks' capabilities to separate 
known signal from unknown signals. In the following sections we investigate a method of 
merging the two approaches to create a hybrid classifier with class-inherence verification, that 
is, a classifier system with the capacity to reject novel examples.  

8.1 General Operation 

Figure 8.1 shows an illustration of the proposed system. 
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Figure 8.1. Modular classifier: Classification and verification 

 
With reference to the figure, the hybrid classifier works as follows: First, the input vector, in, 
is fed into the standard MLP classifier. The classifier output is then fed into the router together 
with the input. The router decides which class the input belongs to (usually the class whose 
corresponding output node has the highest value). This completes the classification stage. Next 
is the Class Inherence Verification (CIV) stage that verifies that the input actually belongs to 
the selected class and is not an input of unknown type (ref. Section 7.1.4). Thus, the router 
supplies the input vector to the auto-association network (AaMLP) that corresponds to the 
selected class. The mean-squared error (MSE) between the input and output vector of the 
AaMLP is then thresholded to either verify (out=1) or reject (out=0) the classification.  
 
To test this approach, we use the MLP classifier described in Chapter 7.1 at the classification 
stage and the auto-associative networks in Chapter 7.2 at the CIV stage. 

8.2 Test Results 

Tables 8.1 to 8.3 show the confusion matrices when using the three different CIV thresholds: 
0.08, 0.1 and 0.15 respectively. All results are averages for signals in the range 3-24 dB SNR). 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 88.37 3.15 0.00 0.00 0.00 0.00 8.48 
4ASK 1.84 92.22 0.00 0.00 0.00 0.00 5.94 
2PSK 0.00 0.00 89.34 1.31 0.00 0.00 9.35 
4PSK 0.00 0.00 1.31 93.09 0.00 0.00 5.59 
2FSK 0.00 0.00 0.00 0.00 98.69 0.00 1.31 
4FSK 0.00 0.00 0.00 0.00 0.00 94.84 5.16 
MSK 0.00 0.00 0.09 23.95 0.00 0.00 75.96 

16QAM 0.96 12.76 11.63 2.97 0.00 0.00 71.68 

Table 8.1. Confusion matrix for known and novel signals, CIV threshold: 0.08. 
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Predicted type (%)  

Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 
2ASK 90.30 3.41 0.00 0.00 0.00 0.00 6.29 
4ASK 1.92 93.97 0.00 0.00 0.00 0.00 4.11 
2PSK 0.00 0.00 92.66 1.75 0.00 0.00 5.59 
4PSK 0.00 0.00 1.40 94.23 0.00 0.00 4.37 
2FSK 0.00 0.00 0.00 0.00 98.86 0.00 1.14 
4FSK 0.00 0.00 0.00 0.00 0.00 97.12 2.88 
MSK 0.00 0.00 0.09 26.14 0.00 0.00 73.78 

16QAM 2.10 13.90 15.91 4.28 0.00 0.00 63.81 

Table 8.2. Confusion matrix for known and novel signals, CIV threshold: 0.10. 

 
Predicted type (%)  

Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 
2ASK 93.53 3.67 0.00 0.00 0.00 0.00 2.80 
4ASK 2.01 94.93 0.00 0.00 0.00 0.00 3.06 
2PSK 0.00 0.00 94.67 2.27 0.00 0.00 3.06 
4PSK 0.00 0.00 1.49 96.68 0.00 0.00 1.84 
2FSK 0.00 0.00 0.00 0.00 99.30 0.09 0.61 
4FSK 0.00 0.00 0.00 0.00 0.00 98.51 1.49 
MSK 0.00 0.00 0.09 32.34 0.00 0.00 67.57 

16QAM 6.03 15.30 22.03 6.73 0.00 0.00 49.91 

Table 8.3. Confusion matrix for known and novel signals, CIV threshold: 0.15. 

 
A low threshold implies a low tolerance. With a CIV threshold of 0.08, more than 70 % of the 
novel examples are correctly rejected but also some known signal types are incorrectly 
rejected. A higher threshold means higher tolerance, which implies that more novel examples 
are incorrectly classified.  
 
The classification rates of the three CIV approaches are compared with the novelty rejection 
approaches presented in Section 7.1.4 and the results are shown in Figure 8.2. The hybrid CIV 
classifier displays the best overall classification rates. 
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Figure 8.2. Overall correct classification rates for different novelty rejection methods. 

 
Appendix D contains the classification results for the hybrid classifier for each of the eight 
noise levels.  

