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English summary 
The focus of this report is on numerical simulation of piezoelectric materials. One example of 
such a material is quartz. By applying a pressure load to a piezoelectric material, electricity is 
generated – the so-called direct piezoelectric effect. In the opposite case, by applying an electric 
field, the material deforms (mechanically) – the so-called inverse piezoelectric effect. 
 
A mathematical model for linear piezoelectricity is described. This includes a model for linear 
elasticity, as well as a model for linear electrostatics. Piezoelectricity is expressed mathematically 
by combining the two above mentioned models. The explicit coupling between the elasticity 
problem and the electrostatics problem is through (modified) constitutive laws. 
 
Two simulators are implemented; one in Diffpack and one in MSC.Marc. In this way we are able 
to compare numerical results, and then verify the implementation in both software packages. In 
addition, this increases the general understanding of the problem. Simulation in Diffpack requires 
some low-level programming, but gives large possibilities for adjustments and assessments. 
Moreover, it provides access to all programming details needed. MSC.Marc is on the other hand 
to a larger extent an application software package. An advantage of MSC.Marc is that one is able 
to use robust software for advanced problems relatively fast. A main disadvantage is that most of 
the implementation details are hidden, which gives, among other things, uncertainty regarding the 
choice of solution method, what presumptions are made for the calculations, and the 
interpretation of quantities that are returned (results). For such a complex and comprehensive 
software package as MSC.Marc, detailed documentation, that easily can be searched, is a major 
challenge to work out. 
 
Two test examples are simulated in both software tools for different piezoelectric materials. In the 
first case we simulate the piezoelectric effect, whereas in the second case we consider the inverse 
piezoelectric effect. Comparison of the numerical results shows very good agreement in the two 
software packages for the material model cases included in this report.  
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Sammendrag 
Denne rapporten tar for seg numerisk modellering av piezoelektriske materialer. Et eksempel på 
et slikt materiale er kvarts. Piezoelektriske materialer har den egenskapen at ved å utsette disse 
for en trykklast, genereres elektrisitet – såkalt direkte piezoelektrisk effekt. I motsatt tilfelle, ved å 
påføre materialet et elektrisk felt, deformeres det (mekanisk) – såkalt invers piezoelektrisk effekt. 
 
En matematisk modell for lineær piezoelektrisitet er beskrevet. Dette inkluderer en modell for 
lineær elastisitet, så vel som en modell for lineær elektrostatikk. Piezoelektrisitet uttrykkes 
matematisk ved en kombinasjon av de to ovennevnte modellene. Den eksplisitte koblingen 
mellom elastisitetsproblemet og elektrostatikkproblemet er gjennom (modifiserte) konstitutive 
lover. 
 
To simulatorer er implementert; en i Diffpack og en i MSC.Marc. Dette gjør oss i stand til å 
sammenlikne numeriske resultater, og på den måten verifisere implementasjonen i begge 
programvarepakkene. I tillegg gir dette økt generell forståelse av problemet. Simulering i 
Diffpack krever en del lavnivå programmering, men gir store muligheter for egne tilpasninger og 
vurderinger. I tillegg har vi fullt innsyn i alle programmeringsdetaljer vi har behov for. 
MSC.Marc er på den andre siden i større grad en applikasjonsprogramvarepakke. En fordel med 
MSC.Marc er at man kan benytte robust programvare til avanserte problemer relativt raskt. En 
betydelig ulempe er at mange av implementeringsdetaljene er skjult, noe som blant annet gir 
usikkerhet knyttet til løsningsmetode, hvilke forutsetninger som er gjort i beregningene og hvilke 
størrelser som returneres (resultater). For en så komplisert og omfattende programvarepakke som 
MSC.Marc, er for øvrig detaljert nok dokumentasjon, som det samtidig er mulig å finne frem i, en 
stor utfordring å utarbeide.  
 
To testeksempler er simulert i begge programvarepakker for forskjellige piezoelektriske 
materialer. I det ene testproblemet simulerer vi piezoelektrisk effekt, mens vi i det andre 
testproblemet tar for oss invers piezoelektrisk effekt. Det er meget godt samsvar mellom de 
numeriske resultatene i de to programvarepakkene for de materialmodellene som er vist i denne 
rapporten.       
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1 Introduction 
When doing analyses in structural mechanics, the focus is primarily on the mechanical behavior 
of the structure. From applying an external force or load to some material, we are able to measure 
the deformation of the structure due to that load. The deformation, or displacement field, may 
then be used to calculate strains in the structure. The strain tensor is an important quantity in the 
analysis. Displacement measurements, based on physical experiments, are furthermore 
fundamental for establishing the relationship between stresses and strains for the material. For an 
elastic material, where there is a linear relationship between the stresses and strains, the material 
is denoted as linear elastic.  
 
In other situations, our interest is directed towards the electrical properties and behavior of the 
material of consideration. Hence, the focus is on the variation of the electric field in the medium. 
Experiments and measurements are in these cases performed for establishing the electrical 
properties, and the relationship between the involved (electrical) quantities. This is commonly 
referred to as electrostatics. 
 
Some materials, such as crystalline minerals, have special properties, in that they have both 
elastic and electrical properties. When applying a force to such a mineral, e.g. a compressive 
force, the material is deformed. In addition to this, because such minerals are electrically 
polarized, a voltage (or electricity) is generated. Moreover, tensional and compressional 
mechanical forces result in generation of voltages of opposite sign (+/-). The generation of 
electricity due to applying a mechanical force or pressure to a material, is often called the direct 
piezoelectric effect [1;2]. The converse is also observed. When exposed to an electric field (or 
voltage), the mineral deforms (mechanically). This latter effect is called the inverse piezoelectric 
effect, or the converse piezoelectric effect [1;2]. Both effects are found in several situations in 
mechanics, in electronics and aerospace applications, and in biomedical engineering, and 
materials having such properties, i.e. both elastic and electrical, are referred to as piezoelectric 
materials. 
 
A lot of physical experiments have been performed involving piezoelectric materials, see e.g. 
[3;4]. From measurement of mechanical and electric properties some understanding of the direct 
and the inverse piezoelectric effect has been obtained. Due to the complexity of the problem itself 
and the complex materials involved, it may, however, often be difficult to carry out appropriate 
tests. One solution to this is to describe the physical problem mathematically. From this approach 
analytical expressions can be found for describing the physical phenomenon. However, for 
advanced problems, e.g. involving complex geometries and/or combinations of different 
piezoelectric materials, analytical expressions may not be available. In such cases computer 
simulations may be an appropriate tool, as a supplement to the knowledge and understanding 
obtained from the physical experiments.  
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Developing software tools for simulating the direct and the inverse piezoelectric effect employing 
computers is the focus of the work presented here. Simulators are implemented in two different 
software packages, that is, in Diffpack [5;6] and in MSC.Marc [7]. Developing different tools 
increases our general understanding of modeling piezoelectricity on a computer. In addition, we 
are able to compare numerical results and verify the computer implementation.  
 
In the following we first give a very brief introduction to piezoelectricity and piezoelectric 
materials. Then, we present mathematical expressions for linear elasticity and linear 
electrostatics, followed by a model for the coupled electro-mechanical problem. Finally, a 
formulation is presented for numerical modeling of piezoelectricity. At the end of the report we 
show some numerical results from running the simulators. Several test cases are performed in 
both software packages. These test cases include modeling both the direct and the inverse 
piezoelectric effect for various piezoelectric materials. 

2 Piezoelectricity 
The piezoelectric properties of certain crystalline minerals were first discovered by Pierre and 
Jacques Curie in 1880. They found that by enforcing a mechanical force to the mineral, the 
crystalline produced electricity, or electric polarity. A year later, in 1881, the converse effect was 
also observed and documented by the Currie brothers, based on the theory of Lippmann [2]. 
Applying a voltage to the crystalline mineral made it deform. The phenomenon was called 
piezoelectricity, from the Greek word piezein, which means “press” or “squeeze”. To distinguish 
the two different cases, the first observation was called the direct piezoelectric effect, whereas the 
second finding was called the inverse (or the converse) piezoelectric effect. 
 
In this section we give a very brief introduction to piezoelectric materials, typically applied in 
single- and multi-layered piezoelectric elements, and some of their uses. More details may be 
found elsewhere, see e.g. [1;2]. 

2.1 Piezoelectric materials and piezoelectric elements 

Since the discovery of piezoelectricity, piezoelectric materials have been included in various 
devices. In the early days crystalline materials were applied. Different classes of crystal materials 
were investigated, and the piezoelectric properties measured. An outline of different categories of 
crystals and their piezoelectric properties is found in the literature, see e.g. [2]. In addition to 
crystalline materials, one has also discovered other natural materials with weak piezoelectric 
properties, such as wood, bone, collagen, wool, and silk.  Since the 1960’s, natural piezoelectric 
materials have been supplemented with man-made ceramic materials, where different types of 
lead zirconate titanate (PZT) have become the most employed materials the last years.  
 
As opposed to crystalline and other natural piezoelectric materials, ceramic materials do not have 
natural, or “built-in”, piezoelectric properties, but have to be made piezoelectric. The ceramics are 
made piezoelectric by so-called poling (or polarization). In the poling process the ceramic 
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material is exposed to a strong, direct current electric field, such that the material gets 
permanently polarized and elongated in the direction of the applied electric field.  
 
As a consequence of the electric polarization, the material becomes anisotropic, which means that 
the material properties are direction dependent. Exposing the material to some external 
mechanical force or load will result in different response, depending on the direction of the force 
or loadings. Positive polarization of a piezoelectric element, which in this report is defined as a 
rectangular shaped three-dimensional solid, with a thickness much smaller than the size in the 
other two directions, is usually made to coincide with the positive z axis, pointing in the thickness 
direction of the element.        
 
In advanced devices the piezoelectric element is made of several layers. A multi-layered 
piezoelectric element is generally made of active piezoelectric layers and passive layers stacked 
on top of each other, i.e. every other layer is an active layer with a passive layer in between. On 
top and bottom of the element an isolation material is deposited. Between each (active and 
passive) layer, there are buried internal electrode layers, connected to the external electrodes on 
the sides. Figure 2.1 shows a sketch of a piezoelectric element with nine layers. In this case the 
active piezoelectric layers are colored blue, the passive layers are colored red, and the top and 
bottom layers are colored green. The external electrodes are colored grey. For a “real life” 
element, the total number of layers of an element could be more than 100 [3]. 
 

 

Figure 2.1:  A sketch of the stacking order of a typical multi-layered piezoelectric element. The 
green top and bottom layers are isolation material. The blue layers are the active 
piezoelectric material, and the red layers are the passive layers. The external 
electrodes are colored grey. 

2.2 Usage of piezoelectric elements 

Single- and multi-layered piezoelectric elements are used in various devices. Four main 
categories of usage are sensors, generators, actuators, and transducers [1]. 

