Testing og karakterisering av PBXN-110

Gunnar Ove Nevstad

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

12. juni 2007

FFI-rapport 2007/01569

87301

ISBN 978-82-464-1210-8

Emneord

HMX

Krystallkvalitet

PBXN-110

Sjokkfølsomhet

Godkjent av

Jan Ivar Botnan

Avdelingssjef

Sammendrag

To partier av HMX krystaller med krystallfordeling tilsvarende klasse 2 og 3 har vært benyttet til fremstilling av PBXN-110 med 87.2 vektprosent HMX. Hensikten med fremstilling av PBXN-110 var å studere om benyttede krystaller kunne ha forbedrede egenskaper med hensyn på sjokkfølsomhet.

I Intermediate Scale Gap test ga undersøkt komposisjon en sjokkfølsomhet på 34 kbar. Et resultat i overensstemmelse med hva vi normalt har oppnådde for PBXN-110. Derfor tyder resultatet på at benyttet krystaller Ch. 1722/06 og Ch. 1740/06 ikke har RS(Reduced Sensitivity) egenskaper av betydning selv om oppnådd sjokkfølsomhet ligger i det nedre området av hva som er rapportert i litteraturen for PBXN-110.

Herding i 4 døgn ved 50 °C gir en komposisjon som tilfredsstiller kravene til Shore A_{15s} hardhet, samt forlengelse ved maks styrke. Oppnådd maks styrke ved strekking ligger i underkant av kravet på 0.138 MPa.

Ved benyttet metode, hvor en kon av sprengstoffet initieres, er kritisk diameter funnet å være 5.4<u>+</u>1.3 mm. Detonasjonshastigheten er bestemt til 7160 m/s og detonasjonstrykket ved bruk av Plate Dent test til 175 kbar. De to siste resultatene er usikre da vi henholdsvis har kun en og to målinger.

English summary

Two charges of HMX crystals with crystal size distribution as class 2 and 3 have been used in production of PBXN-110 with 87.2 wt.% HMX. The purpose of the production of PBXN-110 was to study if used crystals could have improved properties with regard to shock sensitivity.

In Intermediate Scale Gap test the study composition gave a shock sensitivity of 34 kbar, a result in accordance with what we normally have achieved for PBXN-110. The obtained shock sensitivity of PBXN-110 indicate the used crystals Ch 1722/06 and Ch. 1740/06 have no RS (reduced Sensitivity) properties, even though the obtained shock sensitivity was in the lower range of what is reported in the literature for shock sensitivity of PBXN-110.

Curing for 4 days at 50° C gave a composition that satisfies the requirement for Shore A_{15s} hardness and strain at max stress. Obtained max stress by unaxial tensile testing was however below the requirement of 0.138 MPa.

The critical diameter have been determined by initiating a cone of the explosive, and was found to be 5.4 ± 1.3 mm. Detonation velocity has been measured to 7160 m/s, and the detonation pressure measured by use of Plate Dent test to 175 kbars. The last two results are unsure since we have respectively only one and two measurements.

Innhold

1	Innledning	7
2	Eksperimentelt	8
2.1	HMX krystaller	8
2.2	Andre råvarer	8
2.3	Sammensetning	8
2.4	Viskositetsmålinger	8
2.5	Mekaniske egenskaper og Shore A hardhet	8
2.6	Intermediate Scale Gap test	9
2.7	Detonasjonshastighet	9
2.8	Plate Dent test	9
2.9	Kritisk diameter	9
2.10	Tetthet	9
3	Resultater	10
3.1	Viskositet	10
3.2	GAP test	12
3.3	Kritisk diameter	18
3.4	Detonasjonshastighet	20
3.5	Plate Dent test	22
3.6	Hardhet	23
3.7	Mekaniske egenskaper	25
3.7.1	Blanding PBXN-110 G	25
3.7.2	PBXN-110 G viskmasse	26
3.7.3	Blanding PBXN-110 H	28
3.7.4	PBXN-110 H viskmasse	29
3.7.5	Sammenheng mellom mekaniske egenskaper – Shore A hardhet	30
	Litteratur	31
Appendix A	Kontrollrapporter råvarer	32
A.1	HMX Ch. 1722/06	32
A.2	HMX Ch. 1740/06	33
A.3	Malvern Laser analyse HMX Ch. 1740/06	34
A.4	Kontrollrapport RDX/voks	35
Appendix B	Viskositetsmålinger	36
B.1	Blanding PBXN-110 G	36

B.2	Blanding PBXN-110 H	37
Appendix C	Mikseordrer og blandeskjema	38
C.1	Blanding PBXN-110 G	38
C.2	Blanding PBXN-110 H	40
Appendix D	Uniaxial Tensile Test Sheets	42
D.1	Blanding PBXN-110 G	42
D.2	PBXN-110 G viskmasse	45
D.3	Blanding PBXN-110 H	48
D.4	PBXN-110 H viskmasse	52
Appendix E	Sjokktrykk som funksjon av barrieretykkelse	54

1 Innledning

Krystall kvaliteten for inngående HMX-krystaller har innvirkning på egenskapene til sprengstoff komposisjoner. For å studere kvaliteten på HMX har vi benyttet komposisjonen PBXN-110 som vår standard. PBXN-110 skal i henhold til spesifikasjonen inneholde 86-89 vektprosent HMX (1). I våre studier har vi lagt oss på 87.2 vektprosent HMX.

PBXN-110 inneholder inert bindemiddel og mykner, men et høyt innhold av HMX gir den en relativ høy tetthet og dermed høy detonasjonshastighet. Imidlertid vil PBXN-110 ha lavere detonasjonshastighet enn pressbare HMX-komposisjoner og støpherdbare komposisjoner med energirikt mykningsmiddel og/eller bindemiddel. AOP-26 (2) gir egenskaper og sammensetning for andre kvalifiserte støpherdbare komposisjoner: Fransk Octorane 86A og 86B ((HMX/Polyurethan)(86/14)), UK EDC 32 (85/15) og KS 32 (85/14/1) (HMX/HTPB/DOA) er alle komposisjoner som er kvalifisert og nær beslekta med PBXN-110 i ytelser. For Tyskland er det i (2) gitt en HMX støpherdbar komposisjon med 90 vekt % HMX produsert ut fra spesifikasjon H 8231. Normalt vil man ved 90 vekt % HMX eller mer være tvungen til å presse fyllingene for å oppnå tilfredsstillende tetthet og kvalitet på sprengstoffyllingen.

For mindre stridshoder som krever høy ytelse er pressbare komposisjoner med et HMX innhold fra 90-98 vekt % et bedre alternativ til fylling enn en støp-herdbar komposisjon. Et krav mange nasjoner i dag stiller til nye våpen er at de skal tilfredsstille kravene til IM gitt i STANAG 4439 (3). Et krav som normalt lettest kan tilfredsstilles for sprengstoffyllingen ved bruk av støp-herdbare komposisjoner som PBXN-110. En viktig egenskap for å oppnå IM-kravene for sprengstoffyllinger er sjokkfølsomheten. I en test som sympatetisk detonasjon er moderat sjokkfølsomhet avgjørende for å oppnå et tilfredsstillende resultat. Sjokkfølsomheten til en komposisjon er normalt avhengig av fyllstoffinnhold, men også type bindemiddel er avgjørende. Med hensyn til faststoff har krystallfordeling og krystallstørrelse betydelig effekt på sjokkfølsomheten (4).

De senere år har det kommet på markedet nitraminer med forbedret krystaller som når de anvendes i PBXer gir betydelig endring i sjokkfølsomhetsegenskapene. Ved valg av riktige RDX krystallkvalitet kan sjokkegenskapene til en komposisjon som PBXN-109 forbedres med en faktor på 2-3. For HMX baserte komposisjoner er det i dag ikke oppnådd de samme forbedringene av sjokkegenskaper som resultat av endret kvalitet på inngående HMX krystallene. Imidlertid er det rapportert om forbedringer med en reduksjon på 40 % i sjokkfølsomheten for PBXN-110 (5). Gevinsten i forbedret sjokkfølsomhet ved overgang til en bedre HMX krystallkvalitet kan enten tas direkte ut ved å beholde en komposisjons sammensetning eller for en komposisjon som PBXN-110 ved å øke fyllstoffinnholdet og dermed virkning uten at sjokkfølsomheten øker.

I denne rapporten har vi benyttet ukjente kvaliteter av HMX i fremstilling av PBXN-110. En av egenskapene som har vært testet er sjokkfølsomhet ved bruk av Intermediate Scale Gap test. I tillegg har hardhet og mekaniske egenskaper vært bestemt for å se at benyttet herdetid gir et produkt som tilfredsstiller kravet til mekaniske egenskaper (1). Tester som kritisk diameter, detonasjonshastighet og Plate Dent har vært gjennomført for bedre å karakterisere virkningen til fremstilt komposisjon.

2 **Eksperimentelt**

2.1 HMX krystaller

Benyttet HMX-krystaller er levert av Dyno Nobel ASA som vannfuktet kvalitet. I appendiks A er gitt kontrollrapporter fra leverandør for de to "chargene" vi har benyttet. Før bruk ble krystallene tørket ved 50°C i et varmeskap til konstant vekt.

2.2 Andre råvarer

Prepolymeren HTPB samt herder IPDI er levert av Nammo Raufoss AS. Mykner IDP samt benyttet Lecithin er levert av Dyno Nobel ASA. Øvrige råvarer er anskaffet fra Fluka.

2.3 Sammensetning

Spesifikasjonen for PBXN-110 gir krav til sammensetning i tillegg til alternativer for valg av herder og katalysatorkombinasjoner (1). Vi har valgt å fremstille komposisjonen som er definert som type II hvor IPDI (Isophorone diisocyanate) er benyttet som herder og DBTDL (Dibutyltin dilaurate) som katalysator. Med hensyn på HMX-innhold har vi holdt fast på 87.2 vektprosent med en 3:7 fordeling mellom klasse 2 og klasse 3. Dette valget ble tatt for bedre å kunne sammenligne resultatene med tidligere fremstilte og testede blandinger av PBXN-110 (6,7,8). Benyttet sammensetning samt fremstillingsprosedyre er for begge blandingene gitt i appendiks C. Temperatur ved avslutning av blanding var 50°C. Herding ble gjennomført ved 50°C i 4 døgn.

