

FFI-rapport 2007/02611

Intrusion tolerant systems

Anders Fongen

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

11 December 2007

FFI-rapport 2007/02611

1070

ISBN 978-82-464-1298-6

Keywords

Inntrengingstolerante systemer

Feiltolerans

Innbruddsdeteksjon

Datasikkerhet

Approved by

Eli Winjum Project manager

Vidar S. Andersen Director

 2 FFI-rapport 2007/02611

English summary
Security intrusions and successful attacks on computer systems will occur regardless of the
quality of the control and protection systems in use. It is therefore necessary to build computer
systems that offer essential services even in the presence of a successful attack. Such systems are
called intrusion tolerant.

Intrusion tolerant systems differ from fault tolerant systems by their threat models. Fault tolerant
systems are designed to survive spontaneous errors (due to natural physical processes), whereas
intrusion tolerant systems should withstand attacks from skilled, well informed and resourceful
adversaries who would launch multi-stage attacks on the system, where also the detection and
recovery mechanisms are targeted. Spontaneous errors may be statistically modeled, whereas a
targeted attack cannot.

The research on intrusion tolerant systems draws on knowledge and experience from several other
research fields, i.a. computing security, distributed systems and fault tolerant systems. These
fields bring with them slightly different perspectives into the research, which will be presented in
the report.

The construction of intrusion tolerant systems builds on top of a range of well known
technologies from related research: Intrusion detection, cryptography, distributed recovery,
system diversity etc. These contributions will be presented in the report and their contribution to
intrusion tolerant systems will be identified.

There are no intrusion tolerant systems in the sense that they defend themselves against attacks
and misuse under any circumstances. What can be found are attempts to combine existing
techniques for intrusion detection, cryptography, crash recovery and damage mitigation into
frameworks which create a stronger defence than if these techniques were applied separately. The
report presents a few of these frameworks.

The report also points to the reasons why mobile, tactical systems are more difficult to turn into
intrusion tolerant systems. A few research questions on this matter are suggested.

The report does not make a distinction between intrusion and attack. Someone may argue that
misuse by disloyal employee should not be called intrusion, but this distinction is not made.

FFI-rapport 2007/02611 3

Sammendrag
Sikkerhetsinnbrudd og angrep på datamaskiner vil skje, uansett hvor gode kontroll- og
beskyttelsessystemer som brukes. Derfor er det nødvendig å bygge datasystemene slik at de
leverer essensielle tjenester også i tilfelle et vellykket angrep. Slike systemer kalles
inntrengningstolerante.

Inntrengingstolerante systemer skiller seg fra feiltolerante systemer ved deres trusselbilder. Mens
feiltrolerante systemer skal motstå spontane feil (f.eks. knyttet til naturlige fysiske prosesser), skal
inntrengningstolerante systemer motstå målrettede angrep fra kunnskapsrike og ressurssterke
aktører som kan skape flertrinns angrep rettet også mot deteksjons- og gjenopprettings-
mekanismene. Mens spontane feil kan modelleres statistisk, kan målrettede angrep ikke det.

Forskningen på inntrengningstolerante systemer henter kunnskap og erfaringer fra flere andre felt,
bl.a. datasikkerhet, distribuerte systemer og feiltolerante systemer. Disse feltene tar med seg litt
ulike perspektiver inn i forskningen, og disse perspektivene blir presentert i rapporten.

Konstruksjonen av inntrengningstolerante systemer bygger på en rekke velkjente teknologier fra
relatert forskning: Inntrengingsdeteksjon, kryptografi, distribuert gjenoppretting, diversifiserte
systemer m.m.. Disse bidragene blir presentert i rapporten og deres bidrag til
inntrengningstolerante systemer identifisert.

Det finnes ikke inntrengingstolerante systemer i den forstand at de forsvarer seg mot inntrengning
og misbruk i alle situasjoner. Det som finnes er forsøk på å kombinere eksisterende teknikker for
inntrengningsdeteksjon, kryptografi, gjenoppretting og skadebegrensning i rammeverk som
skaper et sterkere vern enn om teknikkene ble anvendt separat. Rapporten beskriver kort noen
slike rammeverkprosjekter.

Rapporten peker også på de særlige egenskaper ved mobile, taktiske nettverk som gjør det
vanskeligere å gjøre dem inntrengningstolerante. Noen utkast til forskningsspørsmål på dette
feltet blir presentert.

Rapporten gjør ikke forskjell på begrepene inntrengning og angrep. Noen vil kanskje hevde at
angrep utført av betrodde innsidere ikke bør kalles inntrengning, men en slik nyansering er altså
ikke gjort.

 4 FFI-rapport 2007/02611

Contents

1 7 Introduction

2 7 The motivation for Intrusion Tolerance

3 9 Definition of terms

4 10 Threat model
4.1 10 Difference from Risk model

4.2 11 Purpose and position of the attacker

4.2.1 11 The purpose

4.2.2 11 The positions

4.2.3 12 Skills and tools

4.2.4 12 Timing and sequence of events

4.2.5 13 The disloyal insider

4.3 13 Human factors – human errors

4.4 13 Program bugs

4.5 14 Denial of Service

4.6 14 Summary

5 14 Research approaches
5.1 14 Fault tolerance approach

5.2 16 Computing security approach

5.3 17 Distributed Systems approach

5.4 19 Limitations of the three approaches

6 19 Supporting technologies
6.1 19 Cryptography

6.1.1 19 Symmetric vs. asymmetric cryptography

6.1.2 20 Threshold cryptography

6.1.3 20 Contributions to intrusion tolerance

6.2 21 Intrusion Detection

6.3 23 Distributed Recovery

6.3.1 23 Call semantics in the presence of failures

6.3.2 24 Stateless servers

6.3.3 25 Idempotent operations

6.3.4 25 Replicated storage

6.3.5 26 Contributions to intrusion tolerance

6.4 26 Diversified systems

FFI-rapport 2007/02611 5

6.4.1 26 The perils of a well known memory layout

6.4.2 27 Immunity through diversification

7 29 Research results
7.1 30 MAFTIA

7.2 31 ITUA

7.3 32 DARPA SRS

8 32 Intrusion Tolerance in mobile systems

9 33 Conclusions and suggestions for further research

References 35

 6 FFI-rapport 2007/02611

1 Introduction
The recent interest in the research field of Intrusion Tolerance is founded on the assumptions that
a security perimeter will ultimately fail. The number of computers connected to a network, the
range of tools available to an intruder and the hard pressed time-to-market for commercial
software are factors that increase the probability for successful intrusions.
Realizing this fact, it is the goal of computing security scientists to provide systems that persist to
offer correct and essential services even in the presence of successful compromise, or offer
controlled recovery mechanisms and log data for forensic investigation. This is a formidable task
that needs to draw on expertise and experience from several research fields; intrusion detection,
fault tolerance, distributed systems, operating systems and programming languages.
It is the intention of this report to present the foundations and the current state of research on
intrusion tolerance. A number of approaches will be presented, together with the associated
frameworks, methodologies and experimental results.

The rest of the report is organized as follows: Chapter 2 provides the motivational background for
the research on intrusion tolerance. Chapter 3 explains a list of terms important to the report.
Chapter 4 introduces a threat model, which is intended as a framework for analyzing threats and
risks. Chapter 5 views the field of intrusion tolerance from the perspective of other related
research fields: Fault tolerance, distributed systems and computing security. Chapter 6 identifies
a selection of technologies which can be used when building intrusion tolerant systems, and
discusses their contributions. Chapter 7 gives a short presentation of intrusion tolerant research
projects. Chapter 8 gives a brief discussion on the issue of intrusion tolerance in mobile systems.
Chapter 9 gives a summary of the report and suggests some research questions which could be
pursued by FFI.

2 The motivation for Intrusion Tolerance
Despite the focus on computer security and the available technology for protection, the threats to
computer systems appear to be a growing problem. Some of the reasons for this are:

• A growing number of computers is connected to the Internet
• A growing number of computers is using wireless network technology
• A growing audience on the internet is likely to contain a larger number of potential

intruders
• An increased availability of ready-to-use software tools for intrusion and other computer

crimes allows anyone to attempt attacks, not only experts
• The time-to-market pressure of commercial software products leaves less time to quality

control and security testing. Discovered security problems are fixed in regular updates,
leaving a range of uncorrected security holes in many software products.

• Users are increasingly often involved in E-business and E-finance operations on open
networks, and are exposed to a growing number of authentication mechanisms (involving

FFI-rapport 2007/02611 7

secret passwords). Sensible information (in the sense that it can be stolen and used for
criminal purposes) is increasingly often sent over an open network.

A security perimeter, in the form of virus control, network firewall, authentication and
authorization framework, will anticipate attack and prevent them based on the observable
difference between regular and irregular computer activity:

• A firewall typically allows any outgoing TCP connection (from the ”safe” local network
to the ”hostile” Internet) based on the assumption that these connections are initiated and
controlled by benign activities.

