FFl RAPPORT

A STOCHASTIC TWO-COMPONENT
MATERIAL MODEL: DOCUMENTATION OF AN
IMPLEMENTATION AS FORTRAN 90
SUBROUTINES IN AUTODYN

SOLENG Harald H

FFI/RAPPORT-2001/01089

FFIBM/766

Approved

JC]]CI‘ 23 b 2001
Bj eHaugsta a/q_F%/

Director of Research

A STOCHASTIC TWO-COMPONENT MATERIAL MODEL: DOCUMENTATION
OF AN IMPLEMENTATION AS FORTRAN 90 SUBROUTINES IN AUTODYN

SOLENG Harald H

FFI/RAPPORT-2001/01089

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment

P O BOX 25 (when data entered)
NQO-2027 KJELLER, NORWAY

REPORT DOCUMENTATION PAGE

SECURITY CLASSIFICATION OF THIS PAGE

1) PUBUREPORT NUMBER 2) SECURITY CLASSIFICATION 9 NUMBEROF
FFI/RAPPORT-2001/01089 UNCLASSIFIED 51

1a) PROJECT REFERENCE 2s) DECLASSIFICATIONDOWNGRADING SCHEDULE
FFIBM/766 -

4 TME

A STOCHASTIC TWO-COMPONENT MATERIAL MODEL: DOCUMENTATION OF AN IMPLE-
MENTATION AS FORTRAN 90 SUBROUTINES IN AUTODYN
EN STOKASTISK TOKOMPONENT MATERIALMODELL: DOKUMENTASION AV EN IMPLE-
MENTASJON SOM FORTRAN 90 SUBRUTINER 1 AUTODYN

5)

NAMES OF AUTHOR(S) IN FULL (surname first)

SOLENG Harald H

DISTRIBUTION STATEMENT
Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

n

INDEXING TERMS

IN ENGLISH: IN NORWEGIAN:
a) Compound material a) Komposittmateriale
b Stochastic material model v) Stokastisk materialmodell
¢) Simulation o) Simulering
d) d)
) 8)

THESAURUS REFERENCE:

8) ABSTRACT

We implement a two-component material model using subroutines in Autodyn-2D version 4.1.13. The
code described by this document has been written in noweb. Both the computer code in Fortran 90 and
Matematica as well as the ISTEX source of this document are automatically generated from noweb source
code files.

2 2
DATE AT D m& i % / PoSITION
23 February 2001 Bjarne tad Director of Research

ISBN 82-464-0517-9

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

CONTENTS

Page
1 Introduction 11
1.1 Objective 11
1.2 Organization of this document 12
2 Implementation in Autodyn 12
2.1 The initial distribution of rocks 12
2.2 Setting material initial conditions using exedit 12
2:2.1 Overview of exedit 13
222 The initialization chunk 15
223 Reading input 15
224 The kernel loop 16
Z.2.5 Inside the modification loop 17
2.2.6 File output for visualization 20
2.3 Implementation of rock properties 21
24 Subroutines file layout 21
3 Running the program 22
B Steel projectile penetrating into concrete 23
4.1 Projectile material and geometric data 23
4.2 Target data 24
4.3 Results 26
43.1 No gravel 26
432 5 mm gravel 26
433 10 mm gravel 28
5 Conclusion 30
APPENDIX
A Global module 33
B Random module 33
B.1 The uniform distribution 33
B.2 The normal distribution 34
B.3 The exponential distribution 35
B.4 The Poisson distribution 35
B.4.1 Case A: large expectation value 37

B4.2 Case B: small expectation value 39

B.5
B.6

7
D.2
D3

E.l
E2
E3

The Weibull distribution
Initialize random number generator
Sorting module
Generating seed file
Implementation
Interactive usage

Usage in batch

The makefile

Makefile definitions
Makefile rules

Keywords to the makefile
References

Distribution list

40
40
41
43
43

Y e~

47
49
51

LIST OF TABLES

4.1
4.2
4.3
4.

Projectile data.
Target background material data.
Target density data.

Target background yield stress data.

24
25
25
25

: TI"HC T

LIST OF FIGURES

4.1

4.2
4.3
44
4.5
4.6
4.7
4.8
49

Impact situation and penetrator geometry. The nose geometry is given by the
radius of curvature R and the angle a.

Pressure dependence of target properties.

Initial situation and the final velocity with no gravel.
10% 5 mm gravel and the final velocity.

20% 5 mm gravel and the final velocity.

30% 5 mm gravel and the final velocity.

50% 5 mm gravel and the final velocity.

10% 10 mm gravel and the final velocity.

20% 10 mm gravel and the final velocity.

4.10 30% 10 mm gravel and the final velocity.
4.11 50% 10 mm gravel and the final velocity.

23
26
27
27
28
29
29
30
31
31
32

]

11

A STOCHASTIC TWO-COMPONENT MATERIAL MODEL: DOCUMENTATION
OF AN IMPLEMENTATION AS FORTRAN 90 SUBROUTINES IN AUTODYN

1 INTRODUCTION

Consider ordinary concrete. It consists of cement mixed with sand or gravel. It is well
known that the properties of the concrete depends strongly on the mixture. It is also well
known that for smaller calibers, the effects of inhomogeneties in the mixture can have
strong effects on the penetration properties. For instance, we often find curved penetrator
trajectories inconsistent with a symmetric impact into a homogeneous target.

1.1 Objective

In this report we are concerned with software which takes into account the inhomogeneity
of concrete and its effects on penetration. In order to study such effects we have formulated
a simplified two-component mode! of concrete in which the gravel is assumed to consisting
of spherical objects with a given constant size. Both the cement and the gravel component
are modelled using the same material. The gravel components differ only by having a
rescaled yield strength. The target material is initialized by placing these “gravel” spheres
randomly according to a predefined volume density. After this stochastic initialization we
perform an ordinary deterministic penetration simulation. The algorithm we want to
implement can be expressed in terms of the pseudocode in Algorithm 1.1.

Algorithm 1.1 Sketch of algorithm

draw number of rocks from a Poisson distribution
randomly place rock centers

for each cell

{

5 decide material type and fill

}

evolve simulation

The model is admittedly very simple, and hence, it is not able to take into account the
following known material properties:

1. the size and shape of gravel objects should follow a certain distribution

2. the gravel objects should be modelled using a different material model than used in
the background, hence allowing also a different mass density in these objects

3. the interaction between gravel and cement could vary

Despite these shortcomings, we believe that the inhomogeneous stochastic concrete model
serves to illustrate the importance of random inhomegeneities in concrete.

12

1.2 Organization of this document

This document is organized as follows. After sketching the general ideas in this
introductory section, the details of the algorithm are worked out in section 2. The method is
implemented in Fortran 90 as user-defined subroutines for Autodyn [1]. For further details
about the literate programming style used in this paper and the use of Autodyn subroutines,
please consult Ref. [2] where a stochastic flaw model was implemented to produce
stochastic fractures. The current implementation shares mcuh of its structure and coding
details with the code of that report.

