
Cross-domain communication using an
XMPP chat guard

-
Raymond Haakseth
Oddvar Brønstad (Thales Norway AS)
Øyvind Jonsson (Thales Norway AS)
Bengt Kristiansen (Thales Norway AS)
Nils Agne Nordbotten

17/01491FFI-RAPPORT

FFI-RAPPORT 17/01491 1

Cross-domain communication using an XMPP
chat guard

Raymond Haakseth
Oddvar Brønstad (Thales Norway AS)
Øyvind Jonsson (Thales Norway AS)

Bengt Kristiansen (Thales Norway AS)
Nils Agne Nordbotten

Norwegian Defence Research Establishment (FFI) 8 September 2017

 2 FFI-RAPPORT 17/01491

Keywords
Informasjonssikkerhet
Informasjonsmerking
Sikkerhetsdomener
Datautveksling
Kommando og kontroll

FFI-rapport
FFI-RAPPORT 17/01491

Project number
1294

ISBN
P: 978-82-464-2940-3
E: 978-82-464-2941-0

Approved by
Nils Agne Nordbotten, Research Manager
Anders Eggen, Director

FFI-RAPPORT 17/01491 3

Summary

In current and future military operations the capability to communicate, distribute and share
information is vital. Information superiority is achieved through the gathering, processing and
sharing of data from sensors and humans. This requires that future information systems are
interoperable and capable of sharing data and information with other systems. This includes
instant messaging, also known as chat, which has become a popular alternative for informal
message exchange between users.

Military systems have traditionally relied upon the use of physically separated security domains
to provide confidentiality protection. While serving the purpose of protecting the confidentiality of
information it also heavily restricts sharing of information. This includes information that
otherwise could be shared.

A guard is an assured solution that may be used for connecting security domains. It protects the
high domain from sharing information with the low domain that it is not allowed to share, i.e.
information leakage. Guards inspect the confidentiality labels attached to the data in order to
decide if it is releasable or not. It also contributes to the protection of the high domain from
threats from the low side, like malware, thus protecting the integrity of systems.

This report presents a guard solution developed as part of the multilateral research project
Coalition Networks for Secure Information Sharing (CoNSIS) II for chat messaging using the
XMPP protocol. It enables users in one security domain to interact and exchange chat
messages with users in another domain. The Chat Guard is designed and implemented in
cooperation with Thales Norway AS. It reuses the basic architecture and design from the Mail
Guard under development by Thales and the prototype XML/SOAP Guard developed in
cooperation between FFI and Thales. Reusing the security critical components of these guards
facilitates certification.

A prototype of the Chat Guard has been implemented by Thales Norway AS and tested.
Through the testing it has been identified that the prototype may be too strict, stopping
messages that are of use. Striking the right balance between protection and usability is
important, and this report outlines how the finished guard may handle different types of
messages. Also, lessons learned and experience drawn from the CD&E activity SMART on
using chat in an operational scenario has been important input. The SMART initiative
investigated whether the use of commercial smart technology, including chat messaging, could
be used to provide situational awareness to units with little or no equipment today.

This work has shown that it is possible to design and implement a guard for chat using the
XMPP specification based on the existing guards in development. A working prototype has
been established that may be developed into an operational system. The Chat Guard is
designed with an aim of Common Criteria EAL 5 certification.

 4 FFI-RAPPORT 17/01491

Sammendrag

Evnen til å kommunisere, distribuere og dele informasjon er avgjørende for nåværende og
framtidige militære operasjoner. Informasjonsoverlegenhet oppnås gjennom å samle,
prosessere og dele data fra sensorer og mennesker. For å oppnå dette må framtidens
informasjonssystemer være interoperative slik at informasjonen ikke er bundet til ett system. Det
finnes en mengde forskjellige militære kommunikasjons- og informasjonssystemer som brukes
for å utveksle informasjon. Lynmeldinger, også kjent som chat, har etter hvert blitt et populært
alternativ for uformell meldingsutveksling mellom brukere.

Militære systemer har tradisjonelt brukt fysisk skilte sikkerhetsdomener for å beskytte
konfidensialiteten til både systemer og informasjon. Dette gir konfidensialitetsbeskyttelse, men
samtidig er det også et stort hinder for deling av informasjon. Dette inkluderer informasjon som
ellers kunne vært delt, men som ikke kan deles fordi den er lagret eller behandlet i et system i et
annet sikkerhetsdomene.