• A virus protection program scans computer files, received e-mail and web traffic for bit
patterns known to characterize known viruses. Bit patterns not recognized are assumed to
be ”friendly”.

• An authorization framework will assume the identity of a user based on information not
possessed by others (e.g. a password) and restrict the privileges granted to the user based
on an authorization scheme.

• An intrusion detection system scans network activities and monitors internal computer
processes with the purpose of detecting patterns of hostile activities.

All these protection systems assume that hostile activities have distinct characteristics which
make them detectable in a complete and precise manner. This is not the case today, however, and
is unlikely to be the case in the future. The stronger and more successful these security
precautions are, the more annoying and counterproductive will they be, as they block or delay
legal and productive activities. In order not to obstruct normal production, security protection
mechanisms must allow a calculated risk for a successful attack.

The term ”security perimeter” indicates that once it has been compromised, it offers little
resistance to further exploitation of the system. Some examples are:

• Once a virus has started its execution on a computer with Microsoft Windows, it can take
full control over the computer, violating the integrity of communication, computation and
storage, and install camouflage to remain undetected.1

• A trojan that has been started on a Unix computer may do anything the compromised user
is allowed to do: Altering user files, sending E-mail or Web requests, starting background
jobs and network servers etc.

• An incorrectly installed program on a Unix computer (e.g. leaving a ”set UID” root
program in a writable state) leaves the computer vulnerable to total compromise.

• A compromised computer may be a useful launchpad for attacks on other computers on
the same local network, since the security perimeter between these computers may be
weak or even absent.

1 Requires that the Windows user has administrative privileges, which is often observed in practice

 8 FFI-rapport 2007/02611

Based on these observations, there appears to be a need for security measures that deal with
successful attacks and compromised computers. These measures would deal with such issues as:

• Intrusion detection
• Eradication of the attack
• Damage mitigation
• Damage assessment
• Recovery to valid and consistent state
• Log analysis for forensic purposes
• Re-training of security mechanisms based on gained experience

The term Intrusion Tolerance is founded on the observation that successful attacks occur despite
the presence of protection mechanisms. Intrusion tolerance refers to research which aims at
maintaining essential services at acceptable level in the presence of hostile system compromise.
We propose four keywords to describe the phases/activities in an intrusion tolerant system:

Detect – Limit – Recover – Learn

We will use these four keywords in the following discussions on elements and techniques within
intrusion tolerance.

3 Definition of terms
ACID properties The traditional requirements of a transaction is that it appears to be indivisible

(Atomic), that it leaves the system in a Consistent state, that it exposes no
intermediary results (Isolated) and leaves all result on permanent storage
(Durable). Together, these properties make the acronym ACID.

Byzantine error An error condition where a process can behave arbitrarily (including respond
with apparently correct answers). It is difficult to detect nodes with this error
condition (often called ”Byzantine nodes”)

COTS ”Commercial Off The Shelf”, describes products available on the general civil
market

DNS ”Domain Name Services” the service where an Internet name (e.g.
www.ffi.no) is mapped to an IP address.

DoS ”Denial of Service”, an attack on a system with the purpose of making it
unavailable.

HIDS and NIDS ”Host-based/Network-based Intrusion Detection Systems”, describes system
for automatic detection of intrusion and attacks. Host based systems are
software installed in a computer and monitors activities in that computer,
whereas network based systems are monitoring network activity on the
outside.

Middleware A layer of software between the operating system and the application. It is
supposed to be ”business-unaware” and solve problems common to several

FFI-rapport 2007/02611 9

http://www.ffi.no/

applications, and offer services which are not commonly offered by the
operating system. Example on middleware services are databases, clock
synchronization, transactions, replication etc.

PDU ”Protocol Data Unit”, the data exchanged through a communication protocol.
The data is formatted according to the rules of the protocol. An IP packet is a
PDU of the IP protocol.

SQL ”Structured Query Language”, a standard command language for retrieval and
modification of data in a database. SQL is not considered to be a
programming language.

SYN flood A famous type of DoS attack that repeatedly sets up TCP-connections, but
fails to comply with the protocol to complete the setup phase. The target
computer may allocate so many resources to each ongoing connection that it
eventually cannot operate normally.

TCP ”Transport Control Protocol”, a protocol which allows two processes to
communicate (i.e. its endpoint is a process, not a computer). TCP builds on
the IP protocol.

URL ”Uniform Resource Locator”, a text string on a format which describes the
location and access protocol of a resource in an IP network. Typically used by
a web browser for finding web pages, e.g. ”http://www.ffi.no/” is a URL.

POTS, ISDN, 3G Describes different telephone technologies, which can also be used for circuit-
switched data communication. POTS (Plain Old Telephone Service) is the old
analog telephone system, ISDN is a digital telephone system more modern
and advanced than POTS and offers higher data rates. 3G is a digital mobile
communication system which offers medium data rates (< 1 Mb/s).

4 Threat model

4.1 Difference from Risk model

In order to construct a framework for intrusion tolerance a threat model is required. This is
different from risk models found in the field of Fault Tolerance, which makes some assumptions
about the occurrence of errors and failures:

• Errors and faults occur without any purpose or intent
• The frequency of errors can be statistically modeled, e.g. with a Poisson model or

numbers like ”Mean Time Between Failure” (MTBF)
• Errors and the respective countermeasures are independent and isolated
• Countermeasures have a stable effect, errors do not develop ”penicillin-resistance”

On the other hand, modeling the threats from a hostile attacker must consider the nature of the
attacker:

 10 FFI-rapport 2007/02611

http://www.ffi.no/

• Attacks are purposeful, targeted at a kind of revenue (money, revenge, status etc.)
• The mind of the attacker cannot be modeled, and there is no probabilistic function to

describe the frequency of successful attacks
• The attack tactics will probably adapt to the countermeasures taken, so the protection

mechanisms need to be continually improved.

4.2 Purpose and position of the attacker

The success of an attack will rely on different properties of the attacker: The purpose, the
skills/knowledge, the tools and the physical position. We will examine these properties in more
detail:

4.2.1 The purpose

An attacker may be an economic criminal with the purpose to steal money or merchandise, and
not get caught. On the other hand, the attacker may be a vandal or a hacker who is satisfied if the
services of the system are temporarily broken. The sophistication of the former attack will be
much higher than the second. A more sophisticated attack will also leave more traces which can
be used for forensic purposes.

4.2.2 The positions

The attacker will be physically present in one or more places on the network, represented by the
network nodes that he/she exploits for the attack. Having taken control of a computer inside a
security perimeter more or less invalidates the security offered by that perimeter.
The positions of the attacker is a matter of protection, traceability and exposed data; There is
probably more than one security perimeter around a node under attack, and a compromised node
closer to this node will likely contain more useful information (for the attacker) and be more
trusted2 by the attacked node. When a node is under attack, other nodes in its neighborhood is
therefore also at risk for attack.

The matter of traceability is that an attack conducted from a close node leaves fewer traces than if
the attack must use a path of intermediate nodes with logging capabilities. Although, one should
keep in mind that a path of compromised intermediate nodes could also be exploited in order to
disguise the origin of the attack and the relation between events on separate nodes.

Since computer nodes on a local network are likely to cooperate, they will contain information
about each other. This information could be exploited during the attack in order for the attacker to
map the network and the roles of the nodes. An attack conducted from a nearby node should
therefore be considered as a more serious threat than if the attack took place from a distant
computer node.

2 Trust in the sense that a process on one computer may be given automatic privileges on another computer
without process authentication (possibly with authentication of the computer node)

FFI-rapport 2007/02611 11

4.2.3 Skills and tools

A part of the threat model should consider how the attacker may exploit the position of the
compromised nodes, i.e. the ability of the attacker to threat the integrity of the system. The skills
and tools possessed by the attacker are therefore necessary to consider.

The required skill in order to conduct a successful attack is becoming smaller. The necessary
information, how-to’s and software tools are found on the Internet. This aspect suggests that the
population of potential attackers is growing (Tenet 1998).

4.2.4 Timing and sequence of events

Important for the severity of an attack is the timing and sequence of events which occurs during
the attack. A normal sequence of events is shown on Figure 4.1 and consists of the four phases:

Intrusion → Detection → Termination → Recovered

Recovered

T1

Time

T2
T3

Service Quality

Intrusion Detection Termination

Figure 4.1 - Sequence of events during an attack

4.2.4.1 T1: Intrusion->Detection

The time it takes from a successful intrusion occurs until it is detected is critical, since no
countermeasures can be taken before the intrusion is detected.

4.2.4.2 T2: Detection->Termination

After a successful attack has been detected, countermeasures will be taken in order to terminate
the attack. After termination, the attack does not longer inflict damage on the system, but the
system is still in a corrupted state. The time it takes to terminate an attack may be affected by the
attack itself, e.g. if the countermeasure mechanisms are damaged by the attack.

