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PLASTICITY COMPUTATION IN HYDROCODES COMPARED WITH ANALYT-
ICAL THEORY

1 INTRODUCTION

Plasticity is an important subject in penetration mechanics as well as other areas.  There is,
however, a great deal of confusion about how plasticity theory actually works, and espe-
cially on the relation between analytical plasticity theory and the methods for calculating
plasticity in hydrocodes.  To the best of our knowledge this has not been properly de-
scribed in the literature.

In this document we make an attempt to clear up the confusion surrounding plasticity.  We
have tried to keep the report self–contained, but readers who would like a more compre-
hensive introduction to analytical plasticity are referred to Teland (1).  Our notation is the
same as in (1), i.e. with the pressure being negative under compression.

2 ANALYTICAL PLASTICITY

As is well known, we have the following constitutive equations in the elastic regime:

p � 3K� (2.1)

sij � 2Geij (2.2)

These equations will not be discussed any further.

In the plastic regime, however, things are more complicated.  There are different ways of
representing plasticity, but here we will only look at socalled incremental theories.  These
theories all make use of a yield condition which is a rule for determining when plasticity
occurs, and they have constitutive laws (flow rules) which determine how plastic flow
takes place.

In general a yield condition is given on the following form:

f (�ij, �
.
ij, T, ���) � k (2.3)

We see that there is a loading function f, depending on various physical variables, which
has to reach a specific limit k for plastic flow to set in.  Equation (2.3) has an interesting
geometrical interpretation as a yield surface in stress space.  For a material to remain plas-
tic, it follows that df � 0, i.e. the material remains on the yield surface and the points out-
side the surface can not be reached.

From (1) we know that there are two types of constitutive plastic laws, associated and non–
associated flow rules.  When an associated flow rule is used, the complete material beha-
viour is derived from the loading function f.   However, in non–associated flow, the load-



ing function is only used to determine whether the material is elastic or plastic and the
plastic constitutive laws are independent of it.

An associated flow rule is given on the following form:

d�p
ij
� fijd� (2.4)

where fij �
�f
��ij

.  Equation (2.4) can be geometrically interpreted as saying that the plastic

strain increments are perpendicular to the yield surface, although they are not in the same
space.

2.1 Prandtl–Reuss analytical plasticity theory

We will now look closely at one particular analytical plasticity theory, namely Prandtl–Re-
uss, which is based on associated flow.  In this theory the yield condition is given by:

f � 1
2

sijsij� � k �
Y
3�

(2.5)

where the constant k defining the yield surface is related to the yield limit Y in uniaxial
stress as given above.  As long as f � k, the material behaves elastically, but when Equa-
tion (2.5) is satisfied, the material starts behaving plastically.   

During plasticity, the total strain tensor �ij is divided into an elastic and a plastic part.  The

problem now is to calculate the stress increments d�ij  as a function of the total strain incre-

ments d�p
ij
.  This is done in the following way:

dp� 3Kd�e
� 3K(d�� d�p) (2.6)

dsij � 2Gdee
ij � 2G�deij � dep

ij
� (2.7)

If the total strain increments are known, we only need to calculate the plastic strain incre-
ments d�p

ij
.  Using the associated flow rule of Equation (2.4), we have the condition of the

plastic strain increments being perpendicular to the yield surface:

d�p
ij
� fijd� �

sij

2k
d� (2.8)

Examining the diagonal components of Equation (2.8), we find:

d�p
ii
� 3d�p

� fiid� �
sii

2k
d� � 0 (2.9)

Thus, there is no plastic volume change, so all volume change is purely elastic, d� � d�e.
Equation (2.6) thus becomes:

dp� 3Kd� (2.10)



Using this information, the equation for the deviatoric plastic strain components  may now
be written as:

dep
ij
� d�p

ij
� �ijd�

p
� d�p

ij
� fijd� �

sij

2k
d� (2.11)

On comparing with Equation (2.9), it becomes clear that things are more complicated for
the deviatoric components.

Equation (2.11) gives us the direction of the deviatoric strain increments, but not the mag-
nitude.  Therefore we also need to calculate the parameter d�.  A first try may be to multi-
ply Equation (2.11) by sij  and sum, which gives us:

d� �
sijdep

ij

k
(2.12)

However, the problem with this equation is that it depends on the plastic strain increments
dep

ij
, which is exactly what we are trying to calculate!