ISOLATION MATERIAL

PIEZOELECTRIC 
MATERIAL 

PASSIVE MATERIAL

EXTERNAL 
ELECTRODES 
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A sensor typically transforms a force or pressure load to electrical signals, i.e. the piezoelectric 
effect. Sensors may be divided into two main groups [1]: axial sensors and flexional sensors. For 
the axial sensors the load or force is applied in the same direction as the direction of polarization 
of the element. The electric signal is also generated in the same direction. For flexional sensors 
the applied force is measured in the direction of the polarization, but the force makes the element 
deform (or bend) in a direction perpendicular to the polarization direction. To generate an electric 
signal, the pressure or force must be changed.  
 
A generator follows the same principle as a sensor. Generators are applied for instance as ignitors 
in fuel lighters, where it is needed to generate voltages that are sufficient to create a spark across 
an electrical gap. 
 
An actuator transforms an electric signal to mechanical deformation, i.e. the inverse piezoelectric 
effect. Actuators may be divided into three main groups [1]: axial actuators, transversal actuators, 
and flexional actuators. An axial actuator accepts an electrical signal in the direction of the 
polarization of the element, and creates a deformation in the same direction. A transversal 
actuator also accepts a signal in the direction of polarization, but creates a deformation in the 
plane perpendicular to this direction. The third actuator type is a bilinear (two-layered) element. 
The flexional actuator has the same properties as the transversal actuator, but is capable of 
performing much larger movements.   
 
Transducers are applied for converting electrical energy into mechanical vibration energy. Such 
piezoelectric elements are typically employed in sound and ultrasound devices. 

3 Mathematical background 
In a mathematical setting the mechanical deformation and the electric field distribution are often 
described by partial differential equations (PDEs), together with boundary and initial conditions. 
Additional expressions are needed for describing the material and its electric properties, so-called 
constitutive laws. The PDE (or PDEs), the boundary and initial conditions, and the constitutive 
law form a complete mathematical description in each case. 
 
Piezoelectric materials have both mechanical and electrical properties. Analyses will hence in 
such cases involve the PDE and the boundary and initial conditions both from the elasticity part 
and from the electrostatics part. Moreover, the constitutive relations (or laws) involved are 
extended versions of the relations for each of the two (sub-) problems. The extra terms in the 
constitutive laws contain the explicit coupling between the material behavior and the electrostatic 
behavior.      
 
In this section we first give a brief introduction to a set of equations and constitutive laws for 
linear elasticity and linear electrostatics. Then, we show the expressions for the piezoelectric 
coupling. It should be remarked, that we assume isothermal conditions. This restriction simplifies 
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the expressions involved; see e.g. [2] for the expressions obtained when temperature changes are 
included. 

3.1 Electrostatic properties 

The Maxwell equations may be used for describing the quasi-static electric field [8;9], 
 

es∇⋅ =D ρ  (3.1) 
 
and 
 

0∇× =E . (3.2) 
 
 In (3.1), D is the electric displacement vector, and esρ is a given volume charge density. 

However, it may be assumed that there are no free charges within the material; the Gauss’ law 
requires that the divergence of the electric displacement field is zero [8]. Hence, esρ  can be set to 

zero. Furthermore, E in (3.2) is the electric field. The relation between the electric field E and 
the electric potentialφ  can be expressed as 

 
φ= −∇E . (3.3) 

  
This latter expression satisfies the constraint in (3.2) exactly [10]. 
  
In addition to the governing equations for electrostatics, we need to prescribe some boundary 
conditions. The essential boundary condition may be expressed as 
 

*φ φ= , (3.4) 
 
where φ∗ is a prescribed electric potential on the surface Sφ . Moreover, the natural boundary 

condition on the surface Sσ can be expressed 

 
S

i i in D f= , (3.5) 
 
where in=n is the outwards normal vector, and S S

if=f is the applied surface charge. 

 
To fully define the mathematical problem, we need to establish a constitutive law. For the 
electrostatics problem this may be written as 
 

S=D b E , (3.6) 
 
where Sb is the permittivity tensor. The other quantities are defined above. 



 
  
  
 

 12 FFI-rapport 2007/02128 

 

3.2 Mechanical behavior 

The mechanical behavior of a solid continuum may be expressed by the following equilibrium 
equation [5;8], 
 

b ρ∇⋅ + =σ f u , (3.7) 
 
which is based on Newton’s second law. In the above equation the first term on the left hand 

side, ij

jx
σ∂

∇⋅ =
∂

σ , is the divergence of the stress tensor σ , where jx  ( 1, 2,3j = ) are the 

Cartesian coordinate axes. The second term on the left hand side contains the body forces, e.g. 
gravity forces ,b b i if bρ= =f  , where ρ is the mass density and ib is the component of the body 

force in direction i  ( 1, 2,3i = ). The term on the right hand side of (3.7) expresses the 

acceleration of the solid, where (from the assumption of small displacements) 
2

, 2
i

i tt
uu
t

∂
= =

∂
u  is 

the second derivative of the displacement field [ , , ]u v w=u with respect to time t . 

 
In addition to the above equation, boundary conditions need to be specified. Essential boundary 
conditions may be defined on part of the surface, uS , 

 
*

i iu u= , (3.8) 
 
where *

iu are prescribed displacements. Moreover, natural boundary conditions may be defined on 
other parts of the surface, fS , 

 
S

ij j in qσ = , (3.9) 
 
where ijσ is the stress tensor, jn=n is the outwards normal vector to the surface, and S

iq  is the 

applied surface force. The two surface parts, uS and fS , are non-overlapping. 

 
Because the expression in (3.7) contains time derivatives of second order, we need to define two 
initial conditions. For instance, we can apply forces that causes an initial deformation of the 
continuum, that is 
 

0 ,    0t= =u u . (3.10) 
 
Moreover, we may assume that the displacement field is initially unchanged (in time), 
 

0,    0t
t

∂
= =

∂
u

. (3.11) 
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These two initial conditions are used to establish the solution for the first two time steps in a time-
stepping scheme, see Section 4.1.3 and [5] for more details. 
 
To complete the mathematical formulation, we need to specify the material properties, i.e. the 
constitutive law. For linear elastic materials the stresses are related to the strains through Hooke’s 
generalized law, which may be expressed as 
   

ij ijkl klCσ ε= , (3.12) 
 
where ijklC is the fourth order elasticity tensor and klε is the strain tensor. For small deformation 

cases the strains are expressed by the displacements as follows, 
 

1
2

ji
ij

j i

uu
x x

ε
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
. (3.13) 

 
By utilizing the fact that the stress and the strain tensors are symmetric, and also the symmetry 
properties of the fourth order elasticity tensor ( ijkl jikl klijC C C= = ), Hooke’s generalized law may 

be rewritten using the matrix-vector notation (see Appendix A for more details), 
 
=σ Cε , (3.14) 

 
where in this case the stress and strain vectors are expresses as  
 

11

22

33

12

23

31

σ
σ
σ
τ
τ
τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

σ  (3.15) 

and 
 

11

22

33

12

23

31

ε
ε
ε
γ
γ
γ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

ε . (3.16) 
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The first three components of the vectors in (3.15) and (3.16) are the normal stresses and the 
normal strains, respectively. The last three components are the shear stresses and the engineering 
shear strains ( 2ij ijγ ε= ), respectively. The quantity C  now is a 6 6× matrix containing the elastic 

stiffness properties of the continuum.  
 
For a general anisotropic, linear elastic material all coefficients of C may be different from zero, 
and can be expressed as [11] 
 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

C . (3.17) 

 
Due to symmetry properties, as explicitly indicated in (3.17), the number of independent material 
components is 21. 
 
The number of independent components contained in the elasticity matrix in (3.17) may be 
reduced if the material has some kind of symmetry properties, for instance if there are symmetry 
axes. Materials where the elastic properties are isotropic in planes normal to one given direction, 
are denoted as transversely isotropic. In such cases, that particular direction is one symmetry axis, 
as are all directions perpendicular to that direction. For a transversely isotropic material the elastic 
stiffness matrix may generally be expressed as [11] 
  

11 12 12

12 22 23

12 23 22

44

22 23

44

0 0 0
0 0 0
0 0 0

0 0 0 0 0

0 0 0 0 0
2

0 0 0 0 0

C C C
C C C
C C C

C
C C

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C . (3.18) 

 
In the above expression the plane of isotropy is assumed normal to the x direction. The number 
of independent material parameters needed is five. 
 
For linear elastic, isotropic materials, the number of material parameters may be further reduced, 
and  the elastic properties can be described by the elastic modulus (or Young’s modulus) E and 
the Poisson’s ratio ν [5], 
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1 0 0 0

1 0 0 0

1 0 0 0
(1 )

1 2( 0 0 0 0 0
2( )

1 20 0 0 0 0
2( )

1 20 0 0 0 0
2( )

E

ν ν
ν ν

ν ν
ν ν

ν ν
ν νν

νν ν
ν

ν
ν

ν
ν

⎛ ⎞
⎜ ⎟1− 1−⎜ ⎟
⎜ ⎟
⎜ ⎟1− 1−
⎜ ⎟
⎜ ⎟
⎜ ⎟1− 1−−

= ⎜ ⎟−1+ )(1− 2 ) ⎜ ⎟
1−⎜ ⎟

⎜ ⎟−⎜ ⎟
1−⎜ ⎟

⎜ ⎟−⎜ ⎟⎜ ⎟1−⎝ ⎠

C . (3.19) 

 

3.3 The piezoelectric coupling 

For modeling piezoelectricity, the same governing equations, as presented for the elasticity 
problem and the electrostatics problem, are employed. However, the constitutive laws given in 
the previous sections need to be extended. In this way we incorporate the piezoelectric coupling. 

3.3.1 Constitutive laws 

The constitutive equations for piezoelectricity are typically expressed by one law for the 
electrostatics behavior and one for the mechanics behavior, that is, relations (3.6) and (3.12) (or 
alternatively (3.14)), respectively. The coupling between the mechanical and the electrical 
behavior for the piezoelectric case is included in the equations by adding extra terms to the 
“original” laws for elasticity and electrostatics.  
 
In a stress-based formulation, the electrostatic behavior may be expressed as [12-14] 
 

S
i ij j ijk jkD b E h ε= + , (3.20) 

 
and the elastic behavior as 
 

ij ijkl kl kij kC h Eσ ε= − . (3.21) 
 
In the above equations iD is the electric displacement, S

ijb is the permittivity tensor evaluated at 

constant strain, jE is the electric field, ijkh is the piezoelectric coupling matrix (stress based), 

jkε is the strain tensor, ijσ is the stress tensor, and ijklC  is the elastic stiffness tensor evaluated at a 

constant E field. In (3.20), the first term is identical to the right hand side term of (3.6), whereas 
the second term is the coupling term. Furthermore, in (3.21), the first term is identical to the right 
hand side term of (3.12), and the second term is the piezoelectric coupling term.  
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Alternatively the constitutive equations may be expressed in a strain-based setting. In this case 
the electrostatic behavior may be written as (not using indices) [14-17] 
 
= +D dσ ξE , (3.22) 

 
and the elastic behavior as 
 
= +ε Sσ dE . (3.23) 

 
In this case d is the piezoelectric coupling matrix (strain-based), ξ  is the permittivity tensor 
(strain-based), and S  is the mechanical compliance matrix ( 1−=S C ). The other quantities are 
defined above. 