In section 3 we describe the user variables which have to be set interactively for the
intialization file of Autodyn. In section 4 we present a test case used to verify the methods.

The implementation of the global variables, statistical functions and other utilities are
explained and implemented as Fortran 90 modules in Appendices A-C. We use the
Mathematica module described in Appendix D to seed the random number generator in the
Fortran program.

2 IMPLEMENTATION IN AUTODYN

In this section we implement the details of Algorithm 1.1 sketched in section 1 as
subroutines to Autodyn.

2.1 The initial distribution of rocks

Let the expected volume fraction of rocks in the compound be given by frocks = Viocks/V

where Vocks 18 the total rock volume and V is the total volume. For simplicity, we assume
that all rocks are spherical balls with the same volume V;,. Then the average number of
rocks is

p= vmcks — f mcksv
Vrock Vmcl:

(2.1)

Not every target has the same number of rocks. We use a Poisson distribution to draw the
number of rocks per target. Thus the number of rocks are drawn from the probability
density function

pre*
n!

p(n,p) = (2.2)

This is exactly the probability density function implemented in Section B.4.

When the number of rocks have been computed we have to distribute them randomly in the
target geometry.
2.2 Setting material initial conditions using exedit

The standard way to implement custom initial conditions in Autodyn is to modify the
exval subroutine. Unfortunately, this subroutine can only be called interactively through a

13

“fill” operation. Hence, in a statistical setting we would like to be able to run a large
number of simulations in batch.

As a work-around Richard Clegg at Century Dynamics proposed to use the exedit
function instead. This function is called at the end of a cycle, as specified under the

ot Glabil it Usse (Cjles menu of Autodyn

2.2.1 Overview of exedit

We develop the 2D and 3D implementations in parallel using C preprocessor directives to
distuinguish between the two versions.'

(exedit)=
subroutine exedit

use sort

use random

use kindef

use mdgrid

use rundef

use global ! Global variables

implicit none

integer (int4) :: i, imn, imx, &

j, jmn, jmx, ijk, ios, &
n, m P, 9q

#ifdef threeD

integer (int4) :: k, kmn, kmx, r

real (real8) 1 Z, Znew

#endif

logical :: stochastic

real : mu, rockvolume

real (real8) :: density, radius, &
X, Yy, Xnew, ynew

character (len=10) :: material_name

character (len=1024) :: comment

at_end_of_zeroth_cycle : &
if (ncycle==0) then
(initialize)
(read material data)
(write log)
(do if rocks)

write(*,*)

I At the time of writing Autodyn 3D is at version 3 wheres Autodyn 2D is at version 4. The two versions
are implemented in Fortran 77 and Fortran 90, respectively. We decided to wait for version 4 of Autodyn 3D
and implement the two cases as a single source code.

14

write (*,*) " Modifying ",namsub (nsub)
write(*, *)

! Compute expectation mu=<V>
| Note that subvl (nsub) does not contain
! the volume of the void.

mu=density*subvl (nsub)
write (*,*) " Expected rock volume: ", mu

! Compute actual rock wvolume
rockvolume=real (random_Poisson (mu, .true.))

write (*,*) " Target rock volume: iy &
rockvolume

mu=0.0

do

| First draw random position in i, 7J,
! and k (if 3D)
i=random_uniform integer (1l,imax)
j=random_uniform integer(l, jmax)

#ifdef threeD
k=random_uniform_ integer (1, kmax)
ijk=ijkset (i,7,k)

#else
ijk=ijset(i,3)

#endif

| Now we have the ijk index and we can
(modify cell no n and its neighbours)

if (mu>rockvolume) exit ! ’‘cause we’'re done
end do
write (*,*) " Simulated rock volume:", mu
write (*,’(af5.2a)’) &
4 Simulated rock density: ", &

100.0*mu/subvl (nsub), "%"
write (*,*)
(write file "initial.dat”)

(end if rocks)
end if at_end_of_zeroth_cycle
write(*,’(a)’) " Starting simulation."
write (*®,*®) mnv
return

end subroutine exedit

The above pseudo-code implementation will now be spelled out in more detail.

15

2.2.2 The initialization chunk

The purpose of this code chunk is simply to write out a welcome screen and to initialize the
random number generator. Depending on the compiler, this initialization requires different
number of integers in the file “seed.dat”.

(initialize)=
write(*,’(a)’) ""
write(*'l(aa)f)] **************************Il,&
IFEETEETETEEEEEE R A A SRR SR EEE RS S R R B 8 & & &
write(*, ' (aa)’) " * "L&

n * "

write(*,’(aa)’) &

% Autocomp v. 2.0 ", &
n *l‘l
write(*, ' (aa)’) &
- " by Harald H. Soleng ", &
n N
write(*,'(aa)’') &
% Harald.Soleng@adinfinitum.no ", &
n % n
write(*, ' (aa)’') " * R
n *n
write(*, ' (aa)’') &
E % March, 2001 *",&
n *n
write(*, ' (aa)') " * &
n % n

write(*, ' (aa)’') &

L This is an extension of Autodyn. It ".,&
"contains a o

write(*,'(aa)’') &
" X stochastic compound material model.", &
n xn

write(*,’'(aa)’) " * ", &
n * n

write(*, ’ (aa) l) n (2 S S22 SRS A R AR R R SR EEESESES & B ’&
IES S ESESS AR EEEE S SRR R R R R SRR R RN

write(*, *)

write(*, *)

stochastic=.true. ! initial value

call seed_random_number() ! read file "seed.dat"

2.2.3 Reading input

After initialization of the random number generator, we read material data from a file. The
file should contain

16

1. the relative volume density of rocks
the expected radius of the rocks

the

the strength ratio of rocks to background

L

the name of the subgrid to be filled with rocks

(read material data)=

open (50, file='material.dat’, status="0old", iostat=ios)

if (ios==0) then
read (50, *) comment, density, radius, strength, material_name
density = density/100.0

else
write(*,*)
write(*,*) "FATAL ERROR: Cannot read ", &

"‘material.dat’. Aborting."

write(*, *)

stop
end if
close(50)
(write log)=
write(*,’ (aa)’') &
" Material: ", &
material_name
write(*,’' (afl0.4a)’') &

" density of: ", &
density*100.0,"%"

write(*, ' (afl0.4)') &
" radius: ", &
radius
if (density==0.0) then
stochastic=.false. ! Nothing more to do

write(*, *)
write(*, ' (aa)’) " WARNING: Density ", &
"yvanishes in ‘material.dat’. No*"

write(*, ' (aa)’) " stochastic ", &
"rocks are present, and the model is"
write(*,’ (aa)’) " equivalent ", &

"to a standard Autodyn model."
write(*,*)
end if

2.24 The kemnel loop

The beginning logical compound expressions is:

17

(do if rocks)=
stochastic_model : &
if (stochastic) then
do nsub = 1, numsub
call getsub
SPH: &
if (nproc==7) then ! SPH
write(*, *)
write(*,*) "FATAL ERROR: Program ", &
"not written for SPH"
write(*,*) "Aborting."
stop
else
if (namsub(nsub).eqg.material_name) then

and the end is:
(end if rocks)=
end if
end if SPH
end do
end if stochastic_model

2.2.5 Inside the modification loop

Now we put in the gravel. Since two materials cannot be put in the same subgrid, during the
exedit process, we tag the rock cells using a user-variable as a label. In the code chunk
below we perform this tagging for the kernel cell and its neighbours where the
neighbourhood is computed using the rock radius.