For å knytte to sikkerhetsdomener sammen brukes gjerne en såkalt guard-løsning. Guarden
beskytter det høye domenet mot informasjonslekkasjer (konfidensialitetsbeskyttelse) ved å
stoppe informasjon som ikke skal eller kan deles med lavere domener. Dette gjøres ved at
guarden inspiserer konfidensialitetsmerker som er påført informasjonen og som beskriver
sensitiviteten. Hvilken informasjon som kan frigjøres, er avhengig av hvilken policy guarden er
konfigurert med. Guarden eller omkringliggende mekanismer må også sørge for at skadevare
som virus og andre dataangrep ikke får passere (integritetsbeskyttelse).

I denne rapporten presenterer vi en guard-løsning kalt Chat Guard, som kan brukes for
lynmeldinger som bruker XMPP-spesifikasjonen. Denne guarden gjør det mulig for en bruker i
et sikkerhetsdomene å utveksle lynmeldinger med brukere i andre domener, samtidig som
konfidensialiteten til informasjonen og integriteten til systemene er beskyttet.

Chat Guard er et resultat av samarbeid mellom Thales Norway AS og FFI og har vært en del av
det multilaterale forskningssamarbeidet Coalition Networks for Secure Information Sharing
(CoNSIS) II. Denne guarden gjenbruker både arkitektur og design fra Mail Guard som er under
utvikling av Thales, og fra prototype XML/SOAP Guard som ble utviklet i samarbeid mellom FFI
og Thales. Gjenbruken av sikkerhetskritiske komponenter bør gjøre evaluering og sertifisering
enklere. Thales Norway AS har stått for implementering og testing av Chat Guard-prototypen.

For alle sikkerhetsfunksjoner er det viktig å finne balansen mellom å beskytte og samtidig være
brukervennlig. Testing av prototypen har vist at flere viktige meldingstyper ble stoppet. Vi har
også brukt erfaringer fra CD&E aktiviteten SMART som ble gjennomført av FFI i 2016, som
blant annet undersøkte bruk av lynmeldinger i et operasjonelt scenario.

Denne rapporten viser at det er mulig å lage en guard-løsning for lynmeldinger med tilstrekkelig
høyt tillitsnivå. Det er også laget en funksjonell prototype som kan utvikles videre til ferdig
produkt. Chat Guard er designet med tanke på evaluering til tillitsnivå Common Criteria EAL 5.

FFI-RAPPORT 17/01491 5

Content

Summary 3

Sammendrag 4

1 Introduction 7

2 Chat Guard 8
2.1 Functional description 8
2.2 Basic guard design 10
2.3 Chat guard design 13
2.4 Chat guard protocols 14
2.5 Chat Guard requirements and restrictions 14

2.5.1 Message 15
2.5.2 Presence 15
2.5.3 IQ 15
2.5.4 Streams 15
2.5.5 Confidentiality label 15
2.5.6 Multi-User Chat (Chat rooms) 15
2.5.7 Error responses 16
2.5.8 Digital signatures 16
2.5.9 XML 16
2.5.10 Certificates and Certificate Revocation Lists 16

2.6 Platform 17
2.7 Use cases 17
2.8 XOchat – test client 18

3 Guard testing and demonstration 18
3.1 Generic Chat Guard testbed 18

3.1.1 Chat Guard configuration 19
3.1.2 XMPP server configuration 20
3.1.3 Clients 21
3.1.4 Certificates 21

3.2 Testing with the SMART initiative 21

4 Discussions 22

 6 FFI-RAPPORT 17/01491

4.1 Address exposure 23
4.2 Presence and IQ stanzas 24

4.2.1 Presence stanzas 24
4.2.2 IQ stanzas 25
4.2.3 Stanza errors 26

4.3 Multi-User Chat (Chat rooms) 31
4.4 Attachments and content checking 32
4.5 Read confirmation 33
4.6 Border protection devices 34
4.7 Handling of certificates 35
4.8 Chat clients 35
4.9 Multiple XMPP servers in each security domain 36
4.10 Consequences of proxying 38

5 Conclusions 38

References 40

FFI-RAPPORT 17/01491 7

1 Introduction

The capability to communicate, distribute and share information is vital for both current and
future military operations. A range of communication and information systems are available for
the warfighter in order to enable this information sharing, ranging from voice communication
via military messaging to formal command and control systems. The latter years, instant
messaging, also known as chat, has become a popular additional communication channel that is
more informal, lightweight and easy to use than formal military messaging. Military systems are
also moving from self-contained stove-pipe systems to more modular designs that are able to
utilize information from different sources more effectively and thus maximizing the operational
effect.

Military information and communication systems have traditionally relied upon the use of
physically separated security domains to protect confidentiality. This separation prevents
information from leaking from a higher sensitive system to a lower sensitive system, and the
different security domains are not allowed to be interconnected. The downside is that it also
makes it difficult to share information that otherwise could be shared between users and systems
in different security domains. The lack of information sharing makes it difficult to take the full
advantage of the modern information systems.