Instead, we use the condition that the stress state remains on the yield surface, i.e. df � 0.
From this it is possible to derive a general expression for d�, see Equation (5.14) in Teland
(1).  In the Prandtl–Reuss case, this condition simplifies to the following expression:

d� �
sijd�ij

k
�

sijdeij

k
(2.13)

which is almost the same as Equation (2.12), except that the total strain increments deij

(which are assumed to be known) are involved, instead of only the plastic part dep
ij
.  Insert-

ing into Equation (2.7) then gives us the final expression for the stress increments as a
function of the current stresses and total strain increments:

dsij � 2G�deij � sij

spqdepq

2k2
� (2.14)

Further, on comparing Equations (2.12) and (2.13) we find that:

sijdeij � sijdep
ij

(2.15)

which says that the total deviatoric work is equal to the plastic deviatoric work.  Thus, no
elastic deviatoric work is performed during plastic loading.

Finally, we briefly mention that the difference between Prandtl–Reuss plasticity and the
simpler Mises plasticity theory is that Equation (2.10) is replaced by d� � 0.  Thus, there
is not even elastic volume change in Mises theory, whereas in Prandtl–Reuss elastic vol-
ume change was possible, but not plastic.   It also follows that Mises theory is a non–asso-
ciated plasticity theory, since the constitutive equations are not derived directly from the
yield surface.



3 PLASTICITY IN HYDROCODES

Now, let us see how plasticity is handled in hydrocodes like Autodyn (2) and Dyna.

In hydrocodes, all physical quantities must be discretised in both time and space.  For ex-
ample, the stress deviation at some point after timestep n is denoted by sn

ij .  Given the

stresses at the timestep n, the problem is to calculate them at the next timestep n+1.

3.1 Elastic regime

In the elastic regime, material behaviour is governed by Equations (2.1)–(2.2), and these
are discretised in the following way:

pn�1
� pn

� 3K��n�1�2 (3.1)

sn�1
ij � sn

ij � 2G�en�1�2
ij

(3.2)

After the stresses have been calculated, the conservation equations are used to calculate

�
n�3�2
ij

 as a function of �n�1
ij  .  Then the cycle repeats as the new stresses at the next time-

step are calculated from the constitutive equations (3.1)–(3.2) and so on.  (In reality there
are a lot more steps involved in a cycle, but this will be ignored as it is not relevant to our
discussion.)  To achieve a simpler notation we also drop the superscripts on the discretised
strains from now on.

3.2 Plastic regime

We shall now look more closely at how plasticity is handled in Autodyn.  In analytical
theory, we only needed to supply the loading function f, while in Autodyn both a yield con-
dition (referred to as “strength model” in Autodyn’s terminology) and an equation of state
(EOS), which defines volumetric plastic behaviour, is required.

An important difference between Autodyn and analytical theory lies in the use of the load-
ing function f.  In associated analytical theory, everything was derived from f, but in non–
associated Autodyn plasticity, the only purpose of f is to determine whether the material is
elastic or plastic.  Further, f is always the same and can not be changed by the user:

f � J2
� �

1
2

sijsij� (3.3)

It should be noted that in Autodyn,  the von Mises stress �VM � 3� f  is used instead of f

itself.  The advantage with this definition is that when determining plastic yielding in
Prandtl–Reuss theory, �VM can be compared directly with the uniaxial stress limit Y, unlike

f which has to be compared with the more mysterious quantity k � Y� 3� .  Either choice
has no practical consequences, as is easily seen.



In analytical plasticity, different yield conditions can be obtained by choosing different
loading functions f.  As mentioned above, in Autodyn f is always the same, but different
yield conditions can, however, be implemented by changing k, which might then become a
function of other physical quantities like pressure, strain rate, temperature etc.  It is then
clear that exactly the same yield conditions can be used both in Autodyn and analytical
theory.  The defining equation, of course, expresses the same yield condition, regardless of
whether some terms initially are put on the right or left hand side.

Further, we recall that in analytical plasticity, both the deviatoric stress increments dsij  and

pressure increments dp during plasticity are derived from the loading function f (See Equa-
tions (2.6)–(2.8)).  In Autodyn, we shall see that these quantities are derived independently
of each other through  “scaling” procedures that initially seem to have little in common
with Equations (2.6)–(2.8).

Since volumetric and deviatoric plasticity are calculated independently in Autodyn, we
may have plastic volume change while the stress deviators still follow the elastic laws and
vice versa.  The user also has greater freedom in implementing material behaviour and
approximating experimental results.  If Autodyn had been based on associated flow, the
volumetric plastic behaviour of the EOS would have had to be derived directly from the
yield surface, making it difficult to implement special types of EOS, for instance the po-
rous EOS which is frequently used in concrete modelling.  The problem is that there would
probably have been a conflict between a user input experimental EOS and an EOS derived
from the input yield surface.

We shall now closely examine the connection between the methods used in analytical plas-
ticity and in Autodyn.