4.2.4.3 T3: Termination-Recovered

The next period of the attack scenario is the recovery phase. It starts when the the attack has
terminated and ends when the system has recovered into a safe and consistent state. This period
includes the investigation necessary to ensure a successful recovery.

 12 FFI-rapport 2007/02611

4.2.4.4 Sequence of events and state of service quality

It is possible to consider a ”service quality” as the number of unaffected services offered by the
system. The system quality is likely to decrease during T1 and (to a lesser degree) T2, since
services may be compromised or interrupted during an attack. The service quality is expected to
increase during T3 as the recovery phase is progressing and bringing the services back. It is also
reasonable to assume that the quality of system services will be lower with longer duration of T1
(and partly T2). Service quality is shown as the dotted line on Figure 4.1.

4.2.5 The disloyal insider

Given this brief analysis of the importance of position, skills and tools, the threat posed by a
disloyal insider seems to be particularly serious. A disloyal insider is a person that has knowledge
about the internal network, the configuration of computer nodes and software, business processes,
security mechanisms etc., and is also authorized at some level through user accounts. A disloyal
insider may know in advance the requirements for a successful and undetected attack which
leaves little traces for investigation. It is therefore very difficult to protect the system effectively
from insider attacks. Besides, a significant fraction of computer crimes originates from the inside
of the affected organization (CSI/FBI, 2006).

4.3 Human factors – human errors

Although not a willful attack, the lack of skills, experience and motivation by personnel inside an
organization may create vulnerabilities in the computer system. Poor management of firewalls,
poor password practice, lack of e-mail screening etc. may open up well known security holes
which may later be exploited by an outside attacker. During investigation of computer crime
incidents, it is often seen that security holes either planted by virus/trojan programs or resulting
from sloppy conduct are being exploited.

4.4 Program bugs

Program bugs are likely to be the most commonly found factor in computer crime incidents.
There are two reasons for this:

1. The program development cycle in the industry is hard pressed on time. The competition
for bringing new features on the market reduces the development and debugging time to
an extent that reduces the quality of the software. It is probably correct to state that
increased competition increases the number of offered features, but also increases the
number of bugs that reach the end users.

2. The operating system market is a monoculture, with one family of operating systems (the
Microsoft Windows family) installed in more than 90 % of desktop computers. When
software vulnerabilities are discovered, they represent a risk for a large number of
computers, and the knowledge about how to exploit the vulnerability is suspected to
spread fast (cfr. section 6.4).

FFI-rapport 2007/02611 13

4.5 Denial of Service

One very common type of attacks does not affect the integrity of the system, only its availability.
They are called denial of service (DoS) attacks, and are presented separately since these attacks
are very common and hard to deal with.

A server or the connecting network may be overloaded by requests sent by a powerful adversary,
leaving the service apparently unavailable. A so-called bandwidth attack may not even be noticed
by the target node if the saturation blocks the traffic farther upstream. A bandwidth attack may
also be indistinguishable from a flash crowd, a term which describes a sudden rise in the request
rate due to some ”latest news” which everyone want at the same time.

A different form of attack exploits bugs or weaknesses in the communication protocol
implementations, like the SYN flood attack (described in section 3). These attacks may cause the
computer, the server processes or other processes they rely on to stop or crash. An attack on e.g. a
DNS server may affect a lot of other nodes which relies on it.

Many attacking nodes can cooperate in a Distributed Denial of Service (DDos) attack. A DDoS
attack can simply create an overwhelming amount of requests which can keep a service
unavailable for as long as the attack endures, but does not necessarily create permanent damage.
Protection against DDoS attacks also requires a distributed solution. Peng et al. (2007) offers an
analysis and a survey on DDoS protection mechanisms.

4.6 Summary

The risk for computer intrusions and attacks can be analyzed with a simple model, whereby the
different factors and properties of an attack are being analyzed. The actual conduct of an attacker
cannot be modeled, but the factors enabling an attack may be. This chapter has presented a short
analysis of these factors.

5 Research approaches
Researchers of intrusion tolerance apparently have their background from either fault tolerance
research, computer security research or distributed systems research. All areas have valuable tools
for prediction and analysis of errors, mitigation and recovery. All areas also share the same
shortcoming in modeling of attacks.

5.1 Fault tolerance approach

Fault tolerance research (e.g. Verissimo 2002) deals with analysis and prediction of ”random”
errors, i.e. errors that may be modeled by some probability density function (e.g. the Poisson
distribution). Fault tolerance research distinguishes between faults, errors and failures in the
following manner:

 14 FFI-rapport 2007/02611

Faults A possible cause of an error, e.g. a crack in a solder point, a broken transistor

inside an integrated circuit or a stopped cooling fan. A fault will not necessary
generate an error, but have the potential to do so.

Error A malfunctioning system component, e.g. a crashed disk or a stopped server
node. An error will affect the service and performance of the system, but not
necessarily cause the entire system to fail.

Failure The malfunction of a system, e.g. a netshop unable to take orders. A failure is
the consequence of one or several errors. Error in a component which is a
single point of failure will cause a system failure.

Faults are unavoidable, since they are the result of normal physical processes. Faults may
propagate into errors unless they are tolerated. Errors may propagate into failures unless they are
masked. The terms fault-tolerance and error masking denote related techniques since they avoid
one irregular condition to propagate into a more severe condition.

Fault tolerance and error masking techniques employ redundancy and fail-over mechanisms on
different places in the system. Sensors, service nodes, communication media, storage media and
effectors can be duplicated to make them more reliable, provided a sufficiently safe fail-over or
voting mechanism (which themselves may fail and must be made fault-tolerant).

Fault tolerance research suggests a distinction between transient, intermittent and permanent
faults and errors (Tanenbaum and Steen, 2002). Faults/errors are:

Transient when they appear once, and then disappear. A radio beam momentarily
interrupted by a passing bird is an example of a transient error.

Intermittent when they occur and vanishes spontaneously, but reappear later. A poor
electrical connection which generates a disconnection due to external
vibration is an example of an intermittent fault.

Permanent when they appear once, and require manual repair to the faulty component,
e.g. a burned fuse.

On top of this framework, researchers (i.e. Verissimo, 2002) attempt to build an intrusion tolerant
system. The sequence of events shown in section 4.2.4 (Intrusion → Detection → Termination →
Recovery) must then be mapped onto the fault-tolerant framework.

Intrusion – A Fault Tolerance framework as outlined above does not deal with intrusion
prevention, since faults are considered to be an unavoidable physical
phenomenon.

Detection – offered through fault detection. Fault detection will use different techniques
for different failures: Omissive failures (no response from service, or too late
response) are detected by timers, whereas response failure (timely response,
but with syntax errors or incorrect values) are detected by syntax inspection,
value range constraints or voting mechanisms. More on this in section 5.3.

FFI-rapport 2007/02611 15

Termination – the detection phase may trigger a fail-over mechanism which switches the
clients from the compromised to an uncompromised service. The issues
regarding state migration during this process will be mentioned during the
discussion of Distributed Systems. (In case of a stateful server the process
state should also be migrated, but only if this can be done without risk for the
uncompromised server.)

Recovery – recovery from crash and failures are most oftenly researched under the field of
Distributed Systems (although these two fields often merge their efforts).
These issues will therefore be mentioned under the presentation of Distributed
Systems research (Section 5.3).

5.2 Computing security approach

For the purpose of the discussion in this report, computing security research can be divided in 4
categories:

Prevention – The traditional approach of computing security has been how to prevent
incidents (either malicious or accidental) through operating procedures,
training, certification, cryptography and operating systems software. On the
technical level, the use of hardware-supported separation of operating system
processes enables the operating system software to monitor and arbitrate the
resources allocated to processes and the interactions between processes. These
mechanisms form the basis for protection of integrity, confidentiality and
availability of resources (files, programs etc.) in the system. Cryptography
techniques prevent attacks on confidentiality and integrity, but not availability
of information (e.g. in the form of a DoS attack). Applications for
cryptography protocols in intrusion tolerant system will be studied in more
detail in section 6.1.
On the organizational level, prevention means to manage risk and trust.
Computing security addresses trust and risk management through
comprehensive frameworks and analysis (Abererer and Despotovic, 2001,
Naldurg and Campbell, 2003), but the proposed solutions are hard to verify
experimentally.

Mitigation – starts with detection of the incident. In the case of computer attacks, this is
called Intrusion Detection. Upon a positive detection the system should
(manually or automatically) limit bandwidth used by the attacker, shut down
selected services, migrate legitimate users away from compromised resources
etc. Intrusion detection technology will be discussed in more detail in section
6.2.

Recovery – The field of computing security does not offer an independent view on
recovery issues, but offers the same operating principles as other system
sciences: Redundant servers, backup of storage media, transaction logs and
checkpoints, antivirus toolkits and recovery plans (well known and drilled).