As chat becomes more used as an important communication channel it also becomes important
to provide cross-domain chat. Users of information systems have the need to communicate and
send chat messages to users in other security domains. Enabling this requires the
implementation of mechanisms that supports this interaction while at the same time ensuring
that the security of the systems and security domains involved are maintained. Typically this
involves preventing information leakage (protecting the confidentiality) and preventing transfer
of malware and other cyber-attacks. Since these mechanisms are used to interconnect different
security domains it becomes vital that they perform as intended. A high assurance level is thus
required.

This document describes the development of a prototype chat guard that can be used to enable
chat messages between users in different security domains. The design and implementation of
the chat guard has targeted a CC EAL 5 evaluation. The work described here includes functional
description and evaluation of restrictions posed by security considerations, as well as
requirements on chat clients and servers.

This work has been a cooperative effort between the Norwegian Defence Research
Establishment (FFI) and Thales Norway AS. The work has been performed as part of the
multinational research collaboration Coalition Networks for Secure Information Sharing
(CoNSIS) phase II. CoNSIS II consists of four tasks: (1) Communication Infrastructure, (2)
Information and Integration Services and Functional Services, (3) Cyber Security, and (4)
Service Management & Control. This work has been part of Task 3 Cyber Security.

 8 FFI-RAPPORT 17/01491

This report is organized as follows; in Section 2 the Chat Guard is presented including a
functional description, design considerations and requirements. Section 3 describes how the
Chat Guard was tested and demonstrated. A discussion on the findings and lessons learned from
implementing and testing the prototype is presented in Section 4 and the report is concluded in
Section 5.

2 Chat Guard

The Chat Guard is based on the architecture developed for the prototype XML/SOAP Guard
[1][2], which in turn is based on the architecture of the Thales Mail Guard.

Chat is a collaboration tool used to coordinate information that does not necessarily need to be
archived etc. It is typically less formal than information conveyed as formal messages. The Chat
Guard allows instant messages according to XMPP to flow between two security domains if and
only if the messages comply with the Guard policy. All messages must be signed and labelled
with their classification.

XMPP is an open standard for messaging and presence. It was standardized through the Internet
Engineering Task Force (IETF) in 2004 and revised in 2011 with the publication of RFC 6120
[3], RFC 6121[4] and RFC 7622 [5]. Extensions to the core specifications, known as XMPP
Extension Protocols (XEP), are governed and published by the XMPP Standard Foundation.
This is an independent, nonprofit standards development organization. Since it is an open
standard anyone is free to contribute with extensions. XMPP is a proven technology for
messaging and is used extensively. The fact that XMPP is both a standardized and proven
specification for messaging makes it a good choice for the Chat Guard.

2.1 Functional description

The basic function of the guard is to reject all incoming objects unless they comply with a
configured set of rules. The main rules are to verify that the security label is within configured
limits, and that the object is correctly signed. In general, the guard will trust data that is covered
by a validated signature. Other data is in principle not trusted, but can be accepted depending on
the guard policy (possibly after filtering or other checking). The guard requires that external
Border Protection Devices are present, allowing network-based threats to be detected and
countered outside the guard.

FFI-RAPPORT 17/01491 9

Figure 2.1 Chat Guard between two security domains

The Chat Guard interconnects two security domains as shown in Figure 2.1. It allows XMPP
server to server traffic and it plays the role as a proxy XMPP server. The TCP connection from
one XMPP server is terminated in the Guard and a new connection is set up towards the XMPP
server on the other side. I.e. the logical connection between the two XMPP servers is maintained
through the Chat Guard. XMPP chat clients cannot initiate a connection directly to a server in
the other domain as only server-to-server connections are allowed through the Chat Guard.

The capabilities that are specific to the Chat Guard are identified as follows:

• XMPP objects (Stanzas1) are transported inside streams over TCP
• XMPP objects (Stanzas) are labelled using an XML Confidentiality Label [6]
• XMPP objects (Stanzas) are digitally signed using a signature that is bound to the label

according to the XML Binding Profile [7]
• Signed parts of the XML object are normalized and all information is kept within one

Stanza
• XML Binding and Signature information is carried within a well-defined header field
• Access control is based on signatures and Addressing Services [8]

1 In XMPP, stanza is the basic unit of communication (similar to a packet or message). Stanzas can be of type
message, presence or iq.

XMPP
Server

Chat
Client

Chat
Client

Chat
Guard

Chat
Client

Chat
Client

XMPP
Server

 10 FFI-RAPPORT 17/01491

The Chat Guard configuration is defined by a Configuration Vector containing all relevant
configuration attributes.

