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ELECTROMAGNETIC SHADOW EFFECTS BEHIND WIND TURBINES 

1 INTRODUCTION 

There is at present a considerable interest in renewable energy sources, and a large number of 
onshore and offshore wind farms are currently under planning or being developed, both in 
Norway and in several other countries.  
 

 
Figure 1.1 Wind farm in Magdeburg, Germany. 

Wind turbines are large structures, and a wind farm typically consists of several turbines that 
are distributed over a wide area. Depending on location, the development of a wind farm in a 
particular area may conflict with Defence interests by degrading the performance of Defence 
installations such as radars or telecommunications systems. Forsvarets forskningsinstitutt (FFI) 
is currently looking into the matter through the FFI-project 1013 VINDKRAFT (“The effect of 
windmill development on telecommunication and radar”).  
 
One potential problem is the electromagnetic shadow that is cast behind a wind turbine when 
the wind turbine is illuminated by a radar. The shape and the strength of the shadow will 
depend on the radar frequency. This report studies the shadow effect, and draws some 
conclusions regarding its significance. 
  
The outline of the report is as follows: Chapter 2 presents the theory for electromagnetic 
shadow effects behind wind turbines. In Chapter 3 a literature study is performed that forms 
the basis for a comparison with our findings. Chapter 4 presents the results of our calculations, 
and Chapter 5 gives an analysis of our findings. A summary is given in Chapter 6. Appendices 
A-C cover the theory for shadow effects in detail, while Appendices D-E present matter related 
to the implementation of the shadow effects in the software WTES (Wind Turbine and 
Electromagnetic Systems) (1) developed by the FFI-project 1013 VINDKRAFT. 
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2 THEORY 

We will in this chapter present the theory for shadow effects behind wind turbines. We start by 
giving a description of the general features of wind turbines (Section 2.1), followed by a short 
introduction to the nature of electromagnetic shadowing (Section 2.2). In Section 2.3 we 
present the infinitely long conducting cylinder model that is used to represent the wind turbine, 
and in Section 2.4 we derive equations that can be used to quickly calculate the shadow 
boundary and depth behind a wind turbine. 

2.1 Wind turbines 

Wind turbines are large constructions that are significantly different from buildings and other 
structures in the terrain such as electricity pylons, large chimneys, etc. This difference is not 
only due to their physical size but also the shapes and materials used. 
 
Typical modern turbines are of the horizontal axis type with three blades that rotate in the 
vertical plane. The electrical generation equipment is housed behind the blade-hub in an 
enclosed structure that can be rotated about the vertical axis to orientate the blades into the 
wind. The housing is mounted on the top of a cylindrical or gradually tapering tower usually of 
hollow steel construction. Figure 2.1 shows a photo of a wind turbine. 
 

Figure 2.1 Photo of a typical wind turbine. 
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The wind turbine consists of three parts:  
1) The tower 
2) The nacelle 
3) The blades 

 
The tower height can vary from about 50 m for small wind turbines up to 120 m for large wind 
turbines. Corresponding blade lengths are 30-60 m. The total height of the wind turbine can 
reach 180 m for the largest turbines. Table 2.1 shows typical dimensions for different wind 
turbines. 
 

 
Table 2.1 Typical dimensions for wind turbines (Table 1 in (4)). 

A wind farm consists of several wind turbines that are distributed over a large area. The 
turbines are separated by distances that are dictated by local terrain features and the desire to 
minimize the effect of airflow disturbances on successive turbines in the flow. Usually, the 
wind turbines are spaced 2-3 diameters apart in the cross-wind direction of the prevailing 
wind. Figure 2.2 shows a typical wind farm. 
 

 
Figure 2.2 Example of a wind farm (Figure 3.1 in (8)). 
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2.2 Shadow effects behind wind turbines 

Shadowing is a familiar phenomenon in daily life. Objects on the ground (buildings, cars, 
trees, persons, etc.) cast a clearly defined shadow behind them when lit by the sunlight, see 
Figure 2.3. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 The shadow cast by a person standing in the sunlight. 

Visible light from the sun has wavelengths in the range 400 800 nmλ = − , while the physical 
dimension of objects that surround us is typically of the order of meters (  few metersD ∼ ). 
Hence, the wavelength of the incoming sunlight is much smaller than the size of the objects 
that cast the shadow, i.e., Dλ � . In this case, the shadow cast behind the object has a clearly 
defined border. Inside the border the shadow is completely dark, while outside the border there 
is no shadow. 
 

 
Figure 2.4 The shadow cast behind a cylinder that has dimensions of the same order as the 

wavelength of the incoming electromagnetic wave. Courtesy of EADS (5). 

The electromagnetic waves emitted by radars have wavelengths in the range of centimeters to 
meters, while wind turbines have physical dimensions in the order of meters. The wavelength 
of the incoming electromagnetic wave is therefore of the same order as the size of the wind 
turbine, i.e., Dλ ∼ . In this case, the shadow behind the wind turbine will not be completely 
dark and will not have a clearly defined border. The reason for this is that the waves “bend” 
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around the wind turbine and partly penetrates into the shadow region behind the turbine. This 
is illustrated in Figure 2.4 and Figure 2.5. 
 
The wind turbine has a complex shape and different parts may contribute differently to the 
shadow effect. To simplify the calculations we will assume that the tower is the main source of 
the shadowing, and that the contribution from the nacelle and the blades can be neglected. The 
tower can be modelled as an infinitely long conducting cylinder, and the infinitely long 
conducting cylinder model will be presented in the following section.  
 

 
Figure 2.5 The electromagnetic shadow cast behind a wind turbine (Figure 3.4 in (8)). 

2.3 The infinitely long conducting cylinder model 

In the infinitely long conducting cylinder model the wind turbine is modelled as an infinitely 
long conducting cylinder with radius cylr . The incoming (from the radar) electromagnetic 

primary wave prim
zE  is assumed to be a plane wave with electric field component along the z -

axis only. It is also assumed that the electric field is homogeneous in the z -direction. The 
problem can then be solved in 2 dimensions. The geometry of the problem is shown in Figure 
2.6. 
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Primary wave

 
Figure 2.6 Diffraction on an infinitely long conducting cylinder (cross-section in the xy-

plane). 

The total electric field tot
zE  around the cylinder is given by 

 
sectot prim

z z zE E E= +  (2.1) 
 
Here prim

zE  is the incoming primary field 
 

cos
0

prim jkr
zE E e ϕ=  (2.2) 

 
where 0E  is the electric field amplitude, r  is the distance from the cylinder, ϕ  is the angle 
around the cylinder, and 2 /k π λ=  is the wave number with λ  being the wavelength. 
  

sec
zE  is the secondary field that is generated by the cylinder in response to the incoming field 

 
sec (2)

0
( ) cos( )z m m

m
E A H kr mϕ

∞

=

= ∑  (2.3) 

 
Here (2)

mH  are Hankel functions of the second kind, and the coefficients mA  are given by 
 

0 0
0 (2)

0

( )
( )

cyl

cyl

E J kr
A

H kr
= −  (2.4) 

 
and 
 

0 (2)

( )
2

( )
m cylm

m
m cyl

J kr
A j E

H kr
= −  (2.5) 

 
The summation in Equation (2.3) for the secondary field can be terminated when m M= , 
where M  is given by 
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ceil 10 6.4 cylr
M

λ
⎡ ⎤⎛ ⎞

= + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (2.6) 

 
Equation (2.6) is valid for / 1000cylr λ ≤ . 

2.4 Boundary and depth of the shadow region 

The boundary and depth (reduction in the electric field) of the shadow region can be 
determined from Equations (2.1)-(2.5). This may, however, be time consuming especially for 
high frequencies where the number of terms that must be included in the summation in 
Equation (2.3) is large. We have therefore derived separate equations that can be used to 
quickly calculate the shadow boundary and depth. Details can be found in Appendix B. 

2.4.1 The shadow boundary equation 

We define the shadow boundary to be the closest cross-range distance bY , at given distance d  
behind the cylinder, where the total electric field tot

zE  is equal to the unperturbed electric field, 
i.e., where there is no shadow. The shadow boundary can then be calculated from (see 
Appendix B.1) 
 

0

0
0

0

( ),                                 
( )

,       

b

b b cyl
cyl

y d d d
Y y d r

r d d d
d

>⎧
⎪= ± −⎛ ⎞⎨ + ⋅ ≤⎜ ⎟⎪

⎝ ⎠⎩

 (2.7) 

 
where 
 

( ) cyl
b

d r
y d

w
⋅

=  (2.8) 

 
and 
 

0

5 ,       1

5 ,                  1

cyl cyl
cyl

cyl
cyl

r r
r

d
r

r

λ λ

λ

⎧ ⎛ ⎞
⋅ >⎪ ⎜ ⎟⎪ ⎝ ⎠= ⎨

⎪ ≤⎪⎩

 (2.9) 

 
Here cylr  is the cylinder radius, λ  is the wavelength, and w  is given by 

 
k

cylr
w g

λ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

 (2.10) 
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where g  and k  are two constants given by 
 

1.6
0.96

g
k
=
=

 (2.11) 

2.4.2 The shadow depth equation 

The shadow depth can be calculated from (see Appendix B.2) 
 

20 lg
b

tot
z

cyl

dE a
r

−
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.12) 

 
where cylr  is the cylinder radius, d  is the distance behind the cylinder, and a  is given by 

 
s

cylr
a u

λ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

 (2.13) 

  
where λ  is the wavelength, and u  and s  are two constants given by 
 

27.714
0.22298

u
s
= −
=

 (2.14) 

 
The parameter b  is given by 
 

( ) ( ) ( )3 2

3 2 1 0lg lg / lg / lg /cyl cyl cylb q r q r q r qλ λ λ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅ +⎣ ⎦ ⎣ ⎦  (2.15) 

 
where the coefficients 0 3q q−  have the following values 
 
0.1 10cylr

λ≤ ≤ : 
 

0

1

2

3

0.2395
0.02645
0.01852
0.003527

q
q
q
q

= −
= −
= −
= −

 (2.16) 

and 
 
10 1000cylr

λ< ≤ : 
 

0

1

2

3

0.2395
  0.01692

0.08798
  0.02256

q
q
q
q

= −
=
= −
=

 (2.17) 
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3 LITERATURE STUDY 

We have studied the available literature on shadow effects behind wind turbines. The purpose 
was to evaluate the validity of our use of the infinitely long conducting cylinder model for the 
wind turbine and to be able to adjust the parameters in the model so that it represents the 
reality as closely as possible. 
 
The following papers were included in the study: 
 
Paper I: C Samela, C Fernandes, L Fauro: TV Interference from Wind Turbines. 
 
Paper II: J G Gallagher (2003): Radio frequency and radar shadowing, The impact of 

Robin Wigg wind turbines on maritime radio frequency systems, Technical 
report, QINETIQ/S&E/SPS/TR030449. 

 
Paper III: D Trappeniers and E Van Lil (2005): Computation of the effects of wind 

turbines on aeronautical radar and communication systems, Version 8, 29-07-
2005, Belgocontrol. 

 
Paper IV: A. Frye and B. D. Bloch (2003): Final report: Effect of obstacles on HF-

supported guidance systems, Follow-up study, EADS Deutschland GmbH. 
 
Paper V: M Howard and C Brown (2004): Results of the electromagnetic investigations 

and assessments of marine radar, communications and positioning systems 
undertaken at the North Hoyle wind farm by QinetiQ and the Maritime and 
Coastguard Agency, QinetiQ/03/00297/1.1, MCA MNA 53/10/366, 22 
November 2004. 

3.1 Paper I 

Paper I studies the TV interference from wind turbines (7). 
 