9 CONCLUSION 

This report has considered automatic recognition of radio signal types for electronic warfare 
applications. The main drawbacks of many methods proposed hitherto are the use of 
synthetically generated signals in simplified channel models and the lack of evaluation of the 
classifier’s behaviour to unknown signal types. In this work, we have generated a set of semi-
realistic signals using a signal generator and created a framework to simplify the production, 
use and exchange of other signals. 
 
We have evaluated the popular Multi-layer Perceptron's (MLP) ability to handle unknown 
signal types and found it not to be adequate. We have also investigated MLPs in an auto-
associative mode for use as recognisers and found favourable properties. By merging the 
standard classifier with a bank of auto-association networks, we developed a hybrid classifier 
with class inherence verification capabilities. This hybrid classifier was able to adequately 
classify between the known signal types, while at the same time reject a larger amount of 
unknown signal types than did the stand-alone MLP.  
 
Only a limited number of unknown signal types were used but the inherent properties of the 
auto-association network should also make it capable to handle other signal types. This is 
because they are trained to recognise one particular signal type without being dependent on 
negative training examples. However, comprehensive testing with regards to the hybrid 
networks' properties remains to be carried out.  
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A ABBREVIATIONS 

 
16QAM 16-level quadrature amplitude modulation (modulation format) 
2ASK 2-level amplitude shift keying (modulation format) 
2FSK 2-level frequency shift keying (modulation format) 
2PSK 2-level phase shift keying (modulation format) 
4ASK 4-level amplitude shift keying (modulation format) 
4FSK 4-level frequency shift keying (modulation format) 
4PSK 4-level phase shift keying (modulation format) 
A/D Analog to digital 
AaMLP Auto-association Multi-Layer Perceptron 
AMR Automatic modulation recognition 
ASK Amplitude shift keying (modulation format) 
CCITT V.52 Consultative Committee for International Telegraphy and Telephony standard 
CIV Class inherence verification 
COM-EW Communication electronic warfare 
Eb/N0 Bit-energy-to-noise-energy ratio 
EW Electronic warfare 
FSK Frequency shift keying (modulation format) 
I/Q Inphase/quadrature 
IF Intermediate frequency 
MLP Multi-layer perceptron 
MSE Mean squared error 
MSK Minimum shift keying (modulation format) 
NCO Numerically controlled oscillator 
PCA Principal component analysis 
PRBS Pseudo random bit sequence 
PSK Phase shift keying (modulation format) 
RF Radio frequency 
SMIQ Signal generator 
SNR Signal-to-noise ratio 
XOR Exclusive-OR 
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B SIGNAL FILE FORMAT 

Version definition file (version1-0.def): 
 

# SPECIFICATION OF COMMUNICATION SIGNAL FILES 
# VERSION 1.0  
# ALEXANDER IVERSEN 
# 24 JUNE 2004 
# 
# - Header consists of 39 fields 
# - Fields must not be empty. If data in field not applicable, input '-' 
# - Fields are sequenced in the following way: 
#   - 1-6    : General information 
#   - 7-13   : Generator/equipment 
#   - 14-24  : Modulation  
#   - 25-29  : Impairments 
#   - 30-38  : Reciever 
#   - 39     : Layout of following samples values 
#   - 40-END : Signal samples 
#  
# FNUM: Field number 
# DTYP: Data type 
#       Txt:  Text field of arbitrary length. NB! MUST NOT CONTAIN CHARACTER '\' 
#       Num:   Integer or real number 
# DLIM: Field delimiter. '\n' represents newline 
# DESC: Description of the field contents  
# 
#  
# Note: Use '#' at the start of all comment lines 
#################################################################################### 
# 
#FNUM DTYP DLIM DESC 
01 txt \n Version number 
02 txt \n Author 
03 txt \n Place of creation 
04 txt \n Date of creation 
05 txt \n Time of creation 
06 txt \n Comments, general 
07 txt \n Signal generator/equipment 
08 num \n Radio frequency (RF) [Hz]   
09 num \n Intermediate frequency (IF) [Hz] 
10 num \n RF - IF gain [dB] 
11 num \n IF gain [dB] 
12 txt \n Inverted spectrum? (Yes/No) 
13 txt \n Comments, signal generation/equipment 
14 txt \n Data source 
15 txt \n Modulation type 
16 txt \n Modulation Parameters (levels,index,etc.) 
17 num \n Symbol rate [Hz] 
18 num \n Sampling rate [Hz] 
19 txt \n Transmitter filter function 
20 txt \n Transmitter filter parameters (roll-off etc.) 
21 txt \n Window function 
22 txt \n Window parameters 
23 txt \n Baseband pulse type (dirac,rect,etc.) 
24 txt \n Comments, modulation 
25 num \n Bit energy to noise spectral density ratio (Eb/N0) [dB] 
26 num \n Noise bandwidth [Hz] 
27 txt \n Phase noise (description) 
28 txt \n Multipath (description) 
29 txt \n Comments, impairments 
30 num \n NCO frequency [Hz] 
31 num \n NCO sampling rate [Hz] 
32 num \n Decimation factor 
33 num \n Effective sampling rate [Hz]  
34 num \n Effective centre frequency [Hz] 
35 txt \n Sample data format (Real/Complex) 
36 num \n Sample span 
37 num \n Sample offset 
38 txt \n Comments, reciever 
39 txt \n Layout of proceeding samples (e.g., 'i, q') 
40 num \n Signal sample 1 
41 num \n Signal sample 2 
.. 
.. 
END num \n Signal sample END 
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A portion of an example file (PSK4_EbN0_15.dat): 
 