2.2 Basic guard design

The design of the Guard is aligned with edition 1.3 of the “Protection Profile for the NATO
High-Assurance ABAC Guard” [9] . The HAAG PP defines an overall security design, and
specifies a set of security functions. The Guard implementation is targeted at a Common
Criteria EAL 5 evaluation.

The Guard is designed around a MILS type separation kernel, providing trusted mechanisms for
separating different parts of the guard from each other. This allows the guard design to
implement the principle of ”least privilege” in a way that keeps different security aspects
separate, aiming to simplify the security evaluation.

The Chat Guard builds on the previous XML/SOAP Guard prototype, in turn an extension of
the Mail Guard architecture. All guards build on the same security principles and the same
overall design. The Chat Guard is implemented on the target operating system running on a
standard PC platform. An abstraction layer was created to facilitate porting to the target
platform.

The general Guard structure is shown in Figure 2.2.

FFI-RAPPORT 17/01491 11

Figure 2.2 Guard design

The Guard design is based on having a set of services that as far as practical are independent of
the communication protocols used. The specifics of each protocol are handled in the Protocol
Adapters towards the connected systems.

 12 FFI-RAPPORT 17/01491

The individual functional blocks have the following overall responsibilities:

• Protocol Adapter A and B
There is one set for each protocol (STANAG 4406 and SMTP respectively for the two Mail
Guards, XMPP for the Chat Guard and SOAP for the XML/SOAP Guard), performing the
protocol handshake, mapping protocol attributes to the attributes used for filtering, and
handling error situations (including objects being rejected by the Guard).

• Core
The Core ensures that each object submitted to the Guard is correctly processed. This
includes subjecting the object to Content Inspection Services appropriate to the type of
object (e.g., XML validation), mapping attributes to avoid information leakage (e.g.,
identifiers and addresses that have a scope within one of the connected networks),
activating the Filter, and dispatching the needed sub-functions in the correct order.

• Content Inspection Service
The Content Inspection Service provides an interface mechanism for plugging in various
types of Content Checkers. Default Content Checkers include dirty-word checking and XML
Schema Validation. Other application-specific checkers can be added, allowing a secure
mechanism for inspecting and/or validating an object, without risking modification or
leakage of the object content.

• Filter
The Filter performs the Guard filtering function, determining whether a specific object is
allowed to pass the Guard. Filtering decisions are based on configurable criteria (supplied
by the Configuration Handler, possibly modified via the Cyber Defence Handler), and uses
functionality from the Core and PKE.

• PKE (Public Key Enablement) A and B
There is one set for each connected system, performing digital signature validation and
generation, and certificate and CRL validation. The PKE can be interfaced to different PKI
systems.

• Configuration Handler
The Configuration Handler provides an interface for configuring the Guard with one or
more Configuration Vectors, each defining a policy for which messages are allowed to pass
the Guard. Each Configuration Vector includes data such as network interface parameters,
selected content filters, XML Schema, security label range, etc.

• Cyber Defence Handler
The Cyber Defence Handler provides an interface for monitoring and controlling the
Guard, e.g. by changing to a different Configuration Vector as a result of reported status
information.

FFI-RAPPORT 17/01491 13

2.3 Chat guard design

In order to support Chat messages (transported inside XML objects), the base Guard design had
to be extended. This applies to:

• Protocol Adapter
A protocol handler for XMPP was added. The XMPP Stanza attributes are extracted and
given to the Filter.

• Core
The mapping function for identifiers/addresses was extended to support a more general
way of encoding, e.g., the attribute type syntax used by XML documents. For identifiers,
this applies to IDs in message, presence and IQ stanzas (to associate a response with the
correct request).

• Filter
The filter function was updated to use plain text security labels (similar to the XML/SOAP
Guard).

• Configuration Handler
Configuration data was added for XMPP (e.g., XML schema definition).

• Content Inspection Service
An XML Validator could be added as a content checker. Note that this requires stanzas to
be self-contained, i.e., a single Chat message cannot be transported in multiple Stanzas.

 14 FFI-RAPPORT 17/01491

2.4 Chat guard protocols

The Chat Guard forwards traffic between two XMPP servers within the respective domains. The
prototype has been implemented using the following protocols and specifications.

• Streams
The XMPP Core specification [3] defines the relation between Streams and Stanzas. An
XMPP stream is a persistent connection used for exchanging XMPP stanzas between two
XMPP entities. The initial Stream negotiation is unencrypted. An encrypted Stream is
negotiated over the initial Stream, which is dropped once the encrypted Stream is opened.
The Chat Guard will only accept “instant messages” and “responses”. The set of acceptable
stanzas is predefined.

• Security
The Chat Guard requires TLS encrypted Streams. Unencrypted Streams are only accepted
for the initial negotiation of encryption keys. This negotiation is performed according to
the STARTTLS specification [10].