 16 FFI-rapport 2007/02611

Investigation – The field of computer forensics offers guidelines and best practices for

forensics in connection with computer crime. To a large degree, they are
application-aware mechanisms that assure that all business operations are
permanently logged in a manner that allows the investigators to view the
sequence of events that took place during an attack. In a distributed
environment, this requires data fusion activities and well synchronized clocks.

Computing security research is highly relevant for work on intrusion tolerance. Its focus on the
combination of organizational and technical measures for incident prevention, and the use of
formal logic and mathematical evidence have provided many sound and well-founded results.

5.3 Distributed Systems approach

Distributed Systems is a wide research area with activities that overlap activities from other
research fields, e.g. computing security and fault tolerance. In this report, the presentation of
distributed systems research issues focus on the organization of software components in reliable,
resilient and consistent systems.

Distributed systems theory promotes the single-system image where the physical distribution of
resources is kept invisible or transparent. Layering and encapsulation techniques are employed to
e.g. hide fail-over mechanisms behind a stable interface. Matters of failure detection, service
replication, process migration and crash recovery are kept out of the client’s view. Of special
relevance to intrusion tolerance are the issues of distributed systems that deal with resilience and
reliability. A number of techniques used in this area will be briefly presented:

Failure detection - A node or communication channel can fail in different ways. We
distinguish between omissive failure (no response from service, or to late
response), response failure (incorrect response or incorrect response value) or
byzantine failure (any behavior, possibly malign). Omissive failures are
detected by time-out watchdogs. On the other hand, it has been proven
(Fisher, 1983) that perfect fault detection is impossible in asynchronous
network (and any IP network is asynchronous). Response failure is detected
through inspection of message syntax or by value range constraints. Byzantine
errors are detected through voting mechanisms in combination with the other
techniques. It is easy to see that failure detection never will be perfect, so any
mechanism that relies on failure detection must take the chance for incorrect
detection into account.

Data replication - Both for optimization and reliability purposes, a data store can be
distributed or replicated over several computer nodes. Where data is stored in
multiple copies (replicated) there must be a synchronization procedure to
make all copies up-to-date. Distributed Systems theory proposes several
consistency models whereby the ordering and propagation of updates are
formally described. A group of models called user centric consistency models

FFI-rapport 2007/02611 17

(Tanenbaum, 2002) are able to describe the situation which occurs when a
client is switched from one store to another, e.g. during a fail-over operation.

Process replication and migration – For reliability purposes, a service may be offered by
several processes. A fail-over mechanism may switch the clients from a faulty
to a healthy server in order to sustain an essential service. In case the service
is stateful, i.e. it maintains a session context between service calls, the context
has to be migrated too. The server process is the operating system entity that
maintains the process context, thus the term process migration denotes the
migration of a stateful service. In general, process migration is not possible
using the mainstream operating systems. What is possible is to write services
in such a manner that the necessary context is maintained within specific
tranferable objects.

Distributed snapshots – for recovery purposes, the system could make snapshots of its
distributed state at regular intervals. Due to messages in transit, the system
state is not simply a perfectly coordinated snapshot of every node’s state.
Every node must take their snapshots in a sequence so that the snapshots
together can form a coherent picture of the entire system. The algorithm for
taking a distributed snapshot is well understood, but costly in terms of
computing and communication resources. For recovery of distributed systems
other approaches are more popular, e.g. using stateless servers3 and
idempotent (repeatable) operations (cfr. Section 6.3.3).

Distributed transactions – also used for recovery purposes in the same manner as
centralized transactions, i.e. to obtain atomic state transitions in the system
without exposing intermediate results of an operation. Distributed transactions
offer the same semantics as other transactions (the ACID properties) through
the use of a ”conductor” which controls participating nodes. The conductor
(often called a transaction monitor) becomes a single-point of failure which
contradicts some of the advantages we seek when employing e.g. a replicated
store which must be transactionally coordinated.

Crash recovery – for a reliable system, crash recovery is an important part which should be
able to recover the system to a valid and consistent state without any
operations being lost or duplicated. Crash recovery can take two approaches:
Full transactional support of all operations (using checkpoints and transaction
logs) so that the system always knows the state to which to recover, or using
stateless servers and idempotent operations and re-run all operations not
positively known to have completed. Detailed study reveals that neither of
these approaches is perfect. Transactional support does not include the state
of the client, and idempotent operations is not always possible to use (e.g. in
cases where nodes communicate with data streams instead of messages).
Therefore, crash recovery becomes a part of the application development

3 Stateless servers do not maintain a session context, all operations are unrelated (e.g. no notion of logged-
on users). They may operate on stateful resources (e.g. a database) though.

 18 FFI-rapport 2007/02611

process which cannot be solved fully in middleware (Moore and Ellison,
2003). More on crash recovery in section 6.3.

Researchers of distributed system employ these techniques in order to make systems that are
reliable and able to recover safely under any circumstances. In an intrusion tolerant perspective,
the techniques are adapted to the threat model that applies to this perspective.

Distributed systems will employ many techniques from computing security in order to prevent
successful attacks. These techniques have been discussed in section 5.2.

5.4 Limitations of the three approaches

The research fields of fault tolerance and distributed systems have a large overlap in an area often
called Reliable Systems. They offer a range of techniques to mask and correct faults and errors on
different levels in the system, but they also share the lack of a threat model. Spontaneous errors
due to physical processes, lack of operating procedures, poor training etc. may be subject to
probabilistic modeling. The behavior of a human adversary, however, does not lend itself to
probabilistic or statistical modeling. Human behavior may be modeled using game theory or
economic theory (Liu 2003).

6 Supporting technologies
As described in section 5, the research on intrusion tolerant systems is based on fault-tolerant
computing, distributed systems and computing security. To some extent, research efforts on
intrusion tolerance have been found to have their basis in one of these areas. It has also been
discussed how these research areas have failed to model adversary behavior.

During the construction of intrusion tolerant systems, several building blocks may be used. These
building blocks consist of solutions to well known problems which are relevant for the
construction work. In the following sections some technology areas will be examined in more
detail in order to identify their contribution to the subject.

6.1 Cryptography

6.1.1 Symmetric vs. asymmetric cryptography

When discussing contributions of cryptography, a distinction should be made between symmetric
and asymmetric cryptography.

Symmetric cryptography: One shared secret key is used for encryption and decryption. It is
computationally inexpensive and protects confidentiality and integrity4 of data. It

4 since it is not feasible to alter an encrypted message so that the decrypted message still is “meaningful”. A
meaningless message will violate syntax requirements etc. and be detected. A Hash algorithm may also be
used to detect integrity violaton.

FFI-rapport 2007/02611 19

also offers a simple authentication (since a valid encrypted message can only be
made by one of those who know the secret key), but leaves behind an unsolved key
distribution problem, since keys have to be disseminated on a separate protected
channel.

Asymmetric cryptography: Separate keys are used for encryption and decryption. The key
used for encryption is called ”public” and is distributed freely. The key used for
decryption is kept secret by the owner. It is computationally expensive, and protects
confidentiality, integrity and authenticity. It alleviates the key distribution problem,
since public keys do not need to be sent over a secret channel5.

Even a simple encryption algorithm (one that can be attacked and broken in a matter of hours)
shifts the economy of the attack. By adding to the cost (in terms of time) the attacker must bear
for the attack, and adding to the uncertainty of the outcome, the value/risk ratio becomes smaller
and the whole mission becomes less attractive. The same holds for the integrity of information;
making “meaningful” and undetected changes to information will be much more expensive once
even a simple cryptography algorithm is in use.

The electronic signature (a feature offered by asymmetric cryptography) offers strong protection
of authenticity, provided that the public key used to control the signature is correctly disseminated
and the private key (used to sign) is kept secret6. A signed piece of information has an identified
source (the signer) and a guaranteed integrity. Authenticated sessions can form a basis for
authorization control and management when the proven identity of the session owner is connected
to an access control matrix.

6.1.2 Threshold cryptography

Threshold cryptography is a special cryptography technique where the key (symmetric or
asymmetric) is transformed into an arbitrary number of partial keys. In order to construct the key
for encryption/decryption/signature purposes a fixed number of partial keys must be combined.
Threshold cryptography forces partial key holders to collaborate, and allows operations to take
place only when a given number of them agree. If the required number of key holders forms a
majority or a quorum, threshold cryptography may be used for voting or consensus arrangements.

Applications of threshold cryptography have been observed within distributed certificate
authorities (Zhou et al., 2002). In these systems, no single point of failure is present, and any
members can form a group with the ability to renew a digital certificate.

6.1.3 Contributions to intrusion tolerance

Cryptography supports intrusion tolerant systems by:

5 The public key still needs to be authenticated, e.g. by a public key certificate.
6 provided that the key is correctly generated and has a sufficient number of bits.