3.3.2 The governing equations and the boundary and initial conditions 

Following the derivation and assumptions by Rahman et al. [8] the governing equations for the 
coupled problem may be expressed as 
 

S l
ik ikl

i k i k

ub h
x x x x

φ ∂∂ ∂ ∂
=

∂ ∂ ∂ ∂
 (3.24) 

 
and 
 

l
i ijkl i kij

j k j k

uu C b h
x x x x

φρ ρ∂∂ ∂ ∂
= + +
∂ ∂ ∂ ∂

. (3.25) 

 
The two above equations are obtained from inserting the constitutive laws in (3.20) and (3.21) 
into (3.1) and (3.7), respectively. In this case, the tensor notation has been applied in the 
expressions (and not the matrix-vector notation mentioned in Section 3.2). As one can observe, 
the mechanical deformation iu will affect the electrical behavior (the right hand side of (3.24)), 
whereas the mechanical behavior is influenced by the electrical potential φ  (the last term on the 

right hand side of (3.25)).   
 
For the (quasi-static) electrostatics problem in (3.24), the essential boundary conditions are 
expressed in (3.4), whereas the natural boundary conditions may be expressed as in (3.5). It 
should, however, be remarked that the electric displacement now contains two terms (and not one 
term, as in the pure electrostatic case). For the elasticity problem in (3.25), the essential boundary 
conditions are given in (3.8), the natural boundary conditions are given in (3.9), whereas the 
initial conditions are given in (3.10) and (3.11). 
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3.4 Finite element method 

For complex geometries the finite element method (FEM) is well suited for solving the coupled 
electro-mechanical problem defined above. A variational principle may be applied to establish a 
formulation suitable for implementation on a computer [9]. Another approach is employing the 
principle of minimum potential energy [18], which is often used in structural engineering 
applications. Yet  another possibility is using a Galerkin-based formulation [5], which we apply 
in this report. 
 
The key point in Galerkin’s approach is, briefly, to define a set of basis (or test) functions, 
multiply the governing equations with these functions, and then to integrate over the volume (in 
general 3D cases) of the continuum.  
 
The continuous electrical potential field φ  may at any time level be approximated by a set of 

basis functions L and a discrete set of values for the potential defined at the nodal points φ , 

 

1

l nl l
j jj
Lφ φ φ

=
≈ =∑ . (3.26) 

 
In a similar way the continuous mechanical displacement field may at any time level be written as 
a sum of basis functions N and a discrete set of nodal displacement values,  
 

1

l nl l
j jj
N

=
≈ =∑u u u . (3.27) 

 
In the above expressions, the index l  indicates the time level. 

3.4.1 The electrostatic problem including the piezoelectric coupling 

Multiplying (3.24) with the set of basis functions, and integrating over the entire volume Ω , one 
finally ends up with a linear set of equations. It can be shown that the equations can be written in 
compact notation as 
 

l l l
φ + =K u Pφ f , (3.28) 

 
where  
 

u
e

dVφ φ
Τ

Ω

=∑∫K B hB , (3.29) 

 
 

e

dVφ φ
Τ

Ω

=∑∫P B hB , (3.30) 
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and lf  is the surface density charge vector.  The coefficients of φB  and uB contain first 

derivatives of the basis functions with respect to the coordinate directions.  
 
Assuming that the mechanical displacement field is known, the first term on the left hand side of 
(3.28) can be moved to the right hand side, and denoted as the load vector l

uf . The linear system 

can then be solved for the potential field, 
 

l l l
u= −Pφ f f . (3.31) 

 

3.4.2   The elasticity problem including the piezoelectric coupling 

Following a similar procedure as in the previous section, the equation of motion may be 
expressed as [8], 
 

1 1 2 1ˆ2 ( )l l l l l lt+ − −= − + Δ − + +u u u M Ku β Φ , (3.32) 
 
where l  indicates the current time level, and 1ˆ −M is the inverse of the lumped mass matrix. 
Moreover, 
 

u u
e

dVΤ

Ω

=∑∫K B hB . (3.33) 

 
The vector lβ contains the contributions from the body forces and surface tractions, and lΦ is the 

load vector from the electric field. This latter load vector contains the piezoelectric coupling term. 
Remark that, in static (or quasi-static) cases, only the last term on the right hand side of (3.32) 
will not vanish. 
  
More details about the implementation of the problem on a computer, employing the finite 
element method, may be found in the following section. For more general FEM theory we refer to 
[5;18;19].  

4 Numerical Modeling 
A lot of work has been done on modeling piezoelectricity, both when it comes to numerical 
algorithms and to applications. It is not intended in this report to cover all parts of the research, or 
to point out any special field of interest. The simulators presented here are implemented as a tool 
for understanding more about the fundamentals of piezoelectricity. Moreover, the simulators will 
work as a building block for further research and more advanced applications. For comparison 
and code verification, simulators are implemented in two different software packages, that is, in 
Diffpack [5;20] and in MSC.Marc/Mentat [21]. Both simulators are described in the following.  
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4.1 Piezoelectric modeling in Diffpack 

A simulator for modeling piezoelectricity has been developed in the commercial software 
package Diffpack [22], which is a C++ based code library well suited for solving ordinary and 
partial differential equations (ODEs and PDEs, respectively). Developing a simulator in Diffpack 
gives us the flexibility of defining applications with special features often not supported by other 
comparable commercial software tools like MSC.Marc, ANSYS and ABAQUS. In addition we 
have full control of program details, solution techniques, and the numerical algorithm employed. 
In other software tools, most of these things are hidden inside a “black box”. On the other hand, 
in Diffpack we need to do more low-level programming, which is often more time consuming and 
error prone. However, employing already implemented standard simulators in Diffpack, and 
extending these for our special application case, the time needed and the number of bugs 
introduced will decrease. 

4.1.1 The class hierarchy of the Diffpack simulator 

The Diffpack simulator for simulating piezoelectricity is based on two standard and already 
implemented simulators in Diffpack; one simulator for modeling linear elasticity and one 
simulator applicable for solving the electrostatics problem (i.e. a simulator for solving the 
Poisson’s equation). Some modifications are needed in the current solvers for including the 
piezoelectric coupling. In addition, we need a manager class for connecting the two involved 
(sub-) simulators. 
 
The class structure for the piezoelectricity solver is shown in Figure 4.1. Here, Poisson2 is the 
standard time-dependent Poisson solver already found in Diffpack. Moreover, PoissonPiezo1 
is a new class taking into account the contribution to the electrostatics part from the mechanical 
deformation, i.e. the piezoelectric coupling. Furthermore, Elasticity2 is the standard Diffpack 
solver for isotropic, linear elastic problems, applying the engineering approach (i.e. the matrix-
vector notation). Elasticity3 is a new class including linear elastic, anisotropic materials. 
Also, ElasticVib1 is a standard Diffpack solver for time-dependent elastic motion, where some 
modifications are made to the original solver. These latter code adjustments are due to the 
inclusion of Elasticity3. Moreover, ElasticVibPiezo1 is a new class that takes into 
account the contribution from the electric field, i.e. the piezoelectric coupling. Finally, 
PiezoElec1 is a new class for managing the solve process of the piezoelectric problem. This 
latter class is in Diffpack terminology often referred to as the “manager class” [5]. 

4.1.2 The finite element method 

When writing a computer program in Diffpack/C++, some low-level programming details are 
required. In this section we give the expressions required, namely the (problem-dependent) 
expressions needed in the integrands (volume integral) and integrands4side (surface 
integral) functions. These functions are common in most Diffpack simulators, and must be 
implemented for each simulator. More details about Diffpack simulators are found in [5]. 
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Figure 4.1:  Class structure in Diffpack for the piezoelectricity simulator. The classes Poisson2, 
Elasticity2, and ElasticVib1 are standard solvers. The classes 
PoissonPiezo1, Elasticity3, ElasticVibPiezo1, and PiezoElec1 are 
developed for the piezoelectric coupling application. 

. 

4.1.2.1 The electrostatics problem with piezoelectric coupling 

For the electrostatics problem including piezoelectricity it is appropriate to start with the equation 
in (3.24). We write out all terms, multiply with the basis functions, and integrate over the domain 
of the continuum. For the left hand side of (3.24), applying Green’s theorem for integration by 
parts, and without doing any assumptions of the components of the permittivity tensor, we get 
that, 
 

ElasticVibPiezo1 PoissonPiezo1 

PiezoElec1 

ElasticVib1 Possion2 

Elasticity3 

Elasticity2 
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and 
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∂ ∂

∫f

. (4.2) 

 
In case of an isotropic and diagonal permittivity matrix, 11 22 33b b b= = , and 0,  ijb i j= ≠ . 

Hence, only the first three terms in (4.1) and (4.2) will not vanish, and the permittivity may be 
replaced by a single parameter. In the more general anisotropic case (even now a diagonal 
matrix), 11 22 33b b b≠ ≠ , and all three diagonal parameters must be provided as input to the 

computer program. Still, only the first three terms will not vanish.  
 
For the right hand side of (3.24), without making any assumptions about the coefficients of the 
h tensor, we get that, 
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(4.3) 

 
For a specific piezoelectric material, most of the components of the h tensor are zero, and hence a 
lot of the terms will vanish. 
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This completes the (detailed) description of the terms in (3.31). The above volume and surface 
integral expressions are implemented into the integrands and integrands4side functions, 
respectively, of class PoissonPiezo1. 

4.1.2.2 The elasticity problem with piezoelectric coupling  

For the elasticity problem, applying the matrix-vector notation, we end up with the following 
expression, similar to the form in (3.32) [5;8], 
 

1 1 2 2 22
ll l l T l

j j j i i it dV t N dV t N dρ− +

Ω Ω ∂Ω

− + + Δ = Δ + Δ Γ∫ ∫ ∫Mu Mu Mu B σ b t , (4.4) 

 
where 
 

i jN N dVρ
Ω

= ∫M  (4.5) 

 
is the mass matrix. In the computer code a lumped mass matrix is applied. In this way the mass 
matrix becomes invertible, and (4.4) may be solved for the unknown displacement vector field at 
the next time step 1l

j
+u . 