2.4 Viskositetsmålinger

Viskositeten ble målt ved en temperatur på 50°C ved bruk av et Brookfield viskosimeter. Alle målingene ble gjennomført med en T-D spindel og variabel høyderegulator. Vandring i vertikalretning var 20-25 mm. Under målingene var prøvene oppbevart i en dobbelvegget beholder hvor vann sirkulerte for å holde massen på konstant temperatur under målingene. Resultatene fra viskositetsmålingene er gitt i 3.1 i form av kurver og i appendiks B som tabeller med enkeltmålinger.

2.5 Mekaniske egenskaper og Shore A hardhet

Mekaniske egenskaper ble bestemt ved strekking på en MTS, High Rate Test System, strekkmaskin av dog bones stanset ut av skiver med tykkelse 11-13 mm. Skivene var skåret ut av større blokker. Alle dimensjoner for benyttet prøver er gitt i appendiks D. Strekkingen ble gjennomført ved romtemperatur og med en hastighet på 50 mm/min. i henhold til STANAG 4506 (Edition 1) (9). Resultatene er oppsummert i 3.7.

Shore A hardhet ble målt med "Shore A Härtprüfer DIN 53505 ISO R 868 Type BS 61, Serien Nr.;16705/97 fra BAREISS" etter 15 sekunder på endene av dogboneslegemer med tykkelse 11-13 mm. Resultatene er gitt i 3.6.

2.6 Intermediate Scale Gap test

Sjokkfølsomheten ble bestemt ved bruk av "Inetermediate Scale Gap test" og ble gjennomført i henhold til prosedyren beskrevet i STANAG 4488 (10) med unntak av tykkelsen på kortene. Våre kort har en tykkelse på 0.25 mm, mens i (10) er tykkelsen spesifisert til 0.19+0.02/-0.01 mm. Andre detaljer rundt gjennomføringen av testen er beskrevet i referanse 11. Til overdragere ble det benyttet en RDX/voks/grafitt (95/5) komposisjon levert av Dyno Nobel. Kontrollrapport for overdragersprengstoff er gitt i appendiks B.4. Pressing ble foretatt med et trykk på 10 tonn og en holdetid på 30 sekunder. Sjokktrykk som funksjon av barrieretykkelse for denne type overdragere er gitt i appendiks E.

2.7 Detonasjonshastighet

Detonasjonshastigheten ble forsøkt målt på 30 mm sylindriske ladninger etter prosedyren beskrevet i (12). Resultatet er gitt i 3.4.

2.8 Plate Dent test

I forbindelse med detonasjonshastighetsmålingene ble Dent vitneplate plassert i enden av ladningen. Resultatet er gitt i 3.5.

2.9 Kritisk diameter

Til bestemmelse av kritisk diameter (13) ble det benyttet sprengstoffkoner med lengde 270 mm og diameter fra 30 mm til 3 mm. Til initiering ble det benyttet detonator nr. 8 samt en 15 g booster av HWC 94.5/4.5/1 med diameter 20 mm. På konen i lengderetningen ble det limt en 2 mm tykk og 300 mm lang kobbertråd. Vitneplater med dimensjon 3x45x300 mm i stål (ST-52) ble montert som vist i figur 3.16. Resultatene er gitt i 3.3.

2.10 Tetthet

Tetthet for herdet komposisjon ble målt ved veiing og måling av volum til fyllingene i Gaptestrørene. Resultatet fra disse målingene er gitt i 3.2.

3 Resultater

3.1 Viskositet

For å kunne ha nok masse til å gjennomføre det tiltenkte testprogrammet ble det fremstilt to blandinger med samme innhold. Blandeskjema og prosedyre er gitt i appendiks C. For begge blandingene ble viskositeten målt med et Brookfield viskosimeter ved 50°C. Viskositeten ble målt med en T-D spindel og rotasjonshastigheter på 0.5 og 1 rpm. I figur 3.1 er alle enkelt målingene plottet for begge blandingene.

Figur 3.1 Viskositetskurver målt med T-D spindel og spindelhastighet 0.5 og 1 RPM.

Figur 3.2 Viskositetskurvene gitt i figur 3.1 etter midling av punktene.

Figur 3.3 Viskositetskurver målt med T-D spindel og spindelhastighet 0.5 rpm., 50°C.

Figur 3.4 Viskositetskurver målt med T-D spindel og spindelhastighet 1 rpm., 50°C

Figur 3.2 viser de samme kurvene midlet, mens figurene 3.3 og 3.4 viser midledekurver målt henholdsvis med rotasjonshastighet på 0.5 rpm og 1 rpm. Fra figurene 3.3 og 3.4 ser man at med unntak av starten er viskositeten for begge blandingene lik og har samme utvikling med hensyn på herding. Viskositeten for begge blandingene er moderat og ga en masse som var relativt enkel å støpe. Selv om viskositeten øker med tiden har begge blandingene relativt lang pot-life.

3.2 GAP test

Ti rør ble fylt med masse fra de to blandingene med PBXN-110 inneholdende HMX Ch.1740/06 og Ch. 1722/06. Resultatene med hensyn på tetthet til sprengstoffyllingene er gitt i tabell 3.1 for hvert enkelt rør. Teoretisk tetthet for PBXN-110 med 87.2 vekt% HMX er 1.666 g/cm³ (6). Den eksperimentelle gjennomsnittlige tetthet for rørene med blanding G og H er $\sigma = 1.651\pm0.009$ g/cm³ eller 99.1±0.6

Rør nr	Vekt (g)	Indre diameter	Indre diameter	Høyde (cm)	Volum (cm ³)	PBXN-110 Blanding	Vekt rør +Spreng	Nettovekt Spreng-	Tetthet (g/cm ³)
		topp(cm)	bunn(cm)			Nr.	stoff (g)	stoff (g)	
1	871.32	3.974	3.961	19.976	246.963	Н	1280.62	409.30	1.657
2	871.96	3.962	3.954	19.956	245.536	G	1280.60	408.64	1.664
3	886.09	3.960	3.957	20.092	247.272	Н	1294.15	408.06	1.650
4	909.57	3.925	3.935	20.009	242.717	Н	1312.27	402.70	1.659
5	874.45	3.961	3.972	20.005	247.197	Н	1281.47	407.02	1.647
6	887.96	3.951	3.952	20.047	245.846	G	1294.10	406.14	1.652
7	882.80	3.951	3.951	20.033	245.612	G	1288.63	405.83	1.652
8	881.74	3.953	3.956	20.038	246.109	G	1288.70	406.96	1.654
9	908.07	3.927	3.935	20.039	243.205	G	1305.96	397.89	1.636
10	882.43	3.951	3.964	20.008	246.113	G	1285.09	402.66	1.636
	Gjennomsnitt								1.651

	_						
%TMD	Dette er	r en aksei	ntabel tetthet	men viser	at legemene	inneholder	noen luftblærer
/011112.	D CIIC CI			, 111011 , 1001	at regeniene	minuterioraer	

Tabell 3.1 Informasjon for rørene testet i Intermediate Scale Gap test.

Figur 3.5 Skudd 1, rør 1 med PBXN-110, barrieretykkelse 120 kort, omsatt.

Figur 3.6 Skudd 2, rør 2 med PBXN-110, barrieretykkelse 130 kort, omsatt.

Figur 3.7 Skudd 3, rør 3 med PBXN-110, barrieretykkelse 140 kort, omsatt.

Figurene 3.5 til 3.14 viser bilder av restene fra samtlige skudd. For skuddene som gikk til full omsetning er kun vitneplanene tatt vare på. For ikke omsatte skudd er alle metallrester forsøkt igjenfunnet og inkludert i bildet sammen med eventuelle rester av sprengstoffet.

Figur 3.8 Skudd 4, rør 4 med PBXN-110, barrieretykkelse 145 kort, full omsetning.

Figur 3.9 Skudd 5, rør 5 med PBXN-110, barrieretykkelse 155 kort, ikke omsetning.

Figur 3.10 Skudd 6, rør 6 med PBXN-110, barrieretykkelse 150 kort, ikke omsetning.

Figur 3.11 Skudd 7, rør 7 med PBXN-110, barrieretykkelse 150 kort, ikke omsetning.

Figur 3.12 Skudd 8, rør 8 med PBXN-110, barrieretykkelse 145 kort, ikke omsetning.

Figur 3.13 Skudd 9, rør 9 med PBXN-110, barrieretykkelse 145 kort, ikke omsetning.

Figur 3.14 Skudd 10, rør 10 med PBXN-110, barrieretykkelse 140 kort, ikke omsetning.

Skudd Nr.	Rør Nr.	Antall Kort	Barrieretykkelse (mm)	Reaksjon
1	1	120	30.6	Omsatt
2	2	130	33.2	Omsatt
3	3	140	35.7	Omsatt
4	4	145	36.8	Omsatt
5	5	155	39.4	Ikke omsatt
6	6	150	38.1	Ikke omsatt
7	7	150	38.1	Ikke omsatt
8	8	145	36.8	Ikke omsatt
9	9	145	36.8	Ikke omsatt
10	10	140	35.7	Ikke omsatt

Tabell 3.2 Resultater i Intermediate Scale Gap test for PBXN-110 inneholdende HMX-krystaller fra Ch. 1722/06 og Ch. 1740/06.