First let us define (rock) as a shorthand for user variable 01:
(rock)=
var0l (ijk)

Next we need a test to check the Euclidean distance from the kernel node to the neighbour
node.
(if greater than radius)=
xnew = xn(ijk)
ynew = yn(ijk)
#ifdef threeD
znew=zn(ijk)
#endif
if (sqrt((x-xnew)**2.0+(y-ynew)**2.0 &
#ifdef threeD
+(z-znew)**2.0 &
#endif
) .gt.radius)

It returns true if the distance is greater than the rock radius.

18

(modify cell no n and its neighbours)=
! First check that we are not in the void
if (den(ijk) > 0.0 .and. &
(rock) < 0.5) then

(rock) = 1.0

x=xn(ijk)

y=yn(ijk)

#ifdef threeD

z=zn(ijk)
#endif

! Finding min in i-direction
m=i
do

#ifdef threeD

ijk=ijkset (m, j, k)

#else
ijk=ijset (m, j)
#endif
(if greater than radius) exit ! rock too big
if (m==1) exit ! at grid boundary
m=m-1
end do
imn=m

! Finding max in i-direction
m=1i
do

#ifdef threeD

ijk=ijkset (m, j, k)

#else
ijk=ijset(m,3j)
#endif
(if greater than radius) exit ! rock too big
if (m==imax) exit ! at grid boundary
m=m+1
end do
imx=m

! Finding min in j-direction
m=j
do
#ifdef threeD
ijk=ijkset(i,m, k)
#else
ijk=ijset (i, m)
#endif

19

(if greater than radius) exit ! rock too big
if (m==1) exit ! at grid boundary
m=m-1

end do

jmn=m

! Finding max in j-direction

m=7j
do
#ifdef threeD
ijk=ijkset (i, m, k)
#else
ijk=ijset (i, m)
#endif
(if greater than radius) exit ! rock too big
if (m==jmax) exit ! at grid boundary
=m+1
end do
jmx=m

#ifdef threeD
! Finding min in k-direction

m=k
do
ijk=ijkset (i, j,m)
(if greater than radius) exit ! rock too big
if (m==1) exit ! at grid boundary
m=m-1
end do
=m

! Finding max in k-direction

m=k
do
ijk=ijkset(i,j,m)
(if greater than radius) exit ! rock too big
if (m==kmax) exit ! at grid boundary
m=m+1
end do
kmx=m
#endif

! Loop over neighbours
do p=imn, imx
do gg=jmn, jmx
#ifdef threeD
do r=kmn, kmx

20

ijk=ijkset (p,qq, r)
#else
ijk=ijset(p,qq)
#endif
(if greater than radius) then
continue
else
(rock) = 1.0
mu=mu+voln(ijk)
end if
#ifdef threeD
end do
#endif
end do
end do
end if

2.2.6 File output for visualization

This code chunck is included with external visualization in mind. If Autodyn’s own
visualizations are sufficient, this chuch can be omitted without loss of functionality. The
node positions and rock values are written to an ascii file for later processing in
visualization programs.
(write file ”initial.dat”)=
open (unit=100, file="initial.dat", status="replace")
#ifdef threeD
write (100, ' (4i8) ') imax, jmax, kmax, 0
#else
write (100, ' (3i8a)’) imax, jmax, O
#endif
do i=1, imax
do j=1, jmax
#ifdef threeD
do k=1, kmax
ijk=ijkset(i,3j, k)
write (100, (3£10.5i3)’) xn(ijk), &
yn(ijk), zn(ijk), int({rock))
#else
ijk=ijset(i,]j)
write (100, ' (£10.5a£10.51i3)’) xn(ijk), &
" n yn(ijk), int ({rock))
#endif

#ifdef threeD

end do
#endif

21

end do
end do
close(100)

2.3 Implementation of rock properties

Cells with the nonzero (rock) value gets an increased yield strength depending on the rock
strength.
(exyld)=

subroutine exyld(pres, ttl, tt2, tt3, xmut, &

epst, epsd, tempt, yieldt, ifail)

use mdgrid

use ijknow

use global

implicit none

integer (int4), intent(inout):: ifail

integer (int4) :: ijk

real (real8), intent(in):: pres, ttl, tt2, tt3, &
xmut, epst, epsd, tempt

real (realB8), intent(out):: yieldt

#ifdef threeD
ijk=ijkset (inow, jnow, know)
#else

ijk=ijset (inow, jnow)
#endif

yieldt = yieldt+(rock)* (strength-1.0)*yieldt

return
end subroutine exyld

2.4 Subroutines file layout

The aforementioned subroutines (as well as unmodified dummy subroutines which are
described in the Autodyn User Subroutines Tutorial [1]) come together in a single
Fortran 90 source file.

(autosub.f90)=
(exedit) ! replaces #include "exedit.f90"
(exyld) | replaces #include "exyld.f90"

! The following files contain the default usersub functions

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"exale.f90"
"exbulk.£f90"
"excomp.f90"
"excrck.f90"
"exdam. £90"
"exeos.f90"
"exerod.f90"
"exfail.f90"
"exfails.f90"
"exflow.£90"
"exload.f90"
"expor.fo0"
"exsave. f90"
"exshr.£90"
"exsie.f90"
"exstif.f90"
"exstr.£90"
"extab.£f90"
"exval.fo0"
"exvel.f90"
"exzone. fo0"

22

3 RUNNING THE PROGRAM

When compiling Autodyn with the user subroutines described in this paper using the
Makefile given in Appendix E, we get an executable file called autocomp-2D-1. 0.
Autocomp is a customized version of Autodyn containing a stochastic flaw model.

In order to run Autodyn with the subroutines specified in this report, the user has to set up

1. a computational model containing a two-component target (i.e., cement and rock). In
the input model, only the cement should be included. The rocks are added by the
program.

2. an ascii file named seed . dat containing the number of random seed integers
required by the particular version of the Fortran 90 compiler used by his or her
computer platform. This file should be updated before calling the program again.

3. an ascii file names material . dat containing the following material data

(a) rock volume ratio in per cents
(b) the rock radius in milli meters
(c) the rock strength factor

(d) the two-component subgrid name

23

In the present implementation only one two-component material type can be used in a
single run.

In addition, the following user variables must be activated var01 user variable must be
activated. It represents the rock fraction of a cell. This user variable is activated by using
the Modify Global Options UserVar. Add/Mod menu of Autodyn. Next, the
exedit subroutine must be called at the end of the zeroth cycle. This must be specified

under the Modify Global Edit User Czclcs menu of Autodyn.