In (4.4), the contribution from the electric field is contained in the fourth term on the left hand 
side and in the second term on the right hand side. The fourth term on the left hand side, inserting 
the constitutive law on matrix-vector form (see Appendix A for details) becomes 
  

( )
l lT T T l T l T T l

i i i j j idV dV dV dV
Ω Ω Ω Ω

= − = −∫ ∫ ∫ ∫B σ B Cε h E B CB u B h E . (4.6) 

 
In the above expression the first term is the “standard” stiffness matrix for linear elastic problems. 
The only new code implementation needed for this part is the specification of anisotropic material 
properties. The second term is the part dealing with the piezoelectric coupling, and hence, we 
focus on this latter term here. The second term may be written as 
  

T T l T l
i i EdV dV

Ω Ω

=∫ ∫B h E B σ , (4.7) 

 
where 
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from which we may write  
 

, ,11 , ,12 , ,31

, ,22 , ,12 , ,23

, ,33 , ,23 , ,31

l l l
i x E i y E i z E

T T l l l l
i i y E i x E i z E

l l l
i z E i y E i x E

N N N dV

dV N N N dV

N N N dV

σ σ σ

σ σ σ

σ σ σ

Ω

Ω Ω

Ω

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟
⎜ ⎟= + +⎜ ⎟
⎜ ⎟
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∫

∫ ∫

∫

B h E , (4.9) 
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In a similar way, the second term on the right hand side of (4.4) may be written, 
 

l l l
i M i E iN d N d N d

∂Ω ∂Ω ∂Ω

Γ = Γ − Γ∫ ∫ ∫t t t . (4.10) 

 
In the above expression, the first term is the “standard” boundary term, whereas the second term 
is the natural boundary condition from the piezoelectric coupling. Again, we focus on the 
piezoelectric coupling part. Having that , ,

l l l
E E r E rs st nσ= =t , where ,

l l
E rs prs ph Eσ = , and where 

[ , , ]T
s x y zn n n n= =n  is the normal vector, the latter term of (4.10) may be written, 
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Most of the terms in the piezoelectric coupling matrix often vanish. This will simplify the final 
expressions.   
 
This completes the (detailed) description of (4.4). The above volume and surface integral 
expressions are implemented into the integrands and integrands4side functions, 
respectively, of class ElasticVibPiezo1. 
 

4.1.3 Solution algorithm 

Rahman et al. [8] have applied a solution algorithm involving two sub-solvers; one sub-solver for 
the elasticity part, and one sub-solver for the electrostatics part. A similar solution algorithm is 
presented by Gaudenzi and Bathe [9]. In their approaches, for each time level the two sub-
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problems are solved sequentially. Iterations are performed at each time level, always applying the 
latest solution fields in the computations. The procedure is repeated until a certain error tolerance 
is fulfilled.  
 
Employing sub-solvers, one is able to reuse already existing simulators, and need only to add the 
problem specific part for the particular application. Generally, this is a fundamental approach in 
object-oriented programming, which also will be adopted in our case. 
 
Assuming now that proper initial conditions are established for the elasticity problem, the main 
algorithm can be written as follows: 

1. Solve with initial values to obtain initial conditions for 0φ and 0u  
2. Compute the error e  
3. While crite e> , repeat steps 1 and 2 

4. Update field values; 1 0=φ φ and 1 0=u u  

5. Solve the elasticity problem, including the piezoelectric coupling 
6. Solve the electrostatic problem, including the piezoelectric coupling 
7. Compute the error 
8. While crite e> , repeat steps 5-7 

 
In static problems, the computation of initial values is not needed. In this case, the solution 
algorithm starts at step 5. Also remark, that in the above solution algorithm the elasticity problem 
is solved first. The updated solution field (i.e. the displacement field) is then applied in the 
electrostatics solve. This solution order is typically applied for simulating the direct piezoelectric 
effect, where an externally applied pressure load, or force, results in generation of electricity. For 
simulating the inverse piezoelectric effect, i.e. the exposure of an electric potential resulting in a 
mechanical deformation, steps 5 and 6 must be switched. In this case the electrostatic sub-
problem is solved first. Then the updated solution field values are applied in the solve process for 
the elasticity sub-problem. 
 
As an alternative to establishing two sub-problems and solving the piezoelectricity problem in an 
iterative way, the entire problem can be solved fully coupled as one linear system. We do not go 
any further into describing this approach in this report.   

4.2 Piezoelectric modeling in MSC.Marc 

A simulator is also implemented in MSC.Marc [23], which is a finite element (FE) solver that 
supports modeling of piezoelectricity. MSC.Marc is in this case used in combination with Mentat. 
Mentat is the graphical user interface (GUI) for the MSC.Marc FE solver. The GUI is very 
convenient for the pre and post processing part of the analysis.  
 
In this case all code development is more high-level, and hence also less time consuming. The 
user only needs to provide the input data. Advanced and well tested solvers are already contained 
in the software package, and we do not need to define any algorithm for the solution process 
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ourselves. On the other side, most programming details are hidden “behind the curtains”. 
Incorrect use of the software may give wrong answers, although the results appear to be 
reasonable.  
 
For modeling piezoelectricity in MSC.Marc we need to establish a problem description, which is 
saved on a file. The problem description file may later be opened and modified. The problem 
description, including geometry and element discretization, material properties, boundary 
conditions, element type, and solution process options, can be specified in Mentat. Alternatively, 
one may employ the PyMentat module [24]. All input data and other specifications are then 
written in a Python script file, which can be loaded into Mentat. In this way only one file needs to 
be saved. Moreover, all commands and chosen options (besides the default options set by the 
program) are explicitly given in the Python script. This latter approach may speed up the time 
spent and effort put into the debugging process. 

5 Test cases  
In this section we show some numerical results from running the same problem in Diffpack and 
MSC.Marc. Although the simulators presented above are capable of handling time-dependent 
problems, we restrict our examples to static simulations. First, at time of writing static simulations 
are immediately needed in the project work, and hence more relevant than dynamic simulations. 
Furthermore, the primary aim in this report is to verify the code implementation, both the self-
developed Diffpack solver and the MSC.Marc solver. Finally, we try to get a better understanding 
of the fundamental aspects of the problem itself. For these purposes it is appropriate to keep the 
examples relatively simple and time-independent. Obtaining the same numerical results in two 
independent software tools, one may conclude that the implementations are correct. 
 
Solving the same problem employing different software tools may in some cases produce slightly 
different results. Such differences may be due to the choice of solution method, accuracy 
tolerances, integration rules, employment of different computers and so on. In this case the 
Diffpack simulator and the MSC.Marc simulator are run on different computers, due to the fact 
that the software tools are installed on different computers. Moreover, for the MSC.Marc solver, a 
lot of computational details are hidden. Because of the above mentioned aspects, we only show 
(and compare) the primary solution fields for most of the cases included in this report. More data 
is, however, available for further analysis.  
 
In all test cases we consider a rectangular shaped test specimen, with width and length5 mm and 
thickness 0.1995 mm , where z is the global thickness direction, and the other two global axes 
are defined according to the right hand rule.  The thickness value is a consequence of using the 
grid generation tools in MSC.Marc. Moreover, the specimen is assumed to be made of pure 
piezoelectric material, which often is referred to as a single-layered piezoelectric element (see 
Section 2.1). For all cases the test specimen is discretized using 10 10 15× × elements. 
Corresponding element types (i.e. same number of nodes and order of the basis functions) are 
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applied in the simulators. A sketch of the geometry of the specimen, with the element mesh, is 
shown in Figure 5.1. 
 

 

Figure 5.1:  Geometry and element mesh of the test specimen. The size of the specimen is 
5 5 1.995 mm× × , with 10 10 15× × elements. 

 
Color plots of the primary unknowns are shown for each test case. Remark that the color scales 
are different for the Diffpack and the MSC.Marc results; the software tools applied for plotting 
have predefined color scaling. In addition, we give the values at a set of nodal points. Table 5.1 
lists the nodal point coordinates. Each geometric location has been given a point identification 
number.   
 

Table 5.1:  Coordinates, with point identification number, for the seven nodal points, where the 
primary field values are given. 

Point id X Y Z 
P1 0.0 0.0025 0.001064
P2 0.0025 0.0025 0.001064
P3 0.005 0.0025 0.001064
P4 0.0025 0.0 0.001064
P5 0.0025 0.005 0.001064
P6 0.005 0.0025 0.0 
P7 0.0025 0.0025 0.001995
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We start with a pure elasticity problem, including both an isotropic and a transversely isotropic 
material case. Then, we continue with a test case for a pure electrostatics problem. In this second 
case the permittivity is first set equal in all coordinate directions (i.e. isotropic permittivity), and 
then different in the thickness direction compared to the in-plane directions (i.e. orthotropic 
permittivity). Finally, we run two different piezoelectricity test cases, that is, a sensor/generator 
case (direct piezoelectric effect) and an actuator case (inverse piezoelectric effect). For the 
piezoelectricity test cases, anisotropic properties are chosen for both the elasticity part and the 
electrostatics part. 

5.1 Elastic test specimen 

In this first test case we consider a pure elasticity problem. The test specimen is in this case 
restricted from movement at 0.0z = . At 1.995 mmz = a pressure load 250000 N/mp = is 

applied (pointing in the negative z direction). Two different linear elastic materials, both with 
mass density 37750 kg/mρ = , are investigated. 

5.1.1 Isotropic material properties 

For isotropic materials only two material parameters are needed for describing the linear elastic 
behavior. In our case the Young’s modulus 11 210  N/mE = , and the Poisson ratio 0.25ν = . 
 
Table 5.2 shows the displacement values, obtained from the simulations in Diffpack and 
MSC.Marc, at seven locations, where the point coordinates and point identification numbers are 
given in Table 5.1.  
 

Table 5.2:  Elastic case, isotropic material properties. Displacement values at seven locations in 
the test specimen. 

Diffpack MSC.Marc Point id 
u 

( 910−×  m) 
v 

( 910−×  m)
w  

( 910−× m)
u 

( 910−×  m)
v 

( 910−×  m) 
w   

( 910−× m) 
P1 -0.248 0.0 -0.534 -0.248 0.0 -0.534 
P2 0.0 0.0 -0.431 0.0 0.0 -0.431 
P3 0.248 0.0 -0.534 0.248 0.0 -0.534 
P4 0.0 -0.248 -0.534 0.0 -0.248 -0.534 
P5 0.0 0.248 -0.534 0.0 0.248 -0.534 
P6 0.0 0.0 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -0.876 0.0 0.0 -0.876 

  
Figure 5.2 displays the numerical results obtained from simulations in Diffpack for the whole 
specimen. Due to isotropic material properties the displacement in the x and y directions (Figure 

5.2a and Figure 5.2b, respectively) are equal. The externally applied pressure load produces a 
larger and negative displacement (compression) in the z direction (Figure 5.2c). Figure 5.2d 
shows the magnitude of the displacement field.  
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Figure 5.2:  Diffpack. Elastic case, isotropic material properties. Displacement field.                   
a) x component; b) y component; c) z component; d) magnitude of the displacement 
vector field. 