• Authentication
SASL (simple authentication and security layer protocols) negotiation (RFC 4422 [11]) is
supported as the authentication mechanism.

• XML stanzas
After stream negotiations the servers may exchange <message/> stanzas. The following
attributes are supported:
• “To” attribute (in server to server streams)

The “To” attribute must be an XMPP address. It is mandatory between servers (auto
broadcast via this interface is not accepted for presence or IQ without «To»).

• «From” attribute (in server to server streams)
The “From” attribute must be an XMPP address.

• “Id” attribute (in server to server streams)
• “Type” attribute (in server to server streams)
• “Xml:lang” attribute (in server to server streams)

• XML elements
In addition to the stanza attributes above, the XML elements are supported for
confidentiality label [6] and signature [7].

2.5 Chat Guard requirements and restrictions

When using the Chat Guard some additional requirements and restrictions to the general XMPP
specifications apply. These requirements and restrictions have the aim of protecting the Chat
Guard from leaking information. They are based on the experience drawn from the development
and operational use of other guards and from the implementation and testing of the prototype

FFI-RAPPORT 17/01491 15

Chat Guard. Differences between these requirements and the implemented prototype exist and
are noted in the text.

2.5.1 Message

If the Chat Guard is configured to filter messages according to labels the XMPP message must
contain a Confidentiality label according to the NATO XML Confidentiality label standard [6]
and be bound to the message according to the NATO Metadata binding standard [7].

2.5.2 Presence

Presence is a broadcast or publish-subscribe operation. Presence is a security sensitive service,
and it must be carefully considered how it should be allowed through the Guard. It should be
constrained to only allow specific entities to publish presence. Both sides of the Guard will have
a list of entities which are allowed to send out presence. The lists should be configurable, and
may be different in each direction. This is further discussed in section 4.2.1

Presence stanzas were discarded by the Chat Guard prototype.

2.5.3 IQ

IQ is a request-response operation and therefore a security sensitive function. A minimal list has
to be worked out to list IQs (with response) which may be accepted and the responses that are
allowed in response. The list should be configurable, and may be different in each direction. IQs
must also be signed according to the Metadata binding standard [7]. IQ messages and responses
are further discussed in section 4.2.2

IQ stanzas were discarded by the Chat Guard prototype.

2.5.4 Streams

The Chat Guard always operates on a server to server stream (i.e. direct client-server
interactions are not supported through the Guard). The stream must be secured by TLS and
authenticated by SASL.

2.5.5 Confidentiality label

The XML Confidentiality Label is implemented according to the NATO Standard
“Confidentiality Metadata Label Syntax” (ADatP-4774) [6]. The confidentiality label must
represent the complete object.

2.5.6 Multi-User Chat (Chat rooms)

Multi-User Chat (MUC), also known as Chat rooms, were not supported by the prototype. A
discussion on how chat rooms can be supported is found in section 4.3.

 16 FFI-RAPPORT 17/01491

2.5.7 Error responses

Detailed error responses must be restricted. A list must specify the error responses that are
allowed to pass the Chat Guard. Non-accepted error responses must be anonymous.

2.5.8 Digital signatures

The Digital Signature must cover the entire XML object (excluding the signature itself). The
digital signature is implemented according to the W3C recommendation “XML-Signature
Syntax and Processing (2008)”2.

The signature validation and generation uses the same interfaces and mechanisms as the Mail
Guards and the XML/SOAP Guard. This implies that the specific algorithms and key lengths
can be adapted to the specific usage, and functions that reference the private key will be
performed by a Hardware Security Module (HSM). For the Chat Guard prototype, the SHA-256
hash algorithm and the RSA encryption algorithm was selected.

2.5.9 XML

XML objects must be presented in a standard form before digital signatures can be validated.
This canonicalization process is implemented as follows:

• Within the Reference element, the “inclusive, without comments” strategy is used. The
reference covers the entire XML object, and thus there are no “parent” element and no
inherited namespaces. This is the default algorithm, and is not identified in the XML object.

• Within the SignedInfo element, the “exclusive, without comments” strategy is used. This
avoids duplicated namespaces in the released XML object. The specific algorithm is

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

Outgoing XML objects keep the canonicalization applied on reception.

2.5.10 Certificates and Certificate Revocation Lists

Certificates and Certificate Revocation Lists (CRLs) are accessed and used in the same way as
the other Guards, i.e. via the PKE-A and PKE-B functions shown in Figure 2.2.

For the experimentation and demonstration (see Chapter 3), the Chat Guard prototype used
X.509 version 3 certificates and version 2 CRLs. End user certificates were signed using SHA-
256 and RSA (with 2048 bit key length), and the end user public key was an RSA 1024-bit key.
Specific algorithms and key lengths are adaptable to the specific usage scenario.