3.2.1 Deviatoric components

We start by looking at how the deviatoric stress increments are calculated.

During a simulation, at every timestep Autodyn checks whether yielding has occurred any-
where in the material, i.e. it performs the following check:

Is f � k , i.e. is 1
2

sn�1
ij sn�1

ij� � k �
Y
3�

  ?    

If the above inequality is not satisfied, everything is alright and the elastic equations are
used for the next time step as well.  (It is not necessary to assume that k (or Y) is constant.
The procedure is the same regardless of whether it is a constant or a function of pressure,
strain rates, temperature etc.)

If yes, yielding has occurred and the trial stress state lies above the yield surface.  The ma-
terial has then turned plastic, and the plastic constitutive laws have to be applied instead of
the elastic laws.  In Autodyn this is achieved by scaling down all stresses in the following
way:



sn�1
ij �

sn�1
ij

sn�1
pq sn�1

pq�

2� k (3.4)

We see that Equation (3.4) amounts to first dividing the proposed stress deviation tensor by
its length to obtain a unit tensor with the same direction, and then multiplying it by the fac-

tor 2� k to make sure it lies exactly on the yield surface.

Now the calculation goes on as if nothing had happened.  No additional constitute laws are
introduced.  This rescaling of the stresses is the only difference between the elastic and
plastic regime.

It was obvious that Equations (3.1)–(3.2) were the discretized versions of  (2.1) and (2.2).
By letting �t � 0, they are easily seen to be equivalent.  It is, however, not equally ob-
vious that the rescaling of the stresses in Equation (3.4) is equivalent to the Prandtl–Reuss
plasticity equation.

Recall that in Prandtl–Reuss plasticity, the stress increments were calculated according to
the following differential equation:

dsij � 2G�deij � sij

spqdepq

2k2
� (3.5)

Is Equation (3.5) really equivalent with Equation (3.4) for small timesteps?  They sure
look very different.

However, we see that Equation (3.4) can take the following form:

sn�1
ij �

�
�
�
�

�

	

sn
ij
� 2G�eij

�sn
ij
� 2G�eij�

2
�

�
�
�
�




�

2� k (3.6)

Using that sn
ijs

n
ij � 2k2 and Taylor–expanding the denominator, we obtain to first order:

sn�1
ij � sn

ij � 2G�eij �
2G
k2 sn

ijs
n
pq�epq (3.7)

On defining �sij � sn�1
ij � sn

ij, we obtain:

�sij � 2G��eij � sn
ij

sn
pq�epq

2k2
� (3.8)

which is the same as Equation (3.5) for small time steps.

Thus, we see that the scaling of the stresses in Equation (3.4) produces the same deviatoric
stress increments as analytical Prandtl–Reuss theory, at least for small strain increments.



However, it is quite interesting to note that we have derived Equation (3.8) without making
any reference to plastic strain at all.  Remember that in Prandtl–Reuss theory, Equation
(3.5) was derived through an expression for the plastic part of the strain increments, but
here we have used a different approach.

To calculate how much of the strain increments are indeed plastic, we need to find a com-
putation technique that is equivalent to applying Equations (2.8) and (2.13).  Autodyn uses
the following method of first applying Hooke’s law to find the elastic strain increments,
and then subtracting this part from the total strain increments to find the plastic part of the
strain:

�ep
ij
� �eij � �ee

ij � �eij �
�sij

2G
(3.9)

Assuming small time steps, we can insert Equation (3.8), and easily find:

�ep
ij
� sn

ij

sn
pq�epq

2k2
(3.10)

which is equivalent to Equations (2.8) and (2.13).

Notice, however, that Equations (2.8) and (2.13) were derived on the assumption that k
was constant, which has not been assumed here.

3.2.2 Volumetric components

In analytical theory, both the deviatoric and the volumetric components of the stress tensor
were derived from the same expression (see Equations (2.8)–(2.10)).  However, the meth-
od of Equation (3.4) used in hydrocodes only provides results for the deviatoric compo-
nents.  To determine dp and d�p as well, an additional method is required.

Autodyn allows the user to define a plastic constitutive relation p � p(�) (actually the user

defines p � p(�), but remember that � � 1
3
�
�

�0
� 1�.)., also known as an equation of

state (EOS).  What happens is that, in each cycle n, Autodyn calculates the pressure pn�1

according to the elastic equation (3.1).  It then performs the following check to see whether
the volumetric plastic limit has been reached:

Is pn�1
� p(�n�1�2)?

If the above inequality is not satisfied, everything is alright and the elastic equations are
used for the next time step as well.