 20 FFI-rapport 2007/02611

1. Keeping information confidential. The less information an attacker has, the more difficult
it is to succeed with the attack.

2. Holding people responsible. Signed information and sessions will identify the source of
the operations. Disloyal insiders or the owner of stolen private keys will be identified (if
the log files remain intact during the incident).

3. Offering ”security-in-depth”, by presenting to the attacker a series of barriers that need to
be crossed (through stolen keys or broken cryptotext). The different barriers would be
implemented with different keys/algorithms to avoid a ”domino effect” when one barrier
is broken.

There is a fly in the ointment though: Even though the cryptographic algorithms are rigorously
verified, their implementation may contain program bugs, and they may rely on program libraries
of unknown quality. For instance, a signature operation may fail if the algorithm is applied to
information that has been altered by hostile code. Other problems include:

• Cryptography does not enforce autorization or access control. Access control must be
done by kernel software which is vulnerable to a different range of attacks.

• The processes that use a secret key for signing or decryption need to store this key in
memory cells. An adversary process may obtain access to these memory cells if the
memory protection is circumvented. A privileged (kernel) process is allowed to access
any memory cell.

• Public key cryptography practices recommend that public keys themselves are
authenticated through digital certificates and operations on a public key infrastructure
(PKI) over network connections. Through an attack on the network infrastructure an
adversary can reduce the quality of the authentication, and possibly cause an application
to fail due to lack of authentication.

6.2 Intrusion Detection

Prior to any countermeasures, an incident must be detected (section 4.2.4.1). An undetected
intrusion is a very dangerous situation since no active countermeasures can be deployed. Passive
measures like offline backups, fail-over mechanisms, access control and cryptography protection
will only delay the progress of the attack as well as mitigate the effects from it. Consequently,
research efforts have been made to detect intrusion (and other security related events, like a virus
infection) as fast and precise as possible.

Although research on the field started as early as 19807, the seminal paper on the field probably is
”An Intrusion-Detection Model” by Dorothy Denning (1987). It proposes that intrusion/abuse of a
computer system can be distinguished from legitimate use through observation of the computer
(file access, I/O activity etc.) and the connected network (transported volume, timing pattern,
distribution of network addresses, content of PDUs).

7 http://www.securityfocus.com/infocus/1514 [Oct 31, 2007]

FFI-rapport 2007/02611 21

http://www.securityfocus.com/infocus/1514

Now a large and growing field of research, intrusion detection has been divided into two technical
categories: Host based and network based intrusion detection systems, abbreviated HIDS and
NIDS. They differ in the following manner:

HIDS is installed as a computer program and monitors the activity inside one computer
(file accesses, process behavior and log file analysis) and responds to patterns which
indicate malicious activity. Since a HIDS can monitor the state of the processes in
the computer, not only I/O-activity, it gets a more detailed situation picture. On the
other hand, it does not see activity in other computers, and a HIDS is as vulnerable
to attacks as other processes in that computer.

NIDS is installed as network probes (or integrated in network switches) and monitors
network traffic. A NIDS can monitor a coordinated attack on several computers in
real time, and can detect attacks based on violation of network protocols (e.g. a SYN
flood), something a HIDS is unable to do. Besides, a NIDS can be highly resistant to
attacks since it does not need be addressable on the network (does not need an IP
address, not even a transmit wire). Its disadvantage is its limited scope without
access to the internal state of the computers, and its inability to monitor encrypted
traffic.

Intrusion detection systems can be distinguished on other properties as well:

Rule checking or anomaly detection: An IDS may be driven by a rule set to which all
observations are compared. These rules are patterns and a pattern matching algorithm decides if
the observations violate the rules and what action to take. On the other hand, anomaly detection
reacts to variations in the observed situation using fuzzy logic or calculations on high-
dimensional space (Yao, Zhao, Saxton 2005, Yao, Zhao, Fan 2006).

Pre-configured/self-learning: An IDS may be set up with a static set of patterns to which
observations are compared, or may be self-learning through feedback mechanisms.

Networked/Standalone: An IDS not connected to any other IDSs would be termed a standalone
IDS, and make its decision based on the limited scope of the system (discussed above). Several
systems (HIDS and NIDS) can complement each other’s scope though network communication
and get a better situation picture for its decisions (Jahnke et. al, 2006). A networked IDS would
be more visible on the surrounding network and thus exposed to attacks.

The contribution to Intrusion Tolerant systems should be obvious; it reduces the duration between
intrusion and detection (called T1 in section 4.2.4.1). Some final remarks on what should be kept
in mind about intrusion detection:

• Intrusion detection mechanisms will be a likely target during the early stages of an attack

 22 FFI-rapport 2007/02611

• An attack will try to remain undetected through knowledge about the algorithms and

patterns used by the detection system. Intrusion detection should therefore have
unpredictable elements in its mechanisms.

6.3 Distributed Recovery

In the perspective of fault tolerant computing, the issue of recovery is a matter of recovering a
system state from a spontaneous error, possibly after the cause of the error (e.g. a faulty
component) has been replaced. It is therefore safe to assume that the recovery process can
proceed under normal circumstances and a normal error rate.

In an intrusion tolerant perspective this becomes much more complicated. Data gathered with
recovery in mind (distributed snapshots, transaction log, and shadow disks) may have been
tampered with during the attack (and before it was detected). In principle, there is nothing an
adversary process cannot do to a system during an undetected attack, including affecting the
future recovery process.

Recovery can be based on data gathered for this purpose alone (e.g. backup disks) or based on
data gathered for intrusion detection purposes. A host-based intrusion detection system (HIDS)
makes its decision on observations of the processes in the host, which can be useful during a
recovery process; if a process is deemed to be hostile, the earlier actions of this process could be
cancelled or reversed (e.g. all files that have been created are deleted). An implementation of a
recovery mechanism based on the Windows event log has been demonstrated by Reynolds and
Clough (2003).

Recovery can be done forwards or backwards, in both cases is the objective of the operation the
transition to a valid and consistent system state. Forward recovery can be seen in e.g. network
protocols, where a corrupt packet can be restored using Forward Error Correction (FEC). The
checksum of a packet can have the property that it not only detects errors, but to some extent also
corrects it. The FEC code lets the system to calculate the next valid state of the protocol and
moves the protocol to this state. Backward recovery is a ”rewind” of the operations back to a
valid state, e.g. by copying the last system backup.

Forward recovery is seen on small scale systems like a network protocol or in a disk controller,
but rarely in full-scale, distributed systems. Backward recovery aims to bring the system back to a
safe and valid state, but it is not theoretically possible to guarantee that clients and servers will
agree upon what that state actually is. This fact is presented in any textbook on distributed
systems (e.g. Tanenbaum 2002) and will now be briefly discussed:

6.3.1 Call semantics in the presence of failures

During a client/server invocation, a pair of messages is sent between the client and the server,
shown in Figure 6.1. The transmission of the response message indicates that the server has
completely processed the request. Lack of a response message does not, however, indicate to the

FFI-rapport 2007/02611 23

client that the request message has not been processed. The response message may been lost
during transmission (1), or the server may have crashed after the request has been processed, but
before the response was sent (2), in which case the request has been processed. Or the server may
have crashed before the request was processed (3), or the request message may have been lost (4).
All situations look the same to the client, which is unable to know the state of a crashed server.

In the same manner, the server does not know the state of a crashed client. The client might have
crashed before (5) or after (6) the response message has been processed, and the knowledge about
the completed service has been stored on a non-volatile storage.

Server

Reply

Request

Persistence

Persistence

1 2

3

4

5

6
Time

Client

Figure 6.1 - The messages flowing in a client server interaction

This situation only applies to crash recovery, not as long as the system runs normally. When a
crashed server is restarted, the client will not know if the last issued request was processed, and
will have to decide if the request should be re-issued. Based on its decision and the state of the
server, the request may be processed once, twice or not at all. So called Exactly-once semantics is
not possible to obtain.

Distributed snapshots (section 5.3) can establish a common picture of the system state at a given
instant. But this is a state of a system running normally, and the snapshot becomes momentarily
invalid. The distributed snapshot can be used for backwards recovery, but the same uncertainties
about the processes which took place during the crash remain unsolved.

6.3.2 Stateless servers

Servers that do not keep context information are called stateless. A web server only handling
request to static HTML pages would be stateless. A client user may follow a series of hyperlinks
without knowing if the server has been restarted between the mouse clicks. If the server was to
keep session information, e.g. the user’s log-on id, then a restart would force the client to log on
again, interrupting the normal flow of work.

 24 FFI-rapport 2007/02611

This flexibility offered by a stateless server is valuable in a recovery perspective, since it does not
contribute to the state of the system, i.e. it does not need to take part in distributed snapshots etc.
The problem called partial crash and failure (referring to the problem of recovering one crashed
node in an otherwise normally running system and synchronizing its state with the rest of the
system) becomes greatly alleviated if stateless nodes are used.