The displacement field obtained from the corresponding simulation in MSC.Marc is shown in 
Figure 5.3. 
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(a)  (b) 

 

 

 
(c)  (d) 

Figure 5.3:  MSC.Marc. Elastic case, isotropic material properties. Displacement field.               
a) x component; b) y component; c) z component; d) magnitude of the displacement 
vector field. 

 
Comparing the components of the displacement field in Table 5.2 and in Figure 5.2 and Figure 
5.3, we observe excellent agreement.  
 
The displacements may also be calculated from analytical expressions. From general theory on 
isotropic, linear elastic materials, the normal strains can in this test case be expressed by the 
normal stresses and the material parameters E and ν , 
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(1 )

(1 )

2

yx xz z
x

y x xz z
y

yx xz z
z

σσ σσ σε ν ν ν ν

σ σ σσ σε ν ν ν ν

σσ σσ σε ν ν ν

= − − = − −
Ε Ε Ε Ε Ε

= − − = − −
Ε Ε Ε Ε Ε

= − − = −
Ε Ε Ε Ε Ε

. (5.1) 

In the above expressions we have used that the normal stresses, xσ and yσ , in this case are equal, 

but different from  zσ . Moreover, a large pressure load is applied to the top surface, whereas the 

bottom surface is restricted from movement in all directions. The remaining four sides are 

unloaded and free to move. From this we can conclude that the quantity x

E
σ

 in the expressions in 

(5.1) typically is much smaller than z p
E E
σ

= − , and hence may be neglected. Hence, we may 

write, 

0

0

0

x

y

z

u p
u

v p
v
w p

w

ε ν

ε ν

ε

Δ
= =

Ε
Δ

= =
Ε

Δ
= = −

Ε

, (5.2) 

where uΔ is the displacement and 0u is the original length of the specimen in the global 

x direction; analogous for the two other directions. Inserting material parameters and lengths of 
the undeformed test specimen, we get 
  
   

100
11

100
11

0.25 0.005 50000 m 6.25 10 m
10

0.001995 50000 m 9.975 10 m
10

u pu v

w pw

ν −

−

× ×
Δ = Δ = = = ×

Ε
×

Δ = − = − = − ×
Ε

. (5.3) 

  
The analytic displacement in the z direction is close to the displacement value in the center node 
on the top surface (location P7 in Table 5.2). Moreover, at the top surface the analytic 
displacement values in the other directions are also very close to the numerical values (Figure 
5.2a and b, and Figure 5.3a and b). Applying the expressions in (5.1) and running a test case 
where the bottom surface is allowed to move in the x and y directions, would probably result in 

better agreement between the numerical and analytical values. 

5.1.2 Transversely isotropic material properties 

In this second case the material properties of the test specimen are transversely isotropic. 
Piezoelectric materials, which are central in this study, typically have transversely isotropic  
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material properties (for example man-made ceramics) or anisotropic material properties (for 
example quartz). In our case the elasticity matrix is given by 
 

11 2

1.2035 0.7518 0.7509 0 0 0
0.7518 1.2035 0.7509 0 0 0
0.7509 0.7509 1.1087 0 0 0

10  N/m
0 0 0 0.2257 0 0
0 0 0 0 0.2105 0
0 0 0 0 0 0.2105

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

C , (5.4) 

 
where the material is isotropic in planes normal to the z direction.   
 
Table 5.3 gives the displacement values obtained in Diffpack and MSC.Marc at the same seven 
locations as in the isotropic material case.  
 
 
 

Table 5.3:  Elastic case, anisotropic material properties. Displacement values at seven locations 
in the test specimen. 

Diffpack MSC.Marc Point id 
u 

( 910−×  m) 
v 

( 910−× m)
w  

( 910−× m)
u 

( 910−× m)
v 

( 910−× m)
w   

( 910−× m) 
P1 -0.749 0.0 -0.892 -0.749 0.0 -0.892 
P2 0.0 0.0 -0.581 0.0 0.0 -0.581 
P3 0.749 0.0 -0.892 0.749 0.0 -0.892 
P4 0.0 -0.749 -0.892 0.0 -0.749 -0.892 
P5 0.0 0.749 -0.892 0.0 0.749 -0.892 
P6 0.0 0.0 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -1.379 0.0 0.0 -1.379 

 
 
 
Figure 5.4 and Figure 5.5 show the components and the magnitude of the displacement field in 
this case. With isotropic material properties in planes normal to the z direction, the displacement 
components in the x and y directions become equal. Moreover, the agreement between the 

numerical results in Diffpack and MSC.Marc are excellent also in this case.  
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Figure 5.4: Diffpack .Elastic case, anisotropic material properties. Displacement field.                
a) x component; b) y component; c) z component; d) magnitude of the displacement 
vector field. 
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(a)  (b) 
 

(c)  (d) 

Figure 5.5:  MSC.Marc. Elastic case, anisotropic material properties. Displacement field.           
a) x component; b) y component; c) z component; d) magnitude of the displacement 
vector field.    

5.2 Electrostatic test specimen 

In this next case we consider a pure electrostatics problem. At 0.0 mmz = the electric potential 
is set equal to zero, whereas at 1.995 mmz = the potential value is 10000 V .   
 
The electric field can be expressed as the negative gradient of the electric potential, see (3.3). In 
this case the potential in the z direction is the most important and interesting component. With 
the chosen potential value and test specimen thickness, the third component of the electric field 
becomes 
 

6
3

10000  V/m 5.01 10  V/m
0.001995

E = − = − × . (5.5) 
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Piezoelectric materials typically have anisotropic permittivity properties. We now investigate 
how, and if, the permittivity will influence on the distribution of the electric potential and the 
electric field. 

5.2.1 Isotropic permittivity 

The permittivity is first assumed to be isotropic and equal to 98.137 10  F/m−× . 
 
The numerical results from Diffpack and MSC.Marc simulations are shown in Figure 5.6 and 
Figure 5.7, respectively. The electric potential field is displayed in Figure 5.6a and Figure 5.7a.  
In addition, Table 5.4 shows the point values at the seven geometric locations. Comparing the 
variation of the potential field in the test specimen we find excellent agreement. The computed 
electric field distribution in the z direction is also the same in both software tools (Figure 5.6b 
and Figure 5.7b), and is in accordance with the analytical solution in (5.5). 
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Figure 5.6:  Diffpack. Electrostatic problem with isotropic permittivity properties. a) electric 
potential; b) electric field in the z direction. 
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(a)  (b) 

Figure 5.7:  MSC.Marc. Electrostatic problem with isotropic permittivity properties. a)  electric 
potential; b) electric field in the z direction. 

 

Table 5.4:  Electric potential, isotropic permittivity, at seven locations in the test specimen. 

Point id Diffpack, φ  (in V) MSC.Marc, φ  (in V)

P1 5333.33 5333.33 
P2 5333.33 5333.33 
P3 5333.33 5333.33 
P4 5333.33 5333.33 
P5 5333.33 5333.33 
P6 0.0 0.0 
P7 10000.0 10000.0 

 
 
 

5.2.2 Orthotropic permittivity 

In this case the permittivity tensor is given by 
 

8

0.8137 0 0
0 0.8137 0 10  F/m
0 0 0.7319

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.6) 

 
The numerical results are displayed in Figure 5.8 and Figure 5.9, and they agree very well also in 
this case. Moreover, the potential values at the seven locations are given in 
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Table 5.5. Based on the results presented here and in Section 5.2.1, it seems that the orthotropic 
permittivity does not influence either on the electric potential or the electric field distribution in 
the z direction. A larger variation of the permittivity values may violate this conclusion. 
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Figure 5.8:  Diffpack. Electrostatic problem with orthotropic permittivity properties. a)  electric 
potential; b) electric field in the z direction. 

 
 

(a)  (b) 

Figure 5.9:  MSC.Marc. Electrostatic problem with orthotropic permittivity properties. a)  
electric potential; b) electric field in the z direction. 
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Table 5.5:  Electric potential, orthotropic permittivity, at seven locations in the test specimen. 

Point id Diffpack, φ  (in V) MSC.Marc, φ  (in V)

P1 5333.33 5333.33 
P2 5333.33 5333.33 
P3 5333.33 5333.33 
P4 5333.33 5333.33 
P5 5333.33 5333.33 
P6 0.0 0.0 
P7 10000.0 10000.0 

 

5.3 Single-layered piezoelectric test specimen 

Now we run two different test cases for various piezoelectric materials. In the first case, modeling 
the piezoelectric effect (i.e. sensor/generator), the test specimen is restricted from movement at 

0.0z = . At 0.1995z =  an external pressure load 2500000 N/mp =  is applied. The electric 
potential is in this case set equal to zero at 0.0z =  and at 0.1995z =  (i.e. shorted electric 
circuit). In the second case, modeling the inverse piezoelectric effect (i.e. actuator), the test 
specimen is (still) restricted from movement at 0.0z = . The top surface at 0.1995z =  is now 
stress free. Moreover, at 0.0z =  the electric potential is set to zero, whereas the potential at 

0.1995z =  is 100000 V . 
 
In the literature, the constitutive laws, and hence the matrices containing the material properties, 
are often given according to a strain-based formulation. These expressions then need to be 
transformed to express the corresponding constitutive laws (and material properties) in a stress-
based formulation. For the Diffpack simulator, only the stress-based formulation is implemented. 
For the MSC.Marc simulator on the other hand, both the stress-based and strain-based 
formulations may be given as input. However, the latter software tool always converts the 
material data into a stress-based formulation before solving the problem. Hence, it is natural only 
to present the material parameter values in the stress-based formulation in this report.  
 
The material parameters for different piezoelectric materials are given below, together with the 
numerical results. Only the primary solution fields are displayed in these cases. Some general 
comments about the numerical results for all piezoelectric material models are given in Section 
5.3.7. 
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5.3.1 Quartz 

Quartz is a natural piezoelectric material. The material parameters for quartz are as follows 
[25;26]: 
 
Mass density: 32649.0 kg/mρ = . 

 
Elastic properties: 
 

9 2

86.74 6.99 11.91 0 17.91 0
6.99 86.74 11.91 0 17.91 0

11.91 11.91 107.2 0 0 0
10  N/m

0 0 0 39.88 0 17.91
17.91 17.91 0 0 57.94 0

0 0 0 17.91 0 57.94

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
−⎜ ⎟

⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

C . (5.7) 

 
Permittivity: 
 

12

39.21 0 0
0 39.21 0 10  F/m
0 0 41.03

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.8) 

 
Piezoelectric coupling: 
 

2

0.171 0.171 0 0 0.0406 0
0 0 0 0.171 0 0.0406  C/m
0 0 0 0 0 0

− −⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

h . (5.9) 

5.3.1.1 Piezoelectric effect 

The numerical results are shown in Table 5.6 and and in Figure 5.10 and Figure 5.11. 