Tabell 3.2 viser et sammendrag av resultatene for hele PBXN-110 serien med HMX krystaller fra Ch. 1722/06 og Ch 1740/06. Serien ble startet med en barrieretykkelse på 120 kort som gikk til full detonasjon. Antall kort ble så gradvis økt med 10 (5) stykker inntil vi ikke fikk omsetning. Dette inntraff først etter at barrieretykkelse var økt til 155 kort. Deretter ble barrieretykkelse gradvis redusert med 5 og 5 kort. For barrieretykkelsen på 140 har vi ett omsatt skudd og ett ikke. 50 % punktet kunne inneholdt flere skudd. I trykk tilsvarer 140 kort eller 35.7 mm 34 kbar. En sjokkfølsomhet som er på samme nivå som vi har oppnådd tidligere (6,7) for PBXN-110 hvor 2 av 3 skudd med barrieretykkelse på 135 kort gikk til full omsetning. I (8) ble sjokkfølsomheten bestemt til 38 kbar for PBXN-110. Andre kilder operer med en sjokkfølsomhet for PBXN-110 fra 27 kbar (14) til 34 kbar (2).

Figur 3.15 Plot av responsen til testet skudd i Intermediate Scale Gap test inneholdende PBXN-110 med HMX Ch.. 1722/06 og Ch. 1740/06 krystaller.

3.3 Kritisk diameter

Det ble støpt 6 koner i polypropylen former, 3 fra hver av blandingene for bestemmelse av kritisk diameter. Kun 5 ble løst fra formene i hel tilstand. Konene har en lengde på 270 mm med største diameter 30 mm og minste 3 mm. Siden komposisjonen har et relativt høyt innhold av HMX ble booster limt direkte på konen. Figur 3.16 viser konene etter at booster var pålimt og ladningene var montert på vitneplater. Mellom vitneplaten og sprengstoff er det i hele konens lengderetning limt en kobberstreng for lettere å synliggjøre hvor langt reaksjon går.

I figur 3.17 er det gitt bilde av samtlige vitneplater etter at sprengstoffkonene var omsatt. Det ble ikke gjort noe forsøk på å finne igjen eventuelle rester av sprengstoffkonene. Resultatet av forsøkene er oppsummert i tabell 3.3 og viser at undersøkt blandinger har en gjennomsnittlig kritisk diameter på 5.4 ± 1.3 mm. Vi har tidligere ikke gjennomført forsøk på bestemmelse av kritisk diameter for PBXN-110. Vi kan derfor ikke si noe om benyttet HMX-krystaller har egenskaper som standard kvalitet eller viser tegn på redusert følsomhet.

Figur 3.16 Ladninger for bestemmelse av kritisk diameter etter de var montert på vitneplater.

Komposisjon	Kon	Konsumert lengde av kon	Kritisk diameter	Gjennomsnitt kritisk diameter
	Nr.	(mm)	(mm)	(mm)
PBXN-110-G	Ι	232	6.8	
PBXN-110-G	II	260	4.0	
PBXN-110-H	Ι	254	4.6	5.4 <u>+</u> 1.3
PBXN-110-H	II	254	4.6	
PBXN-110-H	III	232	6.8	

Tabell 3.3Resultater fra bestemmelse av kritisk diameter for PBXN-110.

Figur 3.17 Vitneplater fra fyringer for bestemmelse av kritisk diameter.

3.4 Detonasjonshastighet

Fra tilgjengelig ladninger med diameter 30<u>+</u>0.5 mm ble to testenheter med avstand mellom målepunktene på henholdsvis 242 mm og 310 mm limt sammen for bestemmelse av detonasjonshastighet og detonasjonstrykk. Til bestemmelse av detonasjonshastigheten ble det benyttet en metode med tvinnede motstandstråder (12). Figur 3.18 viser ladningene etter at de var sammenlimt og måleprobene var montert. Start var omlag 8 cm fra initieringsenden, mens stopp var plassert omlag 3 cm fra enden slik at det skulle ha minimal innvirkning på "denten".

Første skuddet gitt som forventet og tiden detonasjonsfronten benyttet mellom start- og stoppunkt ble målt til 34.0 µs. Figur 3.19 vise bildet av kurvene som ble oppnådde på scopet. Dette gir en hastighet på 7160 m/s. For skudd to mistet vi triggesignal og derfor oppnådde vi ikke noe resultat.

Figur 3.18 Bilde av ladningene benyttet til bestemmelse av detonasjonshastighet.

Figur 3.19 Bilde av registrering av signalene fra skudd 1.

3.5 Plate Dent test

Plate Dent test ble gjennomført med ladningene benyttet til bestemmelse av detonasjonshastighet. Figur 3.20 viser bilder av begge ladningene etter at de var montert på dentplatene.

Figur 3.20 Bilde av oppsett benyttet i Plate Dent test. Figur 3.21 viser dentplatene etter at skuddene var omsatt. For begge skuddene er det tendenser til at

"denten" har uregelmessigheter grunnet porer i sprengstoffet. I tillegg hadde platene en tendens til utbuling på baksiden. Begge disse observasjonene har innvirkning på resultatet som er gitt i tabell 3.4.

Figur 3.21 Vitneplater fra Plate Dent test.

	Dentdybde (mm)	Overført til trykk (kbar)
Skudd 1	4.72	178
Skudd 2	4.56	172
Gjennomsnitt	4.64	175

Tabell 3.4 Resultat fra Plate Dent test for PBXN-110 med HMX Ch 1722/06 og Ch 1740/06 krystaller.

Fra tabell 3.4 ser man at ved omregning av observert dentdybde til detonasjonstrykket oppnår vi et detonasjonstrykk på 175 kbar. Dette er noe lavere enn forventet men står i forholdt til detonasjonshastigheten vi oppnådde i 3.4.

3.6 Hardhet

Shore A er målt etter 15 sekunder på prøver som var herdet til testing av mekaniske egenskaper samt på prøver fra herdet masse først benyttet til måling av viskositetsegenskapene. Alle resultatene er gitt i tabellene 3.5 til 3.8. Kravet til Shore A_{15s} hardhet for PBXN-110 er gitt i (1) og er minimum 20.

Emne Nr.	Shore A _{15s} for PBXN-110 G Blanding				Gjennomsnitt
1	26.0	30.5	29.5	28.5	28.6
2	27.0	26.5	26.0	30.0	27.4
3	29.0	27.5	29.6	27.0	28.3
4	28.5	27.0	26.5	25.5	26.9
5	29.5	25.5	25.0	26.5	26.6
Gjennomsnitt				27.6	

 Tabell 3.5
 Resultat fra Shore A hardhetsmålinger for PBXN-110 G.

Emne Nr.	Shore A _{15s} for PBXN-110 G Viskositet				Gjennomsnitt
1	31.0	28.5	33.0	31.0	30.9
2	32.0	32.0	33.0	32.5	32.4
3	31.5	29.0	27.0	31.5	29.8
	Gjennomsnitt				31.0

Tabell 3.6Resultat fra Shore A hardhetsmålinger for PBXN-110 G massen benyttet til
viskositetsmålinger.

Emne Nr.	Shore A _{15s} for PBXN-110 H Blanding			Gjennomsnitt	
1	30.5	32.0	34.5	33.0	32.5
2	32.5	32.0	33.0	31.5	32.3
3	31.5	31.5	30.0	33.5	31.6
4	28.0	26.5	28.0	28.0	27.6
	Gjennomsnitt			31.0	

Tabell 3.7 Resultat fra Shore A hardhetsmålinger for PBXN-110 H.

Emne Nr.	Shore A _{15s} for PBXN-110 H Viskositet			Gjennomsnitt	
1	25.0	27.0	29.0	27.0	27.0
2	32.0	34.0	31.0	30.0	31.8
	Gjennomsnitt				29.4

Tabell 3.8Resultat fra Shore A hardhetsmålinger for PBXN-110 H massen benyttet til
viskositetsmålinger.

Blanding Nr.	Type støp	Gjennomsnittlig Shore A _{15s}
DDVN 110 C	Viskstøp	31.0
PBAN-110 G	Mek-egenskaper	27.6
PBXN-110 H	Viskstøp	29.4
	Mek-egenskaper	31.0
Gjennomsnittlig Sho	ore A _{15s}	29.8

Tabell 3.9 Oppsummering av hardhetsmålingene for PBXN-110 blandinger.

Både enkeltmålinger og gjennomsnittsverdier for Shore A_{15s} ligger godt over kravet på 20. Derfor kan man med god samvittighet herde PBXN-110 i kortere tid uten at det vil medføre problemer med å oppnå kravet til hardhet. Herdetemperaturen for de testede prøver var 50°C og kan med fordel reduseres til 40°C som anbefalt i spesifikasjonen. Sammenlignet med hardheten for prøvene målt i (8) som var herdet ved 60°C i 6 døgn har vi oppnådd en reduksjon i gjennomsnittlig Shore A_{15s} hardhet fra 38.7 til 29.8.

3.7 Mekaniske egenskaper

Dogbones fra begge blandingene har vært strekt. Kravet til mekaniske egenskaper for PBXN-110 er gitt i spesifikasjonen for PBXN-110 (1), og for type II er kravet til maksimum Stress **0.138 MPa** med tilhørende Strain på **9 %**.

3.7.1 Blanding PBXN-110 G

Fra en blokk av blanding PBXN-110 G ble det først skåret ut 5 skiver som det så ble stanset dogbones ut av. Dimensjonene for disse er gitt i appendiks D.1 på separate skjema for hver dogbone. Figur 3.22 viser testede dogbones før og etter strekking. Figur 3.23 viser stress/strain kurvene for de dog bones hvor vi oppnådde rimelige kurver.

Figur 3.22 Bilder av dogbones før og etter de ble strakt til brudd.

Figur 3.23 Sress strain kurver for dogbones fra PBXN-110 G blandingen.

Tabell 3.10 oppsummerer resultatene med hensyn på stress, strain og E-modulus. Oppnådd gjennomsnittlig maks styrke på 0.1019 MPa er lavere enn kravet på 0.138 MPa. Forlengelsen ved maks styrke på 11.38% er imidlertid høyere enn kravet på 9%.