6.3.3 Idempotent operations

The term idempotent operations (Bacon and Harris, 2003, p. 431) refer to operations that can be
repeated several times with the same result as if it was done once. Assigning a value to a variable
is an idempotent operation, whereas adding data to a sequential storage media is not. Any
read/retrieval operation that does not affect the state of the server is idempotent.

Idempotent operations alleviate the problem of exactly-once semantics presented in section 6.3.1.
Recall that exactly-once semantics is not possible to obtain in the presence of independent crash
and failure. Applying idempotent operations to an at-least-once semantics, which is possible to
obtain by re-issuing requests until they succeed, solves the presented problem in an elegant way.

It is not feasible, however, to construct an entire system that only consists of idempotent
operations. The operations of a server tends to build on the present state of that server, e.g. the
SQL ”insert” and ”update” commands. Idempotent database insert operations require new unique
fields to be added to every table, which may be impossible in a legacy system. Dataflow-based
applications are also hard to construct with idempotent operations only.

6.3.4 Replicated storage

The most obvious measure for crash recovery would be the mirrored storage. If several storage
media contain mirror-images of the same data, then an intact disk drive can take over
immediately when another drive fails. This is a commonly deployed solution in the form of RAID
systems (Redundant Array of Inexpensive Disks). RAID can be configured with mirror-imaged
disks or with parity disks, so that the data will survive one or a small number of disk crashes.
RAID solutions are successful because:

1. The disks are located together, so they may be controlled by highly reliable controllers
over a high-speed data bus. The disks are kept in sync through lock-step operation and by
sending identical write operations to each disk.

2. Disks have a simple crash model: They work fine until they suddenly crashes (called fail-
stop). As long as a disk completes an operation it can be assumed that the information is
correct.

Neither of these assumptions hold in a distributed environment, even less during a successful
attack. The fail-stop model does not apply to a compromised system, which may violate the
integrity of information before the attack is detected. The delay of communication may inhibit the
replicas from operating in lock-step, leaving the designers with other options like a replicated
store.

FFI-rapport 2007/02611 25

A replicated store consists of storage nodes that keep themselves synchronized through
replication protocols. A replicated store does not offer mirror-imaged copies, but a well-
defined ordering semantics which describes the propagation of updates to the store. The
clients of the replicated store should not regard it as a simple disk system, but reflect the
ordering semantics in their application code.

6.3.5 Contributions to intrusion tolerance

The theory on distributed systems offers a thorough discussion on crash recovery and presents
formal frameworks for crash models, forward/backward recovery, invocation semantics,
idempotent operations, replication protocols and ordering semantics. These frameworks also
suggest protocols for the fine-grained operation of a crash-resilient system.

The larger crash-resilient architectural solution, however, must be integrated into the system
design after the essential system services have been identified and the recovery process has been
accepted from a business process perspective.

Likewise, in an intrusion tolerant perspective, the frameworks make the building blocks for a
system which is resilient to the threats from an adversary, which have been discussed in section 4.
The differences from crash-resilience which a designer should take into account are:

1. The system components are to varying degrees exposed to compromise. Components
who represent a single point of failure, servers which have service access points
connected to the Internet and nodes responsible for intrusion detection and event logging
is likely to be interesting targets to an intruder.

2. The compromise of a node should not be considered as an isolated event, but as a part of
an attack scenario. Both prevention and detection mechanisms should be verified against
valid attack scenarios.

3. The recovery mechanisms may be self-protecting once an intrusion has been detected, but
until then (during T1, cfr. section 4.2.4.1) they are attack targets as well. Before recovery,
it must be evident that the recovery mechanisms have not been tampered with.

6.4 Diversified systems

6.4.1 The perils of a well known memory layout

All software has bugs, and bugs may open security flaws. Security holes may be the result of a
program error that inadvertently modifies other memory cells, including those cells which contain
program code. These errors can be exploited to enter hostile program code in the computer.

 26 FFI-rapport 2007/02611

A famous type of attacks is the ”buffer overflow attack”, where a large input string (e.g. a very
long URL string8) exceeds the space allocated for it and overwrites the subsequent memory
locations. If these locations contain program code, the program may be modified with the content
of the input string, and consequently alter its behavior under the control of the attacker. Related
attacks can use illegal values to bring pointers to refer to code areas.

Viruses take a similar approach, but overwrite memory cells in memory as well as binary code in
executable files. A virus will not attack through a program bug, but hijack a running process e.g.
through executable e-mail attachments.

Both worms and viruses are known for their self-replication properties, meaning that a
compromised computer becomes an agent for further attack on the same or other computers.

A requirement for the scenarios mentioned above is that an attacker knows the memory layout of
the program, in order to modify the expected program code with the intended malicious code.

Program code is, with few exceptions, distributed in compiled form and in binary executables, so
every user of a program uses identical program files (on disk) to start the program. When this
program is started in a computer, the program loader of the operating system will read the
information in the binary executable and set up memory segments for code, data, stack etc. Since
the program code is the same in all computers running the same operating system, this layout will
be the same almost everywhere.

6.4.2 Immunity through diversification

Since more than 90 % of the world’s computers run a variant of Microsoft Windows, the Internet
becomes a ”monoculture” of computers with very similar DNA, and more or less the same
vulnerabilities. A program that exploits a recent (not yet fixed) program bug can affect an
enormous number of computers. This is why users of Microsoft Windows are bombarded with
system updates which must be installed immediately.

This unfortunate chain of events can be broken if systems were diversified, i.e. never use the same
memory layout. Diversification can be implemented in two different ways:

6.4.2.1 Compilation / Linking

During the compilation and linking of a source program, the development tools behave in a
predictive manner, and will always make the same executable from the same source programs. It
would be possible to introduce random behavior in the compile-time process in order to make
binary executable files different in each run. This is not a good idea, however, due to the
following reasons:

8 The ”Code Red” worm took this approach, see http://en.wikipedia.org/wiki/Code_Red_worm [6 Nov
2007]

FFI-rapport 2007/02611 27

http://en.wikipedia.org/wiki/Code_Red_worm%20%20%5B6

• Program distribution is done by copying the executable from one program build, so they
all will use the same memory layout anyway

• Distribution of program updates becomes more difficult since the executables no longer
can be patched

6.4.2.2 Program loading

For the above mentioned reasons, diversity would rather be introduced during the program
loading process, e.g. by introducing a format of the executable file that could instruct the loader
about which segments that could be transposed. This arrangement would require the development
of a new file format on binary executables, something that is unrealistic for the mainstream
operating systems.

The other option is to diversify standard COTS executables. Just and Cornwell (2004) review a
number of diversification projects and propose their own solution where an offline analyzer of the
executable identifies the points where code segments can be split and transposed.

The identification of the points in the code that can be split in independent segments requires a
deep analysis of the execution graph9 of the program, which is a computing intensive task. But,
since it is required only once, it is well suited for running during a preparation phase, where the
executable is transformed into a different format suited for a diversifying program loader.

Just and Cornwell (ibid.) also present promising experimental results where well known worms
and viruses are let loose on a diversified system, and they show that the spreading pace of the
attack becomes much slower than normal.

6.4.2.3 Present state of implementation

The system providers are situated ”upstream”, and their control over the operating system’s
architecture enables them to offer diversity solutions in modified or updated operating systems.

There exist a diversity solution for Linux, called PaX10, which is distributed as a kernel patch that
offers diversity of memory space layout in addition to other memory protection mechanisms (like
write protection of executable segments). Memory diversity is enabled by default in the Linux
kernel since ver. 2.6.12.

OpenBSD and Mac OS X also offer memory diversity, apparently in the form of library
randomization, where the segment of a library file are not rearranged, but the entire library is
loaded at an arbitrary start address.

9 An execution graph is the collection of all execution paths in the binary program code. Branches and
merge points become the nodes of the graph, and straight sequences of instructions become the arcs.
10 http://pax.grsecurity.net/ and http://en.wikipedia.org/wiki/PaX [Nov 7, 2007]

 28 FFI-rapport 2007/02611

http://pax.grsecurity.net/
http://en.wikipedia.org/wiki/PaX

Microsoft Vista OS is equipped with a diversity solution (called Address Space Layout
Randomization, ASLR) 11, which offers library randomization, and semi-random placement of the
allocated memory segments.

6.4.2.4 Opaque overlay networks

Related to diversification, and therefore mentioned in this section, is the use of overlay networks
with the intention to hide the servers behind proxies which pass on the requests to the servers.
The term ”overlay network” describes a network structure on top of the IP routing structure which
run its own signalling protocols to control membership, forwarding paths and other relevant
properties.

The (overlay) network of proxies is configured so that several proxies offer a path to one given
server (Wang et al., 2003b). If there is a DoS attack on one proxy, other proxies will be able to
offer the same service. Therefore, an attacker must conquer several access points at once, not only
one.

