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PENETRATION INTO CONCRETE BY TRUNCATED PROJECTILES

Notation

a surface area of projectile
d diameter of projectile
d’ diameter of the flat part of the truncated nose
f force 
l length of truncated part of the nose
m mass of projectile
pr radial stress at the surface of the projectile nose
s nose curvature radius
t time
v0 impact velocity
x penetration depth
C, CF, CL non–dimensional proportionality constants

F non–dimensional force �
f

�cd2

F0, F1, F2, F
b
2 non–dimensional forces

L non–dimensional length of truncated part of the nose = l
d

M non–dimensional mass � m
d3�

N, N0, N2, N
b
2 nose factors

R non–dimensional diameter  � d�
d

S non–dimensional constant in Forrestal’s formula

T non–dimensional time �
d�c
m

� t

X non–dimensional penetration depth � x
d

X1 non–dimensional nose length

Xp , XF
p , XL

p non–dimensional final penetration depth 

V non–dimensional velocity V � �X
�T

� m
d3�c

� v

V0 non–dimensional impact velocity
V1 non–dimensional velocity when X � X1
�, �0, �1 angles defining projectile nose geometry
� target density
�c concrete compressive strength
� non–dimensional curvature radius (CRH) = s/d

1 INTRODUCTION

Forrestal’s semi–analytical formula for penetration of rigid projectiles into concrete (1)–(2)
has in various experiments been shown to give good results for different concrete qualities
(3)–(4).  However, the formula is only applicable for projectiles with an ogive nose.  An
empirical approach at extending Forrestal’s formula to truncated ogive–nosed projectiles
has recently been proposed by Lixin et.al. (5).  A typical projectile is depicted in Figure



1.1.  However, the new theory relies on some new empirical constants and is only expected
to be valid when the truncated part of the nose is less than 1/3 of the original nose length.

d d’

s

φ 0

φ 1

x 1

d’

s

φ0
φ1

x1

d

Figure 1.1: Projectile geometry

In this article, an analytical approach is used to extend Forrestal’s formula to other projec-
tile geometries, in particular all kinds of truncated noses.   The new model is compared
with various data and discussed.

The contents of this report has also been submitted as an article to the International Journal
of Impact Engineering.

2 FORRESTAL’S FORMULA

It is convenient to introduce non–dimensional quantities for the mathematical discussion.
To distinguish between quantities with and without dimension, in this paper, capital letters
will always denote a non–dimensional quantity.

In Forrestal’s original formulation, the penetration process is assumed to be divided into
two phases.  In the socalled cratering phase, when X < 2, the force F on the projectile is
assumed proportional to the current penetration depth X(T):

F � CFX     ,     X� 2 (2.1)

In the cavity expansion phase, the total force decelerating the projectile is estimated ac-
cording to the following integral over the projectile surface a:



F � 1
�cd2
�
a

pr(u) cos�da   ,   u� vcos� (2.2)

From cavity expansion theory it is possible to derive an analytical expression for pr  and
thereby calculate the integral explicitly.   Forrestal used a semi–analytical expression for
pr, assuming it to be on the following form:

pr � S�c � �v2    ,    S� 82.6��0.544
c (2.3)

where S is a material constant that has been experimentally determined by Forrestal.  The
value for the compressive strength has to be entered in MPa’s since S is not really dimen-
sionless, although it is assumed to be so.   The expression forpr is seen to consist of one
static part and one dynamic (velocity–dependent) part.

Assuming no friction, and performing the integration gives the following expression for total
force on the projectile:

F � �
4

S�1�
N0
M

V2

S
�    ,     X� 2 (2.4)

where N0 is a socalled nose factor only dependent on the nose geometry.  For  ogive and
blunt noses it is given by:

No
0 �

8�� 1
24�2     ,     Nb

0 � 1� 1
8�2 (2.5)

Forrestal estimated the point of transition between the two phases from experiments.  It
was found that the crater depth was usually around two projectile diameters, which sug-
gested a value of X=2 for the transition point.

Assuming a rigid projectile together with Equations (2.1) and  (2.4) for the force during
penetration, enables us to apply Newton’s 2nd law and calculate the complete penetration
process.

The constant C is then determined from the requirement that X(T), V(T) and F(T) are all
continuous at X=2.  Forrestal’s result is:

CF � �
S
8
�1�

N0
M

V2
1

S
�    ,     

V2
1

S
�

V2
0

S � �
2

1� �
2

N0

M

(2.6)

where V1 is the projectile velocity at the transition point between the first and second
phase.