Prøve Nr.	Maks styrke (MPa)	Forlengelse ved maks styrke	Styrke ved brudd	Forlengelse ved brudd	E-Modulus
		(%)	(MPa)	(%)	(MPa)
G-3	0.0977	10.77	0.0733	13.97	1.06
G-4	0.1009	11.59	0.0891	14.44	1.04
G-5	0.1070	11.77	0.0965	13.20	1.11
Gj.snitt	0.1019	11.38	0.0863	13.87	1.07

Tabell 3.10 Oppsummering av resultatene fra strekking av dogbones av PBXN-110 G støp.

3.7.2 PBXN-110 G viskmasse

Fra massen som ble benyttet til viskositetsmåling av PBXN-110 G ble det etter at målingene var avsluttet, støpt en kloss med dimensjoner som det lot seg stanse dog bones ut av. Appendiks D.2 gir alle data vedrørende testede dogbones med separate rapportskjema for hver enkel dogbone. Figur 3.24 viser bilde av testlegemene før testing og figur 3.25 viser bilde av testlegemene etter testing.

Figur 3.24 Dogbones fra massen benyttet til viskositetsmålinger før strekking.

Tabell 3.11 oppsummerer resultatene for de tre legemene som ble strakt. Sammenlignet med støpen fra blandingen gitt i tabell 3.10 er den gjennomsnittlige maks stryken noe høyere, men fremdeles under kravet. Forlengelsen ved maks styrke er noe redusert men fremdeles godt over kravet på 9%.

Figur 3.25 Bilde viser dogbones fraPBXN-110 G massen benyttet til viskositetsmålinger etter at de var strakt.

Prøve Nr.	Maks styrke (MPa)	Forlengelse ved maks styrke	Styrke ved brudd	Forlengelse ved brudd	E-Modulus
		(%)	(MPa)	(%)	(MPa)
G-1 Visk	0.1238	10.02	0.0929	13.23	1.46
G-2 Visk	0.1140	9.87	0.0880	11.12	1.33
G-3 Visk	0.1253	12.53	0.1093	13.55	1.26
Gj.snitt	0.1210	10.81	0.0967	12.63	1.35

Tabell 3.11 Tabellen oppsumerer resultatene fra strekkingene av PBXN-110 G viskmasse dogbones.

Figur 3.26 Stress/strain kurver for PBXN-110 G massen benyttet til viskositetsmålingene.

3.7.3 Blanding PBXN-110 H

Fra en herdet blokk av blanding PBXN-110 H ble det først skåret ut 4 skiver som det så ble stanset dogbones ut av. Dimensjonene for disse er gitt i appendiks D.3 på separate skjema for hver dogbone. Figur 3.27 viser testet dogbones før strekking og figur 3.28 viser de samme testlegemene etter at de var strakt.

Figur 3.27 Dogbones fra PBXN-110 H støpen før strekking.

Figur 3.28 Bildet viser dogbones fra PBXN-110 H støpen etter strekking.

Figur 3.29 viser samtlige stress/strain kurver for PBXN-110 H blandingen. Figuren viser at samtlige stress/strain kurver er relativt like opptil maks styrke. Brudd inntreffer imidlertid med litt variasjon, men det er ingen dramatisk forskjell. Tabell 3.12 gir samtlige resultater fra strekkingen. Gjennomsnittlig maks styrke er som for PBXN-110 G blandingen noe lavere enn kravet i (1). Forlengelsen ved maks styrke

Figur 3.29 Stress/strain kurver for dogbones av blanding PBXN-110 H.

Prøve Nr.	Maks styrke (MPa)	Forlengelse ved maks styrke	Styrke ved brudd	Forlengelse ved brudd	E-Modulus
		(%)	(MPa)	(%)	(MPa)
H-1	0.1080	10.33	0.0736	14.28	1.24
H-2	0.1072	11.26	0.0853	13.04	1.19
Н-3	0.1157	11.12	0.0979	13.61	1.25
H-4	0.1090	11.93	0.0756	14.42	1.15
Gj.snitt	0.1100	11.16	0.0831	13.84	1.21

Tabell 3.12 Stress/strain egenskaper for PBXN-110 H støpt av blandingen.

3.7.4 PBXN-110 H viskmasse

Fra massen som ble benyttet til viskositetsmåling for PBXN-110 H blandingen ble det etter at målingene var avsluttet støpt en kloss med dimensjoner som det lot seg stanse to dogbones ut av. Appendiks D.4 gir alle data vedrørende testede dogbones i tillegg til resultatene fra testingen til hver enkel dog/bone på separate rapportskjema. I figur 3.30 er gitt bilder av testede legemer før og etter strekking.

Figur 3.30 Bildene viser dogbones fra PBXN-110 H viskmasse før og etter strekking.

Prøve Nr.	Maks styrke (MPa)	Forlengelse ved maks styrke	Styrke ved brudd	Forlengelse ved brudd	E-Modulus
		(%)	(MPa)	(%)	(MPa)
H-1-Visk	0.1216	10.73	0.0949	1359	1.34
H-2-Visk	0.1260	10.93	0.1020	14.13	1.32
Gj.snitt	0.1238	10.83	0.0985	13.86	1.33

Figur 3.31 Stress/strain kurver for dog bones fra massen benyttet til viskositetsmålinger.

Tabell 3.13 Stress/strain egenskaper for dogbones støpt av massen benyttet til viskositetesmålinger.

Figur 3.31 viser de to stress/strain kurvene vi oppnådde. Det er moderat forskjell mellom kurvene. Også for disse prøvene ligger maks styrke i underkant av kravet på 0.138 MPa, men avviket er mindre enn for de foregående prøvene. Gjennomsnittlig forlengelse ved maks styrke på 10.83% er godt over kravet på 9%.

3.7.5 Sammenheng mellom mekaniske egenskaper – Shore A hardhet

Tabell 3.14 oppsummerer de viktigste resultatene med hensyn på mekaniske egenskaper. En gjennomgående trend er at når maks styrke øker, minker tilhørende forlengelse. Imidlertid burde det være mulig å tilfredsstille kravet til styrke ved å herde prøven noen timer lenger.

Komposisjon	Blanding	Gjennomsnittlig verdier for				
	Nr.	Maks Stress (MPa)	Strain - maks Stress (%)	Shore A _{15s} hardhet		
	G	0.1019	11.38	27.6		
	G-visk	0.1210	10.81	31.0		
PBXN-110	Н	0.1100	11.16	31.0		
	H-visk	0.1238	10.83	29.4		

Tabell 3.14 Oppsummering av mekaniske egenskaper og Shore A hardhet for PNXN-110 blandinger.

Litteratur

- (1) Naval Sea Systems Command, Department of the Navy; MIL-DTL-82901A(OS), Detail Specification, Explosive, Plastic-Bonded, Cast PBXN-110, 13 May (2002).
- (2) The NIMIC Energetic Materials Compendium, v3.00 (2003): NIMIC, NATO HQ, B-1110 Brussels, Belgium.
- (3) NATO STANAG 4439: Policy for introduction, assessment and testing for Insensitive Munitions (MURAT) (1995).
- (4) C, Spyckerelle, A. Freche, S. Lecume (2003): "I-RDX Comparative Analytical Characterization. State of the Art". Reduced Sensitivity RDX Technical Meeting, Meppen, Tyskland, 17-20 November.
- (5) Jørn D. Kristiansen, Øyvind H. Johansen, Alf Berg, Terje Halvorsen, Richard Gjersøe, Kjell-Tore Smith and Mona Christensen (2004): "Steps towards reduced sensitivity HMX (RS-HMX): Reduced shock sensitivity in both Cast-Cured and Pressable PBX compositions", IM&EM Technology Symposium, Materials & Techniques for Reducing Sensitivity, San Francisco, 15-17 November.
- (6) Nevstad Gunnar Ove (2005): Egenskaper til PBXN-110 med standard HMX, FFI/RAPPORT-2005/00005, Ugradert.
- (7) Nevstad Gunnar Ove (2005): Testing av sjokkfølsomhet til PBXN-110, FFI/RAPPORT-2005/02666, Ugradert
- (8) Nevstad Gunnar Ove (2006): PBXN-110 studier, FFI/RAPPORT-2006/00937, Ugradert.
- (9) North Atlantic Council (2000): STANAG 4506 PSC (Edition 1), "Explosives, Shock Sensitivity Tests"; NATO/PfP, Unclassified Document NSA/0883-PPS/4488, 12 September.
- (10) North Atlantic Council (2002): STANAG 4488 (Edition 1), "Explosive Materials, Physical/Mechanical Properties Uniaxial Tensile Tests"; NATO/PfP, Unclassified Document MAS/-PPS/4506, 20 Mars.
- (11) Nevstad Gunnar Ove (2002): Fremstilling og testing av PBXN-109 med Fransk I-RDX, FFI/RAPPORT-2002/3206, Ugradert.
- (12) Nevstad Gunnar Ove (2006): Determination of Detonation Velocity and Plate Dent Properties for DPX-6, FFI/RAPPORT-2006/03060, Ugradert.
- (13) Hartmut Badners and Carl-Otto Leiber (1992): Method for the Determination of the Critical Diameter of High Velocity Detonation by Conical Geometry, *Propellants*, *Explosives*, *Pyrotechnics* 17, 77-81.
- (14) Phil Cheese (2003): Low Vulnerability Explosive Formulations, NIMIC Workshop on Insensitive Munitions Design Technology, Cranfield University, Shrivenham, UK, 29 sept - 2 okt.