4 STEEL PROJECTILE PENETRATING INTO CONCRETE

The problem is the following. A long rod steel projectile hits a large block of concrete. The
situation short before impact is depicted in Fig. 4.1 (a). In this report we limit ourselves to a

800 mm
40
]
20 !
i
I
50 100 | 150 200
o = I 7
B 40 | /
o | ,’
E -40 | ;
| Fd
-60 i e // R
| /
&0 %
7/
II
-100 v
(a) Overview (b) Nose

Figure 4.1: Impact situation and penetrator geometry. The nose geometry is given by the
radius of curvature R and the angle a.

two-dimensional test case, i.e.,, we assume a plane symmetric impact situation. Obviously,
due to the inhomogeneity in the target, an axial symmetric simulation is no good in this
problem. Hence, the illustration in Fig. 4.1 shows a horizontal cross section of the situation.

For the penetrator we use a Lagrange grid. The target is modelled using an Euler grid.

4.1 Projectile material and geometric data

The projectile has the geometrical parametres as shown in Fig. 4.1 (b). Thus the projectile
has a £/d of 3. Its nose is ogive. As expected, the experiments gave very little deformation
of the projectiles. A full account of the relevant projectile data is given in Table 4.1.

24

Table 4.1: Projectile data.

Steel penetrator
Equation of state linear
Reference density p 7.324 g/cm?
Bulk modulus K 175 GPa
Shear modulus G 80.8 GPa
Yield stress Yy 1.00 GPa
Impact velocity 620.00 m/s
Length 225.00 mm
Diameter 75.00 mm
Nose radius of curvature R 140.25 mm
Angle o 42.8935°

4.2 Target data

The target consists of 150 MPa concrete with no reinforcement. It is modelled by a porous
equation of state where both the density and the yield limit depend on pressure. Concrete is
a mixture of cement and sand or gravel. In the current simulations, the mixture is modelled
as a homogeneous background into which we place a certain density of spherical objects.
For simplicity we use the same material model for both the cement and the gravel
components of the concrete. The gravel objects differ from the background by having an
increased yield limit. These objects are placed randomly in the target during initialization.
In the simulations below, the gravel has a yield limit which is four times higher than that of
the background. Their radius is set to 2.5 mm or 5.0mm. The volume density is set to
values between 0 and 50%. Alternatively, the yield limit could have been reduced for the
background as we add gravel so as to keep the average yield limit constant. In that way one
would separate the effect of target inhomogeneity from the effect of increasing the mean
yield limit of the target.

Obviously this material model is an oversimplification, yet it is far more realistic than a
homogeneous material model since it captures the essential stochastic inhomogeneity in
concrete. As a result of these inhomogeneities, the model is able to reproduce the stochastic
deviations from straight projectile trajectories seen in experiments.

All material data in Tables 4.2-4.4 refer to the properties of the background. The gravel is
assumed to have exactly the same material data, except for the yield limit which is a factor
of four higher.

The concrete is modelled by a porous equation of state where the density depends on the
pressure, cf. Table 4.3. Due to the internal friction, also the yield limit increases with
increasing pressure, cf. Table 4.4.

For easier visualization, we have plotted the contents of Tables 4.3 and 4.4 in Figure 4.2.

25

Table 4.2: Target background material data.

C150 material data
Equation of state porous
Reference density py; | 3.05 glem®
Initial density pg 2.77 g/em?®
Solid sound speed 3000 m/s
Porous sound speed | 2720 m/s
Bulk modulus K 28.43 GPa
Shear modulus G 25.00 GPa
Young’s modulus E | 58.00 GPa
Diameter 1400 mm
Thickness 800 mm

Table 4.3: Target density data.

C150 density data

Density p(p) | pressure | density

py and p, 150 MPa | 2.7 g/em®
po and py 250 MPa | 2.8 g/em®
p3 and p3 500 MPa | 2.9 g/cm?
P4 and py 800 MPa | 3.0 g/cm?®
ps and ps 1100 MPa | 3.1 g/cm?®
pe and pg 1500 MPa | 3.2 g/cm?®
p7 and py 2000 MPa | 3.3 g/cm?®

Table 4.4: Target background yield stress data.

C150 yield stress data
Yield stress Y (p) | pressure | yield stress
p and Y7 0MPa | 20.0 MPa
po and Y, 25 MPa | 113.1 MPa
p3 and Y 50 MPa | 150.9 MPa
py and Yy 100 MPa | 202.5 MPa
ps and Yy 200 MPa | 273.0 MPa
pe and Yy 300 MPa | 326.5 MPa
py and Y; 400 MPa | 369.3 MPa
pg and Yy 600 MPa | 441.2 MPa
Do and Yg 800 MPa | 500.8 MPa
1o and Yig 1000 MPa | 552.6 MPa

26

density yield stress
gem™ MPa

33
32
31

500
400

pressure 300

500~ 1000 1500 2000 MPa 5p9

2.9

28 pressure
2.7 200 400 600 800 1000 MPa

100

(a) density (b) yield stress

Figure 4.2: Pressure dependence of target properties.

4.3 Results

We have carried out a number of simulation of this situation varying the gravel volume
densities between 0 and 50% and the gravel rock diameter between 5 and 20 mm. As
expected, adding material with a higher yield limit reduces the penetration depth. From the
principle of minimal action, it is clear that a projectile hitting an inhomogeneous material
will seek the path of least resistance. Hence, the projectile trajectory should deviate from a
straight line as the projectile is perturbed by the gravel.

4.3.1 No gravel

Let us first look at the case with no gravel at all. In the case with no gravel depicted in
Figure 4.3 (a), the projectile perforates the target. The slight deviation from perfect
symmetry seen in Figure 4.3 (b) can only be explained by numerical perturbations
(rounding errors). Due to an inherent instability initial rounding errors may grow into
visible effects later in the simulation.

The immense size of the crater is due to the use of planar symmetry. By a simple volume
scaling argument [2] where the volume of the projectile trajectory is compared to the target
volume, it can be seen that the planar symmetric case corresponds (approximately) to an
axial symmetric case with a small target. In addition, the target has no support at the
boundaries in our example.

4.3.2 5 mm gravel

Let us now look at various densities of 5 mm gravel. In Figure 4.4 (a), we see a random
distribution of 10% gravel in the background. Initially, the rock density is descrete. Hence,
in each cell the rock parametre should be either zero or unity. Unfortunately, we have not
managed to turn off the smoothening of the Autodyn plots. Another unphysical
smoothening occurs because the rock variable is transported between cells in the Euler grid.
The transport effect is more serious because it affects the computations. It can be seen in
the pictures of the initial rock distribution which are taken at about 400 cycles; in front of
the projectile one can see a semi-circular blurred region. After adding 10% gravel by

27

7.008+01

.D0B+01

0.008+00

(a) Gravel (b) Velocity field

Figure 4.3: Initial gravel distribution of 0% by volume and the final absolute velocity.