2 http://www.w3.org/TR/2008/PER-xmldsig-core-20080326

FFI-RAPPORT 17/01491 17

2.6 Platform

The Chat Guard demo is running on a MILS type separation kernel on a Personal Computer.
The Border Protection Devices are omitted in this demonstration scsenario.

2.7 Use cases

Figure 2.3 shows how the Chat Guard can be used. There are at least two different scenarios:

• Scenario #1
Typical usage is to have a labelling service in the high domain and no labelling service in
the low domain. All messages from the high domain must be labelled in order to allow the
filtering function to decide if they are allowed to be released into the low domain.

• Scenario #2
Labelling service in both domains.

When security labels are used, they can be added by the Chat Client or by a special-purpose
labelling XMPP Server. Such an XMPP Server could perform labelling for a group of Chat
Clients in a security domain.

Figure 2.3 Chat Guard use case

XMPP
Server

Chat
Client

Chat
Client

Chat
Guard

Chat
Client

Chat
Client

XMPP
Server

 18 FFI-RAPPORT 17/01491

2.8 XOchat – test client

A prototype Chat Client was developed in parallel with the Chat Guard as a way to test the Chat
Guard functionality. This client provides a subset of functionality for sending and receiving chat
messages, and for retrieving the contact list from the XMPP server. In addition, the test client
adds the capability to mark chat calls with confidentiality labels, and to digitally sign chat
messages.

3 Guard testing and demonstration

Testing and verification has been an important activity in the Chat Guard development. During
development Thales Norway AS has performed testing according to their development
standards. This includes establishing an on premises testbed. This testbed was also replicated at
FFI, outside the development environment. Finally the solution was demonstrated in a close to
operational setting and scenario.

3.1 Generic Chat Guard testbed

The generic testbed established at FFI consists of two simulated domains, one high and one low,
which are interconnected with the Chat Guard, see Figure 3.1. Each domain has its own Chat
Server. Users have a chat account registered with the chat server in their own domain, known as
the home server. A user is identified with the combination of username and home server. For
instance the user Bob at the server HighDomain is identified as Bob@HighDomain. A user
exchanges messages with its home server only, which relays messages to the correct recipient.
The chat interaction is never directly between two users. If a message is addressed to a user in
another domain the chat server forwards the message to the home server of the recipient.

FFI-RAPPORT 17/01491 19

Figure 3.1 Chat Guard testbed architecture

The Chat Guard only handles XMPP server-to-server connections, all other connections are
disallowed. Thus users cannot use a chat server in another security domain as home server. A
secure server-to-server session is setup between each of the two chat servers and the Chat
Guard. In essence the Chat Guard can be viewed as a transparent proxy between the two chat
servers. The chat server believes that it is communicating directly with the receiving server
while it is actually communicating with the Chat Guard. All communication between the chat
servers and the Chat Guard was secured using SASL (Simple Authentication and Security
Layer) and TLS (Transport Layer Security).

The testbed does not have any DNS capability.

3.1.1 Chat Guard configuration

The Chat Guard interconnects and enables chat messages to be exchanged between two security
domains. A description of the general functionality of the Chat Guard can be found in section 2.
This section describes the specific configuration used at the FFI testbed.

The Chat Guard has five different network interfaces. In the testbed three of these were used,
two for connecting the guard to the different security domain networks and one for
management. The remaining two interfaces are used for connections to PKI systems, one in
each domain. For simplicity this was however not used in the testbed. The three network
interfaces used were configured to have IP-addresses within the range of their respective
networks. The IP address of the XMPP server within a domain is also configured and stored in
the protocol handler for the given domain. This makes it possible for the protocol handler to

 20 FFI-RAPPORT 17/01491

forward messages to the correct XMPP server. Also configured within the protocol handler is
the domain name of the XMPP server.

All connections to the Chat Guard must be authenticated using the SASL protocol. The chat
servers expect the other side to identify itself using a certificate with a common name equal to
the xmpp-domain name of that server. Since the protocol handlers acts as the XMPP server in
the opposite domain it must also be configured with a certificate with a corresponding common
name. The corresponding private key must also be available for the protocol handler.

The Chat Guard can be configured to release different classifications of information dependent
on the scenario and the security domains that are connected. The default configuration in the
testbed is to release all messages labelled Norwegian unclassified to confidential, NATO
Unclassified to Secret and unmarked messages. Messages with confidentiality label with value
Norwegian SECRET or higher and labels with value higher than NATO SECRET are thus
disallowed and stopped by this configuration of the guard.