The wind turbine is modelled as an infinitely long conducting cylinder with radius 1.5 mwr = . 
The cylinder is illuminated by an incoming plane wave that is normal to the surface of the 
cylinder. The generated secondary field is calculated from (Equation (1) in (7)) 
 

( )0sec (2) (2)
0 0(2) (2)

00

( ) ( )
( ) 2 ( ) cos( )

( ) ( )
mcyl m cylI

z m
mcyl m cyl

J kr J kr
E E H kr j H kr m

H kr H kr
ϕ

∞

=

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (3.1) 

 
with the primary field given by cos

0
I prim jkr

zE E e ϕ−= . This corresponds to Equations (2.2)-(2.5) 
in this report if substituting j−  by j+  in the expressions for the primary and secondary fields 
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above1. Note also the opposite sign of the secondary field secI
zE  (compared to Equation (2.3)). 

This means that the total field I tot
zE  is given by 

 
secI tot I prim I

z z zE E E= −  (3.2) 
 
Paper I presents a plot of the electric field around the cylinder at 100 MHz (see Figure 3.1 in 
this report) together with numbers for the electric field at different frequencies and distances 
behind the cylinder (see Table 3.1 in this report). We have performed the same calculations for 
comparison. Figure 3.2 and Table 3.1 show the results. 
 
Figure 3.1 (paper I) and Figure 3.2 (our calculations) show the electric field behind the 
cylinder at 100 MHz. We see that there is good agreement between the two figures. Both show 
similar patterns of light (high electric field) and dark (low electric field) areas. This is as 
expected, since the same model (infinitely long conducting cylinder) was used in both cases. 
Differences in dynamic range in the two figures may be explained by the use of different grid 
resolution during the calculations and /or different choice of cut-off value for the dynamic 
range. 
 
Table 3.1 shows the maximum reduction in the electric field at different frequencies and 
distances behind the cylinder as calculated by paper I for a cylinder radius of wr =1.5 m. The 
corresponding numbers calculated by us are given in parentheses. The last column in the table 
shows the cylinder radius cylr  that we would use in our calculations to obtain the same results 

as paper I. We see that for both 100 MHz and 1 GHz there is reasonably good agreement 
between the numbers calculated by us and those calculated by paper I.  
 
 

Frequency Distance Maximum reduction in 
electric field  rw rcyl 

100MHz 100m <3dBV/m  (2.2dBV/m) 1.5m <2.1m 
1GHz 100m 8.5dBV/m (6.2dBV/m) 1.5m 2.0m 

Table 3.1 Maximum reduction in the electric field for given frequency and distance behind 
the cylinder. The column marked rw shows the cylinder radius used by paper I 
for the calculations, while the column marked rcyl shows the cylinder radius used 
in this report to obtain the same values. Numbers in parentheses show the 
results for the maximum reduction in the electric field when we use rcyl= rw. 

 

                                                 
1 Using -j (paper I) instead of + j (this report) in the expressions for the primary and secondary fields corresponds 
to reversing the directions of the field. Therefore, when using - j the angle φ=0 corresponds to “behind” the 
cylinder as opposed to φ=π when using + j in the equations. 



 17  
 

 
   

 
Figure 3.1 Figure 2 in (7) showing the electric field behind an infinitely long conducting 

cylinder with radius 1.5 m at 100 MHz. The cylinder is situated in the lower left 
corner of the figure, and the incoming electromagnetic plane wave moves in the 
+y-direction. Range; –3 dBV/m (black) to 1.5 dBV/m (white). 

 
Figure 3.2 The electric field behind an infinitely long conducting cylinder with radius 1.5 m 

at 100 MHz (compare with Figure 3.1). The cylinder is situated in the lower left 
corner of the figure, and the incoming electromagnetic plane wave moves in the 
+y-direction. Range; –2.1 dBV/m (black) to 1.6 dBV/m (white). 
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3.2 Paper II 

Paper II studies the impact of wind turbines on radio frequency systems (6). 
 
The wind turbine is modelled as a perfectly conducting cylinder with radius 2.6 mwr = . The 
cylinder is illuminated by an incoming plane wave that is normal to the surface of the cylinder. 
Paper II does not give the equations that the calculations are based on. However, for an 
infinitely long perfectly conducting cylinder the equations should be the same as Equations 
(2.1)-(2.5) in this report. Paper II does not, however, specifically state that the cylinder is 
infinitely long.  
 
Paper II presents plots of the reduction in echo strength behind the cylinder at 9.4 GHz (Figure 
3.3 and Figure 3.5 in this report) together with several figures showing the corresponding 
cross-range cuts at different distances behind the cylinder (Figure 3.7, Figure 3.9, and Figure 
3.11 in this report). Numbers for the reduction in echo strength at different frequencies and 
distances behind the cylinder are also given (see Table 3.2 in this report). We have performed 
the same calculations for comparison. Figure 3.4, Figure 3.6, Figure 3.8, Figure 3.10, Figure 
3.12, and Table 3.2 show the results. 
 
Figure 3.3 and Figure 3.5 (paper II) and Figure 3.4 and Figure 3.6 (our calculations) show the 
reduction in echo strength behind the cylinder at 9.4 GHz. We see that there is good agreement 
between the figures, showing similar patterns for the reduction in echo strength. This is as 
expected, since the same model (perfectly conducting cylinder) was used in both cases. 
Differences in dynamic range in the figures may be explained by the use of different grid 
resolution during the calculations and/or different choice of cut-off value for the dynamic 
range. 
 
Figure 3.7, Figure 3.9, and Figure 3.11 (paper II) and Figure 3.8, Figure 3.10, and Figure 3.12 
(our calculations) show cross-range cuts of the reduction in echo strength at 9.4 GHz at 
different distances behind the cylinder. We see that there is good agreement between our 
results and the results of paper II. The shape of the curves is similar, and the width and depth 
of the shadow region behind the cylinder (around 0y = ) are of the same size. 
 
Table 3.2 shows the reduction in echo strength for given frequency and distance behind the 
cylinder as calculated by paper II for a cylinder radius of wr =2.6 m. The corresponding 
numbers calculated by us are given in parentheses. The last column in the table shows the 
cylinder radius cylr  that we would use in our calculations to obtain the same values as paper II. 

At 9.4 GHz and a distance of 1000 m behind the cylinder our results for the reduction in echo 
strength (11-21 dBs) agree well with the results found by paper II (10-20 dBs). At 2000 m 
behind the wind turbine paper II gives an order of size estimate for the reduction in echo 
strength (~ 10 dBs), and this value falls well inside the range calculated by us (8-14 dBs). We 
conclude that there is good agreement between our results and the results of paper II. 
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Figure 3.3 Figure 1 in (6) showing the reduction in echo strength behind a conducting 

cylinder with radius 2.6 m at 9.4 GHz. Range; -50dBs (dark blue) to 5 dBs (red). 

 
Figure 3.4 Reduction in echo strength behind an infinitely long conducting cylinder with 

radius 2.6 m at 9.4 GHz (compare with Figure 3.3). Range;  –105 dBs (black) to 
4 dBs (white). 
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Figure 3.5 Figure 2 in (6) showing the reduction in echo strength behind a conducting 

cylinder with radius 2.6 m at 9.4 GHz. Range; -50dBs (dark blue) to 5 dBs (red). 

 

Figure 3.6 Reduction in echo strength behind an infinitely long conducting cylinder with 
radius 2.6 m at 9.4 GHz (compare with Figure 3.5). Range; -99 dBs (black) to 
5 dBs (white). 
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Figure 3.7 Figure 3 in (6) showing cross-range cuts of the reduction in echo strength at 

100 m and 200 m behind a conducting cylinder with radius 2.6 m at 9.4 GHz. 

 

 
 

 
Figure 3.8 Cross-range cuts of the reduction in echo strength at 100 m and 200 m behind 

an infinitely long conducting cylinder with radius 2.6 m at 9.4 GHz (compare 
with Figure 3.7). 
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Figure 3.9 Figure 3 in (6) showing cross-range cuts of the reduction in echo strength at 

500 m and 1000 m behind a conducting cylinder with radius 2.6 m at 9.4 GHz. 

 

 
 

 
Figure 3.10 Cross-range cuts of the reduction in echo strength at 500 m and 1000 m behind 

an infinitely long conducting cylinder with radius 2.6 m at 9.4 GHz (compare 
with Figure 3.9). 
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Figure 3.11 Figure 4 in (6) showing cross-range cuts of the reduction in echo strength at 

5000m and 10000m behind a conducting cylinder with radius 2.6 m at 9.4 GHz. 

 

 
 

 
Figure 3.12 Cross-range cuts of the reduction in echo strength at 5000 m and 10000 m 

behind an infinitely long conducting cylinder with radius 2.6 m at 9.4 GHz 
(compare with Figure 3.11). 
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Frequency Distance Reduction in echo strength rw rcyl 
9.4GHz 1000m 10-20dBs  (11-21dBs) 2.6m 2.6m 
9.4GHz 2000m ~ 10dBs     (8-14dBs) 2.6m 2.6m 

Table 3.2 Reduction in echo strength for given frequency and distance behind the cylinder. 
The column marked rw shows the cylinder radius used by paper II for the 
calculations, while the column marked rcyl shows the cylinder radius used in this 
report to obtain the same values. Numbers in parentheses show the results for 
the reduction in echo strength when we use rcyl= rw. 

3.3 Paper III 

Paper III studies the effects of wind turbines on aeronautical radars and communication 
systems (4).  
 
The calculations in paper III are based on geometric-optical diffraction theory, inclusive slope 
diffraction. The tower base is approximated by a polygon with 17 sides (heptadecahedron), and 
it is assumed that its outer side planes are perfectly conducting. The rotor blades are tilted 6° 
and are assumed to have perfectly conducting outer surfaces. Figure 3.13 shows two of the 
wind turbine models that are used in paper III. 
 
 

 
Figure 3.13 Figure 2 in (4) showing the geometric implementation of a “large” (left figure) 

and “giant” (right figure) wind turbine. 
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Paper III presents a plot of the reduction in echo strength behind a large wind turbine with 
radius 3 mwr =  at 9.065 GHz (Figure 3.14 in this report). It also presents a corresponding 
cross-range cut at a distance 900 m behind the wind turbine (Figure 3.16 in this report).We 
have performed the same calculations for comparison. Figure 3.15 and Figure 3.17 show the 
results. 
 
Figure 3.14 (paper III) and Figure 3.15 (our calculations) show the reduction in echo strength 
at 9.065 GHz behind respectively a large wind turbine and an infinitely long conducting 
cylinder, both with radius 3 m. We see that there is good agreement between the two figures, 
showing similar patterns for the reduction in echo strength. Differences in the dynamic range 
in the figures may be explained by use of different grid resolution during the calculations 
and/or different choice of cut-off value for the dynamic range. 
 
Figure 3.16 (paper III) and Figure 3.17 (our calculations) show the corresponding cross-range 
cuts at a distance 900 m behind respectively the wind turbine and the cylinder. We see that 
there is a good overall agreement between the two figures. The shape of the curve is similar, 
but some differences can be seen in the actual values for the reduction in echo strength. The 
most noticeable is the more shallow “dips” in our curve (Figure 3.17) around 2 my = ±  
reaching down to only about -26 dBs as opposed to –37 dBs for the curve presented in paper 
III (Figure 3.16). The placement of the “dips” (at 2 my = ± ), however, is the same. Note also 
that our curve in general shows less reduction in the echo strength than the curve presented in 
paper III for all values of y .  
 
We also calculated cross-range cuts for cylinder radii both smaller and larger than 3 mcylr = . 
For 3 mcylr <  the reduction in the echo strength became smaller (less shadow) and the “dips” 
in the curve were placed further away from the center, while for 3 mcylr >  the reduction in the 

echo strength became larger (more shadow) and the “dips” in the curve were placed closer to 
the center. We found that a cylinder radius of 3 mcylr =  corresponded best to the results 

obtained by paper III. 
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Figure 3.14 Figure 8 in (4) showing the reduction in echo strength behind a wind turbine 

with radius 3 m at 9.065 GHz. Range; -40 dBs (dark blue) to 10 dBs (dark red). 

 
Figure 3.15 Reduction in echo strength behind an infinitely long conducting cylinder with 

radius 3 m at 9.065 GHz (compare with Figure 3.14). Range; –69 dBs (black) to 
4 dBs (white). 