The final penetration depth XF
p from Forrestal’s penetration formula thus becomes:

XF
p � 2

�
M
N0

ln�
�

	

M
N0

�
V2

0

S
M
N0

� �
2
�



�
� 2 (2.7)



3 MODIFICATION OF FORRESTAL’S MODEL

Here we present an attempt at generalizing Forrestal’s equation to truncated projectiles.
Both ogive and blunt nose shapes will be considered.  The various geometrical parameters
of the projectile are described in Figure 1.1.

The modification is done in two steps, first by modifying the cratering phase and then by
calculating the nose factor in the second phase for such projectiles.

3.1 Where to apply the cavity expansion force?

In Forrestal’s original calculation of the penetration depth, it was assumed that the crater-
ing phase lasted until X > 2 when the cavity expansion phase took over.  In this paper we
instead propose that the transition to cavity expansion takes place when the nose has com-
pletely entered the target, i.e. when X � X1, where X1  is the non–dimensional length of
the nose.

Simple geometry (see Figure 1) shows X1 to be given by:
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Figure 3.1: Nose length X1 as a function of nose curvature �.
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Figure 3.2: Nose length X1 as a function of truncation diameter R.

X1 � (2�� 1� R)
�2

(2�� 1� R)2
� 1

4
�     ,     � � 1

2
       (ogive nose) (3.1)

X1 � �2 � R2

4
� � �2 � 1

4
�                           ,     � � 1

2
       (blunt nose) (3.2)

In Figures 3.1 and 3.2 we have plotted X1 as a function of � for R=0 and as a function of
R for different values of �.   Our approach is consistent with Forrestal’s assumption of
X1 � 2 as most of the projectiles in his experiments (2) had a nose length close to this
value.

3.2 The force

In Forrestal’s original approach, the force is zero at impact and then increases linearly with
penetration depth until cavity expansion takes over.  In the modified theory for truncated
projectiles, a non–zero force F0 is assumed to act on the projectile instantly after impact.

Immediately after impact, only the flat part of the projectile is in contact with the target.  To
calculate F0, we use cavity expansion theory and Equation (2.2) with u=v (i.e. the same stress
all over the surface):

F0 �
f0

�cd2 � �
S
4
�1� 1

M

V2
0

S
�R2 (3.3)



As the nose penetrates deeper into target, there is a larger area for the stresses to act on,
giving a larger force.  In principle, it should be possible to apply cavity expansion at every
point in time, but this would involve a time–dependent nose factor, making the equations
impossible to solve analytically.

Instead we assume the force to increase linearly with the penetration depth, until X � X1 ,
when cavity expansion takes over.   From various hydrocode simulations, the assumption
of linearly increasing force is seen to be reasonable.

It will be shown in the next section that the final expression for the force can be written as:

F ��
��
	




F0 � CX              ,   X� X1

�
S
4
�1� N

M
V2

S
�   ,   X� X1

(3.4)

where N is the nose factor of the truncated projectile.  For X1 � 2 and F0 � 0, our model
is seen to reduce to Forrestal’s original model.

3.3 The nose factor

In the second phase, the force decelerating the projectile is again calculated according to
the integral over the projectile surface in Equation (2.2) .  However, the integration is a
little more complicated now and has to be divided into two parts, namely integrating over
the flat part and the ogive part of the projectile.

3.3.1 Flat part

Again we find an estimate for the force F1 on the flat part of the projectile by using Equa-
tion (2.2) with u � v and integrating over the surface area of the flat part:

F1 �
�
4

S�1� 1
M

V2
0

S
�R2 (3.5)

It is clear that a flat nose corresponds to a nose factor N=1.

3.3.2 Ogive part

The force F2 on the ogive part of the projectile is still found from cavity expansion, except
that instead of integrating over the whole projectile surface, we only integrate over the
ogive part of the surface, as illustrated in Figure 1.

This amounts to only integrating from �1 to ��2 instead of from �0 to ��2, where �1 and
�0 are defined in Figure 1.  Some simple geometry shows them to be given by:

sin�0 �
2�� 1

2�
(3.6)



sin�1 �
2�� 1� R

2�
(3.7)

The expression for the force can thus be written as:

F2 � 2�
�2

�c
�
��2

�1

pr(v,�)�sin�� sin�0
� cos�d� (3.8)

The actual calculations are now straightforward, although slightly cumbersome.  In the end
we obtain the following result:

F2 �
�
4

S�1� R2� � 1
4

N2
M

V2 (3.9)

N2 � N0 � R2�6(4�� 1)� 8R(1� 2�) � 3R2

24�2
� (3.10)

We see that both the static and dynamic term now turn out to be functions of the normal-
ised cavity diameter R.