3.1.2 XMPP server configuration

The testbed used the open-source Openfire3 XMPP server from Igniterealtime as XMPP chat
servers on both the low and high side. No modifications were done to the servers except
configuration, most notably configuration of certificates, users and manipulation of IP
addressing. In addition basic XMPP configuration was performed, for instance adding an xmpp-
domain name.

Both the low and high side XMPP servers were configured to use the SASL and TLS protocol
when connecting to other servers. They were also configured to require the use of SASL and
TLS when receiving connections. A certificate was generated (see section 3.1.4) with the
common name equal to the xmpp-domain name and this together with the corresponding private
key were stored on each of the chat servers. In addition the root certificate of the Certicate
Authority was stored in the xmpp servers trust store.

One of the limitations of the XOChat client (see section 2.8) is that all contacts for a user must
be predefined. In order for two users in different security domains to chat with each other they
must both be manually registered in the other users’ roster (also known as address list). In
addition they must be configured to subscribe to messages from each other.

Finally, in order for the chat servers to be able to connect to the Chat Guard, they must resolve
the domain name of the remote server to the IP address of the guard protocol handler. Since no
DNS was available within the testbed, the hostfile of the hosting machine was modified.

3 https://www.igniterealtime.org/projects/openfire/

FFI-RAPPORT 17/01491 21

3.1.3 Clients

Chat clients based on the XMPP platform are commonly available, both as opens source
software and commercial software. In the testbed we used two different XMPP clients, Spark4
from Igniterealtime and the XOChat prototype developed by Thales Norway AS. The latter was
the only available client that included functionality for both labelling and signing messages. The
Chat Guard uses labels and signatures included in messages when performing release control.
Labeling and signing is thus a requirement when chatting with users in another domain through
the Chat Guard. The Spark clients were used for general XMPP testing.

Since no DNS was available the hostfile of the clients was also modified to include IP address
information to the chat servers. Manipulation of the host file was chosen since no DNS was
available.

3.1.4 Certificates

For the testbed, certificates from a Thales Certificate Authority (CA) were used. For simplicity
both security domains used the same CA, and live certification and CRL checking were
disabled. The CA root certificate and CRLs were pre-distributed to the Chat Guard, both XMPP
servers and chat clients.

3.2 Testing with the SMART initiative

Each year the Norwegian Armed Forces execute a number Concept Development and
Experimentation (CD&E) activities. In 2016, the activity “EP 1667 SMART – Pervasive
common situational awareness at the individual soldier level” investigated whether commercial
smart technology, such as smart phones and tablets, could be used to provide situational
awareness to units with little or no equipment available today [12]. The activity was executed by
the Norwegian Defence Research Establishment (FFI) and sponsored by the Norwegian Home
Guard. All systems developed and used during the CD&E activity were in the unclassified
domain. At the same time security mechanisms were implemented to protect the information
from public disclosure and the end goal is an unclassified but secure system.

The SMART activity used chat as an integrated part of the experiment. It was thus natural to see
the Chat Guard activity in connection with this since drawing experience from testing the guard
in a close to real life operational scenario could be very valuable. Also, important lessons
learned from operational usage of chat can be drawn from the SMART activity. This includes
how chat is used in an operational setting, what functionality is necessary, and what is nice to
have and what functionality the user can do without.

During the operational testing chat could be used for individual one-to-one sessions between
soldiers or in pre-configured group chat sessions. Group chat constituted the bulk of chat

4 https://www.igniterealtime.org/projects/spark/index.jsp

 22 FFI-RAPPORT 17/01491

communication and it was used mainly to coordinate activities and share observation (including
pictures). All chat users were part of the same domain, i.e., a single XMPP server were used for
all users.

Based on the experiments from testing operational use of chat in the SMART activity, three
major observations and lessons learned are relevant to the Chat Guard development. First, the
use of chat rooms was extensive. The users coordinated and shared observations with each other
in predefined groups rather than in one-to-one chat. Second, pictures of observations were
shared using chat. Pictures were used for informing other users and as a catalyst for gathering
more information on the observation. Finally, the users also wanted to know when a message
was read and by whom, a type of read confirmation. The prototype Chat Guard did not support
any of these and how this can be supported is described in section 4.

The Chat Guard was tested together with SMART at the end of the CD&E activity. In this
demonstration chat between a simulated higher echelon in a classified security domain and the
unclassified SMART systems and users were enabled by adding the Chat Guard between the
systems. The Chat Guard was configured to allow all messages from the low (SMART system)
to the high security domain, and to allow unclassified and signed messages the other way. This
allowed the use of the commercially available chat clients already used in the SMART activity
without modification. At the same time the guard protected the high domain from leaking
information. Only minor changes were done to the SMART system itself, including the
configuration of certificates for server-to-server communication with the guard and the other
XMPP server. The generic testbed setup presented in the previous section was re-used as far as
possible.