 27  
 

 
   

 
Figure 3.16 Figure 9 in (4) showing a cross-range cut of the reduction in echo strength 

900 m behind a wind turbine with radius 3 m at 9.065 GHz.  

 
Figure 3.17 Cross-range cut of the reduction in echo strength 900 m behind an infinitely 

long conducting cylinder with radius 3 m  at 9.065 GHz (compare with Figure 
3.16). 
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3.4 Paper IV 

Paper IV studies the effects of wind turbines on radar systems (5). 
 
Paper IV bases its calculations on numerical simulations for the wind turbine - radar system, 
and uses the Method of Moments (MoM) and the Multi-Level Fast Multidipole Method 
(MLFMM). The wind turbine is modelled as consisting of three parts; 1) the tower, which is 
modelled as a “truncated cone”, 2) the nacelle, which is modelled as a rotational ellipsoid with 
vertical rotation axis, and 3) the rotor blades. 
 
Paper IV presents a figure showing the electric field behind a wind turbine with radius 

3.5 mwr =  at 3 GHz (Figure 3.18 in this report). The wind turbine is placed at 25.1 km 
distance from the emitter, on the direct line between the emitter and the receiving radar, and 
4900 m in front of the receiving radar. The reduction in the electric field at the receiving radar 
is also calculated separately (see Table 3.3 in this report). We have performed the same 
calculations for comparison. Figure 3.19 and Table 3.3 show the results. 
 
Table 3.3 shows the maximum reduction in the electric field at 3 GHz at a distance 4900 m 
behind the wind turbine. We see that there is a relatively large discrepancy between our results 
(3.2 dBV/m) and the results in paper IV (6.6 dBV/m). We must apply a cylinder radius of 

6.7 mcylr =  in our calculations to obtain the same results as paper IV. 

 
Figure 3.18 (paper IV) shows the reduction in the electric field behind a wind turbine with 
radius 3.5 m at 3 GHz. Figure 3.19 (our calculations) shows the electric field behind an 
infinitely long conducting cylinder with radius 6.7 m at 3 GHz. We see that there is quite good 
agreement between the two figures.  
 
We also performed calculations for cylinder radii smaller and larger than 6.7 mcylr = . The 
results showed that when 6.7 mcylr <  the reduction in the electric field is smaller (less 

shadow) at all distances, which agrees well with the results of paper IV close behind the wind 
turbine, but gives too little shadow at longer distances. When 6.7 mcylr >  the reduction in the 

electric field is larger at all distances, which gives too dark shadow compared to the results in 
paper IV, especially close behind the wind turbine. Based on our findings, we conclude that a 
cylinder radius of 6.7 mcylr =  gives the best correspondence with the results of paper IV. 
 
Frequency Distance Maximum reduction in 

electric field rw rcyl 

3GHz 4900m 6.6dBV/m  (3.2dBV/m) 3.5m 6.7m 

Table 3.3 Maximum reduction in the electric field for given frequency and distance behind 
the wind turbine. The column marked rw shows the cylinder radius used by paper 
IV for the calculations, while the column marked rcyl shows the cylinder radius 
used in this report to obtain the same values. Numbers in parentheses show the 
results for the maximum reduction in the electric field when we use rcyl= rw. 
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Figure 3.18 Figure 10 in (5) showing the electric field behind a wind turbine with radius 

3.5 m at 3 GHz. The wind turbine is at 25.1 km distance from the emitter and 
4900 m in front of the receiving radar (marked by blue arrow in the figure). 

 
 

 
Figure 3.19 The electric field behind an infinitely long conducting cylinder with radius 6.7 m 

at 3 GHz (compare with Figure 3.18). The cylinder is at 25.1 km distance from 
the emitter and 4900 m in front of the receiving radar. 
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3.5 Paper V 

Paper V presents the results of the electromagnetic investigations and assessments of marine 
radar, communications and positioning systems undertaken at the North Hoyle wind farm by 
QinetiQ and the Maritime and Coastguard Agency (MCA) (3).  
 
The North Hoyle wind farm is the first large-scale off-shore wind farm in the United Kingdom. 
The North Hoyle wind turbines have a tower height (above water) of 70 m and a radius of 

2.5 mwr = . Figure 3.20 shows a photo of the wind turbines.  
 

 
Figure 3.20 North Hoyle Vestas wind turbines (Figure 6-1 in (3)). 

Trials were performed for both VHF and radar frequencies. Table 3.4 in this report presents the 
results from the trials showing the measured maximum reduction in electric field/echo strength 
for different frequencies and distances behind the wind turbine. The corresponding numbers 
calculated by us are given in parentheses. The last column in the table shows the cylinder 
radius cylr  that we would use in our calculations to obtain the same results as measured in the 

trials.  
 
At 150 MHz and a distance of 5 m behind the wind turbine the maximum reduction in the 
electric field calculated by us (25.1 dBV/m) is significantly larger than the maximum reduction 
measured during the trial (10 dBV/m). On the other hand, at the same frequency and a distance 
of 500 m the maximum reduction in the electric field calculated by us (1.7dBV/m) is 
somewhat smaller than the measured value (2-3dBV/m). At 9.4 GHz and a distance of 1000 m 
behind the wind turbine the maximum reduction in echo strength calculated by us (20.5dBs) is 
larger than the measured value (14.4 dBs). 
 
The results from our calculations deviate from the measured values, being sometimes larger 
and sometimes smaller. In order to obtain the same values as measured in the trial, we have to 
use cylinder radii in the range 1.0 4.0 mcylr = −  in our calculations. 
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Frequency Distance Maximum reduction in electric 
field/echo strength rw rcyl 

150MHz 5m 10dBV/m  (25.1dBV/m) 2.5m 1.0m 
150MHz 500m 2-3dBV/m  (1.7dBV/m) 2.5m 4.0m 
9.46GHz 1000m 14.4dBs  (20.5dBs) 2.5m 1.8m 

Table 3.4 Measured maximum reduction in electric field/echo strength for given frequency 
and distance behind the wind turbine. The column marked rw shows the radius of 
the North Hoyle wind turbines, while the column marked rcyl shows the cylinder 
radius used in this report to obtain the same results as were found in the trials. 
Numbers in parentheses show the results for the maximum reduction in the 
electric field/echo strength when we use rcyl= rw. 

3.6 The cylinder radius 

The infinitely long conducting cylinder model is a simplified representation of the wind 
turbine. The model has one parameter that can be adjusted; the cylinder radius cylr . The 

cylinder radius describes the size of the wind turbine, and it may or may not be equal to the 
actual wind turbine radius wr . Based on the literature study in Section 3.1-3.5 we will try to 
determine the value for the cylinder radius cylr  that best represents the actual wind turbine. 

 
Table 3.5 shows the results from the literature study we did in Section 3.1-3.5. Paper I and II 
base their calculations on the (infinitely long) conducting cylinder model, and we found good 
agreement between their results and our results, as we would expect. 
 
Paper III and IV use more sophisticated models for the wind turbine and is therefore expected 
to represent reality more closely. Comparison of our results with the results of paper III 
indicates that we should use a cylinder radius equal to the wind turbine radius, i.e., cyl wr r= . On 

the other hand, comparing our results with the results of paper IV showed that we should 
choose a cylinder radius somewhat larger (6.7 m) than the wind turbine radius (3.5 m), i.e., 

1.9cyl wr r= . 

 
Paper V presents actual measurement results, and the wind turbines used in the trials have a 
radius of 2.5 m. Comparison of their measured values with the results from our calculations 
indicates that we should use a cylinder radius in the range (0.4 1.6)cyl wr r= − . 

 
Table 3.6 presents a summary of the findings above. Based on the table we conclude that the 
cylinder radius should be approximately equal to the actual wind turbine radius. Note, 
however, that this is the average wind turbine radius. The tower is usually wider at the base 
( max

w wr r> ) and narrower at the top ( min
w wr r< ). In order to cover the worst-case scenario, we 

recommend to use 
 

max
cyl wr r=  (3.3) 

 
where max

wr  is the maximum wind turbine tower radius.   
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Paper Method Frequency Distance 
Reduction in electric 
field/echo strength rw rcyl 

100MHz 100m <3dBV/m  (2.2dBV/m) 1.5m <2.1m  
I 

Infinite 
conducting 

cylinder 1GHz 100m 8.5dBV/m  (6.2dBV/m) 1.5m 2.0m 

9.4GHz 1000m 10-20dBs  (11-21dBs) 2.6m 2.6m 
II Conducting 

cylinder 9.4GHz 2000m ~10dBs  (8-14dBs) 2.6m 2.6m 

 
III 

Geometric-
optical 

diffraction  

 
9.065GHz 

 
- 

 
See Figure 3.14- 

Figure 3.17 

 
3m 

 
3m 

3GHz 4900m 6.6dBV/m  (3.2dBV/m) 3.5m 6.7m 
IV MoM, 

MLFMM 3GHz ≤ 4900m 
See Figure 3.18- 

Figure 3.19 3.5m 6.7m 

150MHz 5m 10dBV/m  (25.1dBV/m) 2.5m 1.0m 

150MHz 500m 2-3dBV/m  (1.7dBV/m) 2.5m 4.0m 

 

V 

 

Trial 

9.46GHz 1000m 14.4dBs  (20.5dBs) 2.5m 1.8m 

Table 3.5 Summary of the results from the literature study in Section 3.1-3.5. The table 
shows the calculated/measured reduction in the electric field/echo strength for 
different frequencies and distances behind the wind turbine. The column marked 
rw shows the wind turbine radius, while the column marked rcyl shows the 
cylinder radius used in this report to obtain the same values. Numbers in 
parentheses show the results for the reduction in electric field/echo strength 
when we use rcyl= rw. 

 
 
 
 

Paper rcyl 
III 1 rw 
IV 1.9 rw 
V (0.4-1.6) rw 

Table 3.6 Best choice for the cylinder radius. 
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4 RESULTS 

We will in this chapter present the results from the calculations on electromagnetic shadow 
effects behind wind turbines.  
 
The wind turbine has been modelled as an infinitely long conducting cylinder. We have used a 
cylinder radius of 3 m for the calculations. This corresponds to a large wind turbine with 
maximum tower radius 3 m. 
 
We have calculated the shadow effects for five different frequencies; 100 MHz, 1 GHz, 
3 GHz, 9 GHz, and 15 GHz. 
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4.1 The electric field around an infinitely long conducting cylinder 

 

 
 

 
 

 
 

 
 

 
 
 
 
Range (black to white): 
rcyl/λ=0.1:   –  8 dBV/m to 3 dBV/m. 
rcyl/λ=1:   –12 dBV/m to 3 dBV/m. 
rcyl/λ=10:  –23 dBV/m to 3 dBV/m. 
rcyl/λ=100:  –44 dBV/m to 3 dBV/m. 
rcyl/λ=1000: –82 dBV/m to 3 dBV/m. 