Overlay networks can also be observed in intrusion tolerant experiments to control a redundant
set of nodes and correct/isolate those with erroneous behavior. Every service call is sent to several
servers and their responses subject to inspection/voting before sent back to the client (Johansen et
al., 2006)

6.4.2.5 The contribution to intrusion tolerance

System diversification should be seen as a preventive measure for intrusion tolerance. Viruses
and worms are extremely common security problems, which is partly due to the monoculture of
system software.

Breaking this monoculture is a sound and practical approach to break the ”chain of events” during
a virus/worm attack. Other approaches to system diversification could be a wider variation of
operating systems, web servers, databases and middleware (Wang et al., 2003), but such an
approach is not addressed in this report.

7 Research results
The ”silver bullet” solution to intrusion tolerance has not been found. The simple, elegant
organization of data, program code and computer nodes which would react correctly to all
friendly requests but ignore all hostile ones is what many researchers are looking for. From the
perspective of information theory, it is not likely that such a solution does exist. The trusted
operator’s action of fraud or loyal work does not differ by more than an amount or a bank account
number, which would be undistinguishable for a detection automaton.

11 http://en.wikipedia.org/wiki/Address_space_layout_randomization [Nov 7, 2007]

FFI-rapport 2007/02611 29

http://en.wikipedia.org/wiki/Address_space_layout_randomization

In the absence of one single solution, the presented research projects aim to combine the myriad
of techniques for partial solutions (prevention, detection, mitigation and recovery) into a system
that offers effective and reliable operation under hostile conditions.

A few major intrusion tolerant projects will be reviewed in this section:

7.1 MAFTIA

MAFTIA (2003) (Malicious- and Accidental-Fault Tolerance for Internet Applications) is a
research program funded by the European Union (the ESPRIT program) which was completed in
2003. The MAFTIA project had the following objectives12:

• The conceptual model and architecture: Providing a framework that ensures the
dependability of distributed applications in the face of a wide class of faults and attacks.

• The design of mechanisms and protocols: providing the required building blocks to
implement large scale dependable applications.

• The formal assessment of the work: Rigorously defining the basic concepts developed by
MAFTIA and verifying the results of the work on dependable middleware.

Paulo Veríssimo was very much involved in the MAFTIA project, and his ideas on intrusion
tolerance from the Navigator group (Veríssimo, 2002) can be found in the MAFTIA deliverables.
The project proposes the use of trusted components (with are hardened and less likely to be
compromised) like servers and authentication agents, which are able to communicate through a
wormhole network. A wormhole network is separate and isolated from the public Internet and
therefore less exposed to DoS attacks and intrusions. A wormhole network can use e.g. separate
LAN structures or circuit-switched communication like POTS, ISDN or 3G. Replication of
trusted services takes place over wormhole network, as well as the coordination between the
Trusted Timely Computing Base (TTCB). The TTCB is a small security kernel which offers
distributed authentication, agreement and timestamps.

The MAFTIA deliverables consist of comprehensive specification of the protocols and
mechanisms, a set of intrusion and attack scenarios, and a qualitative analysis of the intrusion
tolerance capabilities.

The MAFTIA project offers formal methods for assessment of fault tolerant capabilities. One
interesting contribution is the fault tree (Figure 7.1), which offers to the analyzer a tool for
viewing how faults and errors may aggregate during and attack, and clearly visualize how attacks
may rely on the presence of several faults in the system.

12 From http://www.terena.org/activities/tf-csirt/meeting16/maftia.pdf [Nov 13, 2007]

 30 FFI-rapport 2007/02611

http://www.terena.org/activities/tf-csirt/meeting16/maftia.pdf

Figure 7.1 - The MAFTIA fault tree

7.2 ITUA

An intrusion tolerant research project called ”Intrusion Tolerance through Unpredictable
Adaptation” (ITUA, 2003) is a part of the OASIS project (Organically Assured and Survivable
Information Systems) sponsored by DARPA. It is a joint effort of BBN Technologies, the
University of Illinois, the University of Maryland, and Boeing Corporation. In the same manner
as the MAFTIA project, the ITUA project attempts to build a system framework for an intrusion
tolerant system consisting of cooperating agents for intrusion detection, effect mitigation and
recovery.

As the name of the project indicates, the employed strategy attempt to adapt to threats (in addition
to the normal measures of prevention, detection, eradication and recovery) in a range of actions,
from local and fast to coordinated. Examples are:

Local and fast: Block source IP address, recover corrupt file
Coordinated: Isolate and replace corrupt replica (e.g. a service), put a compromised

security domain in quarantine

The actions may be expected (from the perspective of the attacker) but should be unpredictable.
Offering unpredictable adaptive responses reduces the probability of a planned, multistage attack
to succeed (Pal, 2000)

Action Unpredictable element
Block IP addresses Reject? Drop? Delay?
Restore corrupted file Only file, or file tree?
Isolate/replace replica Which one to replace with?
Select application object Which object?

FFI-rapport 2007/02611 31

7.3 DARPA SRS

DARPA’s activity on ”Self Regenerative Systems”13 is an ongoing project, started in 2004. The
objective of the project is:

• Biologically-Inspired Diversity
• Cognitive Immunity and Regeneration
• Granular, Scalable Redundancy
• Reasoning About Insider Threats

The project addresses the field of diversified systems (Section 6.4) and replica management
(Section 6.3.4) as well as research on cognitive and reasoning activities for detection and analysis
of threats. No full list of publications resulting from the project has been found.

8 Intrusion Tolerance in mobile systems
In mobile systems, communication takes place over radio systems, which means that the intruder
does not need physical access to any communication lines in order to conduct an attack. A
Denial-of-Service type of attack may under these conditions be targeted on the radio signal level,
i.e. as radio jamming. A discussion on radio signal jamming is beyond the scope of the analysis in
this report, however. When intrusion tolerance in mobile systems is addressed, there is a list of
new issues to consider:

• The network is more exposed for surveillance. Several links can be monitored at the same
time, for traffic analysis or information tapping. Routing paths can be discovered through
traffic analysis, as well as the location of nodes with centralized (important) roles.

• Intermediary nodes (proxies, firewalls etc.) will have reduced protective effect, since the
radio links on the ”inside” will be exposed to intrusion and eavesdropping. For the same
reason the use of opaque overlay networks will have reduced effect.

• Nodes representing a single point of failure will be as exposed to intrusion and DoS as
any other nodes, since all wireless links are equally exposed.14

• The intermittent (on/off) nature and the mobility of nodes make it harder to detect
adversary nodes.

• More decisions (intrusion detection, trust management, replica management) previously
done by well shielded centralized nodes must be done in a decentralized manner, without
single point of failures nodes and with byzantine errors considered. Threshold
cryptography (section 6.1.2) and distributed voting mechanisms could be used in these
processes.

13 http://www.darpa.mil/ipto/programs/srs/srs.asp [Nov 14, 2007]
http://www.tolerantsystems.org/srs.html [Nov 14, 2007]
14 We disregard the effect of directive antennas in this discussion.

 32 FFI-rapport 2007/02611

http://www.darpa.mil/ipto/programs/srs/srs.asp
http://www.tolerantsystems.org/srs.html

• The bandwidth in a radio network is lower than in wired network. The capacity needed

for distributed error/intrusion detection, voting and coordination may hinder the flow of
application data.

It is possible to rank wireless systems according to how difficult it is to make them intrusion
tolerant:

Stationary nodes All communication links are exposed to tapping and attacks, proxies are not
able to encapsulate resources

Mobile nodes As stationary nodes, but it is more difficult to detect irregular activities due
to mobility

Tactical nodes As mobile nodes, but the enemies must be expected to have more resources
(information, skills and technology)

Intrusion tolerance in tactical mobile systems may therefore be regarded as a very challenging
research area, where many questions have not yet been investigated. This report conludes with
suggestions to further research within this area.

9 Conclusions and suggestions for further research
This report has reviewed the research area of intrusion tolerance, and presented different
approaches to the field. The report has also presented a selection of technological building blocks
which will be useful during the construction of an intrusion tolerant system.

It should be evident from this report that there does not exist an “Intrusion tolerant system” in the
sense that all threats have been taken care of in a secure, manageable and scalable manner.
Several smaller problems have been successfully researched, like intrusion detection and crash
recovery, but a framework that connects all these parts together seems to impose restrictions on
the system. Requirements for interoperability, compatibility, scalability and flexibility may be
impossible to combine with these frameworks, and the system architect has to build some
overarching arrangement on his own.

Although intrusion detection, system diversification and other sub-areas are still actively
researched, the idea of a single overarching structure connecting these parts together seems to
have been abandoned. We find no publications since 2003 which indicates any major efforts on
the construction of frameworks.