Table 5.6:  Quartz, piezoelectric effect; Diffpack. Displacement and electric potential at seven 
locations in the test specimen. 

Point id u ( 910−× m)  v ( 910−× m) w ( 910−× m) φ (V) 

P1 -1.042 0.0989 -5.26 -0.61 
P2 0.0 -0.0083 -4.74 0.0 
P3 1.042 0.0989 -5.26 0.61 
P4 0.0 -1.124 -5.21 0.0 
P5 0.0 0.965 -5.31 0.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.0258 -9.13 0.0 
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Figure 5.10: Quartz, piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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Table 5.7:  Quartz, piezoelectric effect; MSC.Marc. Displacement and electric potential at seven 
locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.042 0.0989 -5.26 -0.61 
P2 0.0 -0.0083 -4.74 0.0 
P3 1.042 0.0989 -5.26 0.61 
P4 0.0 -1.124 -5.21 0.0 
P5 0.0 0.965 -5.31 0.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.0258 -9.13 0.0 

 
 

(a)  (b) 
 

(c)  (d) 

Figure 5.11: Quartz, piezoelectric effect; MSC.Marc. a) displacement in the x direction; b) 
displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 
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5.3.1.2 Inverse piezoelectric effect 

The numerical results are displayed in Table 5.8 and Table 5.9 and in Figure 5.12 and Figure 
5.13. 
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Figure 5.12: Quartz, inverse piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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Table 5.8:  Quartz, inverse piezoelectric effect; Diffpack. Displacement and electric potential at 
seven locations in the test specimen. 

Point id u ( 1410−× m) v ( 1410−× m) w ( 1410−× m) φ (V) 

P1 -4.54 0.64 -38.16 53333.3 
P2 -0.06 0.02 -37.26 53333.3 
P3 4.49 0.49 -38.13 53333.3 
P4 0.14 -4.73 -37.81 53333.3 
P5 -0.11 4.19 -38.53 53333.3 
P6 0.0 0.0 0.0 0.0 
P7 -0.04 -0.02 -48.03 100000.0 

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 5.13: Quartz, piezoelectric effect; MSC.Marc. a) displacement in the x direction; b) 
displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 
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Table 5.9:  Quartz, inverse piezoelectric effect; MSC.Marc. Displacement and electric potential 
at seven locations in the test specimen. 

Point id u ( 1410−× m) v ( 1410−× m) w ( 1410−× m) φ  (V) 

P1 -4.49 0.48 -38.14 53333.3 
P2 0.0 -0.03 -37.27 53333.3 
P3 4.49 0.48 -38.14 53333.3 
P4 0.0 -4.77 -37.77 53333.3 
P5 0.0 4.23 -38.55 53333.3 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.11 -48.01 100000.0 

 

5.3.2 Langasite 

The material parameters for langasite ( 3 5 14La Ga SiO ) are as follows [26;27]: 

 
Mass density: 35743.0 kg/mρ =  

 
Elastic properties: 
 

10 2

18.875 10.475 9.589 0 1.412 0
10.475 18.875 9.589 0 1.412 0
9.589 9.589 26.14 0 0 0

10  N/m
0 0 0 4.2 0 1.412

1.412 1.412 0 0 5.35 0
0 0 0 1.412 0 5.35

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
−⎜ ⎟

⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

C . (5.10) 

 
Permittivity: 
 

12

167.5 0 0
0 167.5 0 10  F/m
0 0 448.9

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.11) 

 
Piezoelectric coupling: 
 

2

0.44 0.44 0 0 0.08 0
0 0 0 0.44 0 0.08  C/m
0 0 0 0 0 0

− −⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

h . (5.12) 

 



 
 
  

 

FFI-rapport 2007/02128 45  

 

5.3.2.1  Piezoelectric effect 

The numerical results are shown in and Table 5.11 and  in Figure 5.14 and 
Figure 5.15. 
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Figure 5.14: Langasite, piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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Table 5.10: Langasite, piezoelectric effect; Diffpack. Displacement and electric potential at seven 
locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.735 0.128 -2.652 0.382 
P2 0.0 -0.021 -2.078 0.0 
P3 1.735 0.128 -2.652 -0.382 
P4 0.0 -1.835 -2.613 0.0 
P5 0.0 1.634 -2.697 0.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.046 -4.297 0.0 

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 5.15:Langasite, piezoelectric effect; MSC.Marc. a) displacement in the x direction; b) 
displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 
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Table 5.11:  Langasite, piezoelectric effect; MSC.Marc. Displacement and electric potential at 
seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.735 0.128 -2.652 0.382 
P2 0.0 -0.021 -2.078 0.0 
P3 1.735 0.128 -2.652 -0.382 
P4 0.0 -1.835 -2.613 0.0 
P5 0.0 1.634 -2.697 0.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.046 -4.297 0.0 

 
 

5.3.2.2 Inverse piezoelectric effect 

The numerical results are displayed in Table 5.12 and Table 5.13 and in Figure 5.16 and  
Figure 5.17. 
 
 

Table 5.12:  Langasite, inverse piezoelectric effect; Diffpack. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 1410−× m) v ( 1410−× m) w ( 1410−× m) φ  (V) 

P1 -17.65 1.12 -37.58 53333.3 
P2 -0.08 -0.26 -35.19 53333.3 
P3 17.33 0.68 -37.45 53333.3 
P4 0.11 -17.53 -36.84 53333.3 
P5 0.21 16.82 -38.31 53333.3 
P6 0.0 0.0 0.0 0.0 
P7 0.02 -0.45 -48.36 100000.0 
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Figure 5.16: Langasite, inverse piezoelectric effect; Diffpack. a) displacement in the x direction; 
b) displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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(a)  (b) 
 

(c)  (d) 

Figure 5.17: Langasite, inverse piezoelectric effect; MSC.Marc. a) displacement in the x 
direction; b) displacement in the  y direction;  c) displacement in the z direction; d) 
electric potential. 

Table 5.13:  Langasite, inverse piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 1410−× m) v ( 1410−× m) w ( 1410−× m) φ  (V) 

P1 -17.29 0.93 -37.51 53333.3 
P2 0.0 -0.27 -35.18 53333.3 
P3 17.29 0.93 -37.51 53333.3 
P4 0.0 -17.68 -36.81 53333.3 
P5 0.0 16.84 -38.31 53333.3 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.49 -48.25 100000.0 
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5.3.3 Lithum niobate 

The material parameters for lithium niobate are as follows [26;28]: 
 
Mass density: 34700.0 kg/mρ =  

 
Elastic properties: 
 

11 2

2.03 0.53 0.75 0 0.09 0
0.53 2.03 0.75 0 0.09 0
0.75 0.75 2.45 0 0 0

10  N/m
0 0 0 0.75 0 0.09

0.09 0.09 0 0 0.6 0
0 0 0 0.09 0 0.06

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

C . (5.13) 

 
Permittivity: 

 

11

38.9 0 0
0 38.9 0 10  F/m
0 0 25.7

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.14) 

 
Piezoelectric coupling: 
 

2

0 0 0 2.5 0 3.7
2.5 2.5 0 0 3.7 0  C/m

0.2 0.2 1.3 0 0 0

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

h . (5.15) 

5.3.3.1 Piezoelectric effect 

The numerical results are shown in Table 5.14 and Table 5.15 and in Figure 5.18 and Figure 5.19. 

 

Table 5.14:  Lithium niobate, piezoelectric effect; Diffpack. Displacement and electric potential 
at seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.389 -0.010 -2.667 0.458 
P2 0.0 -0.001 -2.106 -1.851 
P3 1.389 -0.010 -2.667 0.458 
P4 0.0 -1.400 -2.656 -0.298 
P5 0.0 1.376 -2.672 1.121 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.001 -4.302 0.0 
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Figure 5.18: Lithium niobate, piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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(a)  (b) 
 

(c)  (d) 

Figure 5.19:Lithium niobate, piezoelectric effect; MSC.Marc. a) displacement in the x direction; 
b) displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 

 

Table 5.15:  Lithium niobate, piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.389 -0.010 -2.667 0.458 
P2 0.0 -0.001 -2.106 -1.851 
P3 1.389 -0.010 -2.667 0.458 
P4 0.0 -1.400 -2.656 -0.298 
P5 0.0 1.376 -2.672 1.121 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.001 -4.302 0.0 
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5.3.3.2 Inverse piezoelectric effect 

The numerical results are displayed in Table 5.16 and Table 5.17 and in Figure 5.20 and  
Figure 5.21. 
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Figure 5.20: Lithium niobate, inverse piezoelectric effect; Diffpack. a) displacement in the x 
direction; b) displacement in the  y direction; c) displacement in the z direction; d) 
electric potential. 
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Table 5.16:  Lithium niobate, inverse piezoelectric effect; Diffpack. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 710−× m) v ( 710−× m) w ( 710−× m) φ  (V) 

P1 -0.9 -0.007 -3.15 53363.0 
P2 0.0 -0.001 -2.79 53213.4 
P3 0.9 -0.007 -3.15 53363.0 
P4 0.0 -0.907 -3.14 53314.1 
P5 0.0 0.892 -3.15 53406.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.001 -5.46 100000.0 

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 5.21: Lithium niobate, inverse piezoelectric effect; MSC.Marc. a) displacement in the x 
direction; b) displacement in the  y direction;  c) displacement in the z direction; d) 
electric potential. 
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Table 5.17:  Lithium niobate, inverse piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 710−× m) v ( 710−× m) w ( 710−× m) φ  (V) 

P1 -0.9 -0.007 -3.15 53363.0 
P2 0.0 -0.001 -2.79 53213.4 
P3 0.9 -0.007 -3.15 53363.0 
P4 0.0 -0.907 -3.14 53314.1 
P5 0.0 0.892 -3.15 53406.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.001 -5.46 100000.0 

 

5.3.4 Lithium tantalate 

The material properties for lithium tantalate are as follows [26;28]: 
 
Mass density: 37450.0 kg/mρ =  

 
Elastic properties: 
 

11 2

2.33 0.47 0.8 0 0.11 0
0.47 2.33 0.8 0 0.11 0
0.8 0.8 2.75 0 0 0

10  N/m
0 0 0 0.93 0 0.11

0.11 0.11 0 0 0.94 0
0 0 0 0.11 0 0.94

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
−⎜ ⎟

⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

C . (5.16) 

 
Remark that Yang [26] has reported another value for component 33C  ( 11 22.45 10 N/m= × ), 

although referring to the work by Warner et al. [28]. 
 