Figure 4.1 The electric field (dBV/m) around an infinitely long conducting cylinder for 
different rcyl/λ. 
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4.2 The shadow boundary equation

 

 
 

 
 

 

 

 
 

 
 

 

Figure 4.2 The boundary of the shadow region behind an infinitely long conducting 
cylinder for different rcyl/λ (blue circles). The solid blue line shows the results 
when using Equation (2.7) to calculate the shadow boundary.
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4.3 The shadow depth equation

 

 
 

 
 

 

 

 
 

 
 
 

 

Figure 4.3 The reduction in the electric field (shadow depth) behind an infinitely long 
conducting cylinder for different rcyl/λ (blue line). The red line shows the results 
when using Equation (2.12) to calculate the shadow depth. 
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4.4 The angular dependency of the electric field 

 
 

 
 
 

 
 

 
 

 

 

Figure 4.4 Angular plots of the electric field (V/m) at different distances around an 
infinitely long conducting cylinder with radius 3 m at 100 MHz. 
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Figure 4.5 Angular plots of the electric field (V/m) at different distances around an 
infinitely long conducting cylinder with radius 3 m at 1 GHz. 
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Figure 4.6 Angular plots of the electric field (V/m) at different distances around an 
infinitely long conducting cylinder with radius 3 m at 3 GHz. 
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Figure 4.7 Angular plots of the electric field (V/m) at different distances around an 
infinitely long conducting cylinder with radius 3 m at 9 GHz. 
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Figure 4.8 Angular plots of the electric field (V/m) at different distances around an 
infinitely long conducting cylinder with radius 3 m at 15 GHz. 
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4.5 Cross-range cuts of the electric field 

 

 

 

 
Figure 4.9 Cross-range cuts of the electric field at different distances behind an infinitely 

long conducting cylinder with radius 3 m at 100 MHz (dark blue line). Light 
blue dashed line shows the electric field when using Equations (2.7) and (2.12) 
to calculate the shadow boundary and depth.   
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Figure 4.10 Cross-range cuts of the electric field at different distances behind an infinitely 

long conducting cylinder with radius 3 m at 1 GHz (dark blue line). Light blue 
dashed line shows the electric field when using Equations (2.7) and (2.12) to 
calculate the shadow boundary and depth. 
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Figure 4.11 Cross-range cuts of the electric field at different distances behind an infinitely 

long conducting cylinder with radius 3 m at 3 GHz (dark blue line). Light blue 
dashed line shows the electric field when using Equations (2.7) and (2.12) to 
calculate the shadow boundary and depth. 
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Figure 4.12 Cross-range cuts of the electric field at different distances behind an infinitely 

long conducting cylinder with radius 3 m at 9 GHz (dark blue line). Light blue 
dashed line shows the electric field when using Equations (2.7) and (2.12) to 
calculate the shadow boundary and depth. 
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Figure 4.13 Cross-range cuts of the electric field at different distances behind an infinitely 

long conducting cylinder with radius 3 m at 15 GHz (dark blue line). Light blue 
dashed line shows the electric field when using Equations (2.7) and (2.12) to 
calculate the shadow boundary and depth. 
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4.6 The radial dependency of the electric field

 

 

 

 

 

 

Figure 4.14 The electric field as a function of distance for different angles around an 
infinitely long conducting cylinder with radius 3 m at 100 MHz. 
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Figure 4.15 The electric field as a function of distance for different angles around an 
infinitely long conducting cylinder with radius 3 m at 1 GHz. 
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Figure 4.16 The electric field as a function of distance for different angles around an 
infinitely long conducting cylinder with radius 3 m at 3 GHz. 
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Figure 4.17 The electric field as a function of distance for different angles around an 
infinitely long conducting cylinder with radius 3 m at 9 GHz. 
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Figure 4.18 The electric field as a function of distance for different angles around an 
infinitely long conducting cylinder with radius 3 m at 15 GHz. 

 
 
 
 



 52  
 

 
   

4.7 The shadow boundary and depth 

 
|Δ Ez

tot| f  
 

d 
(m) 

|Yb| 
(m) 

|ymin| 
(m) 

 Ez
tot  (0) 

(dBV/m) 
Ez

tot (ymin)
(dBV/m) (dBV/m) (%) 

5 5.3 0.8 -22.7 -27.0 4.3 18.9 
10 6.2 1.5 -13.1 -16.6 3.5 24.0 
50 9.9 4.6 -4.9 -6.3 1.4 29.3 

 
100MHz 

100 13.8 6.8 -3.3 -4.2 0.9 27.7 
10 3.9 0.2 -25.8 -36.7 10.9 42.4 
100 6.2 1.9 -7.6 -13.4 5.8 76.8 
500 10.0 5.4 -3.4 -5.4 2.0 60.0 

 
1GHz 

1000 14.2 7.9 -2.4 -3.6 1.2 53.4 
10 3.5 0.1 -35.3 -43.9 8.6 24.5 
100 4.6 0.8 -11.4 -22.6 11.2 98.1 
1000 8.1 4.3 -3.9 -6.6 2.8 71.9 

 
3GHz 

5000 18.6 10.6 -1.7 -2.7 0.9 54.3 
10 3.3 0.03 -47.7 -55.2 7.5 15.7 
100 4.0 0.3 -16.3 -30.6 14.3 87.1 
1000 6.7 2.1 -6.3 -12.2 5.9 94.9 

 
9GHz 

10000 15.1 8.7 -2.1 -3.3 1.2 60.7 
10 3.2 0 -55.0 -55.0 0 0 
100 3.7 0.5 -18.8 -32.0 13.2 70.1 
1000 5.2 1.4 -7.8 -16.1 8.3 106 

 
15GHz 

10000 11.6 6.5 -2.6 -4.4 1.8 67.7 

Table 4.1 Properties of the shadow region behind an infinitely long conducting cylinder 
for different frequencies. Here d is the distance behind the cylinder, Yb is the 
shadow boundary, i.e., the cross-range distance where the total electric field is 
equal to the unperturbed electric field, ymin is the cross-range distance where the 
electric field has its minimum value Ez

tot (ymin), Ez
tot  (0) is the electric field on-

axis, and ΔEz
tot is the difference between Ez

tot  (0) and Ez
tot (ymin). 
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5 DISCUSSION 

We will in this chapter discuss the properties of the electromagnetic shadow behind a wind 
turbine. The discussion is based on the results presented in Chapter 4, where the wind turbine 
has been modeled as an infinitely long conducting cylinder. 

5.1 The electric field around an infinitely long conducting cylinder 

Figure 4.1 shows the electric field around an infinitely long conducting cylinder for different 
ratios between the cylinder radius cylr  and the wavelength λ . The cylinder is placed in the 

center of the figure with the incoming plane wave moving from the right to the left.  
 
When / 0.1cylr λ =  (upper left figure), i.e., for low frequencies, a clear interference pattern can 

be seen, where the electric field seems to “bend around” the cylinder. The shadow region 
behind the cylinder is quite wide, about 50 cylinder radii wide at a distance of 100 cylinder 
radii behind, but not very deep. The reduction in the electric field is only about 8 dBV/m right 
behind the cylinder and decreases rapidly outwards. 
 
For increasing /cylr λ , i.e., for higher frequencies, the shadow region behind the cylinder 
becomes deeper and narrower. When / 1000cylr λ =  the shadow region is only a couple of 

cylinder radii wide at a distance of 100 cylinder radii behind the cylinder. However, the 
reduction in the electric field reaches about 80 dBV/m right behind the cylinder.  
 
Summary: For low /cylr λ  (low frequencies) the shadow behind the cylinder is shallow and 
quite wide, while for increasing /cylr λ  (higher frequency) the shadow becomes deeper and 

narrower.  

5.2 The shadow boundary equation 

Figure 4.2 shows the boundary of the shadow region behind an infinitely long conducting 
cylinder for different ratios between the cylinder radius cylr  and the wavelength λ . The 

cylinder is placed in origo (lower right corner) of the figure. 
 
Blue circles show the shadow boundary calculated from the full set of Equations (2.1)-(2.5), 
while the blue solid lines show the results when using Equation (2.7) to calculate the shadow 
boundary. Calculations are done for distances in the range / (100 10000) ( / )cyl cyld r r λ= − ⋅ . We 

see that there is good agreement between the results, with deviations kept within about 5% (see 
Appendix B).  
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Note that if increasing the ratio /cylr λ  by a factor ten, i.e., increasing the frequency by a factor 
ten, then if also increasing the distance behind the cylinder / cyld r  by a factor ten the width of 

the shadow region remains approximately the same. 
 
Conclusion:  Equation (2.7) can be used as a good approximation to calculate the boundary of 
the shadow region behind an infinitely long conducting cylinder. 

5.3 The shadow depth equation 

Figure 4.3 shows the reduction in the electric field (shadow depth) behind an infinitely long 
conducting cylinder for different ratios between the cylinder radius cylr  and the wavelength λ . 

 
Blue lines show the shadow depth calculated from the full set of Equations (2.1)-(2.5), while 
red lines show results when using Equation (2.12) to calculate the reduction in the electric 
field. We see that there is good agreement between the results. 
 
Note that the shadow depth increases with increasing /cylr λ   (increasing frequency). For 

/ 0.1cylr λ =  (upper left figure) the shadow depth is about 1 dBV/m at a distance of 100 
cylinder radii behind the cylinder, increasing to about 20 dBV/m for / 1000cylr λ = . 

 
Conclusion:  Equation (2.12) can be used as a good approximation to calculate the shadow 
depth behind an infinitely long conducting cylinder. 

5.4 The angular dependency of the electric field 

Figure 4.4-Figure 4.8 show the angular dependency of the electric field around an infinitely 
long conducting cylinder at different distances for frequencies of 100 MHz, 1 GHz, 3 GHz, 
9 GHz, and 15 GHz respectively. 
 
The figures show that at all frequencies and distances there is a deep shadow at 180ϕ = ° , i.e., 
right behind the cylinder. Outside this region the electric field fluctuates rapidly with much 
smaller amplitude. 
 
At increasing distance from the cylinder, the shadow becomes less deep, and the angular width 
of the shadow decreases. The electric field outside the shadow region fluctuates more rapidly, 
but the amplitude of the fluctuations decreases. 
 
For increasing frequency, the shadow becomes deeper and narrower, and the electric field 
outside the shadow region fluctuates more rapidly. The amplitude of the fluctuating field, 
however, seems to be independent of the frequency. 
 
Summary: There is a deep shadow behind the cylinder, which becomes deeper and narrower 
with increasing frequency and decreases with increasing distance. Outside the shadow region 
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the electric field fluctuates rapidly with much smaller amplitude that decreases with increasing 
distance. 

5.5 Cross-range cuts of the electric field 

Figure 4.9-Figure 4.13 show cross-range cuts of the electric field at different distances behind 
an infinitely long conducting cylinder for frequencies of 100 MHz, 1 GHz, 3 GHz, 9 GHz, and 
15 GHz respectively. 
 
The figures confirm that there is a deep but narrow shadow region behind the cylinder, and that 
outside the shadow region the electric field fluctuates rapidly with much smaller amplitude.  
 
The figures show that the shadow region is symmetric around the center line 0y = , and that it 
contains a local maximum for the electric field at its center ( 0y = ) with one global minimum 
on each side. The global minima may be several dBV/m lower than the local maximum at 

0y = , see Table 4.1. 
 
At increasing distance behind the cylinder the shadow region becomes wider, and the distance 
between the global minima increases. At the same time, the shadow depth decreases, and the 
local maximum and the global minima become less pronounced. For increasing frequency the 
shadow becomes deeper and narrower. 
 
The light blue dashed lines in the figures show the electric field when using Equation (2.7) and 
Equation (2.12) to calculate the shadow boundary and depth. The shadow region is 
approximated by a square well with width equal to the actual width of the shadow region and 
depth equal to the shadow depth at 0y = . The figures show that the shadow width and 
“average” or “typical” depth are represented well by Equation (2.7) and Equation (2.12). 
Information about details within the shadow region is, however, not available in this case.  
 
Summary: The shadow region behind the cylinder is symmetric with a local maximum for the 
electric field at the center and one global minimum on each side. At increasing distance behind 
the cylinder the shadow region becomes wider and less deep, and the local maximum and the 
global minima become less pronounced. Equation (2.7) and Equation (2.12) approximate the 
shadow region by a square well, and can be used as a good approximation to show the main 
characteristics of the shadow region. 

5.6 The radial dependency of the electric field 

Figure 4.14- Figure 4.18 show the electric field as a function of distance for different angles 
around an infinitely long conducting cylinder for frequencies of 100 MHz, 1 GHz, 3 GHz, 
9 GHz, and 15 GHz respectively. 
 
The figures confirm that there is a deep shadow right behind the cylinder ( 180ϕ = ° ) that 
decreases in strength with decreasing distance and increases with increasing frequency.  
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For angles 180ϕ ≠ °  the electric field fluctuates rapidly with a much smaller amplitude that 
decreases somewhat with increasing distance. At 100 MHz the amplitude of the oscillations is 
about 3 dBV/m at a distance of 10 m in front of the cylinder ( 0ϕ = ° ) decreasing to about 
1 dBV/m at a distance of 100 m. 
 