9.008+01
8.00B+01

7. 008+01

4.008+01

3.008+01

2.00B411

(a) Gravel @ = 5 mm (b) Velocity field

Figure 4.4: Initial gravel distribution of 10% by volume and the final absolute velocity.

volume, the target is not perforated. Instead the projectile is strongly deflected. A minute
analysis of the final state in Figure 4.4 revealed that the penetrator is about to ricochet. With
a single simulation it is impossible to say how likely this result is. Perhaps the strong
deflection happened just by coincidence?

1.008+01

0.00B+00

(a) Gravel @ = 5 mm (b) Velocity field

Figure 4.5: Initial gravel distribution of 20% by volume and the final absolute velocity.

Doubling the fraction of gravel as seen in Figure 4.5 did not decrease the penetration depth
significantly. This may be a coincidence. In the 10% case, the penetrator was strongly
deflected. Its sideways motion certainly helped stopping the projectile faster than if the
deflection had been more modest. Without a statistical analysis of a large number of such
simulations we cannot say much about the expected penetration depths for different
proportions of cement and gravel.

In Figure 4.6 we have increased the gravel volume fraction to 30%. Here the penetration
depth is significantly reduced and the penetrator deflection is modest.

In the last simulation (Figure 4.7) the gravel fraction was 50%. Here we see that the
penetrator only reaches halfway through the target. This is just what one should expect:
adding a significant portion of objects with a high yield limit has a strong effect on the
resistance of the target.

433 10 mm gravel

Let us now increase the diameter of the gravel rocks to 10 mm. On the one hand, the
expected number of rocks in the projectile trajectory decreases. On the other hand, each
rock produces a larger resistance to penetration. It is not obvious what the net result turns
out to be.

29

(a) Gravel @ = 5 mm (b) Velocity field

Figure 4.6: Initial gravel distribution of 30% by volume and the final absolute velocity.

(a) Gravel @ = 5 mm (b) Velocity field

Figure 4.7: Initial gravel distribution of 50% by volume and the final absolute velocity.

(a) Gravel @ = 10 mm (b) Velocity field

Figure 4.8: Initial gravel distribution of 10% by volume and the final absolute velocity.

Figure 4.8 shows the result of adding 10% 10 mm gravel. Comparing the result to that of
5% 10 mm gravel in Figure 4.4 we find that contrary to the expectation the penetration
depth appears to be slightly deeper for the larger rocks. However, the data set is not large
enough to say if the difference is significant.

Going up to 20% gravel, the difference in penetration depth is small for 5 mm (Fig. 4.5) and
10 mm gravel (Fig. 4.9).

Also at 30%, we still don’t see a significant difference between 5 mm (Fig. 4.6) and 10 mm
gravel (Fig. 4.10).

At 50%, the high yield limit of the gravel really kicks in. We find that the projectile is
deformed. It seems to be a larger difference between the cases with 5 mm (Fig. 4.7) and

10 mm gravel (Fig. 4.11), but the difference in penetration depth could be a consequence of
random deflections.

5 CONCLUSION

A very simple stochastic two-component model of concrete has been implemented. It
captures the essential inhomogeneity property of concrete. The plane symmetric 2D
simulations have shown that inhomogeneties with a diameter of 5 mm or 10 mm (where
yield strength is increased by a factor of four) has a strong effect on the deflection of 75 mm
ammunition.

This is in agreement with experience. Projectile trajectories tend to be complex in concrete.

Of course, the model needs to be refined before it can be used on realistic problems, but

31

(a) Gravel @ = 10 mm (b) Velocity field

Figure 4.9: Initial gravel distribution of 20% by volume fraction and the final velocity.

(a) Gravel @ = 10 mm (b) Velocity field

Figure 4.10: Initial gravel distribution of 30% by volume and the final velocity.

(a) Gravel @ = 10 mm (b) Velocity field

Figure 4.11: Initial gravel distribution of 50% by volume fraction and the final velocity:

already at this preliminary stage, effects that are masked in a continuum material model are
illustrated.

The main steps to refine this approach should be as follows:

1. Include the possibility to use two different material models for the cement and
concrete. To achieve this, the exval subroutine in Autodyn must be used for the
initialization.

[S9]

. Be able to include stones with different size

3. Run the code in full 3D. This will need version 4 of Autodyn, since version 3 is not
coded in Fortran 90. Also, parallel processing may be necessary to avoid very long
run-times (also available in version 4).

4. Finally, implementation in SPH may be needed to avoid certain inherent numerical
problems in the Euler or Lagrange processors.

33

APPENDIX

A GLOBAL MODULE

In this appendix we define a global module. It is used to hold a global variable to be
accessed by different user subroutines.
(global f90)=

module global

implicit none

real :: strength

end module global

B RANDOM MODULE

In this appendix we implement a simple random number module. It can draw
pseudo-random numbers from the normal (Gaussian), the exponential, the Poisson, and the
Weibull distributions.
(random.f90)=

module random

implicit none

real, private, parameter :: zero = 0.0, half = 0.5, &

one = 1.0

contains

(draw from the uniform distribution)

(draw from the normal distribution)

(draw from the exponential distribution)

(draw from the Poisson distribution)

(draw from the Weibull distribution)

(initialize the random number generator)

end module random

B.1 The uniform distribution

We define the random_uniform() function in the random module. It returns a
uniformly distributed pseudo-random real number.

(draw from the uniform distribution)=
function random_uniform(lower,upper) result(fu_val)

real, intent(in) :: lower, upper
real :: fu_wval, ran

call random_number (ran)
fu_val= (upper-lower) *ran+lower

34

return
end function random_uniform

The random_uniform_integer () function returns a uniformly distributed
pseudo-random integer.

(draw from the uniform distribution)+=
function random_uniform_integer (lower,upper) result (fu_val)

integer, intent(in) :: lower, upper
integer : v fua wval
real :r: ran

call random_number (ran)

fu val= int((l+upper-lower) *ran+lower)

#ifdef debug

if (fu_wval<lower) then
write(*,*) "Random number below boundary. Aborting."
stop

else if (fu_wval>upper) then
write(*,*) "Random number above boundary. Aborting."
stop

end if

#endif

return

end function random_uniform_integer

B.2 The normal distribution

The normal distribution (normalized Gaussian) distribution is given by the probability
density function

1 1.2
) = —e 2%, o
plz) T (B.1)
In the random module we define the function random_normal (). It returns a normally
distributed pseudo-random number with zero mean and unit variance. The algorithm uses
the ratio of uniforms method of A. J. Kinderman and J. F. Monahan augmented with
quadratic bounding curves.

(draw from the normal distribution)=
function random_normal() result(fn_val)

real :: fn_wval, u, v, x, v, g
real, parameter :: s = 0.449871, t = -0.386595, &
a = 0.19600, b = 0.25472, &

rl = 0.27597, r2 = 0.27846

35

do
call random_number (u)
call random_number (v)

v = 1.7156 * (v - half)
X =1u--:s

y = abs(v) - t

g = X**2 + y*(a*y - b*x)

if (g < rl) exit

if (g > r2) cycle

if (v**2 < -4.0*log(u)*u**2) exit
end do

fn_val = v/u

return
end function random_normal

B.3 The exponential distribution

The exponential distribution with scale parametre equal unity is given by the probability
density function

p(z) =e™ . (B.2)

The function random_exponential () returns a pseudo-random number z € [0, co)
from a negative exponential distribution using inversion.