3.3.3 Blunt part

For a blunt projectile, the force in the cavity expansion phase is given by:

Fb
2 � 2�

�2

�c
�
�0

�1

pr(v,�) sin� cos�d� (3.11)

which after integration can be written as:

Fb
2 �

�
4

S�1� R2� � 1
4

Nb
2

M
V2 (3.12)

Nb
2 � (1� R2)�1��1� R2

8�2
�� (3.13)

3.3.4 Total force

However, on adding the two force contributions F1 and F2 together we see that the new
total force expression is identical to the old force of Equation (2.4), except for a new nose
factor N in the dynamic part:

F � �
4

S�1� N
M

V2

S
� (3.14)

N �
�

�



�

	

No
0 � R2�6(2�� 1)2 � 8R(2�� 1)� 3R2

24�2
�   (ogive nose)

1�
(1� R4)

8�2 � Nb
0 �

R4

8�2                                  (blunt nose)

(3.15)
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Figure 3.3: Nose factor N as a function of � for a truncated–ogive–projectile.
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This means that the static part of the force is unaffected by the nose shape.   In Figures 3.3
and 3.4 we have plotted N as a function of  � and R respectively.

4 PENETRATION DEPTH

The final penetration depth Xp is calculated in two stages.  First, the penetration depth in
the cavity expansion phase is calculated as a function of a so far undetermined transition
velocity V1.  This velocity is then determined from conditions of continuity at the transi-
tion point.

4.1 The cavity expansion phase

Assuming that the projectile has the velocity V1 after the cratering phase, this velocity is
used as initial condition for the cavity expansion phase.  Using Newton’s 2nd law and
Equation (3.14) for the force, eventually gives the following relationship between Xp and
V1.

Xp �
2
�

M
N

ln�1� N
M

V2
1

S
�� X1 (4.1)

Now only an expression for V1 as a function of the impact velocity V0 is required.  This is
derived in the next section.
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Figure 4.1: Penetration depth as a function of impact velocity.
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Figure 4.2: Penetration depth as a function of impact velocity.

4.2 Cratering phase

Using Newton’s 2nd law on the first phase gives the following equation:

�2X
�T2 � CX� � �

S
4
�1� 1

M

V2
0

S
�R2 � � F0    ,     X� X1 (4.2)

X(0) � 0   ,    V(0) � V0

The solution of Equation (4.2) is:

X(T) �
V0

C�
sin C� T�

F0
C
�cos C� T� 1� (4.3)

The solution from the first and final phase must be continous at X � X1 in X, V and F.
These conditions eventually gives us the following result:

C � 1
X2

1

�V2
0 � V2

1
� � 2F0

X1
    ,    

V2
1

S
�
�1� �

4
R2

M X1
� V2

0

S � �
X1

4 � �
4 R2X1

1� N
M

�
4 X1

(4.4)

This is the generalisation of the original Equation (2.6) by Forrestal.

Inserting Equation (4.4) into Equation (4.1), we obtain the final penetration depth Xp as a
function of the impact velocity V0:



Xp �
2
�

M
N

ln��
	




�1� �X1R2

4M
� V2

0

S � M
N � �

4 X1R
2

M
N � �

4 X1
��
�

�
� X1 (4.5)

We see that for the special cases R=0 and X1 � 2, we retrieve Forrestal’s original formula
(2.7).

The penetration depth of scaled impact velocity for different values of R are shown in Fig-
ures 4.1 and 4.2 for M = 5 and M = 100.

It is seen that for large values of M (roughly corresponding to long slim projectiles), there
is not much difference in penetration depth whether the nose is truncated or not.  However,
for small values of M, nose shape has a large effect on penetration depth, which seems in-
tuitively reasonable.

5 COMPARISON WITH EMPIRICAL DATA AND THEORY

In this chapter we make comparisons with empirical data and other theory.

5.1 Lixin et. al.

Lixin et.al. (5), have performed calculations for the same type of projectile.  Their ap-
proach was experimental by introducing the empirical constants C’ and XL in the force ex-
pression:

F �
�
�

	




C�CL
(X� L)             ,   X� XL

C��S
4
�1�

N0
M

V2

S
�   ,   X� XL

(5.1)

where XL is interpreted as the the crater depth and is to be determined empirically.  Ac-
cording to Lixin this constant is in the range between 1.5 and 2.5.  In cases when no test
reference is available, the Forrestal value XL � 2 is supposed to be used.