Appendix A Kontrollrapporter råvarer

A.1 HMX Ch. 1722/06

DYNO

High Energy Materials

Specific Test Report

In accordance with EN 10204 - 2.3 Order No. Certificate No. Buyer V/ Gunnar Nevstad RD-08/07 Forsvarets Forskningsinstitutt Inspection date Avd. for våpen og materiell 15.03.07 Postboks 25, 2007 Kjeller Order date 14.03.07 Manufacturing date Government Contract No. Supplier Dyno Nobel ASA 01.11.06 N-3476 Sætre NORWAY Quantity Lot No. 6 kg Specification/Inspection procedure MIL-DTL-45444C Product **RS-HMX** grov RESULTS Acetone insoluble Insoluble particles on USSS No. HMX RDX Melting Inorganic Acidity HPLC HPLC point insoluble material 40 60 ≤ 0,05 % ≤ 0,02 % ≤ 2,0 % ≥ 277 °C ≤ 0,03 % Specification ≥ 98,0 % 0 ≤5 Charge No. 0 0 0,02 1722/06 100,0 0,0 286 0,00 < 0.03 Crystal modification Granulation, % Passing USSS No. 50 200 325 100 IR Inf. Specification ≤ 0,1 % α-HMX Inf. Inf. Inf. Charge No. 1722/06 < 0,1 36 11 4 3

alf Bug Øyvind H. Johansen R & D Manager

he

Trude Melby **R&D** Scientist

Figur App 1 Kontrollrapport for benyttet HMX klasse 3.

A.2 HMX Ch. 1740/06

Specific Test Report In accordance with EN 10204 – 2.3

Buyer Forsvarets Fors Avd. for våpen Postboks 25, 20	skningsinstitu og materiell 007 Kjeller	itt		Orde V/ 0 Orde 14.0	er No. Gunnar Nevs er date 03.07	stad	Certifica RD-09 Inspecti 15.03.0	ate No. /07 on date 07	
Supplier Dyno Nobel AS N-3476 Sætre NORWAY	SA			Man 07.1	ufacturing date 11.06	•	Governi	ment Contra	ct No.
Lot No.				Quar 3 kg	ntity				
Product RS-HMX fin				Spec MII	cification/Inspe L-DTL-4544	ction procedur 4C	re		
RESULTS	HMX HPLC	RDX HPLC	Melti poin	ng 1t	Acetone insoluble material	Inorganic insoluble	Insolubl on US	e particles SSS No.	Acidity
Specification	≥ 98.0 %	≤ 2.0 %	≥ 277	°C	≤ 0.05 %	≤ 0.03 %	40	60	≤ 0.02 %
Charge No.	2 70,0 %	22,0 10	- 2//		2 0,00 %	- 0.02	0	≤ 5	0.02
	Crystal		Gran	nulation	n, % Passing U	SSS No.			
	IR	ion	100		200	325	50	% point	
Specification	≤ 0,1 % α-H	IMX	Inf.		Inf.	Inf.	I	nf. μm	
Charge No. 1740/06	< 0,1		100		85	61		31	
Øyvind H. Joha R & D Manager	unsen r					T R	rude Mel &D Scie	Melby Iby ntist	

Figur App 2 Kontrollrapport for benyttet HMX klasse 2.

A.3 Malvern Laser analyse HMX Ch. 1740/06

Figur App 3 Analysesertifikat for HMX klasse 2.

A.4 Kontrollrapport RDX/voks

.

Til overdragere for Gaptest og bestemmelse av kritisk diameter ble RDX/voks benytt.

DYN High Ener	O gy Materials			K	ONTROLL etter E	RAPPORT I In 10204 - 3.1 I
Kjøper/Mottak	er	·-·	Bestillingsnum	mer	Rapportnumm	ег
Forsvarets F	orskningsinstitut	t	V/ Gunnar N	evstad	372	
Avd. for våpen og matriell			Bestillingsdato		Kontrolldato	
Postboks 25, 2007 Kjeller			19.08.05		24.08.05	
Produsent			Produksjonsdat	0	Offentlig oppd	lragsnummer
Dyno Nobel	ASA		04-05.04			
N-3476 Sætr	e					
NORWAY						
Lot nummer			Mengde			
			20 kg			
Sprengstofftype	CDARTT 04	514 511	Leveringsbeting	gelser/leknisk ur	nderlag	
Analynoromi	GRAFITI, 94	,5/4,5/1				
Analyseresu	ltater for loten	<u>C.</u>				Televistor
		Sammenseming		HMX	Surbet	flyktige
	RDX	Voks	Grafitt	i RDX	01/101	bestanddeler
KRAV	$94.5 \pm 0.5 \%$	4,5±0,5%	1.0 ± 0.2 %	4 -15 %	≤ 0.02 %	≤ 0,1%
DEGUTAT						
RESULTAT	017			<i>c</i> 1	0.00	0.01
08/02	94,7	4,4	0,9	6,1	0,00	0,01
	Uløste	Vacuum	Volumuokt	Kon	nfordeling %, USS	S No.
	USSS No. 60	stabilitet	VOIUNVERL	> 12	81 <	< 100
KRAV	lngen	≤ 1,2 ml/g	0,86 - 0,93g/m1	0	≤2	≤ 1
RESULTAT				~~~~~		
08/02	ingen	0,05	0,88	0	0	0,8
	· 1	(LR	Kvalitetssjef	High E M	Inergy Materials anager QA	

Figur App 4 Kontrollrapport for benyttet overdragersprengstoff.

Appendix B Viskositetsmålinger

B.1 Blanding PBXN-110 G

Brookfield RV serie v	iskosimeter	Spindel Nr. : T-D	Herder tilsatt:	Blanding Nr.:
			11:15	PBXN-110 G
14/4-07	Tid	Hastighet	Brookfield	Viskositet
Klokkeslett	(min)	(RPM)	avlesning	(cps)
11:52	37	0.5	15	600 000
11:53	38	1	27.5	550 000
11:54	39	1	27	540 000
12:26	71	1	25	500 000
12:28	73	1	21	420 000
12:29	74	0.5	12.5	500 000
12:31	76	0.5	14	560 000
12:37	82	0.5	15	600 000
12:38	83	1	26	520 000
12:56	101	1	24	480 000
12:57	102	0.5	15	600 000
12:59	104	0.5	15	600 000
13:00	105	1	28	560 000
13:20	125	1	29	580 000
13:21	126	1	26	520 000
13:22	127	0.5	13.5	540 000
13:24	129	0.5	16.5	660 000
13:32	137	0.5	17	680 000
13:34	139	0.5	16	640 000
13:35	140	1	28	560 000
13:59	164	1	34	680 000
14:01	166	0.5	19	760 000
14:03	168	0.5	19	760 000
14:04	169	1	27	540 000
14:05	170	1	32	640 000
14:28	193	1	33.5	670 000
14:30	195	0.5	20	800 000
14:32	197	0.5	21	840 000
14:33	198	1	31	620 000
14:34	199	1	34	680 000
14:59	224	1	39.5	790 000
15:01	226	0.5	21	840 000
15:03	228	0.5	24	960 000
15:04	229	1	35	700 000
15:05	230	1	36.5	730 000
15:16	241	1	43	860 000
15:18	243	0.5	25.5	1 020 000
15:20	245	0.5	25	1 000 000
15:21	246	1	41.5	830 000
15:22	247	1	39	780 000

Table-App. 1 Resultater fra viskositetsmålingene for blanding PBXN-110 G ved 50°C.

Brookfield RV serie viskosimeter		Spindel Nr. : T-D	Herder tilsatt:	Blanding Nr.:
			14:55	PBXN-110-H
14/4-07	Tid	Hastighet	Brookfield	Viskositet
Klokkeslett	(min)	(RPM)	avlesning	(cps)
15:33	38	1	17	340 000
15:34	39	1	20.5	410 000
15:36	41	0.5	13.5	540 000
15:38	43	0.5	14.0	560 000
15:58	63	0.5	14.0	560 000
15:59	64	1	25.0	500 000
16:00	65	1	24.0	480 000
16:02	67	0.5	15.0	600 000
16:12	77	0.5	12.5	500 000
16:24	89	0.5	15.0	600 000
16:25	90	1	25.5	510 000
16:26	91	1	25.0	500 000
16:28	93	0.5	14.5	580 000
17:02	127	0.5	14.5	580 000
17:03	128	1	28.0	560 000
17:04	129	1	28.0	560 000
17:06	131	0.5	16.5	660 000
17:28	153	0.5	18.5	740 000
17:29	154	1	29.0	580 000
17:30	155	1	28.0	560 000
17:32	157	0.5	17.0	680 000

B.2 Blanding PBXN-110 H

Table-App. 2 Resultater fra viskositetsmålingene for blanding PBXN-110 H ved 50°C.

Appendix C Mikseordrer og blandeskjema

C.1 Blanding PBXN-110 G

MIKSEORDRE

FOR

SPRENGSTOFF/DRIVSTOFF

Dato for utstedelse	Utsteder	Batch nr.
13/04/2007	GON	PBXN-110 G
Herdetemperatur	Herdetid	
50°C	4 DØGN	

Nr.	Ingrediens	Lot Nr.	Vekt %	Vekt (g)
1	HTPB R45-HT LO	307065	5.800	232.00
2	IDP (5.365 wt.%)	Best. Nr. 4500 142029	5.697	227.88
3	AO-4426	40903165	0.05	2.00
4	Lecithin	Best. Nr. 3-3929	0.70	28.00
5	HMX Grade B, Class 3, Dyno Nobel	1740/06-F2	61.04	2441.60
6	HMX Grade B, Class 2, Dyno Nobel	454/06	26.16	1046.40
7	Dibutyltin dilaurate (DBTDL)	286865 191	0.002	0.0800
8	Isophorone Diisocyanate (IPDI)	BA 30696393	0.551	22.04
9				
10				
	TOTAL VEKT			4000.00

<u>REKVIRERTE PRØVER:</u>

Spesifikk vekt

Viskositet Brookfield

Strekkprøving

Plate Dent

Shore A Hardness

Intermediate Scale Gap test: rør....6.. stk Detonasjons hastighet.....mm......stk Oppvarmingstest.....stk Beskytningstest.....stk

Burning Tube test.....stk

<u>MERKNADER:</u>

Innhold av HMX 87.2 vekt%. Forhold klasse 3/klasse 2 7:3.