This report will not propose more research on the “macro” questions, but suggest that intrusion
tolerance in mobile tactical systems is investigated further. Here are a few suggested research
questions:

FFI-rapport 2007/02611 33

• At the radio link level, are there access protocols that keep attackers from eavesdropping
or jamming? E.g., could all stations that do not hear the receiving station deliberately
create collisions in order to avoid tapping?

• Could an attacker be detected through position tracking, e.g. would the mobility pattern
of a node help to distinguish a friend from a foe?

• At the network level, could alternative routing mechanisms be resistant to hostile routing
packets? Could e.g. a publish-subscribe based routing mechanism introduce the necessary
unpredictability to make the routing service harder to interrupt?

• At the application level, could a “quality of authentication” parameter (generated at lower
level of communication) be passed together with application data to indicate a trust given
to the data elements?

 34 FFI-rapport 2007/02611

References
Abererer K., Despotovic Z. (2001) Managing Trust in A Peer-2-Peer Information System. ACM

Conference on Information and Knowledge Management (CIKM’01) November 2001,
Atlanta, Georgia

Bacon J., Harris T. (2003) Operating Systems. Addison-Wesley ISBN 0-321-11789-1

CSI/FBI (2006) Computer Crime and Scurity Survey. Computer Security Institute, 2006. Online:

http://www.cse.msu.edu/~cse429/readings06/FBI2006.pdf [Nov 19, 2007]

Denning D. (1987) An Intrusion-Detection Model. IEEE Transactions on Software Engineering,

Vol. SE-13 (2), pp. 222-232, February 1987

Fisher M. J. (1983) The Consensus Problem in Unreliable Distributed Systems (A Brief Survey)

In: International Conference on Foundations of Computation Theory, Borgholm, Sweden
Springer pp.127-140.

ITUA (2003) Intrusion Tolerance through Unpredictable Adaptation. Online: http://itua.bbn.com/

[Nov 14, 2007]

Jahnke M., Tölle J., Lettgen S. (2006) A Robust SNMP based Infrastructure for Intrusion

Detection and Response in Tactical MANETs. Proc. of the 3rd GI Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA 2006) 13.-14. July 2006

Johansen H., Allavena A., Renesse R.von (2006) Fireflies: Scalable Support for Intrusion-

Tolerant Network Overlays. EuroSys’06, April 18-21, 2006, Leuven, Belgium

Just J.E., Cornwell M. (2004) Review and analysis of synthetic diversity for breaking

monocultures WORM '04: Proceedings of the 2004 ACM workshop on Rapid malcode,
Washington DC, USA

Liu P., Zang W. (2003) Incentive-based modeling and inference of attacker intent, objectives, and

strategies CCS '03: Proceedings of the 10th ACM conference on Computer and
communications security, Washington D.C., USA, 2003, pp. 179-189

MAFTIA (2003) Malicious- and Accidental-Fault Tolerance for Internet Applications. Online:

http://www.maftia.org/ [Oct. 2007]

Moore, A. P., Ellison R. J. (2003) TRIAD: A Framework for Survivability Architecting. First

ACM Workshop on Survivable and Self-Regenerative Systems (SSRS’03) October 31 2003,
Fairfax, Virginia, USA

FFI-rapport 2007/02611 35

http://www.cse.msu.edu/%7Ecse429/readings06/FBI2006.pdf
http://www.cs.georgetown.edu/%7Edenning/infosec/ids-model.rtf
http://itua.bbn.com/
http://www.maftia.org/

Pal P., Webber P., Schantz R., Loyall J. P. (2000) Intrusion tolerant systems. In: Proceedings of

the IEEE Information Survivability Workshop (ISW-2000), pp 24-26, October 2000.
Boston, MA.

Peng T., Leckie C., Ramamohanarao K. (2007) Survey of Network-Based Defence Mechanisms

Countering the Dos and DDos Problems. ACM Computing Surveys, Vol. 39, No. 1, Article
3, April 2007

Reynolds J. C., Clough (2003) Continual Repair for Windows Using the Event Log. First ACM

Workshop on Survivable and Self-Regenerative Systems (SSRS’03) October 31 2003,
Fairfax, Virginia, USA

Selvin G., Evans D., Marchette S. (2003) A Biological Programming Model for Self-Healing.

First ACM Workshop on Survivable and Self-Regenerative Systems (SSRS’03) October 31
2003, Fairfax, Virginia, USA

Tanenbaum A. S., Steen M. van (2002) Distributed Systems Principles and Paradigms. Prentice

Hall ISBN0-13-088893-1

Tenet G. J. (1998) Remarks of the Director of Central Intelligence George J. Tenet at the Sam

Nunn Nations Bank Policy Forum on ''Information Security Risks, Opportunities, and the
Bottom Line'' Georgia Institute of Technology, Atlanta, April 6, 1998 Online:
https://www.cia.gov/news-information/speeches-testimony/1998/dci_speech_040698.html
[Nov 19, 2007]

Veríssimo, P. (2002) Intrusion Tolerance: Concepts and Design Principles. A Tutorial. Technical

Report DI/FCUL TR02-6, Department of Informatics, University of Lisboa. Online:
http://www.navigators.di.fc.ul.pt/it/ [Oct 2007]

Wang D., Madan B. B., Trivedi K. S. (2003) Security Analysis of SITAR Intrusion Tolerant

System. First ACM Workshop on Survivable and Self-Regenerative Systems (SSRS’03)
October 31 2003, Fairfax, Virginia, USA

Wang J., Lu L., Chien A. A. (2003b) Tolerating Denial-of-Service Attacks Using Overlay

Network – Impact of Topology. First ACM Workshop on Survivable and Self-Regenerative
Systems (SSRS’03) October 31 2003, Fairfax, Virginia, USA

Welch, I. Warne, J. Ryan, P. Stroud, R. (2003) Architectural Analysis of MAFTIA's Intrusion

Tolerance Capabilities Technical report series- university of newcastle upon tyne
computing science, Online http://www.maftia.org/deliverables/D99.pdf [Nov 8, 2007]

 36 FFI-rapport 2007/02611

https://www.cia.gov/news-information/speeches-testimony/1998/dci_speech_040698.html
http://www.navigators.di.fc.ul.pt/it/
http://www.maftia.org/deliverables/D99.pdf

Yao J. T., Zhao S. L., Saxton L. V. (2005) A study on fuzzy intrusion detection. Data Mining,

Intrusion Detection, Information Assurance, and Data Networks Security 2005. Edited by
Dasarathy, Belur V. Proceedings of the SPIE, Volume 5812, pp. 23-30

Yao J. T., Zhao S., Fan L. (2006) An enhanced Support Vector Machine Model for Intrusion

Detection. In: Rough Sets and Knowledge Technology, Springer Berlin, 2006, pp. 538-543

Zhou, L., Schneider, F. B., and Van Renesse, R. (2002) COCA: A secure distributed online

certification authority. ACM Trans. Comput. Syst. 20, 4 (Nov. 2002), pp. 329-368.

FFI-rapport 2007/02611 37

	1 Introduction
	2 The motivation for Intrusion Tolerance
	3 Definition of terms
	4 Threat model
	4.1 Difference from Risk model
	4.2 Purpose and position of the attacker
	4.2.1 The purpose
	4.2.2 The positions
	4.2.3 Skills and tools
	4.2.4 Timing and sequence of events
	4.2.4.1 T1: Intrusion->Detection
	4.2.4.2 T2: Detection->Termination
	4.2.4.3 T3: Termination-Recovered
	4.2.4.4 Sequence of events and state of service quality

	4.2.5 The disloyal insider

	4.3 Human factors – human errors
	4.4 Program bugs
	4.5 Denial of Service
	4.6 Summary

	5 Research approaches
	5.1 Fault tolerance approach
	5.2 Computing security approach
	5.3 Distributed Systems approach
	5.4 Limitations of the three approaches

	6 Supporting technologies
	6.1 Cryptography
	6.1.1 Symmetric vs. asymmetric cryptography
	6.1.2 Threshold cryptography
	6.1.3 Contributions to intrusion tolerance

	6.2 Intrusion Detection
	6.3 Distributed Recovery
	6.3.1 Call semantics in the presence of failures
	6.3.2 Stateless servers
	6.3.3 Idempotent operations
	6.3.4 Replicated storage
	6.3.5 Contributions to intrusion tolerance

	6.4 Diversified systems
	6.4.1 The perils of a well known memory layout
	6.4.2 Immunity through diversification
	6.4.2.1 Compilation / Linking
	6.4.2.2 Program loading
	6.4.2.3 Present state of implementation
	6.4.2.4 Opaque overlay networks
	6.4.2.5 The contribution to intrusion tolerance

	7 Research results
	7.1 MAFTIA
	7.2 ITUA
	7.3 DARPA SRS

	8 Intrusion Tolerance in mobile systems
	9 Conclusions and suggestions for further research
	References
	Word-bokmerker
	RapportnrSide2
	Gradering_S2
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5