How rapidly the electric field fluctuates depends on both the frequency and the angle. In 
general the field fluctuates slower close to the shadow region (angles close to 180ϕ = ° ).  
 
Summary: There is a deep shadow behind the cylinder ( 180ϕ = ° ) that decreases with 
decreasing distance and increases with increasing frequency. Outside the shadow region the 
electric field fluctuates rapidly with much smaller amplitude that decreases somewhat with 
increasing distance. 

5.7 The shadow boundary and depth 

Table 4.1 gives values for the shadow boundary and depth behind an infinitely long conducting 
cylinder for frequencies of 100 MHz, 1 GHz, 3 GHz, 9 GHz, and 15 GHz respectively.  
 
Regarding the shadow depth, we see that the value for the electric field min( )tot

zE y  at the global 
minima may be several dBV/m lower than the value (0)tot

zE  on-axis. The lower value 

min( )tot
zE y  does, however, apply only over a very small part of the shadow. When discussing 

the depth of the shadow below we will consider the on-axis value. This corresponds to the 
value used in the square well representation (see Section 5.5) and represents a good average 
value for the shadow depth (see Figure 4.9-Figure 4.13). 
 
100 MHz:  
At a distance of 10 m behind the cylinder the shadow is about 12 m wide and 13 dBV/m deep. 
Increasing the distance to 100 m increases the shadow width to 28 m and decreases the depth 
to 3 dBV/m. 
 
1 GHz: 
At a distance of 100 m behind the cylinder the shadow is about 12 m wide and 8 dBV/m deep. 
Increasing the distance to 1000 m increases the shadow width to 28 m and decreases the depth 
to 2.5 dBV/m. 
 
3 GHz: 
At a distance of 100 m behind the cylinder the shadow is about 9 m wide and 11 dBV/m deep. 
Increasing the distance to 1000 m increases the shadow width to 16 m and decreases the depth 
to 4 dBV/m. Increasing the distance further to 5000 m increases the shadow width to 37 m and 
decreases the depth to 2 dBV/m. 
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9 GHz: 
At a distance of 100 m behind the cylinder the shadow is about 8 m wide and 16 dBV/m deep. 
Increasing the distance to 1000 m increases the shadow width to 13 m and decreases the depth 
to 6 dBV/m. Increasing the distance further to 10 000 m increases the shadow width to 30 m 
and decreases the depth to 2 dBV/m. 
 
15 GHz: 
At a distance of 100 m behind the cylinder the shadow is about 7 m wide and 19 dBV/m deep. 
Increasing the distance to 1000 m increases the shadow width to 10 m and decreases the depth 
to 8 dBV/m. Increasing the distance further to 10 000 m increases the shadow width to 23 m 
and decreases the depth to 2.5 dBV/m. 
 
Summary: For the lowest frequencies (100 MHz) the shadow is about 28 m wide and 3 dBV/m 
deep at a distance of 100 m behind the cylinder. The shadow becomes narrower and deeper for 
higher frequencies, and at the highest frequencies (15 GHz) the shadow is 19 dBV/m deep but 
only 7 m wide at the same distance. For distances larger than 10 km the shadow depth is less 
than 3 dBV/m for all frequencies. 

5.8 Shadow effects behind wind turbines 

We have assumed that the wind turbine tower is the main source of shadowing, and that the 
tower can be modeled as an infinitely long conducting cylinder. We have further assumed that 
the radar is far away from the wind turbine so that the incoming electromagnetic wave can be 
considered to be a plane wave.  
 
A literature study (Chapter 3) has shown that the infinitely long conducting cylinder model can 
be used as a good representation of the wind turbine. The cylinder radius should be set equal to 
the maximum radius of the turbine tower. We have used a cylinder radius of 3 m in our 
calculations (Chapter 4), which corresponds to a large wind turbine with maximum tower 
radius 3 m.  
 
Our calculations show that the shadow behind a wind turbine is narrow (about 10 m wide) 
close to the turbine, but not very deep; the reduction in the electrical field less than 8 dBV/m at 
distances 1 km or more behind the turbine. The shadow is the widest and the least deep for low 
frequencies and becomes narrower and deeper for higher frequencies. The shadow increases in 
width, but decreases in depth, when the distance increases. 
 
The radar’s ability to detect targets is not expected to be strongly affected by the shadow 
effects. The detection of airborne targets is not likely to be affected since airplanes normally 
operate at higher altitudes and would have to fly low and close to the wind turbines in order to 
be able to hide behind them. The detection of targets on ground or at sea could be affected to 
some degree if the target is very close to the wind turbine. However, since the shadow is very 
narrow the target would have to be quite small in order to be able to hide completely behind 
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the wind turbine. Larger targets would only be partly covered by the shadow and would still be 
possible to detect. 
 
The effect of having more than one wind turbine present in the area between the radar and the 
target has not been investigated in this report. Some information can, however, be found in 
literature. Trappeniers and Van Lil (4) has studied such a case, and they found that the effect of 
N  wind turbines is always smaller than N  times the effect of a single wind turbine. They 
further found that the shadow effects can be computed without taking into account the 
presence of other wind turbines in the area as long as the wind turbines do not lie 
approximately on one line with the radar (parallel case). Poupart (9) found that a line of wind 
turbines running parallel to the radar’s boresight will tend to produce a deeper but narrow 
shadow due to the cumulative blocking effect of the line of wind turbines, while a line of wind 
turbines that is offset at an angle to the radar’s boresight will tend to produce a wider but less 
deep radar shadow as the angle increases. He also found that a line of wind turbines 
perpendicular to the radar’s boresight will produce the minimal radar shadow, while a random 
layout, which in reality is more likely, will produce a combination of the above effects.  
 
Summary: The infinitely long conducting cylinder model can be used as a good representation 
of the wind turbine. The shadow behind a wind turbine is narrow (about 10 m wide) close to 
the turbine, but not very deep. Several wind turbines on a line running parallel to the radar’s 
boresight will produce a narrow but deeper shadow, while a line of wind turbines that is offset 
at an angle to the radar’s boresight will tend to produce a wider but less deep shadow as the 
angle increases. The radar’s ability to detect targets will not be significantly affected by the 
shadow effects, except possibly for small targets that are close to the turbine. 

5.9 Summary  

We have studied the shadow effects behind wind turbines. The wind turbine can be modelled 
as an infinitely long conducting cylinder. Calculations have shown that there will be a shadow 
behind the wind turbine that is narrow (about 10 m wide) close to the turbine, but not very 
deep. Outside the shadow region, the electric field fluctuates rapidly with much smaller 
amplitude.  
 
At lower frequencies (100 MHz) the shadow is wider and shallower; 28 m wide and 3 dBV/m 
deep at a distance of 100 m behind the wind turbine. At higher frequencies (15 GHz) the 
shadow is narrower and deeper; 7 m wide and 19 dBV/m deep at a distance of 100 m behind 
the wind turbine. The shadow increases in width and decreases in depth for increasing distance 
behind the wind turbine. For distances larger than 10 km the shadow depth is less than 
3 dBV/m for all relevant frequencies. 
 
Several wind turbines on a line running parallel to the radar’s boresight will produce a narrow 
but deeper shadow, while a line of wind turbines that is offset at an angle to the radar’s 
boresight will tend to produce a wider but less deep shadow as the angle increases.  
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The radar’s ability to detect targets will not be significantly affected by the shadow effects, 
except possibly for small targets that are close to the turbine. 
 
The derived Equations (2.7) and (2.12) for the shadow boundary and depth can be used as a 
good approximation to assess the electromagnetic shadow behind a wind turbine. 

6 SUMMARY 

There is at present a considerable interest in renewable energy sources, and a large number of 
onshore and offshore wind farms are currently under planning or being developed, both in 
Norway and in several other countries. Depending on location, the development of a wind 
farm in a particular area may conflict with Defence interests by degrading the performance of 
Defence installations such as radars or telecommunications systems. One potential problem is 
the electromagnetic shadow effect behind wind turbines, which has been studied in this report. 
 
The wind turbine can be modelled as an infinitely long conducting cylinder with radius equal 
to the maximum tower radius. Calculations have shown that there will be a shadow behind the 
wind turbine that is narrow (about 10 m wide) close to the turbine, but not very deep. At lower 
frequencies (100 MHz) the shadow is wider and shallower; 28 m wide and 3 dBV/m deep at a 
distance of 100 m behind the wind turbine. At higher frequencies (15 GHz) the shadow is 
narrower and deeper; 7 m wide and 19 dBV/m deep at a distance of 100 m behind the wind 
turbine. The shadow increases in width and decreases in depth for increasing distance behind 
the wind turbine. For distances larger than 10 km the shadow depth is less than 3 dBV/m for 
all relevant frequencies. 
 
Several wind turbines on a line running parallel to the radar’s boresight will produce a narrow 
but deeper shadow, while a line of wind turbines that is offset at an angle to the radar’s 
boresight will tend to produce a wider but less deep shadow as the angle increases.  
 
The radar’s ability to detect targets will not be significantly affected by the shadow effects, 
except possibly for small targets that are close to the turbine. 
 
The calculations based on the infinitely long conducting cylinder model can be quite time 
consuming, especially for higher frequencies. A new set of equations was therefore derived 
that can be used to quickly calculate the width and depth of the shadow region behind the wind 
turbine. Our analyses show that the new set of equations can be used as a good approximation 
to assess the electromagnetic shadow behind a wind turbine, and that the computing time will 
be considerably reduced. 
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APPENDIX 

A THE INFINITELY LONG CONDUCTING CYLINDER MODEL 

We will in this section present the theory behind the infinitely long conducting cylinder model. 
The theory is well established and can be found in standard literature. 
 
When an infinitely long conducting cylinder is placed in the path of a propagating 
electromagnetic wave, a secondary wave will be generated by the cylinder that interferes with 
the incoming primary wave and creates an interference pattern around the cylinder. In 
particular, a dark shadow region will be formed behind the cylinder. Figure A.1 shows the 
geometry of the problem.  

rcyl

y

x

r

φ

Ez
primprim

Primary wave

 
Figure A.1 Diffraction on an infinitely long conducting cylinder (cross-section in the xy-

plane). 

We assume that the incoming primary wave is a plane wave. This corresponds to the emitter 
being at far distance from the cylinder. The primary wave prim

zE  can then be written: 
 

cos
0 0

prim jkx jkr
zE E e E e ϕ= ⋅ = ⋅  (A.1) 

 
where 0E  is the electric field amplitude, r  is the distance from the cylinder, ϕ  is the angle 
around the cylinder, and 2 /k π λ=  is the wave number with λ  being the wavelength. We 
have assumed that the incoming primary wave has an electric field component along the z -
axis only. 
 
We further assume that the electrical field is homogeneous in the z-direction, i.e., 
 

0
prim
zdE

dz
=  (A.2) 
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Since the situation is identical for all cross-sections parallel to the xy-plane, the problem can 
be solved in two dimensions. 
 
The total electrical field at the cylinder surface must at all times be zero in the direction 
tangential to the cylinder surface, i.e.,  
 

0,     at tot
cylE r r= =  (A.3) 

 
In order for the boundary condition to be fulfilled, the cylinder must generate a secondary 
wave sec

zE  in response to the incoming primary wave prim
zE . The boundary condition (A.3) can 

then be expressed as 
 

sec 0,              at tot tot prim
z z z cylE E E E r r= = + = =  (A.4) 

 
In order to find the total electrical field tot

zE  around the cylinder, we must determine the 
secondary field sec

zE . The secondary field must fulfil the wave equation 
 

2 sec 2 sec 0z zE k E∇ + =  (A.5) 
 
where k  is a constant. In cylindrical coordinates Equation (A.5) becomes 
 

2 sec sec 2 sec
2 sec

2 2 2

1 1 0z z z
z

E E E k E
r r r r ϕ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (A.6) 

 
when sec 0zE z∂ ∂ =  (see Equation  (A.2)). 
 