$\begin{array}{c} \text{Troucester for mixing}\\ 14/4-07 \end{array} \qquad \begin{array}{c} Troucester for anglityter for$	Dato for miksing	Klokkeslett herdar tilsatt: 11 ¹⁵	Klokkesett ferdigmikset: 11 ⁴⁵	Operatør: GON
--	------------------	--	---	------------------

MIKSESKJEMA

Dato for miksing	Operatør	Batch nr.
14/4-07	GON	PBXN-110 G
Produkt type PBXN-110 med RS-HMX?		

Merknader/Prosedvre	Klokke-	Miksetid	Vakuun	n (mbar)	TEMPERATUR °C			
	slett start	(min)	Krav	Målt	I oljen	I kjelen	Ønsket i kjelen	
Tilsett HTPB, Lecithin, IDP, AO-2246, DBTDL	8 ³⁵	40	10	10	90	20.4 50.5	75 <u>+</u> 3	
Tilsett 2/3 HMX kl.3	9 ²⁰	5 20	 10	 10	83	47.4 58.1	55 <u>+</u> 3	
Tilsett ½ HMX kl 2	9 ⁴⁵	5 10	 10	 10	82	56.0 55.5	55 <u>+</u> 3	
Tilsett Rest HMX kl 3	10^{00}	5 10	10	 10	82	52.9 53.0	50 <u>+</u> 3	
Tilsett 1/4 HMX kl. 2	10 ⁴⁵	5 10	 10	 10	82	51.7 53.0	50 <u>+</u> 3	
Tilsett Rest HMX kl. 2	10 ³⁰	5 10	 10	 10	83	51.3 52.6	50 <u>+</u> 3	
Tilsett Nedskraping	10 ⁴⁵	30	10	10	84	50.0 52.1	50 <u>+</u> 3	
Tilsett IPDI	11 ¹⁵	5 10	10	 10	84	49.6 51.5	50 <u>+</u> 3	
Tilsett Nedskraping	11 ³⁰	15	10	10	83	50.8 50.3	50 <u>+</u> 3	
Tilsett								

VISKOSITET	°C	cP	SPINDEL RPM	•••••
VISKOSITET	°C	cP	SPINDEL RPM	•••••
VISKOSITET	°C	cP	SPINDEL RPM	•••••
VISKOSITET	°C	cP	SPINDEL RPM	•••••
VISKOSITET	°C	cP	SPINDEL RPM	•••••

MERKNADER:

Resultatet fra viskositetsmålingene er gitt på eget skjema.

Appendix C Mikseordrer og blandeskjema

C.1 Blanding PBXN-110 G

MIKSEORDRE

FOR

SPRENGSTOFF/DRIVSTOFF

Dato for utstedelse	Utsteder	Batch nr.
13/04/2007	GON	PBXN-110 G
Herdetemperatur	Herdetid	
50°C	4 DØGN	

Nr.	Ingrediens	Lot Nr.	Vekt %	Vekt (g)
1	HTPB R45-HT LO	307065	5.800	232.00
2	IDP (5.365 wt.%)	Best. Nr. 4500 142029	5.697	227.88
3	AO-4426	40903165	0.05	2.00
4	Lecithin	Best. Nr. 3-3929	0.70	28.00
5	HMX Grade B, Class 3, Dyno Nobel	1740/06-F2	61.04	2441.60
6	HMX Grade B, Class 2, Dyno Nobel	454/06	26.16	1046.40
7	Dibutyltin dilaurate (DBTDL)	286865 191	0.002	0.0800
8	Isophorone Diisocyanate (IPDI)	BA 30696393	0.551	22.04
9				
10				
	TOTAL VEKT			4000.00

<u>REKVIRERTE PRØVER:</u>

S<u>p</u>esifikk vekt

Viskositet Brookfield

Strekkprøving

Plate Dent

Shore A Hardness

Intermediate Scale Gap test: rør....6.. stk Detonasjons hastighet.....mm......stk Oppvarmingstest.....stk Beskytningstest.....stk

Burning Tube test.....stk

MERKNADER:

Innhold av HMX 87.2 vekt%. Forhold klasse 3/klasse 2 7:3.

Dato for miksing 14/4-07Klokkeslett herdar tilsatt: 1115	Klokkesett ferdigmikset: 11 ⁴⁵	Operatør: GON
--	---	------------------

MIKSESKJEMA

Dato for miksing	Operatør	Batch nr.
14/4-07	GON	PBXN-110 H
Produkt type PBXN-110 med RS-HMX?		

Merknader/Prosedyre	Klokke-	Miksetid	Vakuun	n (mbar)	TEMPERATUR °C		
	slett start	(min)	Krav	Målt	I oljen	I kjelen	Ønsket i kjelen
Tilsett HTPB, Lecithin, IDP, AO-2246, DBTDL	12 ²⁰	40	10	10	78	30.7 47.6	75 <u>+</u> 3
Tilsett 2/3 HMX kl.3	13 ⁰⁰	5 20	 10	 10	76	46.1 54.0	55 <u>+</u> 3
Tilsett ½ HMX kl 2	13 ²⁵	5 10	 10	 10	76	53.5 51.0	55 <u>+</u> 3
Tilsett Rest HMX kl 3	13 ⁴⁰	5 10	 10	 10	77	50.5 51.1	50 <u>+</u> 3
Tilsett 1/4 HMX kl. 2	1355	5 10	 10	 10	78	50.5 52.2	50 <u>+</u> 3
Tilsett Rest HMX kl. 2	14 ¹⁰	5 10	 10	 10	79	50.8 51.9	50 <u>+</u> 3
Tilsett Nedskraping	14 ²⁵	30	10	10	86	50.4 48.1	50 <u>+</u> 3
Tilsett IPDI	14 ⁵⁵	5 10	10	10	83	46.7 49.0	50 <u>+</u> 3
Tilsett Nedskraping	15 ¹⁰	15	10	10	76	48.6 55.5	50 <u>+</u> 3
Tilsett							

•••••	RPM	SPINDEL	cP	°C	VISKOSITET
•••••	RPM	SPINDEL	cP	°C	VISKOSITET
•••••	RPM	SPINDEL	сР	°C	VISKOSITET
•••••	RPM	SPINDEL	сР	°C	VISKOSITET
•••••	RPM	SPINDEL	сР	°C	VISKOSITET

MERKNADER:

Resultatet fra viskositetsmålingene er gitt på eget skjema.

Appendix D Uniaxial Tensile Test Sheets

D.1 Blanding PBXN-110 G

Report Reference Number:

STANAG 4506-DATA EXCHANGE FORMAT Uniaxial Tensile Test

Page...2....of ..3..Pages (s)

TEST SITE INFORMATION Laboratory: FFI Date: 28 April 2007 Test Procedure: Uniaxial Tensile Test NATO Test Procedure Number: STANAG 4506 Date Tested: 21 April 2007 POC: Gunnar Ove Nevstad							TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):				
SPECIMEN INFORMATION Dimensions: Length (Gage Length): 68.58 mm Width: 8.76 mm Thickness (Diameter): 11.88 mm X-Sectional Area (mm ²): 104.069 Form: JANNAF Dogbone Preparation Method: Guillotining Manufacturing Method: Coast-Cure Source: FFI Lot or ID Number: PBXN-110 G Component Percent HMX 87.2 HTPB 5.800 IDP 5.697 AO-4426 0.05 Lecithin 0.70 DBTDL 0.002 IPDI 0.551						nm 1m 169	0,120 0,120 0,100 0,000 0,	TYPICA Str 164 :modulus)	L RESULT ess/strain kurve for Pl y=0.01	FS BXN-110 G-4	14 16
Test	S T (°C)	pecimen A ₀ (mm ²)	ε (S ⁻¹)	σ _m (MPa)	ε _m (%)	σ _r (MPa)	ε _r (%)	E ₀ (MPa)	ε _m (Direct) (%)	ε _r (Direct) (%)	E ₀ (Direct) (%)
G-4	3-4 20 104.069 0.1009 11.59 14				14.44	0.0891	1.04				
Average											
(σ _(n-1))											
Data Sent To: Co						nts:	<u> </u>	ļ	Į	L	I

STANAG 4506-DATA EXCHANGE FORMAT Uniaxial Tensile Test

Report Reference Number:

Page...3...of ..3..Pages (s)

								1 45		i uges (s)	
TEST SITE INFORMATION Laboratory: FFI Date: 28 April 2007 Test Procedure: Uniaxial Tensile Test NATO Test Procedure Number: STANAG 4506 Date Tested: 21 April 2007 POC: Gunnar Ove Nevstad						Te Re X M G!	TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):				
SPECIMEN INFORMATIONDimensions:Length (Gage Length): 68.58 mm Width: 8.74 mm Thickness (Diameter): 13.32 mm X-Sectional Area (mm²): 116.417Form: JANNAF Dogbone Preparation Method: Guillotining Manufacturing Method:Cast-Cure Source: FFI Lot or ID Number: PBXN-110 G Composition: PBXN-110 G ComponentComponent HMX HTPB IDP AO-4426 Lecithin DBTDL IPDIQBTDL IPDI0.002 0.551					nm 17	0,120 0,120 0,100 0,000 0,000 0,000 0,000 0,000	TYPICA Str 065 =modulus) 2 4	L RESULT ess/strain kurve for PBXN y=0.0111 y=0.0111 b y=0.0111 y=0.0111 y=0.0111 b y=0.0111b y=0.0111b y=0.0111b y=0.0111b y=0.0111b y=0.0111b y=0.0111b y=0.0111b y=0.011b y=0.0111b y=0.011b y=0.011b y=0.011b y=0.0011b y=0.01b y=0.01b	S +110 G-5	14 16	
Test	S T (°C)	pecimen A ₀ (mm ²)	ε (S⁻¹)	σ _m (MPa)	ε _m (%)	σ _r (MPa)	ε _r (%)	E₀ (MPa)	ε _m (Direct) (%)	ε _r (Direct) (%)	E ₀ (Direct) (%)
G-3 G-4 G-5	20 20 20	109.917 104.069 116.417		0.0977 0.1009 0.1070	10.77 11.59 11.77	0.0733 0.0891 0.0965	13.97 14.44 13.20	1.06 1.04 1.11			
Avera	Average				11.38	0.0863	13.87	1.07			
($\sigma_{(n-1)}$)	(σ _(n-1))										
Data Sent To:					Commer	I nts:	<u> </u>		<u> </u>		<u> </u>