Permittivity: 
 

11

36.3 0 0
0 36.3 0 10  F/m
0 0 38.2

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.17) 

 
Piezoelectric coupling: 
 

2

0 0 0 1.6 0 2.6
1.6 1.6 0 0 2.6 0  C/m
0 0 1.9 0 0 0

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

h . (5.18) 
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5.3.4.1 Piezoelectric effect 

The numerical results are shown in and Table 5.19 and in Figure 5.22 and Figure 5.23. 
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Figure 5.22: Lithium tantalate, piezoelectric effect; Diffpack. a) displacement in the x direction; 
b) displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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Table 5.18:  Lithium tantalate, piezoelectric effect; Diffpack. Displacement and electric potential 
at seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.138 0.037 -2.346 0.462 
P2 0.0 -0.003 -1.835 -0.363 
P3 1.138 0.037 -2.346 0.462 
P4 0.0 -1.170 -2.321 0.044 
P5 0.0 1.105 -2.371 0.921 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.010 -3.746 0.0 

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 5.23: Lithium tantalate, piezoelectric effect; MSC.Marc. a) displacement in the x 
direction; b) displacement in the  y direction;  c) displacement in the z direction; d) 
electric potential. 
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Table 5.19:  Lithium tantalate, piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -1.138 0.037 -2.346 0.462 
P2 0.0 -0.003 -1.835 -0.363 
P3 1.138 0.037 -2.346 0.462 
P4 0.0 -1.170 -2.321 0.044 
P5 0.0 1.105 -2.371 0.921 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.010 -3.746 0.0 

 

5.3.4.2 Inverse piezoelectric effect 

The numerical results are displayed in Table 5.20 and Table 5.21 and in Figure 5.24 and  
Figure 5.25. 
 
 

Table 5.20:  Lithium tantalate, inverse piezoelectric effect; Diffpack. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 710−× m) v ( 710−× m) w ( 710−× m) φ  (V) 

P1 -2.167 0.070 -4.467 53421.4 
P2 0.0 -0.005 -3.494 53264.4 
P3 2.167 0.070 -4.467 53421.4 
P4 0.0 -2.228 -4.419 53341.8 
P5 0.0 2.104 -4.516 53508.8 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.018 -7.133 100000.0 
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Figure 5.24: Lithium tantalate, inverse piezoelectric effect; Diffpack. a) displacement in the x 
direction; b) displacement in the  y direction; c) displacement in the z direction; d) 
electric potential 
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(a)  (b) 
 

(c)  (d) 

Figure 5.25: Lithium tantalate, inverse piezoelectric effect; MSC.Marc. a) displacement in the x 
direction; b) displacement in the  y direction;  c) displacement in the z direction; d) 
electric potential. 

 

Table 5.21:  Lithium tantalate, inverse piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 710−× m) v ( 710−× m) w ( 710−× m) φ  (V) 

P1 -2.167 0.070 -4.467 53421.4 
P2 0.0 -0.005 -3.494 53264.4 
P3 2.167 0.070 -4.467 53421.4 
P4 0.0 -2.228 -4.419 53341.8 
P5 0.0 2.104 -4.516 53508.8 
P6 0.0 0.0 0.0 0.0 
P7 0.0 -0.018 -7.133 100000.0 



 
 
  

 

FFI-rapport 2007/02128 61  

 

5.3.5 Barium titanate 

The material parameters of barium titanate ( 3BaTiO ) are as follows [26;29]: 

 
Mass density: 35700.0 kg/mρ =  

 
Elastic properties: 
 

10 2

15.0 6.53 6.62 0 0 0
6.53 15.0 6.62 0 0 0
6.62 6.62 14.6 0 0 0

10  N/m
0 0 0 4.24 0 0
0 0 0 0 4.39 0
0 0 0 0 0 4.39

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

C . (5.19) 

 
Permittivity: 
 

9

9.87 0 0
0 9.87 0 10  F/m
0 0 11.16

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.20) 

 
Piezoelectric coupling: 
 

2

0 0 0 0 0 11.7
0 0 0 0 11.7 0  C/m
4.3 4.3 17.5 0 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

h . (5.21) 

5.3.5.1 Piezoelectric effect 

The numerical results are shown in Table 5.22 and Table 5.23 and in Figure 5.26 and Figure 5.27. 
 

Table 5.22:  Barium titanate,  piezoelectric effect; Diffpack. Displacement and electric potential 
at seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -2.89 0.0 -4.939 0.503 
P2 0.0 0.0 -3.712 0.454 
P3 2.89 0.0 -4.939 0.503 
P4 0.0 -2.89 -4.939 0.503 
P5 0.0 2.89 -4.939 0.503 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -7.77 0.0 
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Figure 5.26: Barium titanate, piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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(a)  (b) 
 

(c)  (d) 

Figure 5.27:Barium titanate, piezoelectric effect; MSC.Marc. a) displacement in the x direction; 
b) displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 

Table 5.23:  Barium titanate,  piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -2.89 0.0 -4.939 0.503 
P2 0.0 0.0 -3.712 0.454 
P3 2.89 0.0 -4.939 0.503 
P4 0.0 -2.89 -4.939 0.503 
P5 0.0 2.89 -4.939 0.503 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -7.77 0.0 
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5.3.5.2 Inverse piezoelectric effect 

The numerical results are displayed in and Table 5.25 and in Figure 5.28 and  
Figure 5.29. 
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Figure 5.28: Barium titanate, inverse piezoelectric effect; Diffpack. a) displacement in the x 
direction; b) displacement in the  y direction; c) displacement in the z direction; d) 
electric potential. 
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Table 5.24:  Barium titanate, inverse  piezoelectric effect; Diffpack. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 610−× m) v ( 610−× m) w ( 610−× m) φ  (V) 

P1 -7.82 0.0 -9.89 54695.5 
P2 0.0 0.0 -6.58 54563.2 
P3 7.82 0.0 -9.89 54695.5 
P4 0.0 -7.82 -9.89 54695.5 
P5 0.0 7.82 -9.89 54695.5 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -14.52 100000.0 

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 5.29: Barium titanate, inverse piezoelectric effect; MSC.Marc. a) displacement in the x 
direction; b) displacement in the  y direction;  c) displacement in the z direction; d) 
electric potential. 
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Table 5.25:  Barium titanate, inverse  piezoelectric effect; MSC.Marc. Displacement and electric 
potential at seven locations in the test specimen. 

Point id u ( 610−× m) v ( 610−× m) w ( 610−× m) φ  (V) 

P1 -7.82 0.0 -9.89 54695.5 
P2 0.0 0.0 -6.58 54563.2 
P3 7.82 0.0 -9.89 54695.5 
P4 0.0 -7.82 -9.89 54695.5 
P5 0.0 7.82 -9.89 54695.5 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -14.52 100000.0 

 

5.3.6 Lead-zirconate-titanate (PZT) – PZT-4 

PZT-4 is a type of lead zirconate titanate, which is a ceramic man-made piezoelectric material. 
The material parameters for PZT-4 are as follows [26;29]: 
 
Mass density: 37500.0 kg/mρ =  

 
Elastic properties: 
 

10 2

13.9 7.78 7.40 0 0 0
7.78 13.9 7.40 0 0 0
7.40 7.40 11.5 0 0 0

10  N/m
0 0 0 3.06 0 0
0 0 0 0 2.56 0
0 0 0 0 0 2.56

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ×⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

C . (5.22) 

 
Permittivity: 
 

9

6.46 0 0
0 6.46 0 10  F/m
0 0 5.62

−

⎛ ⎞
⎜ ⎟= ×⎜ ⎟
⎜ ⎟
⎝ ⎠

b . (5.23) 

 
Piezoelectric coupling: 
 

2

0 0 0 0 0 12.7
0 0 0 0 12.7 0  C/m
5.2 5.2 15.1 0 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

h . (5.24) 
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5.3.6.1 Piezoelectric effect  

The numerical results are shown in and Table 5.27 and in Figure 5.30 and Figure 5.31. 
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Figure 5.30: PZT-4, piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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Table 5.26: PZT-4,  piezoelectric effect; Diffpack. Displacement and electric potential at seven 
locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -5.31 0.0 -7.62 1.633 
P2 0.0 0.0 -5.52 1.597 
P3 5.31 0.0 -7.62 1.633 
P4 0.0 -5.31 -7.62 1.633 
P5 0.0 5.31 -7.62 1.633 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -11.90 0.0 

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 5.31:PZT-4, piezoelectric effect; MSC.Marc. a) displacement in the x direction; b) 
displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 
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Table 5.27:  PZT-4,  piezoelectric effect; MSC.Marc. Displacement and electric potential at seven 
locations in the test specimen. 

Point id u ( 910−× m) v ( 910−× m) w ( 910−× m) φ  (V) 

P1 -5.31 0.0 -7.62 1.633 
P2 0.0 0.0 -5.52 1.597 
P3 5.31 0.0 -7.62 1.633 
P4 0.0 -5.31 -7.62 1.633 
P5 0.0 5.31 -7.62 1.633 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -11.90 0.0 

 

5.3.6.2 Inverse piezoelectric effect 

The numerical results are displayed in Table 5.28 and Table 5.29 and in Figure 5.32 and  
Figure 5.33. 
 
 

Table 5.28:  PZT-4,  inverse piezoelectric effect; Diffpack. Displacement and electric potential at 
seven locations in the test specimen. 

Point id u ( 510−× m) v ( 510−× m) w ( 510−× m) φ (V) 

P1 -1.24 0.0 -1.40 57130.0 
P2 0.0 0.0 -0.91 57045.1 
P3 1.24 0.0 -1.40 57130.0 
P4 0.0 -1.24 -1.40 57130.0 
P5 0.0 1.24 -1.40 57130.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -2.06 100000.0 
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Figure 5.32: PZT-4, inverse piezoelectric effect; Diffpack. a) displacement in the x direction; b) 
displacement in the  y direction; c) displacement in the z direction; d) electric 
potential. 
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(a)  (b) 
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Figure 5.33: PZT-4, inverse piezoelectric effect; MSC.Marc. a) displacement in the x direction; 
b) displacement in the  y direction;  c) displacement in the z direction; d) electric 
potential. 

 

Table 5.29: PZT-4,  inverse piezoelectric effect; MSC.Marc. Displacement and electric potential 
at seven locations in the test specimen. 

Point id u ( 510−× m) v ( 510−× m) w ( 510−× m) φ  (V) 

P1 -1.24 0.0 -1.40 57130.0 
P2 0.0 0.0 -0.91 57045.1 
P3 1.24 0.0 -1.40 57130.0 
P4 0.0 -1.24 -1.40 57130.0 
P5 0.0 1.24 -1.40 57130.0 
P6 0.0 0.0 0.0 0.0 
P7 0.0 0.0 -2.06 100000.0 
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5.3.7 Concluding remarks for the piezoelectric material cases 

The numerical results from the simulations in Diffpack and in MSC.Marc agree very well for all 
the presented piezoelectric materials test cases. The best agreement is generally found for the test 
cases simulating the piezoelectric effect; some minor differences are observed for the 
displacements for quartz and langasite in simulating the inverse piezoelectric effect, see Table 5.8 
and Table 5.9, and Table 5.12 and Table 5.13, respectively. 
 