We assume that the secondary field sec

zE  can be expressed as 
 

sec ( ) ( )zE R r ϕ= ⋅Φ  (A.7) 
 
i.e., on a form where the variables r  and ϕ  are separated. By substituting Equation (A.7) into 
Equation (A.6) we get 
 

2 2
2

2 2 2

1 1 0d R dR dR k R
dr r dr r dϕ

Φ
Φ +Φ + + Φ =  (A.8) 

 
Multiplying Equation (A.8) by 2r RΦ  further gives 
 

2 2 2
2 2

2 2

1r d R r dR dk r
R dr R dr dϕ

Φ
+ + = −

Φ
 (A.9) 
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In order for Equation (A.9) to be valid for any arbitrary combination of r  and ϕ , each side of 
the equation must be equal to a constant. We set the constant equal to 2m  and can then write 
down the following two separate equations: 
 

2
2

2 0d m
dϕ
Φ
+ Φ =  (A.10) 

 
2 2

2 2 2
2 0r d R r dR m k r

R dr R dr
+ − + =  (A.11) 

 
We first consider Equation (A.10). This is a second-order differential equation with constant 
coefficients that has the solution 
 

0cos( )C mϕ ϕΦ = +  (A.12) 
 
where C  and 0ϕ  are constants. Due to the axial symmetry of the problem, the direction for 

0ϕ =  can be chosen arbitrarily, and we choose to set 0 0ϕ = , which gives 
 

cos( )C mϕΦ =  (A.13) 
 
Here m  must be an integer, since the solution for ( 0)ϕΦ =  must equal the solution for 

( 2 ,4 , )ϕ π πΦ = … . 
 
We then consider Equation (A.11). Substituting krρ =  into Equation (A.11) and rearranging 
the equation gives 
 

2 2

2 2

1 1 0d R dR m R
d dρ ρ ρ ρ

⎛ ⎞
+ + − =⎜ ⎟

⎝ ⎠
 (A.14) 

 
where m  is an integer. Equation (A.14) is a Bessel equation with solution 
 

(2) (2)( ) ( )m mR D H D H krρ= ⋅ = ⋅  (A.15) 
 
where (2)

mH  is the Hankel function of second kind, and D  is a constant. 
 
The solution for the secondary field sec

zE  can now be written 
 

sec (2)( ) ( ) ( ) cos( )z m mE R r A H kr mϕ ϕ= Φ =  (A.16) 
  
where mA  is a constant, and m  is an integer. 
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The general solution for sec
zE  is a linear combination of the solution (A.16) for all possible 

values of m , and can be written 
 

sec (2)

0
( ) cos( )z m m

m
E A H kr mϕ

∞

=

= ∑  (A.17) 

 
The coefficients mA  are determined from the boundary condition (A.4). Substituting for prim

zE  
and sec

zE  in the boundary condition gives 
 

cos (2)
0

0
( ) cos( ) 0cyljkr

m m cyl
m

E e A H kr mϕ ϕ
∞

=

+ =∑  (A.18) 

 
Since 
 

cos
0

1
( ) 2 ( )cos( )cyljkr m

cyl m cyl
m

e J kr j J kr mϕ ϕ
∞

=

= +∑  (A.19) 

 
Equation (A.18) can be rewritten 
 

(2) (2)
0 0 0 0 0

1
( ) ( ) 2 ( )cos( ) ( )cos( ) 0m

cyl cyl m cyl m m cyl
m

E J kr A H kr E j J kr m A H kr mϕ ϕ
∞

=

⎡ ⎤ ⎡ ⎤+ + + =⎣ ⎦ ⎣ ⎦∑  (A.20) 

 
For each value of m  the corresponding terms in Equation (A.20) must add up to zero, and this 
gives for the coefficients mA  
 

0 0
0 (2)

0

( )
( )

cyl

cyl

E J kr
A

H kr
= −  (A.21) 

 
and 
 

0 (2)

( )
2

( )
m cylm

m
m cyl

J kr
A j E

H kr
= −  (A.22) 

 
The summation in Equation (A.17) for the secondary field can be terminated when m M= , 
where M  is given by (see Appendix C) 
 

ceil 10 6.4 cylr
M

λ
⎡ ⎤⎛ ⎞

= + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (A.23) 

 
Equation (A.23) is valid for / 1000cylr λ ≤ . 
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B BOUNDARY AND DEPTH OF THE SHADOW REGION 

We will in this section derive equations that can be used to quickly calculate the shadow 
boundary and depth behind an infinitely long conducting cylinder. 

B.1 The shadow boundary equation 
We define the shadow boundary to be the closest cross-range distance by  at given distance d  
behind the cylinder where the electric field tot

zE  is equal to the unperturbed electric field. We 
have calculated the shadow boundary for different /cylr λ  based on Equations (2.1)-(2.5), see 

Figure B.2 (blue circles). The shadow boundary has the shape of a parabola, which 
mathematically can be expressed as 
 

2D w Y= ⋅  (B.1)
 
where / cylD d r=  is the distance behind the cylinder (measured in cylinder radii), /b cylY y r=  

is the cross-range distance to the boundary  (measured in cylinder radii), and w  is a parameter 
that is a constant for given /cylr λ  . Equation (B.1) can be rearranged on the form 

 

( ) cyl
b

d r
y d

w
⋅

=  
(B.2)

 
where cylr  is the cylinder radius. 

 
We must determine the optimum value 0w w=  that gives the best fit to the shadow boundary 
for each /cylr λ . Table B.1 and Figure B.1 show the results for 0w , while Figure B.2 shows the 
resulting shadow boundary for different /cylr λ  when using 0w w=  (blue solid line). The data 
have been fitted for distances in the range / (100 10000) ( / )cyl cyld r r λ= − ⋅ . 

  
x w0 w Δyb (%) 

0.1 0.185 0.175 2.8 
1 1.50 1.60 3.2 

10 13.8 14.6 2.8 
100 136 133 1.1 

1000 1355 1214 5.6 
Table B.1 The parameter w for different rcyl/λ. The column marked by w0  shows the 

optimum values, while the column marked by w shows the resulting values when 
using Equations (B.4)-(B.5). The last column shows the deviation in the cross-
range distance to the boundary yb when using Equations (B.4)-(B.5) to 
calculate w instead of using the optimum value w0. 
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Figure B.1 The parameter w as a function of rcyl/λ. Blue circles show the results when w=w0 

(optimum value) while the blue solid line shows the results when using 
Equations (B.4)-(B.5) to calculate w. 

In order to use Equation (B.2) for an arbitrary choice of /cylr λ , we must express w  as a 
function of /cylr λ . Figure B.1 shows that lg w  is very close to a linear function of lg( / )cylr λ . 

We can then write 
 

lg lg lgcylr
w k g

λ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 
(B.3)

 
where k  and g  are constants. Equation (B.3) can be rearranged on the form 
 

k
cylr

w g
λ

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
 

(B.4)

 
The values of k  and g  that give the best fit for w  as a function of /cylr λ  (see Figure B.1) 

were found to be 
 

0.96
1.6

k
g
=
=

 (B.5)

 
Figure B.2 shows the shadow boundary for different /cylr λ , when using Equation (B.2) with 

w  given by Equations (B.4)-(B.5) (red solid lines). 
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The deviation in the cross-range distance to the boundary byΔ , when using Equations (B.4)-
(B.5) to calculate w  instead of using the optimum value 0w , can be calculated from 
 

01b
wy
w

Δ = −  
(B.6)

 
The deviation is found to be well below 5% in all cases (see Table B.1), except when 

/ 1000cylr λ =  where the deviation is 5.6%. 

 
Equation (B.2) has been optimized for distances in the range / (100 10000) ( / )cyl cyld r r λ= − ⋅ . 

Calculations show that Equation (B.2) can be used as a good approximation also for larger 
distances, while for distances 0d d≤  where 
 

0

5 ,       1

5 ,                  1

cyl cyl
cyl

cyl
cyl

r r
r

d
r

r

λ λ

λ

⎧ ⎛ ⎞
⋅ >⎪ ⎜ ⎟⎪ ⎝ ⎠= ⎨

⎪ ≤⎪⎩

 

(B.7)

 
Equation (B.2) gives a too narrow shadow, see Figure B.3. For distances 0d d≤  the following 
expression can be used to approximate the shadow boundary instead of Equation (B.2) 
 

0 0

0

( )
( ) b cyld d

b cyl

y d r
y d r d

d
≤ −⎛ ⎞

= + ⋅⎜ ⎟
⎝ ⎠

 
(B.8)

 
where 0( )by d  is calculated from Equation (B.2). This corresponds to a linearly increasing 
shadow boundary that starts with the value cylr  at 0d =  and increases to 0( )by d  at 0d d= .  

 
The equation for the shadow boundary bY  can now be summarized as 
 

0

0
0

0

( ),                                 
( )

,       

b

b b cyl
cyl

y d d d
Y y d r

r d d d
d

>⎧
⎪= ± −⎛ ⎞⎨ + ⋅ ≤⎜ ⎟⎪

⎝ ⎠⎩

 
(B.9)

 
where ( )by d  is given by Equation (B.2).
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Figure B.2 The shadow boundary for different rcyl/λ. Blue circles show the results when 
using Equations (2.1)-(2.5), the blue solid line shows the results when using 
Equation (B.2) with the optimum value w0, and the red solid line shows the 
results when using Equation (B.2) with w given by Equations (B.4)-(B.5). 
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Figure B.3 The shadow boundary for different rcyl/λ. Blue circles show the results when 
using Equations (2.1)-(2.5), while the blue solid line shows results when using 
Equation (B.2) with w given by Equations (B.4)-(B.5). 
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B.2 The shadow depth equation 

The shadow depth, or reduction in the electric field, behind an infinitely long conducting 
cylinder can be calculated from Equations (2.1)-(2.5). Figure B.6 shows the resulting shadow 
depth for different /cylr λ  (blue lines). The shape of the curves can be described by the 

following expression  
 

20 lg
b

tot
z

cyl

dE a
r

−
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 
(B.10)

 
where cylr  is the cylinder radius, d  is the distance behind the cylinder, and a  and b are 
parameters that are constant for given /cylr λ  .  

 
We must determine the values 0a a=  and 0b b=  that give the best fit to the shadow depth 
curve for each /cylr λ . Table B.2, Figure B.4 and Figure B.5 show the results for 0a  and 0b , 
while Figure B.6 shows the resulting shadow depth for different /cylr λ  when using 0a a=  and 

0b b=  (blue line). 
 

x a0 b0 
0.1 -17.4646 0.5898 
0.5 -21.5465 0.5825 
1 -25.3020 0.5761 
5 -38.9569 0.5416 
10 -46.2652 0.5152 
50 -64.8636 0.4422 
100 -74.8539 0.4186 
500 -111.1654 0.4064 
1000 -136.1693 0.4184 

Table B.2 The parameters 0a  and 0b  for different rcyl/λ.  
 
In order to use Equation (B.10) for an arbitrary choice of /cylr λ , we must express a  and b  as 
a function of /cylr λ . Figure B.4 shows that lg a  can be approximated as a linear function of 
lg( / )cylr λ . We can then write 

 

lg lg lgcylr
a s u

λ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 
(B.11)

 
where s  and u  are constants. Equation (B.11) can be rearranged on the form 
 

sa u x= ⋅  (B.12)
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The values of s  and u  that give the best fit for a  as a function of /cylr λ  (see Figure B.4) were 

found to be 
 

27.714
0.22298

u
s
= −
=

 (B.13)

 
Figure B.5 shows lgb as a function of lg( / )cylr λ . We found that the parameter b  can be 

expressed as 
 

( ) ( ) ( )3 2

3 2 1 0lg lg / lg / lg /cyl cyl cylb q r q r q r qλ λ λ⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅ +⎣ ⎦ ⎣ ⎦  (B.14)

 
where 0q , 1q , 2q , and 3q  are constants. The values of 0q - 3q  that give the best fit for b  as a 
function of /cylr λ  (see Figure B.5) were found to be 

 
0.1 10cylr

λ≤ ≤ : 
 

0

1

2

3

0.2395
0.02645
0.01852
0.003527

q
q
q
q

= −
= −
= −
= −

 

(B.15)

 
and 
 
10 1000cylr

λ< ≤ : 
 

0

1

2

3

0.2395
0.01692

0.08798
0.02256

q
q
q
q

= −
=
= −
=

 

(B.16)

 
Figure 4.3 in Section 4.3 shows the shadow depth for different /cylr λ , when using Equation 

(B.10) with a  and b  given by Equations (B.12)-(B.13) and Equations (B.14)-(B.16) (red  
lines). 
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Figure B.4 The parameter a as a function of rcyl/λ. Blue circles show the results when a=a0 

(optimum value), while the red line shows the results when using Equations 
(B.12)-(B.13) to calculate a. 