If yes, the volumetric plastic limit has been reached and volumetric yielding has occurred.
The pressure is then simply scaled down to the EOS in the following way:

pn�1
� p��n�1�2� (3.11)



To calculate the volumetric plastic strain increment, we can use the same trick as for the
deviatoric strains by subtracting the elastic component from the total incremented strain:

��
p
� ��� ��

e
� ���

�p
3K

(3.12)

4 COMPARISON

Finally, let us compare the analytical plasticity models with some of the plasticity models
implemented in Autodyn.

4.1 Mises strength model

We have already shown that by using the Mises strength model in Autodyn (constant yield
limit), we obtain the analytical Prandtl–Reuss equations for the deviatoric stress compo-
nents.  If we combine this strength model with a linear equation of state (EOS), it follows
easily from Equation (3.12) that ��p

� 0, in agreement with Equation (2.9).

Thus the Mises strength model combined with a linear EOS is equivalent to the analytical
Prandtl–Reuss model.  As we see, it is not equivalent to the analytical Mises model in
which we also have ��e

� 0.

4.2 Mohr–Coulomb strength model

Autodyn also allows the user to define a pressure–dependent piecewise linear yield surface
k(p), which there is called a Mohr–Coulomb strength model.

In analytical theory, however, an associated Mohr–Coulomb plasticity model is derived
from the following loading function:

f � �p�
1
2

max�|�1 � �2|, |�1 � �3|, |�2 � �3|� (4.1)

Are these two plasticity models equivalent?

We shall see that the Autodyn model differs from analytical theory in several ways.  First,
the yield condition is not even the same, as the corresponding Autodyn yield surface is on

the form J2
� � k(p), since J2

�  is used as a loading function instead of the maximum

shear strength.  We notice, however, that J2
�  is the same as the maximum shear strength

for situations in which two of the principal stresses are identical, i.e. all axis symmetric
problems.

Anyway, the analytical plasticity model which uses J2
�  instead of maximum shear

strength to define the yield surface, is referred to as Drucker–Prager in the literature
(3)–(4).  Thus, we should really compare analytical Drucker–Prager plasticity with Auto-
dyn’s Mohr–Coulomb model.



In analytical Drucker–Prager plasticity, we have f � J2
� � �p, and thus if we define Y(p)

linearly (k(p) � k0 � �p) in Autodyn, the two yield surfaces should be identical.  (There
is some potensial for confusion here, as in Autodyn the pressure p is defined as positive in
compression, whereas here it is negative.)

Using the analytical flow rule d�p
ij
� fijd� and the requirement that stresses remain on the

yield surface, df � 0, we find the follow plasticity equations for a Drucker–Prager materi-
al:

dep
ij
��

�

	

sij

2 J2
�
�




�

d� (4.2)

d�p
�

�

3
d� (4.3)

d� �
G� J2

� smndemn� K�d��3

G� K�2 (4.4)

This gives the following equation for the stress increments:

dsij � 2G�
�

	

deij �
sij

2 J2
�
�

�

	

G� J2
� smndemn� K�d��3

G� K�2 �




�
�




�

(4.5)

However, on using the “scaling–down” approach of Autodyn, we obtain the following ex-
pression for the stress increments:

�sij � 2G��eij � sn
ij

sn
pq�epq

2k2
� (4.6)

which is clearly not equivalent to Equation (4.5).

Further, the analytical Drucker–Prager model gives the following pressure increments:

dp� 3K�
�

	

d��
�

3�
�

	

G� J2
� smndemn� K�d��3

G� K�2 �




�
�




�

(4.7)

In Autodyn the EOS has to be defined independently as p(�), but we notice that since ac-
cording to Equation (4.7) the analytical pressure increments depend on the plastic deviator-
ic work performed smndemn and thus on the loading path, it will generally be impossible to
define an EOS on the formp(�) which is the same as Equation (4.7).

Thus, the Mohr–Coulomb strength model in Autodyn and the linear analytical Drucker–
Prager plasticity model are quite different, even though they define the same yield surface.
This is because the analytical model is based on associated flow, while the Autodyn model
is non–associated.



5 SUMMARY

We have seen that under certain circumstances the analytical plasticity models are equiva-
lent to the plasticity models implemented in Autodyn, but this does not hold in the general
case.

Especially, it has been shown that by using the Mises strength model and a linear equation
of state in Autodyn, one obtains analytical Prandtl–Reuss plasticity theory.  Further, we
saw that the Mohr–Coulomb strength model in Autodyn bears little resemblance to the
analytical Mohr–Coulom plasticity model.

However, this is not necessarily a problem, as long as one is aware that the same name is
often used for different models.  Real plasticity is a quite complicated process, and it is not
obvious how to model it correctly.
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