(draw from the exponential distribution)=
function random_exponential () result(fn_val)

real :: fn_val, r
do
call random_number (r)

if (r > zero) exit
end do

fn_val = -log(r)

return
end function random_exponential

B.4 The Poisson distribution

The Poisson distribution is defined by the discrete probability density function
pet
n

p(n, p) = (B.3)

36

u is the mean value.

The random_Poisson (mu, first) retumns a pseudo-random number from the
Poisson distribution with mean p. This implementation is based on an algorithm of Ahrens
and Dieter [3]. It was translated to Fortran 90 by Alan Miller from RANLIB.

The interface consists of

(/o variables)=
real, intent(in) :: mu
logical, intent(in) :: first
integer 1 ival

where mu is the expectation, first is a Boolean which is true for the first call. ivalis
the return value.

(draw from the Poisson distribution)=
function random_Poisson(mu, first) result(ival)

(i/o variables)
(local variables)
(parametres)

if (mu > 10.0) then
(case A)

else
(case B)

end if

return
end function random_Poisson

(local variables)=
real #: bl, B2, &, €0, i, 82, €3, &
del, difmuk, e, fk, fx, fy, g, &
omega, pxXx, py, t, u, v, x, xXx
real, save «: 8, d, py q po
integer v¢ 3, k, kflag
logical, save :: full_init
integer, save :: 1, m
real, save :: pp(35)
(parametres)=
real, parameter :: a0 = -.5, al = .3333333, &
a2 = -.2500068, a3 = .2000118, &
ad = -.1661269, a5 = .1421878, &
a6 = -.1384794, &
a7 = .1250060
real, parameter :: fact(1l0) = &

b Tow FTaw 2oy Ouy 28., &
120., 720., 5040., &
40320., 362880. /)

37

B.4.1 Case A: p> 10

If 1 has changed, we recalculate s, d, and [. The Poisson probabilities py exceed the discrete
normal probabilities fx whenever k > m(u). | = ifiz(u — 1.1484) is an upper bound to
m(u) for all u > 10.
(case A)=
if (first) then
s = sgrt(mu)
d = 6.0*mu*mu
1l =mu - 1.1484
full_init = .false.
end if

Get a normal sample g
(case A)+=
g = mu + s*random_normal ()
g_positive: &
if (g > 0.0) then
ival = g

and accept immediatly if it is large enough
(case A)+=
if (ival»>=1l) return

Squeeze acceptance and draw a uniform sample u.
(case A)+=
fk = ival
difmuk = mu - fk
call random_number (u)
if (d*u >= difmuk*difmuk*difmuk) return
end if g_positive

Recalculation of parametres if necessary. The quantities by, by, 3, ¢z, ¢; and ¢y are for the
discrete normal probabilities f.

(case A)+=
if (.not. full_init) then
omega = .3989423/s 1 .3989423 = (2*pi)**(-.5)
bl = .4166667E-1/mu ! .416667E-1 = 1./24.
b2 = .3*b1*bl
c3 = .1428571*bl*b2 ! .1428571 = 1./7.

e2 = b2 = 15.%c3
cl = bl - 6.*b2 + 45.%c3
cO0 = 1. - bl + 3.*b2 = 15.%c3
c = .1069/mu ! majorization by
! the ‘hat’ function
full_init = .true.
end if
if (g<0.0) go to 50

38

Calling ‘subroutine F’ (setting the flag for correct return):
(case AYy+=

kflag = 0

go to 70

Implementing the rare quotient acceptance case.

(case A)+=
40 if (fy-u*fy <= py*exp(px-fx)) return

Exponential sample and sample ¢ from the LaPlace ‘hat’ (if ¢ < —0.6744 then px < fx for
all u > 10).
(case A)+=

50 e = random_exponential ()

call random_number (u)

u=u+u- one

t =1.8 + sign(e, u)

if (t <= (-.6744)) go to 50
ival = mu + s*t
fk = ival

difmuk = mu - fk

Calling ‘subroutine F’ (setting the flag for correct return):
(case A)+=
kflag = 1
go to 70
Hat acceptance (going back to exponential sample on rejection):

(case A)+=
60 if (c*abs(u) > py*exp(px+e) - fy*exp(fx+e)) go to 50
return

Subroutine F

This ‘subroutine’ calculates p., p,. f- and f,. For values below 10 it uses factorials from
the table.

(case A)+=

70 if (ival>=10) go to 80

PX = -mu

py = mu**ival/fact(ival+l)

go to 110
For ival > 10 we use polynomial approximation ap—a; for accuracy when adviceable.
(case A)+=

80 del = .8333333E-1/fk ! .8333333E-1=1./12.

del = del - 4.8*del*del*del
v = difmuk/fk
if (abs(v)>0.25) then

39

px = fk*LOG(one + v) - difmuk - del
else
px = fk*v*v* (((((((a7*v+a6)*v+ab) &
*v+ad) *v+al) *v+a2) *v+al) *v+al) - del
end if
py = .3989423/sqgrt (fk) ! .3989423=(2*pi)**(-.5)

110 x = (half - difmuk)/s
XX = X*X
fx = -half*xx

fy = omega* (((c3*xx + c2)*xx + cl)*xx + c0)
if (kflag <= 0) go to 40
go to 60

B4.2 CaseB: u <10

Start new table and calculate py is necessary.
(case B)=
if (first) then

m = max(1l, int(mu))
1 =20
p = exp(-mu)
a=p
p0 = p
end if

Draw a random number u from the uniform distribution.

(case B)+=
random _u: &
do
call random number (u)
ival = 0
if (u <= p0) return

Do a table comparison until the end pp([) of the pp-table of cumulative Poisson
probabilities (for u = 10, pp(9) = 0.458).