D.2 PBXN-110 G viskmasse

F

Report F Number	Referer :	ıce	ST	ANAG 4	1506-DA Un	TA EXC	CHANGE	E FORM/ est	AT Page1	of3Pa	ges (s)
TEST SITE INFORMATION Laboratory: FFI Date: 28 April 2007 Test Procedure: Uniaxial Tensile Test NATO Test Procedure Number: STANAG 4506 Date Tested: 21 April 2007 POC: Gunnar Ove Nevstad							TEST CONDITIONSTemperature (°C): 20ExtensometerRelative Humidity (%): NAYes □ No ⊠X-Head Speed (mm/min): 50Machine Type: MTS Servo Hydraulic TesterGrip Type: JANNAF DogboneMachine Stiffness (kN/mm):				
SPECIMEN INFORMATIONDimensions:Length (Gage Length): 68.58 mmWidth: 8.68 mmThickness (Diameter): 11.81 mmX-Sectional Area (mm²): 102.511Form: JANNAF DogbonePreparation Method: GuillotiningManufacturing Method: Cast-CureSource: FFILot or ID Number: PBXN-110 GCondition Period: 2 hoursComposition: PBXN-110ComponentPercentHMX87.2HTPB5.800IDP5.697AO-44260.05Lecithin0.70DBTDL0.002IPDI0.551					nm inn i11	0,160 0,140 0,120 0,000 0,	TYPICAI Stress/str G-I Visk modulus)	s an kurve for PBXN	FS -110 G-1 Visk 0148x WWWWWW 10 12	14 16	
Test	ع T (°C)	Specimen A ₀) (mm²)	ε (S⁻¹)	σ _m (MPa)	ε _m (%)	σ _r (MPa)	ε _r (%)	E₀ (MPa	ε _m (Direct) (%)	<mark>د</mark> ر (Dired) ((کار) (%)	ct) E ₀ (Direct) (%)
G-1 Visk	20	102.511		0.1238	10.02	0.0929	13.23	1.46			
Average											
(σ _(n-1))	T										
Data Sent	10:				Comm	ients:					

.

Report Refer Number:	ence	:	STANAG	G 4506-I	XCHAN(al Tensi	CHANGE FORMAT al Tensile Test Page2of3Pages (s)						
TE Laboratory: Date: 28 Apr Test Procedu NATO Test I Date Tested: POC: Gunna	FFI il 200 re: U Procect 21 A r Ove	TE INFOR 7 Jniaxial T lure Numb pril 2007 Nevstad	MATION ensile Te er: STAN	st NAG 450	16	TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):						
SPECIMEN INFORMATION Dimensions: Length (Gage Length): 68.58 mm Width: 8.69 mm Thickness (Diameter): 12.09 mm X-Sectional Area (mm ²): 105.062 Form: JANNAF Dogbone Preparation Method: Guillotining Manufacturing Method:Cast-Cure Source: Source: FFI Lot or ID Number: PBXN-110 G Component Percent HMX 87.2 HTPB 5.800 IDP 5.697 AO-4426 0.05 Lecithin 0.70 DBTDL 0.002 IPDI 0.551						TYPICAL RESULTS Stress/strain kurve for PBXN-110 G-2 Visk						
Test	Sp T (°C)	ecimen A ₀ (mm²)	٤ (S ⁻¹)	σ _m (MPa)	ε _m (%)	σ _r (MPa)	ε _r (%)	E₀ (MPa)	ε _m (Direct) (%)	ε _r (Direc t) (%)	E₀ (Direct) (%)	
G-2 Visk	20	105.062		0.114	9.87	0.088	11.12	1.33				
Average												
(σ _(n-1))												
Data Sent To:					Cor	nments:				·		

Report Refe	erence		STAN	AG 4506-	DATA E Uniaxia	XCHAN(al Tensile	GE FOF e Test	RMAT		2 D	- (-)	
Number:								P	age		s (s)	
T Laboratory: Date: 28 Ap Test Proced NATO Test Date Tested POC: Gunn	FFI FFI oril 200 lure: t Proce t: 21 A ar Ove	D7 Uniaxial To dure Numb April 2007 Nevstad	MATIO ensile T er: STA	N Test NAG 450	6	TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):						
Dimension	SPEC Is:	CIMEN INF	ORMA age Le	TION ngth): 68.	58 mm	Strace/etrain kurua for DRYN.110 C-3 Viek						
Dimensions. Lengur (edge Lengur): 00.00 mm Width: 8.73 mm Thickness (Diameter): 12.28 mm X-Sectional Area (mm²): 107.204 Form: JANNAF Dogbone Preparation Method: Guillotining Manufacturing Method:Cast-Cure Source: FFI Lot or ID Number: PBXN-110 G Component Percent HMX 87.2 HTPB 5.800 IDP 5.697 AO-4426 0.05 Lecithin 0.70 DBTDL 0.002 IPDI 0.551						0,140 0,120 0,100 0,100 0,000 0,040 0,020	-PBXN-110 G-3 Visk -Lineær (E-modulus)		y=0,0126x - 0,0025	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
						0	2	4 6	8 10 Strain (%)	12	14 16	
Test	T O°C	Specimen A_0 (mm^2)	ε (S ⁻¹)	σ _m (MPa)	ε _m (%)	σ _r (MPa)	ε _r (%)	E₀ (MPa)	ε _m (Direct) (%)	ε _r (Direct) (%)	E₀ (Direct) (%)	
G-1 Visk G-2 Visk G-3 Visk	20 20 20	102.511 105.062 107.204		0.1238 0.114 0.1253	10.02 9.87 12.53	0.0929 0.088 0.1093	13.23 11.12 13.55	1.46 1.33 1.26				
Average 0.1210					10.81	0.0967	12.63	1.35				
(ơ _(n-1))												
Data Sent T	ō:				Comm	ients:						

D.3 B	Blanding PBXN-1	10 H
-------	-----------------	------

H

Report Numbe	Refere er:	ence	S	TANAG 4	506-DA ⁻ Un	TA EXC	HANGE ensile T	FORMA est	T Page1	of4Page	es (s)	
Labora Date: 2 Test Pr NATO Date To POC: C	TE tory: 1 8 Apri tocedur Test P ested: Gunnar	ST SITE II FFI il 2007 re: Uniax Procedure l 21 April 2 Ove Nevs	IFORM ial Ten Number 2007 stad	ATION sile Test : STANAG	i 4506		TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):					
SPECIMEN INFORMATION Dimensions: Length (Gage Length): 68.58 mm Width: 8.65 mm Thickness (Diameter): 11.50 mm X-Sectional Area (mm ²): 99.475 Form: JANNAF Dogbone Preparation Method: Guillotining Manufacturing Method:Cast-Cure Source: Source: FFI Lot or ID Number: PBXN-110 G Component Percent HMX 87.2 HTPB 5.697 AO-4426 0.05 Lecithin 0.70 DBTDL 0.002 IPDI 0.551						nm 1m 75	TYPICAL RESULTS Stress/strain kurve for PBXN-110 H-1 Bland 0,100 0,000 0,000 0,000					
Test H-1	S T (°C) 20	pecimen A ₀ (mm ²) 99.475	ε (S ⁻¹)	σ _m (MPa) 0.1080	ε _m (%) 10.33	σ _r (MPa) 0.0736	ε _r (%) 14.28	E ₀ (MPa)	٤ _m (Direct) (%)	ε _r (Direct) (%)	E ₀ (Direct) (%)	
Avera	Average											
(σ _(n-1))											
Data S	ent To:				Commer	nts:						

Report Reference Number:	STANAG 4506-DATA EXCHANGE FORMAT Report Reference Uniaxial Tensile Test Number: Page2of4Pages (s)											
TEST SITE I Laboratory: FFI Date: 28 April 2007 Test Procedure: Unia: NATO Test Procedure Date Tested: 21 April : POC: Gunnar Ove Nev	NFORMA kial Tensi Number: \$ 2007 stad	TION ile Test STANA	.G 4506		TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):							
SPECIME Dimensions: Leng Widt Thick X-Se Form: JANNAF Dogb Preparation Method: Manufacturing Metho Source: FFI Lot or ID Number: PE Condition Period: 2 f Composition: PBXN- Component <u>HMX</u> <u>HTPB</u> IDP <u>AO-4426</u> Lecithin <u>DBTDL</u> IPDI	mm 599	0,120 PBXN-11 Linear (0,100 0,000 0,000 0,040 0,020 0,000	TYPICA Stress/st	AL RESUL	-TS N-110 H-2 Bland							
	, <u>,</u>						Strain (%)				
Test Specimen T A ₀ (°C) (mm ²)	ε (S ⁻¹)	σ _n (MP	a) (%)	σ _r (MPa)	ε _r (%)	E₀ (MPa)	ε _m (Direct) (%)	ε _r (Direct) (%)	E₀ (Direct) (%)			
H-2 20 111.599).1072	11.26	0.0853	13.04	1.19						
Average												
(σ _(n-1))												
Data Sent To:	<u> </u>		Comments:									