For the Diffpack simulator more iterations were needed for obtaining the same error tolerance 
value for the ceramic material compared to the other materials. This may be related to the elastic 
material properties being transversely isotropic for ceramic materials. For the other materials 
tested, the elastic properties are anisotropic, with a coupling (i.e. values different from zero) 
between the normal stresses and shear strains. Moreover, convergence problems were 
experienced when simulating a PZT-5H ceramic material [26;30] in Diffpack; this material test 
case is not included in this report. In all cases a standard conjugate gradient solver has been 
applied for solving the linear systems involved. The iterative solution method presented in 
Section 4.1.3, hence does not seem to be fully appropriate for all ceramic piezoelectric materials. 
From additional tests it seems that the large values in the piezoelectric coupling matrix, related to 
the poling direction, and the high permittivity values cause the numerical problems. The same 
numerical problems did not occur when simulating the same problem (i.e. for the PZT-5H 
material) in MSC.Marc.  

6 Summary and future work 
In this report the aim has been on numerical modeling of piezoelectricity. Basic knowledge of 
piezoelectricity has been presented, with focus on the mathematical formulation and computer 
implementation. Two different simulators have been implemented and applied for various 
piezoelectric materials. Both the piezoelectric effect and the inverse piezoelectric effect have been 
simulated for all materials. Comparison of the numerical results shows very good agreement. The 
main reason for implementing two different simulators has been for verification of the code 
implementation, as well as for increasing the general understanding of the problem. 
 
Simulation in Diffpack requires some low-level programming. New classes need to be created for 
the particular problem, and modifications need to be done for already existing code. Moreover, 
the integral expressions, which contain the most problem specific part, need to be established and 
implemented. Details are found in Section 4.1. Such code development is quite time consuming 
and error prone. However, standard simulators already exist in Diffpack. Hence, a lot of the 
“standard” code lines can be reused for this particular problem. Another advantage is that we 
have full control of the implementation, and may easily make adjustments and extensions, when 
needed.  
 
MSC.Marc on the other hand, is more an application software, meaning that all low-level details 
are hidden to the front-end user. Moreover, efficient solution algorithms are already implemented.  
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The advantage of this type of software tools is that we can apply a robust an well tested software 
for complex problems quite fast. The only programming requirement is establishing an input file. 
The disadvantage is that a lot of details are hidden inside a “black box”. Some misunderstanding 
and confusion about the input parameters and calculated results may be experienced. 
 
There is very good agreement between the numerical results calculated in the two software tools 
for all test cases presented in this report. However, some convergence problems occurred in the 
Diffpack simulator for one ceramic material case. For piezoelectric materials with large values in 
the piezoelectricity matrix related to the poling direction, and with high permittivity values 
(compared to the other materials considered), such as the PZT-5H material [26;30], the suggested 
iterative solution method seems not to be fully appropriate. More research must therefore be done 
for making the Diffpack simulator applicable to such material cases. The same convergence 
problems have not been experienced for the MSC.Marc solver.  
 
Further work will focus on developing and extending the simulators to also include more 
advanced, multi-layered piezoelectric elements. Another advanced, future application may be to 
include piezoelectric material into an elastic composite material. Moreover, the simulation results 
in this report have been restricted to a static situation only. The piezoelectric effect as a function 
of time can be of interest. It would, for instance, be interesting to simulate and study the electric 
field distribution in a free vibrating element.  
 
In summary, the exercise of developing two different simulators for the piezoelectricity problem 
has been very fruitful. It has increased the understanding of the problem and the phenomenon of 
piezoelectricity, as well as clarified the possibilities and restrictions of the current software tools. 
In addition, the employed software codes have been verified. 
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Appendix A Constitutive laws  
In previous sections the constitutive laws, including the piezoelectric coupling term, are 
expressed both using the tensor notation and the matrix-vector notation. In this section we give 
some more details about the relationship between the two notations.  
 
In structural engineering Hooke’s generalized law expresses the stresses as a product of material 
stiffness coefficients and the strain values. The “inverse Hooke’s law” then expresses the strains 
as a product of the compliance values and the stresses. Although the former variant is normally 
used in defining the constitutive law for elasticity problems, this latter variant is often applied in 
describing the constitutive law for piezoelectricity. It should, however, be mentioned that there 
are several ways of formulating the constitutive laws for piezoelectricity. Only two variants are 
included in this report, starting with a stress-based formulation. 

A.1 The stress-based constitutive laws 

A.1.1 Tensor notation 

In tensor notation, and applying index notation, the stress-based constitutive laws for 
piezoelectricity may be expressed as 
 

ij ijkl kl kij kC h Eσ ε= −  (A.1) 
 
and 
 

S
i ij j ijk jkD b E h ε= + . (A.2) 

 
In (A.1) the first term is the “original” term in the stress-strain relation for linear elastic materials, 
whereas the second term expresses the piezoelectric coupling. In (A.2), the first term is the 
“original “ term in electrostatics problems, and the second term is the piezoelectric coupling term. 

A.1.2 Matrix-vector notation 
The first term on the right hand side in (A.1) contains the fourth order tensor ijklC , which 

generally has 81 coefficients. However, it is known from basic elasticity theory that the stress and 
strain tensors are symmetric.  Hence, only six different components are needed to fully describe 
the stress-strain relationship in three-dimensional cases. Due to these symmetry properties, the 
number of independent coefficients in the fourth order tensor is reduced. Moreover, assuming the 
existence of a strain-energy function with some given properties, the number of coefficients of the 
tensor may be reduced even further. It can be shown that the number of independent coefficients 
in ijklC  is 21 in the most general case (i.e. for anisotropic materials). Details may be found in any 

book on the subject, see e.g. [11;31].  
 



 
 
  

 

FFI-rapport 2007/02128 75  

 

From writing out the expressions for the nine stress components, and again using the fact that the 
stress tensor is symmetric, we find that the third order tensor kijh  in the second term of (A.1) have 

some symmetry properties, that is 
 

kij kjih h= . (A.3) 
 
No other symmetry properties exist for this tensor [2].  
 
Now, writing the six independent stress components in a vector, and utilizing the symmetry 
properties of the other involved quantities, we get the constitutive laws on matrix-vector form. 
The expression in (A.1) may then be expressed  
 

T= −σ Cε h E , (A.4) 
 
or all written out, 
 

11 11 12 13 14 15 16 11

22 12 22 23 24 25 26 22

33 13 23 33 34 35 36 33

12 14 24 34 44 45 46 12

23 15 25 35 45 55 56 23

31 16 26 36 46 56 66 31

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜⎜ ⎟ ⎜ ⎟⎜
⎝ ⎠ ⎝ ⎠⎝ ⎠

111 211 311

122 222 322
1

133 233 333
2

112 212 312
3

123 223 323

131 231 331

h h h
h h h

E
h h h

E
h h h

E
h h h
h h h

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟−⎟ ⎜ ⎟⎜ ⎟

⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎟ ⎜ ⎟

⎟ ⎜ ⎟⎟ ⎜ ⎟
⎝ ⎠

. (A.5) 

 
As already indicated in (A.5), the elasticity matrix C is symmetric. For the piezoelectric coupling 
matrix h all coefficients are generally independent. However, most of the coefficients for 
piezoelectric materials are typically equal to zero. Moreover, due to the electric polarization, the 
material has isotropic properties in directions normal to the poling direction, which reduces the 
number of different coefficients even further. 
 
In a similar way, the constitutive law in (A.2) may be rewritten by taking into account the 
symmetry properties of the strain tensor. We find that the constitutive law in (A.2) on matrix-
vector form may be expressed as 
 

S= +D hε b E , (A.6) 
 
or all written out, 
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11

22
1 111 122 133 112 123 131 11 12 13 1

33
2 211 222 233 212 223 231 21 22 23 2

12
3 311 322 333 312 323 331 31 32 33 3

23

31

S S S

S S S

S S S

D h h h h h h b b b E
D h h h h h h b b b E
D h h h h h h b b b E

ε
ε
ε
γ
γ
γ

⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (A.7) 

 
In this case the piezoelectric coupling matrix h generally contains 18 independent coefficients. 
The permittivity matrix Sb generally contains nine coefficients, but in most cases this matrix is 
diagonal.   

A.1.3 Matrix-vector notation with reduced number of indices 

In the above expressions we have kept the double indices for the stress and strains, and the triple 
indices in the piezoelectric coupling matrix. For the elasticity matrix, however, the number of 
indices has already been reduced. In the literature, a common way of writing these expressions is 
to reduce the number of indices for all terms. In this way the clarity is partly reduced. This is 
because the arrangement of the stress and strain components in the respective vectors and the 
position of the different components of the third order coupling matrix are not explicitly given 
without any extra information. On the contrary, the reduction of indices increases the readability 
of the expressions. With the above arrangement of the stresses and strains, employing the 
following index reduction rule,11 1→ ; 22 2→ ; 33 3→ ; 12 4→ ; 23 5→ ; 31 6→ , and 
using the same symbol for the normal and shear stresses and strains (although still employing the 
engineering strains in the expressions!), we end up with, 
 

1 11 12 13 14 15 16 1 11 21

2 12 22 23 24 25 26 2

3 13 23 33 34 35 36 3

4 14 24 34 44 45 46 4

5 15 25 35 45 55 56 5

6 16 26 36 46 56 66 6

C C C C C C h h
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

31

12 22 32
1

13 23 33
2

14 24 34
3

15 25 35

16 26 36

h
h h h

E
h h h

E
h h h

E
h h h
h h h

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (A.8) 

 
and 
 

1

2
1 11 12 13 14 15 16 11 12 13 1

3
2 21 22 23 24 25 26 21 22 23 2

4
3 31 32 33 34 35 36 31 32 33 3

5

6

S S S

S S S

S S S

D h h h h h h b b b E
D h h h h h h b b b E
D h h h h h h b b b E

ε
ε
ε
ε
ε
ε

⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (A.9) 
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Remark that, for the piezoelectric coupling matrix the two latter indices are truncated into one. 
Once again we remark, that, in general, pq qph h≠ .   

A.2 The strain-based constitutive law 

From inverting the above expression, the strain-based constitutive laws in matrix-vector notation 
become 
 

1 1 T− −= +ε C σ C h E  (A.10) 
 
and 
  

1 1( )T− −= + +D hC σ b hC h E . (A.11) 
 
These expressions are useful when converting the constitutive laws from a stress-based to a 
strain-based setting. 
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