The empirical constant C’ compensates for the increased force due to the truncated nose.
It is a function of the diameter of the flat part of the nose in the following way:

C� � 1� KR2 (5.2)

By curve fitting to experiments, Lixin found the constant K to be given by K � 1.5

The constant CL is determined from continuity conditions and takes the following form:

CL � �
4(XL � L)

S�1�
N0
M

V2
1

S
�    ,     

V2
1

S
�

(L � XL)
V2

0

S � �
2 C�XL(L � 1

2 XL)

L � XL �
�
2 C� N0

M XL(L � 1
2 XL)

(5.3)



The final penetration depth XL
p in Lixin’s model then becomes:

XL
p � 1

C�
2
�

M
N0

ln

�

�

V2
0

S � M
N0

M
N0

� �
4 XLC��XL�2L

XL�L
�

�

	
(5.4)

In Figures 5.1–5.3 we have plotted the force, velocity and penetration depth as a function
of time for Forrestal’s Formula, Lixin’s empirical approach and our analytical model for an
impact velocity of 400 m/s.  The values of projectile and target parameters correspond to
Lixin’s experiments for his 0.285 kg projetile.

It is seen that in the first phase the FFI–model predicts a larger decelerating force than the
Lixin–model, while the Lixin force is stronger in the second phase.  However, for the final
penetration depth there is only a difference of about 5 mm.
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Figure 5.1: Penetration depth as a function of time.



0 1 2 3 4 5 6

x 10
–4

0

50

100

150

200

250

300

350

400

Time (s)

V
el

oc
ity

 (
m

/s
)

FFI
Lixin

Figure 5.2: Velocity as a function of time.
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Figure 5.3: Force as a function of time.



5.2 Empirical data in Lixin et. al.

Lixin et.al. (5) have performed several penetration experiments to validate their theory.  To
compare our analytical theory with Lixin’s data it is, however, necessary to know the con-
crete density, which is not given in (5).  The density for a typical C–30 concrete will usual-

ly lie somewhere in the range of 2000–2500 kg�m3.  Assuming K=2.5 and a density of

2300 kg�m3 to enable comparison , we have plotted the penetration depth as a function of
velocity for Lixin’s 0.282 kg projectiles in Figure 5.4.  Agreement is seen to be very good.
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Figure 5.4: Penetration depth as a function of impact velocity.

Further, we note that our theory is not very sensitive to the concrete density and will give
good agreement with experiments for any density in the range given above.

5.3 Empirical data with flat nosed projectiles

Small scale experiments with 12.7 mm flat nosed projectiles against concrete targets with
compressive strength of 35 MPa were performed at FFI (6)–(7).  Three different masses of
the projectiles were used, namely 20.5 g, 65.8 g and 122.8 g.  According to the theory dis-
cussed above, these projectiles correspond to R = 1 and X1 � 0.  The experimental results
are in Figures 5.5–5.7 compared with the new FFI model and Forrestal’s original model.
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Figure 5.5: Penetration depth as a function of impact velocity for m=20.5 g projectiles.
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Figure 5.6: Penetration depth as a function of impact velocity for m=65.8 g projectiles.
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Figure 5.7: Penetration depth as a function of impact velocity for m=122.8 g projectiles.

As seen from Figures 5.5–5.7, there is very good agreement between the experimental data
and the modified penetration formula given by Equation (4.5), especially for the 20.5 g and
122.8 g projectiles.  The experiments with the 65.8 g projectiles seem to be slightly above
the FFI–model, but the difference should be within experimental uncertainty.

The experiments with flat nosed projectiles are not compared to Lixin’s model, because
according to Lixin (5), the model is not valid for such projectiles.  The force expression in
Equation (5.1) will be too large due to the factor C’, which takes the value of 2.5 for flat
projectiles.  Hence the final penetration depth will be too small compared to the experi-
ments.

5.4 Predrilled cavities

For completeness we note that if we put F0 � 0 and N � N2 in Equation (3.4) we obtain
a model for penetration into targets with predrilled cavities.  This topic is further discussed
in (8).



6 DISCUSSION

We have modified Forrestal’s semi–analytical penetration formula to obtain a new model
that is valid for a larger range of projectiles.  More precisely the new model is valid for
projectiles of arbitrary nose length and for truncated noses.  Further, it is not dependent on
any new empirical factors and it shows very good agreement with various experimental
data.
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