 
 
 
 
1.0 
Alexander Iversen 
FFI 
30.06.04 
15:00 
- 
R&S WinIQSIM 4.2, R&S SMIQ 06B 
100000000 
21400000 
11 
21 
Yes 
- 
PRN 
4PSK 
[pi/4 3pi/4 5pi/4 7pi/4] 
10000 
250000 
Cosine 
Roll-off:0.95, Impulse length:50 symbol periods 
Hanning 
- 
Dirac 
- 
15 
125000 
- 
- 
Noise BW is half the sampling rate (250kHz/2) ('Full' in WinIQSIM) 
21350000 
68400000 
256 
253125 
50000 
Complex 
65536 
32768 
- 
i, q 
32775, 32768 
32749, 32765 
32779, 32783 
32837, 32737 
32532, 32792 
33118, 32824 
32682, 32546 
31960, 33134 
34800, 32534 
30339, 32357 
33165, 34225 
37748, 30598 
19751, 33859 
56295, 38114 
40385, 23224 
54595, 25276 
11271, 39217 
28844, 25172 
41140, 21125 
42581, 44996 
23697, 50946 
7948, 30498 
21405, 13638 
40994, 16947 
44803, 36117 
28741, 45265 
16665, 31171 
27200, 14003 
50005, 16657 
57024, 40838 
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C MANUAL MODULATION DEFINITION IN WinIQSIM 4.20 

 
 
Example of the definition of 2ASK (2ASK.imp) 
 

# 2ASK Modulation  
# Levels based on the following Matlab modulation:  
# mod = (modmap(data,f_symbol,f_sampling,'ask',mod_level)+1.5)/2.5 
# Created by Alexander Iversen June 2004 
ROHDE&SCHWARZ IQSIM MAPPING FILE 
2ASK modulation 
QAM 
0 
2 
0.25, 0.00 
1.00, 0.00 

 
 
 
 
Example of the definition of 4ASK (4ASK.imp) 
 

# 4ASK Modulation  
# Levels based on the following Matlab modulation:  
# mod = (modmap(data,f_symbol,f_sampling,'ask',mod_level)+1.5)/2.5 
# Created by Alexander Iversen June 2004 
ROHDE&SCHWARZ IQSIM MAPPING FILE 
4ASK modulation 
QAM 
0 
4 
0.20, 0.00 
0.46, 0.00 
0.73, 0.00 
1.00, 0.00 
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D CLASSIFICATION RESULTS FOR HYBRID CLASSIFIER 

The tables below show the classification results for the hybrid classifier with a CIV threshold of 0.10. The data 
are based on 1144 test examples. 
 
Classification results for signals with 24 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 96.50 0.70 0.00 0.00 0.00 0.00 2.80 
4ASK 0.00 97.90 0.00 0.00 0.00 0.00 2.10 
2PSK 0.00 0.00 99.30 0.00 0.00 0.00 0.70 
4PSK 0.00 0.00 0.00 98.60 0.00 0.00 1.40 
2FSK 0.00 0.00 0.00 0.00 99.30 0.00 0.70 
4FSK 0.00 0.00 0.00 0.00 0.00 99.30 0.70 
MSK 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

16QAM 1.40 20.98 9.79 0.00 0.00 0.00 67.83 
 
Classification results for signals with 21 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 97.90 0.00 0.00 0.00 0.00 0.00 2.10 
4ASK 0.00 97.90 0.00 0.00 0.00 0.00 2.10 
2PSK 0.00 0.00 99.30 0.00 0.00 0.00 0.70 
4PSK 0.00 0.00 0.00 99.30 0.00 0.00 0.70 
2FSK 0.00 0.00 0.00 0.00 98.60 0.00 1.40 
4FSK 0.00 0.00 0.00 0.00 0.00 99.30 0.70 
MSK 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