٦

Г

Report Reference Number:	Report Reference STANAG 4506-DATA EXCHANGE FORMAT Number: Page3of4Pages (s)												
TEST SITE Laboratory: FFI Date: 28 April 2007 Test Procedure: Unia NATO Test Procedure Date Tested: 21 April POC: Gunnar Ove New	NFORMATION xial Tensile Test Number: STANAG 450 2007 stad	06	TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):										
SPECIME Dimensions: Leng Widt Thic X-Se Form: JANNAF Dogt Preparation Method: Manufacturing Method Source: FFI Lot or ID Number: PE Condition Period: 2 Composition: PBXN- Component <u>HMX HTPB IDP AO-4426 Lecithin DBTDL IPDI</u>	N INFORMATION th (Gage Length): 68 h: 8.78 mm kness (Diameter): 12. ectional Area (mm ²): 1 bone Guillotining id:Cast-Cure BXN-110 G hours 110 Percent 87.2 5.800 5.697 0.05 0.70 0.002 0.551	8.58 mm .02 mm 105.536	TYPICAL RESULTS Stress/strain kurve for PBXN-110 H-3 Bland 0,120 PBXN-110 H-3 Bland 0,120 Unexer (E-modulus) 0,100 y=0,0125x 0,000 Watch of the second seco										
Test Specimen T A ₀ (°C) (mm²)	ε σm ε (S ⁻¹) (MPa) (%	^c m σ _r %) (MPa)	ε _r E₀ (%) (MPa)	٤ _m (Direct) (%)	ε _r (Direct) (%)	E₀ (Direct) (%)							
H-3 20 105.536	0.1157 11	.12 0.0979	13.61 1.25										
Average													
(σ _(n-1))													
Data Sent To:	Co	Comments:											

STANAG 4506-DATA EXCHANGE FORMAT Report Reference Uniaxial Tensile Test Number: Page4of4Pages (s)											
TEST SITE I Laboratory: FFI Date: 28 April 2007 Test Procedure: Unia: NATO Test Procedure Date Tested: 21 April : POC: Gunnar Ove Nev	NFORMATI kial Tensile Number: ST 2007 stad	ON Test TANAG	4506		TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):						
SPECIME Dimensions: Leng Widt Thick X-Se Form: JANNAF Dogb Preparation Method: Manufacturing Method Source: FFI Lot or ID Number: PE Condition Period: 2 f Composition: PBXN- Component HMX HTPB IDP AO-4426 Lecithin DBTDL IPDI	t <u>0</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	nm 1m 250	Stress/strain kurve for PBXN-110 H-4 Bland								
Test Specimen T A ₀ (°C)	ε (S ⁻¹)	σ _m (MPa)	٤ _m (%)	σ _r (MPa)	٤ _r (%)	E₀ (MPa)	Strain (Em (Direct) (%)	%) ε _r (Direct) (%)	E ₀ (Direct) (%)		
H-1 20 99.475 H-2 20 111.599 H-3 20 105.536 H-4 20 109.750	0.1 0.1 0.1 0.1	080 072 157 090	10.33 11.26 11.12 11.93	0.0736 0.0853 0.0979 0.0756	14.28 13.04 13.61 14.42	1.24 1.19 1.25 1.15	,				
Average ($\sigma_{(n,1)}$)	0.1	100	11.16	0.0831	13.84	1.21					
Data Sent To:			Commer	nts:							

Г

Report Reference	STANAG 4506-DA Unia	TA EXCHANGE FORMAT xial Tensile Test	$1 \circ f 2 \operatorname{Pagag}(c)$				
TEST SITE INF Laboratory: FFI Date: 28 April 2007 Test Procedure: Uniaxial NATO Test Procedure Nu Date Tested: 21 April 200 POC: Gunnar Ove Nevsta	ORMATION Tensile Test mber: STANAG 4506 7 d	TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):					
SPECIMEN I Dimensions: Length Width: a Thickne X-Secti Form: JANNAF Dogbon Preparation Method: Gu Manufacturing Method: Gu Manufacturing Method: Gu Source: FFI Lot or ID Number: PBXN Condition Period: 2 hou Composition: PBXN-110 Composition: PBXN-110 Component <u>HMX HTPB IDP</u> <u>AO-4426 Lecithin</u> <u>DBTDL</u> IPDI	NFORMATION (Gage Length): 68.58 m 3.72 mm iss (Diameter): 11.51 mr iss (Diameter): 11.51 mr onal Area (mm ²): 100.36 e illotining Cast-Cure N-110 G irs) Percent <u>87.2</u> <u>5.800</u> <u>5.697</u> <u>0.05</u> <u>0.05</u> <u>0.70</u> <u>0.551</u>	TYPICAL RES Stress/strain kurve for 0,140 0,120 0,120 0,120 0,100 0,000	SULTS or PBXN-110 H-1 Visk				
Test Specimen T A ₀ (°C) (mm²)	ε σ _m ε _m (S ⁻¹) (MPa) (%)	σ _r ε _r E ₀ (MPa) (%) (MPa)	$\begin{array}{c c} \boldsymbol{\epsilon}_{m} & \boldsymbol{\epsilon}_{r} & \boldsymbol{E}_{0} \\ (\text{Direct}) & (\text{Direct}) & (\text{Direct}) \\ (\%) & (\%) & (\%) \end{array}$				
H-1visk 20 100.367	0.1216 10.7	3 0.0949 13.59 1.34					
Average							
(G _(n-1)) Data Sent To:	Ca	nments:					

D.4 PBXN-110 H viskmasse

Report Reference	STAN	IAG 450	6-DAT Unia	TA EXCI xial Ten	HANGE sile Tes	FORMA t	т					
Number:							Page2	.of2Page	es (s)			
TEST SITE IN Laboratory: FFI Date: 28 April 2007 Test Procedure: Uniaxi NATO Test Procedure N Date Tested: 21 April 20 POC: Gunnar Ove Nevst	FORMATION Il Tensile Te: umber: STAN 07 ad	st VAG 450	6		TEST CONDITIONS Temperature (°C): 20 Extensometer Relative Humidity (%): NA Yes □ No ⊠ X-Head Speed (mm/min): 50 Machine Type: MTS Servo Hydraulic Tester Grip Type: JANNAF Dogbone Machine Stiffness (kN/mm):							
SPECIMEN Dimensions: Length Width:	INFORMAT (Gage Lene 8.77 mm	TION gth): 68.	58 mn	0,14	0,140 TYPICAL RESULTS Stress/strain kurve for PBXN-110 H-2 Visk							
Thickr X-Sec Form: JANNAF Dogbo Preparation Method: G Manufacturing Method Source: FFI Lot or ID Number: PBX Condition Period: 2 ho Composition: PBXN-17 Component <u>HMX HTPB IDP</u> AO-4426	1 4 0,12 0,10 0,10 0,10 0,04 0,04		inus)	y = 0,0132x - 1E-	y Mr.	M _M Y						
Lecithin DBTDL IPDI		0.003 0.70 0.002 0.551		0,02			6 8 Strain (%)	10 12				
Test Specimen T A ₀ (°C) (mm²)	ε (S ⁻¹) (Μ	σ _m /IPa)	ε _m (%)	σ _r (MPa)	ε _r (%)	E₀ (MPa)	ε _m (Direct) (%)	ε _r (Direct) (%)	E ₀ (Direct) (%)			
H-1Visk 20 100.367 H-2Visk 20 112.344	0.12	216 10 260 10	0.73 0.93	0.0949 0.1020	13.59 14.13	1.34 1.32						
Average).83	0.0985	13.86	1.33								
(σ _(n-1))												
Data Sent To:	C	Commen	its:		<u> </u>	<u> </u>	l	<u> </u>				

FFI-rapport 2007/01569

Appendix E Sjokktrykk som funksjon av barrieretykkelse

STANAG 4488 (16) gir sammenhengen mellom barrieretykkelse og trykket som testrørene blir utsatt for ved detonasjon av 2 overdragere hver på 80.0 g RDX/voks/grafitt (94.5/4.5/1). Tabell App. 3 er en gjengivelse av disse dataene. Figur App. 5 viser en grafisk gjengivelse av de samme dataene.

Antall	Barriere	Trykk	Antall	Barriere	Trykk	Antall	Barriere	Trykk
kort	tykkelse	(kbar)	kort	tykkelse	(kbar)	kort	tykkelse	(kbar)
	(mm)			(mm			(mm	
10	1.90	185.4	170	32.30	40.4	285	54.15	13.5
20	3.80	168.6	175	33.25	38.5	290	55.10	12.9
30	5.70	153.2	180	34.20	36.7	295	56.05	12.3
40	7.60	139.3	185	35.15	35.0	300	57.00	11.7
50	9.50	126.7	190	36.10	33.4	305	57.95	11.1
60	11.40	115.1	195	37.05	31.8	310	58.90	10.6
70	13.30	104.7	200	38.00	30.3	315	59.95	10.1
80	15.20	95.2	205	38.95	28.9	320	60.80	9.7
90	17.10	86.5	210	39.90	27.6	325	61.75	9.2
100	19.00	78.7	215	40.85	26.3	330	62.70	8.8
105	19.95	75.0	220	41.80	25.1	335	63.65	8.4
110	20.90	71.5	225	42.75	23.9	340	64.60	8.0
115	21.85	68.2	230	43.70	22.8	345	65.55	7.6
120	22.80	65.0	235	44.65	21.7	350	66.50	7.2
125	23.75	62.0	240	45.60	20.7	355	67.45	6.9
130	24.70	59.1	245	46.55	19.7	360	68.40	6.6
135	25.65	56.4	250	47.50	18.8	365	69.35	6.3
140	26.60	53.7	255	48.45	18.0	370	70.30	6.0
145	27.55	51.2	260	49.40	17.1	375	71.25	5.7
150	28.50	48.8	265	50.35	16.3	380	72.20	5.4
155	29.45	46.6	270	51.30	15.6	385	73.15	5.2
160	30.40	44.4	275	52.25	14.8	390	74.15	5.0
165	31.35	42.3	280	53.20	14.1	395	75.05	4.7

Table-App. 3 Tabellen viser sammenhengen mellom barrieretykkelse og utøvet trykk fra overdragerne(NB tykkelsen på korta i tabellen er forskjelling fra den vi har benyttet!).

Figur App 5 Figuren viser sjokktrykk som funksjon av barrieretykkelse i Intermediate Scale Gap test.