(case B)+=
if (1 == 0) go to 150
i=1
if (u > 0.458) j = min(l, m)
do k =3, 1
if (u <= pp(k)) go to 180
end do

if (1 == 35) cycle

Create new Poisson probabilities p and their cumulatives ¢ = pp(k):

(case B)+=
150 1 = 1 + 1

do k L, 35
o) p*mu / k
qgq=qg+p
pp(k) = q
if (u <= g) go to 170
end do
1 = 35
end do random_u
170 1 = k
180 ival = k
return

1

B.5 The Weibull distribution
The probability density function of the Weibull distribution is defined as

p(z,m) = mz™ e T, (B.4)

Given a positive definite input parametre m, the function random_Weibull (m) returns a
pseudo-random number from the Weibull distribution

(draw from the Weibull distribution)=
function random_Weibull (m) result(fn_val)

real, intent(in) :: m
real :: fn_val

fn_val = random_exponential() ** (one/m)

return
end function random_Weibull

B.6 Initialize random number generator

(initialize the random number generator)=
subroutine seed_random_number ()

integer sy Xk, 1, dos
integer, allocatable :: seed(:)

call random_seed(size=k)

allocate(seed(k))

write(*,*) "

write(*,'(aa)’) " Initializing random number ", &
"generator using ’'seed.dat’."

open (99, file="seed.dat",status="0ld", iostat=ios)

41

file _ok: &
if (ios==0) then
read (99, *) seed
write(*, ' (a, 12, aa)’) " Reading ", &
k, " random number seeds ", &
"from the file:"
do i=1, k
write(*,’ (i8)',advance='no’) seed(i)
if (mod(i,7)==0 .or. i==k) then
write(*,*)
end if
end do

write(*,*) ¢

close(99)
call random_seed (put=seed)
else

write(*,6*) v
write (*,’(aa)’) " FATAL ERROR: Could not ", &
" read file ‘seed.dat’™"

write (*,’(a)’) " Program aborts."
write(¥*, *) w»
stop

end if file_ok

deallocate(seed)

return

end subroutine seed_random_number

C SORTING MODULE

This module implements a pedestrian sorting function for float arrays. Be warned: if you
need a very effective sorting algorithm, then please look elsewhere!

(sort.fR0)=
module sort
implicit none
contains
(sort array of floats)
end module sort

We define two sorting function to sort float numbers in positive:

(sort array of floats)=
subroutine floatsort(a, n)

42

integer, intent(in) :: n
real, intent(inout) :: a(n)

! Local wvariables
integer i, counter

real x
doi=2, n
x = &(i)
counter = i-1
loop : &
do

if (counter < 1 .or. x >= a(counter)) then
exit loop

else
a(counter+l) = a(counter)
counter = counter-1
end if
end do loop
a(counter+l) = x
end do
return

end subroutine floatsort

or negative order

(sort array of floats)+=
subroutine floatsortr(a, n)

integer, intent(in) :: n
real, intent (inout) :: a(n)

! Local variables
integer i, counter
real X

do 1 =2, n
x a(i)
counter = i-1
loop : &
do
if (counter < 1 .or. x <= a(counter)) then
exit loop

else
a(counter+l) = a(counter)
counter = counter-1

end if

end do loop

43

a (counter+l) = x
end do
return
end subroutine floatsortr

D GENERATING SEED FILE

In the previous section we implemented an initialization function for the random number
generator. This function reads a set of seeds from a file. Thus, we need a method to
generate a new set of seeds prior to calling the initialization function.

D.1 Implementation

Here we shall implement such a function in Mathematica.

(makeseed.m)=
Module [{NumberOfSeeds, SeedRange,
write, seeds, out},
(platform dependent code)
(general code)
seeds (* For logging purposes *)]

The number of seed numbers as well as the minimal and maximal integers are platform
dependent:

(platform dependent code)=
NumberQOfSeeds = 17;
SeedRange = { -30000, 30000 };

Now we are ready to write down the general code
(general code)=
write[x_] [y_]:=WriteString[x, ToStringl(y]." "1:
seeds = Table[Random[Integer, SeedRange],
{NumberOfSeeds}] ;
out = OpenWrite["seed.dat"];
Map[write[out], seeds];
Close[out];

This completes the Mathematica module needed to write a list of random integers to the file
seed.dat.

D.2 Interactive usage

Let us now see how to use this Mathematica module. If you are running Mathematica
interactively, it can called by giving the command

Get ["makeseed'"]

at the In[n] prompt of Mathematica. This, however, is not very practical for our purposes
so we shall describe the use in batch mode.

D.3 Usage in batch

In batch mode, we call it by the shell command
math < makeseed.m > /dev/null

Here we have directed output to the Unix “black hole” at /dev/null. If one would like to
keep a log file of all seed numbers one could instead use

math < makeseed.m >> seed.log

where >> means that output is appended to the file each time the command is called.

E THE MAKEFILE

The program is compiled and linked using make and a Makefile. Using the make
program we are able to make fortran source files, object files and linked executables from
the noweb source files. We can also make I4TEX, postscript and pdf files for the
documentation. The rules needed to perform these tasks are defined in the Makefile. It
has the following layout:
(Makefile)=

(definitions)

(rules)

(keywords)

E.1 Makefile definitions

(definitions)=
COMPILER = fortran # Script calling £90 on "mammut"
CVERSION = 90
AUTODYN_Z2D_VERSION = 4.1.13
AUTODYN_3D_VERSION = 3.2.05

AUTOCOMP_VERSION = 1.0

PROGRAM_2D = autocomp-2D-$ (AUTOCOMP_VERSION)

PROGRAM_3D = autocomp-3D-$ (AUTOCOMP_VERSION)

LINKER = $(COMPILER)$ (CVERSION)

FLAGS = +save +noshared +03 +Oaggressive)\
+0all +DA2.0 +cpp=ves +cpp_keep\
-Ddebug -Dshearmod -Dbulkmod

2DFLAGS= $ (FLAGS)

3DFLAGS= $(FLAGS) -DthreeD

LINKFLAGS=

45

MAIN = compound
DOCDIR = ,./doc
MATHDIR = ../math
BINDIR_2D = ../autodyn-$ (AUTODYN_2D_VERSION)
BINDIR_3D = ../autodyn-$ (AUTODYN_3D_VERSION)
INCDIR_2D = ../usrsub-2d
LIBDIR_2D = /user/hso/autodyn/2d4113_dp/usrsub
INCDIR_3D =
LIBDIR_3D = /user/hso/autodyn/3dv3205_1000k/usrsub
GKSDIR = /user/hso/autodyn/gks
INCLUDE_2D = -I$(INCDIR_2D) -I$(LIBDIR_2D)
INCLUDE_3D = -I$(INCDIR_3D)
LIB_2D = $(LIBDIR_2D)/admain2.o0 \
$(LIBDIR_2D) /autodyn2.a \

-L$ (GKSDIR) -1lgksflb -1gksw5300 -lgkswiss \

-1gksgksm -lgksmsc -L/usr/lib/X11R5 -1X11 -1m
LIB_3D = S$(LIBDIR_3D)/admain3.o \

$ (LIBDIR_3D) /autodyn3.a \
-LS$ (GKSDIR) -1lgksflb -1gksw5300 -lgkswiss \
-lgksgksm -lgksmsc -L/usr/lib/X11R5 -1X11 -1lm

FORTRANSRC= global.nw random.nw sort.nw autosub.nw
MATHSRC = makeseed.nw
MAINSRC = $(MAIN) .nw
TEXSRC = running.nw)\

simulations.nw)\

makefile.nw\

autosub.nw\

$ (MAINSRC) \

$ (MATHSRC) \

$ (FORTRANSRC)
TEXFILES = ${TEXSRC:.nw=.tex}
FORTRANFILES = ${FORTRANSRC:.nw=.£90}

MATHFILES = ${MATHSRC: .nw=.m}

46

O2DFILES

$ {FORTRANSRC: .nw=.02D}

O3DFILES

1}

$ {FORTRANSRC: .nw=.03D}

.SUFFIXES: .nw .tex .dvi .ps .f90 .02D .03D .m .pdf

E.2 Makefile rules

Let us now define the rules.
(rules)=
.nw.£90:
notangle -t8 -R$@ $< | \
perl -e ‘while(<>) { s/\s*#/#/; print; }’ \
| cpif $e

The program code is extracted using notangle. We are going to use a C preprocessor on the
source before feeding it to the fortran compiler. Unlike the gnu C processor, the HP version
of the C preprocessor suffers from the illness of requiring all preprocessor directives to start
in the first column. To satisfy this need we pipe the code through a small perl program.