16QAM 1.40 19.58 11.19 0.00 0.00 0.00 67.83 
 
Classification results for signals with 18 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 95.80 0.70 0.00 0.00 0.00 0.00 3.50 
4ASK 0.00 97.90 0.00 0.00 0.00 0.00 2.10 
2PSK 0.00 0.00 97.90 0.00 0.00 0.00 2.10 
4PSK 0.00 0.00 0.00 100.00 0.00 0.00 0.00 
2FSK 0.00 0.00 0.00 0.00 99.30 0.00 0.70 
4FSK 0.00 0.00 0.00 0.00 0.00 98.60 1.40 
MSK 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

16QAM 2.80 18.18 9.79 0.00 0.00 0.00 69.23 
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Classification results for signals with 15 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 95.80 0.00 0.00 0.00 0.00 0.00 4.20 
4ASK 0.00 97.90 0.00 0.00 0.00 0.00 2.10 
2PSK 0.00 0.00 98.60 0.00 0.00 0.00 1.40 
4PSK 0.00 0.00 0.00 100.00 0.00 0.00 0.00 
2FSK 0.00 0.00 0.00 0.00 98.60 0.00 1.40 
4FSK 0.00 0.00 0.00 0.00 0.00 98.60 1.40 
MSK 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

16QAM 0.70 16.78 9.09 0.00 0.00 0.00 73.43 
 
Classification results for signals with 12 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 96.50 0.70 0.00 0.00 0.00 0.00 2.80 
4ASK 0.70 95.80 0.00 0.00 0.00 0.00 3.50 
2PSK 0.00 0.00 96.50 0.70 0.00 0.00 2.80 
4PSK 0.00 0.00 0.00 95.80 0.00 0.00 4.20 
2FSK 0.00 0.00 0.00 0.00 99.30 0.00 0.70 
4FSK 0.00 0.00 0.00 0.00 0.00 98.60 1.40 
MSK 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

16QAM 2.80 14.69 20.98 0.00 0.00 0.00 61.54 
 
Classification results for signals with 9 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 88.11 0.00 0.00 0.00 0.00 0.00 11.89 
4ASK 0.00 96.50 0.00 0.00 0.00 0.00 3.50 
2PSK 0.00 0.00 90.91 1.40 0.00 0.00 7.69 
4PSK 0.00 0.00 0.00 98.60 0.00 0.00 1.40 
2FSK 0.00 0.00 0.00 0.00 100.00 0.00 0.00 
4FSK 0.00 0.00 0.00 0.00 0.00 98.60 1.40 
MSK 0.00 0.00 0.00 30.07 0.00 0.00 69.93 

16QAM 2.10 12.59 15.39 1.40 0.00 0.00 68.53 
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Classification results for signals with 6 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 87.41 4.90 0.00 0.00 0.00 0.00 7.69 
4ASK 1.40 95.80 0.00 0.00 0.00 0.00 2.80 
2PSK 0.00 0.00 87.41 3.50 0.00 0.00 9.09 
4PSK 0.00 0.00 0.00 88.11 0.00 0.00 11.89 
2FSK 0.00 0.00 0.00 0.00 100.00 0.00 0.00 
4FSK 0.00 0.00 0.00 0.00 0.00 95.80 4.20 
MSK 0.00 0.00 0.00 89.51 0.00 0.00 10.49 

16QAM 3.50 6.29 25.87 14.69 0.00 0.00 49.65 
 
Classification results for signals with 3 dB SNR: 
 

Predicted type (%)  
Actual type 2ASK 4ASK 2PSK 4PSK 2FSK 4FSK Novelty 

2ASK 64.34 20.28 0.00 0.00 0.00 0.00 15.39 
4ASK 13.29 72.03 0.00 0.00 0.00 0.00 14.69 
2PSK 0.00 0.00 71.33 8.39 0.00 0.00 20.28 
4PSK 0.00 0.00 11.19 73.43 0.00 0.00 15.39 
2FSK 0.00 0.00 0.00 0.00 95.80 0.00 4.20 
4FSK 0.00 0.00 0.00 0.00 0.00 88.11 11.89 
MSK 0.00 0.00 0.70 89.51 0.00 0.00 9.79 

16QAM 2.10 2.10 25.18 18.18 0.00 0.00 52.45 
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