 

 
Figure B.5 The parameter b as a function of rcyl/λ. Blue circles show the results when b=b0 

(optimum value), while the red line shows the results when using Equations 
(B.14)-(B.16) to calculate b. 
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Figure B.6 The shadow depth for different rcyl/λ. Blue line shows the results when using 
Equations (2.1)-(2.5), and the red line shows the results when using Equation 
(B.10) with the optimum values a=a0 and b=b0. 
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C TERMINATION OF THE SUMMATION IN THE SECONDARY FIELD EQUATION 

It is important to determine as precisely as possible where to terminate the summation for the 
secondary field in the equation set (2.1)-(2.5) for the infinitely long conducting cylinder 
model, in order to minimize the computing time. 
 
We will in the following show that the necessary number of terms M  to include depends only 
on the ratio ( )/cylr λ , and that M  can be calculated from 

 

ceil 10 6.4 cylr
M

λ
⎡ ⎤⎛ ⎞

= + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 
(C.1)

 
Equation (C.1) is valid for / 1000cylr λ ≤ . 

C.1 The secondary field equation 

The secondary field sec
zE  can be written on the form: 

 

( ) ( )

( ) ( )

( ) ( )

sec sec

0

sec sec

0

sec sec

0 0

sec sec

0 0

Re Im

Re Im

Re Im

z m z
m

m z m z
m

m z m z
m m
M M

m z m z
m m

E E

E j E

E j E

E j E

∞

=

∞

=

∞ ∞

= =

= =

=

⎡ ⎤= + ⋅⎣ ⎦

= + ⋅

≈ + ⋅

∑

∑

∑ ∑

∑ ∑

 

(C.2)

 
where M  is an integer of finite size, and (ref. Equation (2.3)) 
 

sec (2) ( ) cos( )m z m mE A H kr mϕ=  (C.3)
 
Here r  is the distance from the cylinder, ϕ  is the angle around the cylinder (see Figure 2.6), 

(2)
mH  are Hankel functions of the second kind, and the coefficients mA  are given by 

 
0 0

0 (2)
0

( )
( )

cyl

cyl

E J kr
A

H kr
= −  (C.4)

 
and 
 

0 (2)

( )
2

( )
m cylm

m
m cyl

J kr
A j E

H kr
= −  (C.5)
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where 0E  is the electric field amplitude of the primary wave, 2 /k π λ=  is the wave number 
with λ  being the wavelength, and cylr  is the cylinder radius. 

 
The m th component of the secondary field sec

m zE  can then be written on the form 
 

(2)
sec

(2)

( )( ) cos( )
( )

m
m z m m

m

H qxE a J x m
H x

ϕ= ⋅ ⋅ ⋅  (C.6)

 
where 
 

2 cyl

cyl

r
x

rq
r

π
λ

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠

=
 

(C.7)

 
and 
 

0 0

02 m
m

a E

a j E

= −

= −
 

(C.8)

 
In the following, we will consider each factor in Equation (C.6) separately in order to 
determine its contribution to determining M . 

C.1.1 The coefficient am 

The coefficient ma  can be considered a constant 
 

0| | 2ma E=  (C.9)
 
for all 1m ≥ , and does not influence the choice of M . 

C.1.2 The cosinus-factor 

The cosinus-factor cos( )mϕ  has the absolute value 
 
| cos( ) | 1mϕ ≤  (C.10)
 
for all m  and ϕ , and varies cyclically between –1 and 1 as a function of m , see Figure C.1. 
The cosinus-factor does not influence the choice of M. 
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Figure C.1 The cosinus-factor as a function of m when / 6ϕ π= . 

C.1.3 The Hankel-factor 

The Hankel-factor  (2) (2)( ) / ( )m mH qx H x  is a function of / cylq r r=  and 2 /cylx rπ λ= . Figure C.2 
and Figure C.3 show the Hankel-factor as a function of q  for different m  when 0.1x =  and 

10x =  respectively.  
 
For given q  and x  the Hankel-factor is a constant for all hm m≥ . Here hm  is a positive 
integer, and the value of hm depends on x . For 10x ≥  we have 0hm = , i.e., the Hankel-factor 
is constant for all m  (see Figure C.3), while for 0.1x =  we have 5hm =  (see Figure C.2). In 
general, hm  increases with decreasing x . 
 
Since the Hankel-factor is very nearly a constant with respect to m  (except for the lowest m  
when 10x < ), the Hankel-factor will not influence the choice of M . This also means that the 
relative distance / cylq r r=  does not affect the choice of M , since / cylq r r=  only appears in 

the Hankel-factor in the expression for the secondary field sec
m zE  (Equation C.6). The results 

shown in Table C.2-Table C.13 confirm this. 
 



 76  
 

 
   

 
Figure C.2 The Hankel-factor as a function of q for different m when x=0.1. 

 
 
 

 
Figure C.3 The Hankel-factor as a function of q for different m when x=10. 



 77  
 

 
   

C.1.4 The Bessel function 

The Bessel function ( )mJ x  in the expression for the secondary field sec
m zE  (Equation C.6) is a 

function of 2 /cylx rπ λ= . Figure C.4 and Figure C.5 show the Bessel function for different m .  

From the figures we see that for given x  the Bessel function becomes negligible when 
Jm m> , where Jm  is a positive integer. The figures further show that Jm  increases for 

increasing x . Based on this, we conclude that there is a correspondence between the value of 
x , i.e., the ratio /cylr λ , and the number of terms M  that must be included in the calculations. 

 

 
Figure C.4 The Bessel function as a function of x for different m. 

 
Figure C.5 The Bessel function as a function of x for different m. 
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C.2 Method 

The method used to determine the appropriate value M  for terminating the summation in the 
equation for the secondary field sec

m zE  is described below. We first set 
 

0 1 V/m
π

E
ϕ
=

=
 (C.11)

 
The mth component of the secondary field can then be written 
 

( )
( )
( )

(2) 2
sec 2

(2) 2

cyl

rr
m rr

m z m m r
m

H
E a J

H

π
λπ

λ π
λ

⋅
= ⋅ ⋅  

(C.12)

 
where 
 

0 1

2 ( ) ,     1m
m

a

a j m

=

= − ⋅ − ≥
 

(C.13)

 
The following algorithm is used to determine M  for different values of /cylr λ  and / cylr r : 
 

• Calculate sec| |m zE  for max0,1,...,m m= , where maxm M> . 
• Determine the maximum value sec

max| |m zE  within the range max0,1,...,m m= . 
• Calculate sec sec

max| | / | |m z m zE E  for all max0,1,...,m m= . 
• Determine the highest limitm m=  for which sec sec

max| | / | |m z m zE E p≥ , where p  is a given 
percentage of the maximum value. We have used 0.01p =  (1%) in the calculations. 

• Repeat the steps above for ( )sec| Re |m zE  and ( )sec| Im |m zE . 

• Determine M  from 
sec sec sec

m z m z m z| E | |Re( E )| |Im( E )|
limit limit limitmax( ,  ,  )M m m m= . 

C.3 Results 

Results from the calculations are presented in Figure C.6-Figure C.8 and Table C.1-Table 
C.13. 

C.3.1 The secondary field as a function of m 

Figure C.6-Figure C.8 show the secondary field (normated value) as a function of m  when 
/ 10cylr λ = . Both total, real, and imaginary part of the secondary field are shown. The green 

dotted line in the figures indicates the value of p (=0.01). We see that the value for the 
secondary field drops markedly right before reaching m M= (=69 when / 10cylr λ = , see 

Table C.1) and stays close to zero after that. This confirms our assumption that the summation 
in the secondary field equation can be terminated for m M=  without causing significant 
errors. 
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Figure C.6 The secondary field as a function of m when / 10cylr λ = . 

 
Figure C.7 Real part of the secondary field as a function of m when / 10cylr λ = . 

 
Figure C.8 Imaginary part of the secondary field as a function of m when / 10cylr λ = . 
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C.3.2 Determining M 

We have determined M  for different /cylr λ  based on the method described in Section C.2. 

Results are shown in Table C.2-Table C.13, with a summary given in Table C.1.  
 
We have also calculated M  from Equation (C.1) for comparison. Results are shown in  
Table C.1 and Figure C.9-Figure C.10. 
 
Table C.1 and Figure C.9-Figure C.10 show that M  increases nearly linearly with /cylr λ , and 

that Equation (C.1) can be used as a good approximation to calculate M . Note that Equation 
(C.1) gives slightly higher values for M  than the method described in Section C.2. This is 
done intentionally, in order to ensure that sufficiently many terms are included in the 
calculations when using Equation (C.1). 
 
 

rcyl/λ M M* 
0.1 2 11 
1 9 17 
5 36 42 
10 69 74 
25 165 170 
50 325 330 
75 483 490 
100 642 650 
250 1589 1610 
500 3165 3210 
750 4739 4810 
1000 6313 6410 

Table C.1 M for different values of rcyl/λ. In the second column M is determined based on 
the method described in Section C.2. In the last column, M* is calculated from 
Equation (C.1). 
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Figure C.9 M as a function of rcyl/λ. The blue circles show the results from calculations after 

the method described in Section C.2, while the red line shows results from 
calculations with Equation (C.1). 

 

 
Figure C.10 M as a function of rcyl/λ. The blue circles show the results from calculations after 

the method described in Section C.2, while the red line shows results from 
calculations with Equation (C.1). 



 82  
 

 
   

 
mlimit r/rcyl Re(Ez

sec) Im(Ez
sec) |Ez

sec| 
M 

2.5 2 2 2 2 
5 1 2 2 2 
50 2 2 2 2 
500 2 2 2 2 

5 000 2 2 2 2 
50 000 2 2 2 2 
250 000 2 2 2 2 

Table C.2 M for different r/rcyl when rcyl/λ=0.1. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 9 8 9 9 
5 8 9 9 9 
50 9 9 9 9 
500 9 9 9 9 

5 000 9 9 9 9 
50 000 9 9 9 9 
250 000 9 9 9 9 

Table C.3 M for different r/rcyl when rcyl/λ=1. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 36 35 36 36 
5 34 36 36 36 
50 35 36 36 36 
500 36 36 36 36 

5 000 36 36 36 36 
50 000 36 36 36 36 
250 000 36 36 36 36 

Table C.4 M for different r/rcyl when rcyl/λ=5. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 69 67 69 69 
5 66 69 69 69 
50 66 69 69 69 
500 68 69 69 69 

5 000 69 69 69 69 
50 000 69 68 69 69 
250 000 69 68 69 69 

Table C.5 M for different r/rcyl when rcyl/λ=10. 
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mlimit r/rcyl Re(Ez

sec) Im(Ez
sec) |Ez

sec| 
M 

2.5 164 165 165 165 
5 165 165 165 165 
50 165 165 165 165 
500 165 165 165 165 

5 000 165 165 165 165 
50 000 165 165 165 165 
250 000 165 165 165 165 

Table C.6 M for different r/rcyl when rcyl/λ=25. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 325 323 325 325 
5 325 323 325 325 
50 323 324 325 325 
500 323 325 325 325 

5 000 324 324 325 325 
50 000 324 324 325 325 
250 000 324 324 325 325 

Table C.7 M for different r/rcyl when rcyl/λ=50. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 483 480 483 483 
5 483 480 483 483 
50 483 482 483 483 
500 481 483 483 483 

5 000 483 483 483 483 
50 000 483 483 483 483 
250 000 483 483 483 483 

Table C.8 M for different r/rcyl when rcyl/λ=75. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 640 641 642 642 
5 641 638 642 642 
50 640 641 642 642 
500 637 642 642 642 

5 000 641 641 642 642 
50 000 641 641 642 642 
250 000 641 641 642 642 

Table C.9 M for different r/rcyl when rcyl/λ=100. 
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mlimit r/rcyl Re(Ez

sec) Im(Ez
sec) |Ez

sec| 
M 

2.5 1589 1587 1589 1589 
5 1585 1589 1589 1589 
50 1586 1589 1589 1589 
500 1588 1588 1589 1589 

5 000 1588 1589 1589 1589 
50 000 1588 1588 1589 1589 
250 000 1588 1588 1589 1589 

Table C.10 M for different r/rcyl when rcyl/λ=250. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 3164 3162 3165 3165 
5 3164 3161 3165 3165 
50 3161 3164 3165 3165 
500 3163 3163 3165 3165 

5 000 3162 3165 3165 3165 
50 000 3164 3164 3165 3165 
250 000 3164 3164 3165 3165 

Table C.11 M for different r/rcyl when rcyl/λ=500. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 4739 4739 4739 4739 
5 4736 4739 4739 4739 
50 4734 4739 4739 4739 
500 4737 4737 4739 4739 

5 000 4733 4739 4739 4739 
50 000 4738 4738 4739 4739 
250 000 4738 4738 4739 4739 

Table C.12 M for different r/rcyl when rcyl/λ=750. 
 