The Mathematica program and the ISTigX sources are easily obtained by means of
notangle and noweave::

(rules)+=
.nW.m:
notangle -t8 -R$@ $< | cpif se
.nw.tex: ; noweave -n -delay $< | cpif $@; \

rm -f $(MAIN).dvi

From the ISTEX source files, we get the documentation by running latex and bibtex a
few times:
(rules)+=
.tex.dvi: $(TEXFILES)
latex ’'\scrollmode \input ’'"$(MAIN)"; \
iE I\
grep -s ‘Citation’ $(MAIN).log || \
grep -s ‘No file $(MAIN).bbl’ $(MAIN).log);: \
then \
bibtex $(MAIN); \
latex ’‘\scrollmode \input ’"$(MAIN)"; \
£i; \
while (\
grep -s ‘No file $(MAIN).toc’ $(MAIN).log || \
grep -s ‘Rerun to get cross-references right’)\
$ (MAIN) .log); \
do latex ’‘\scrollmode \input ’"$(MAIN)"; \
done

47

Equivalently for pdflatex:
(rules)+=
.tex.pdf: $(TEXFILES)
pdflatex ’\scrollmode \input ’'"$(MAIN)"; \

if (\

grep -s ‘Citation’ $(MAIN).log || \

grep -s 'No file $(MAIN).bbl’ $(MAIN).log); \
then \

bibtex $(MAIN); \
pdflatex ‘\scrollmode \input ‘"$(MAIN)"; \
£i; \
while (\
grep -s ‘No file $(MAIN).toc’ $(MAIN).log || \
grep -s 'Rerun to get cross-references right’\
$ (MAIN) .log); \
do pdflatex ’‘\scrollmode \input ’‘"$(MAIN)"; \
done

With the dvi file in hand, we can make the post script using dvips:
(rules)+=
.dvi.ps: $(TEXFILES) $(MAIN).dvi
dvips -f $< | cpif %@

Compilation of the same code (distuinguished by preprocessor directives) results in 2D and
3D object files.
(rules)+=
.£90.02D: $ (FORTRANFILES)
$ (COMPILER) $ (CVERSION) $< -c \
$ (2DFLAGS) $(INCLUDE_2D) -o $@

.£90.03D: $(FORTRANFILES)
$ (COMPILER) S (CVERSION) $< -c \
$ (3DFLAGS) $(INCLUDE_3D) -o S$@

E.3 Keywords to the makefile

Linking the two sets of object codes leads to the 2D and 3D version of the program. The
following keywords can be used in the make command:
(keywords)=
2d: makefile $(0O2DFILES)
$ (LINKER) $(LINKFLAGS) $(O2DFILES) $(LIB_2D) \
-0 $(PROGRAM_2D)
cp $(PROGRAM_2D) ../autodyn-$ (AUTODYN_2D_VERSION) /

3d: makefile $(0O3DFILES)
$ (LINKER) $(LINKFLAGS) $(O3DFILES) $(LIB_3D)\

48

-0 $(PROGRAM_3D)
cp $(PROGRAM_3D) ../autodyn-$ (AUTODYN_3D_VERSION) /

program: 2d
all: dir math ps fortran object program

dir:
mkdir -p $(MATHDIR) $ (DOCDIR)

tex: $ (TEXFILES)
rm -f *.dvi

dvi: $ (TEXFILES) $(MAIN).dvi

ps: tex $(MAIN).dvi $(MAIN).ps
cp $(MAIN) .ps $(DOCDIR)/

pdf: tex rmpdf $(MAIN) .pdf
cp $(MAIN).pdf $(DOCDIR)/

rmpdf:
rm -f $(MAIN) .pdf

makefile:
notangle -t8 -RMakefile makefile.nw \
| cpif Makefile

fortran: $(FORTRANFILES)

math: ¢ (MATHFILES)
cp $(MATHFILES) $(MATHDIR)/

object: $(O3DFILES) $(02DFILES)

cleandoc: rmpdf
rm -f *.dvi *.ps

clean: cleandoc
rm =f *.tex *.a@ux *.log *~ *.bbl *.blg *.toc)\
* brf .out *.02D *.03D *.mod *.f90 *.i90

49

References

[1] Century Dynamics Inc. (1999): Autodyn, User Subroutines Tutorial, 2333 San Ramon
Valley Bvd., Suite 185, San Ramon, CA 94583, USA, fourth edn.

[2] Soleng H H (2001): A stochastic SPH flaw model and the evolution of fractures:
Documentation of an implementation as Fortran 90 subroutines in Autodyn, Tech. Rep.
FFI/RAPPORT-2001/01090, Forsvarets Forskningsinstitutt (Norwegian Defence
Research Establishment), P.O. Box 25, NO-2027 Kjeller, Norway.

[3] Ahrens J H, Dieter U (1982): Computer generation of Poisson deviates from modified
normal distributions, ACM Trans. Math. Software 8, no. 2, pp. 163-179.

”....¢..+&+_L...~..‘.,.E.”..1..”.
A SRR BIE o.

e .
- III-I

51

DISTRIBUTION LIST

FFIBM Dato: 23 February 2001
. RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO
X]raee [norar [Jrn |2001/01089 FFIBM/766/130 | 23 februar 2001
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS ANTALL SIDER
UTSTEDT
Unclassified 40 51
RAPPORTENS TITTEL FORFATTER(E)

A STOCHASTIC TWO-COMPONENT MATERIAL SOLENG, Harald
MODEL: DOCUMENTATION OF AN
IMPLEMENTATION AS FORTRAN 90
SUBROUTINES IN AUTODYN

\
EKSTERN FORDELING JNTERN FORDELING

ANTALL | EKSNR | TIL ANTALL | EKSNR | TIL

1 FBT/S 14 FFI-Bibl

1 v/Helge Langberg Adm direktgr/stabssjef
FFIE
FFISYS
FFIBM
Eirik Svinsés, FFIBM
Harald Soleng, FFIBM
Jan Arild Teland, FFIBM
Henrik Sjgl, FFIBM
John F Moxnes, FFIBM
Ove Dullum, FFIBM
Svein E Martinussen, FFIBM
Svein Rollvik, FFIS
FFl-veven

et e et .~ S B W

FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind |, Bestemmelser om publikasjoner
for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nadvendig.