 

mlimit r/rcyl Re(Ez
sec) Im(Ez

sec) |Ez
sec| 

M 

2.5 6309 6312 6312 6312 
5 6306 6311 6312 6312 
50 6306 6312 6312 6312 
500 6310 6311 6312 6312 

5 000 6303 6313 6312 6313 
50 000 6311 6312 6312 6312 
250 000 6311 6311 6312 6312 

Table C.13 M for different r/rcyl when rcyl/λ=1000. 
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D MAPPING OF THE ELECTRIC FIELD AROUND THE WIND TURBINE 

 
 

y
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Figure D.1 Relative placement of radar, wind turbine, and grid for mapping the electric 

field around the wind turbine. 

Figure D.1 shows the wind turbine, the radar, and the grid for mapping the electric field around 
the wind turbine. The wind turbine is placed in the center of the mapping grid. Three different 
coordinate systems are used: 
 

1) Cartesian coordinate system 0( , , )x y z , with 0 0z =  
2) Cylindrical coordinate system 0( , , )r zϕ , with 0 0z =  
3) Spherical coordinate system ( , , )R l b , with 6378 kmR =  (Earth radius) 

 
The wind turbine is placed in origo in the cartesian and the cylindrical coordinate systems. It 
has the following position: 
 

1) Cartesian:  (0,0,0)  
2) Cylindrical: (0,0,0)   
3) Spherical: ( , , )w wR l b   
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Here wl  is the wind turbine longitude, wb  is the wind turbine latitude, and 6378 kmR =  is the 
Earth radius. 
 
The radar is placed in the following position in the three coordinate systems: 
 

1) Cartesian:  ( ,0,0)wrd  
2) Cylindrical:  ( ,0,0)wrd  
3) Spherical:  ( , , )r rR l b  

 
Here wrd  is the distance between the wind turbine and the radar and is given by (ref. Equation 
(A-1a) in Appendix A in (2)): 
 

( )arccos sin sin cos cos cos( )wr w r w r w rd R b b b b l l= ⋅ ⋅ + ⋅ ⋅ −  (D.1)

 

ΔB

ΔL

δ

Radar

Wind turbine
(lw,bw)

(lr,br)

N

 
Figure D.2 The angel relative north for the wind turbine-radar system. 

The angle δ  relative north (clockwise) for the mapping grid is given by (see Figure D.2) 
 

arctan ,           

arctan ,     

,                   ,   
2

r w

r w

r w r w

L b b
B

L b b
B

L b b l l
L

δ π

π

⎧ Δ⎛ ⎞ >⎪ ⎜ ⎟Δ⎝ ⎠⎪
⎪ Δ⎛ ⎞= + <⎨ ⎜ ⎟Δ⎝ ⎠⎪
⎪ Δ

⋅ = ≠⎪ Δ⎩

 
(D.2)

 
where 
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( )
( )cos

r w

w r w

B R b b

L R b l l

Δ = ⋅ −

Δ = ⋅ ⋅ −
 (D.3)

 
Here we have assumed that the Earth is locally flat (lines of longitude locally parallel). 
 
The total grid width gridXΔ  is 

 
max mingridX x xΔ = −  (D.4)

  
and the total grid heigth gridYΔ  is 

 
max mingridY y yΔ = −  (D.5)

 
The coordinates of an arbitrary element ij  in the grid are 
 

1) Cartesian:  ( , ,0)i jx y  
2) Cylindrical: ( , ,0)ij ijr ϕ  

 
Here i  denotes the ( 1)i + th element of the grid along the x -axis, and j  denotes the ( 1)j + th 
element of the grid along the y -axis. 
 
The coordinates ix  and jy  can be calculated from 

 
1

min 2
1

min 2

,      0,...( 1)
,     j 0,...( 1)

i x

i y

x x x i x i n
y y y j y n
= + Δ + ⋅Δ = −

= + Δ + ⋅Δ = −
 

(D.6)

 
where xn  and yn  are the number of grid elements along the x - and y -axis respectively and 

are given by 
 

max min

max min

x

y

x xn
x

y yn
y

−
=

Δ
−

=
Δ

 (D.7)

 
and ijr  and ijϕ  can be found from 

 
2 2

ij i jr x y= +  (D.8)

 
and  
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 (D.9)

 
If there is no wind turbine present, the electric field amplitude 0

ijE  at grid element ij  is given 
by 
 

0
0

r
ij

ij

EE
d

=  (D.10)

 
where 0

rE  is the electric field amplitude at 1 m distance from the radar, and ijd  is the distance 
from the radar to grid element  ij . The distance ijd  is found from 

 

( )2 2
ij wr i jd d x y= − +  (D.11)

 
where wrd  is the distance between the wind turbine and the radar as given by Equation (D.1). 
The total electric field at grid element ij  when the wind turbine is present can then be 
calculated from Equations (2.1)-(2.5) when 0

ijE , as given by Equation (D.10), is used as the 
electric field amplitude 0E  of the primary wave. 
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E IMPLEMENTATION OF THE SHADOW EFFECTS CALCULATIONS IN WTES 

The WTES (Wind Turbine and Electromagnetic Systems) software was developed by FFI to 
evaluate the effects of windmill development on telecommunication and radar (1). The 
software was developed in LabView v8.2. 
 

 
Figure E.1 The WTES Main program (Front Panel of WTES Main.vi). 

The Front Panel for WTES is shown in Figure E.1. Calculations can be performed for the 
following systems:  

• RADAR 
• SSR (Secondary Surveillance Radar) 
• Passive Sensor 
• Radio Link 
• HF  

The results from the calculations are presented as a bitmap that can be plotted in the chart 
handling system MARIA. 
 
For each system different types of calculations can be performed. For RADAR one type of 
calculation is the Shadow Effect calculations, and we will in the following describe how the 
Shadow Effects calculations are implemented in WTES. Note that the implementation 
procedure is general, and can be applied also for other new calculation modules. 



 90  
 

 
   

In order to implement the Shadow Effects calculations in WTES, the following new files must 
be generated:  

1) Generate Shadowing Pixmap.vi 
2) Init Shadowing Cluster.ctl 

 
In addition, the following existing WTES-files must be modified: 

3) Init Cluster.ctl 
4) RADAR Settings.vi 
5) RADAR Calculations.vi 

E.1 Generate Shadowing Pixmap.vi 

Generate Shadowing Pixmap.vi (together with its subroutines) contains the new calculation 
module. It performs the Shadow Effect calculations and generates the corresponding bitmap 
for displaying the results on the map. A schematic view of the Generate Shadowing Pixmap.vi 
is shown in Figure E.2. The Front Panel is shown in Figure E.3. 
 

Shadow
pixmap

Visibility Variables

WIMP Radar

WIMP Windpark

Parameters

new Visibility Variables

Legend

 
Figure E.2 Schematic view of Generate Shadowing Pixmap.vi. 

 

Input parameters: 

Visibility Variables: Contains the parameters required for generating the bitmap,                
see Table E.1. 

WIMP Radar: Input from WIMP (to the main program) containing information about 
the radar. 

WIMP Windpark: Input from WIMP (to the main program) containing information about 
the windpark. 

Parameters: Input from RADAR Settings.vi containing information specific to the 
Shadow Effects calculations (set by the user). 

 
Output parameters: 

New Visibility Variables: Contains the information required for generating the bitmap,     
see Table E.1. 

Legend:  Contains the information about the legend for the bitmap. 
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Figure E.3 The Front Panel for the Generate Shadowing Pixmap.vi. 
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 Visibility Variables New Visibility Variables 
Area Size 
(Height, Width) 

Values are set in Generate 
Shadowing Pixmap.vi. (Received 
as input (Parameters) from 
RADAR Settings.vi). 

Center Position   
(Lat, Lon, Alt) 

Values are set in Generate 
Shadowing Pixmap.vi. 

Rotation Values are set in Generate 
Shadowing Pixmap.vi. 

Pixmap Coverage 

 
 

 
 
 
- 

Values are set in Generate 
Shadowing Pixmap.vi. (Results 
from the calculations). 

Pixmap Map - 
DTED   
(DTED, DTED bound, Points/deg) 

- 

Bitmap List   
(Mark, Name, Current) 

New values are set in RADAR 
Calculations.vi 

Map Path     - 
DTED Level 

 
Initial values set under  
Init Frame in  
RADAR Calculations.vi 

- 

Table E.1     The input and output parameters Visibility Variables and New VisibilityVariables. 

E.2 Init Shadowing Cluster.ctl 

Init Shadowing Cluster.ctl contains the framework for holding the input parameters specific to 
the Shadow Effects calculations, see Figure E.4.   

 
Figure E.4 The Front Panel for the Init Shadowing Cluster.ctl. 
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E.3 Init Cluster.ctl 

Init Cluster.ctl contains the framework for holding all the input parameters for the different 
calculation modules. The controller Init Shadowing cluster.ctl must be implemented in Init 
Cluster.vi.  

E.4 RADAR Settings.vi 

RADAR Settings.vi is used to manually set the input parameters for the different calculation 
modules.  
 
On the Front Panel for the RADAR Settings.vi a separate pane for “Shadow Effects” must be 
generated, see Figure E.5.  
 
In the Block Diagram for the RADAR Settings.vi the necessary modifications to include the 
settings for the Shadow Effects calculations must be done (both in the Init Frame and in the 
Main Frame). 
 

 
Figure E.5 The Front Panel for the RADAR Settings.vi. 
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E.5 RADAR Calculations.vi 

RADAR Calculations.vi runs the radar calculations. 
 
On the Front Panel for the RADAR Calculations.vi the Shadow Effects calculations must be 
included as an option in the menu. 
 
In the Block Diagram for the RADAR Calculations.vi the Shadow Effects calculations must be 
included by adding a case to the case structure that holds the different calculation modules, see 
Figure E.6. 
 
Input to the case-structure: 

- Visibility Variables (see Table E.1) 
- WIMP Data (input from WIMP containing WIMP Windpark and WIMP Radar 

information, see Figure E.3) 
 
Output from the case-structure: 

- New Visibility Variables (see Table E.1) 
 
A new calculation module can be implemented in the RADAR Calculations.vi by the 
following procedure:  

1) Copy the Shadow Effects calculation case. 
2) Replace the Generate Shadowing Pixmap.vi (placed at the center in the upper part of 

the Block Diagram shown in Figure E.6) by the new calculation module. 
3) Change the Parameters input (for the Generate Shadowing Pixmap.vi) to the 

Parameters input specific for the new calculation module. 
4) Change the information in Description&TipStrip 
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Figure E.6 The Block Diagram for the RADAR Calculations.vi, showing the case for the Shadow Effects calculations. 
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