4 Discussions

The overall aim of the Chat Guard is to enable users in different security domains to chat with
each other in a secure way, while also preventing information leakage. When introducing a
security mechanism there is often a trade-off between security and usability. This is also the
case for the Chat Guard and this chapter elaborates on some of the choices made, what the
effects are and if there are any mitigating measures that can be taken. This section also discusses
other subjects identified during testing and verification, including subjects identified through the
use of chat in the SMART activity.

For cost and interoperability reasons it is desirable to be able to use COTS products as far as
possible within the “chat domains” (i.e. COTS chat clients and chat servers), and to use the Chat
Guard and possibly other security components to provide the required filtering. The chat domain
may include security features that could supplement or partly replace mechanisms within the

FFI-RAPPORT 17/01491 23

Chat Guard. This is reflected in the discussions below by noting that several functions must be
configurable.

4.1 Address exposure

The Chat Guard prototype allowed XMPP addresses to pass unfiltered. Filtering may need to be
applied in order to reduce or eliminate possibilities for information leakage.

The XMPP address format is defined in RFC 7622 [5] as follows:

[localpart “@”] domainpart [“/” resourcepart]

Of these, the “localpart” (also known as the “username”) identifies an XMPP entity (i.e., user or
chat room) within the context of a “domainpart”. The “domainpart” typically identifies an
XMPP server (e.g. using an IP address or domain name). “resourcepart” may identify a specific
channel towards the user (e.g., a device), or provide a nick-name for a specific participant in a
chat room. The “resourcepart” could be seen as a potential information leakage channel, and
may therefore need special handling as described below.

XMPP addresses (including the “resourcepart”) may be regarded as sensitive, since such
addresses may possibly convey information on the command structure of the high side
(assuming the “localpart” refers to actual users and “domainpart” refers to actual servers), as
well as information on the operational capacity (total number of addresses and number of
addresses used at a given time). This issue is similar to the Presence stanzas discussed in section
4.2.1, but addresses are also used in other stanzas (including Message stanzas).

The main use of addresses is obviously to identify the Chat users. This implies that if addresses
are to be modified in any way, the modification must be reversible. One possible mechanism
could be to convert the “localpart” into an anonymous form (e.g., including a random number),
and saving the correspondence in a mapping table. In order to start a chat session, there must be
some mechanism to connect to specific users, possibly using Presence stanzas where the
addresses have likewise been made anonymous. The consequence of such a strategy is that Chat
users on one side of the Guard cannot identify users on the other side by name. In an
organizational chat service this need not be a problem, but for person-to-person chat this is
likely to be unacceptable.

The “domainpart” should be subject to filtering, by only allowing pre-configured values (i.e.,
only allow communication with specific XMPP servers). The prototype only allowed one
XMPP server on each side, but in a more realistic scenario there may be a need to allow more
than one XMPP server on each side. In this case it is likely that there should be restrictions on
which XMPP servers are allowed to communicate.

The “resourcepart” is typically used for providing a nick-name for participants in a chat room,
and for identifying a specific device. None of these are required, with the exception of sending

 24 FFI-RAPPORT 17/01491

messages directly to a specific chat room participant, and the Chat Guard may therefore discard
this information.

A possible solution could be to use a list of valid “localpart” entries on the “high” side, with
those entries not tied directly to individual users. The entries could then be said to be “roles”,
and more than one user may be allowed to log on to a specific “role” at different times. This
would create a scenario somewhere between organizational and personal chat.

One possible strategy for protecting addresses is to use a chat room (e.g., all users on the “high”
side are seen only as part of a “high side chat room”). See handling of chat rooms in section 4.3.

Depending on the sensitivity placed on the address information, the solution may range from
full exposure of all addresses, via “role” addresses and anonymous addresses, to “high” side
chat rooms. The Chat Guard will have to allow all strategies, with possibility to use different
strategies in the two directions.

4.2 Presence and IQ stanzas

A Chat user’s session starts with establishing a stream between the client and home server. If
the user sends chat messages to a user at another Chat server, a server-to-server Stream between
the two servers is required, and a new Stream is established automatically if no suitable stream
is available. All stanzas are exchanged over the established streams.

The Chat Guard acts as a proxy for the server on the “other” side of the Chat Guard. Streams are
therefore negotiated on both sides of the Guard, and no information pertaining to streams are
passed to the “other” side. No stream can be established through the Guard. Stream errors are
thus not expected to arrive at the Guard Core at all. If any do arrive, they should be dropped,
after logging an Alarm Event to the fact in the Guard’s Alarm Log.

4.2.1 Presence stanzas

The Presence stanza provides other Chat users with information on who is logged on and thus
available for chat sessions. The Presence stanza may also reveal location information, as the
“resource” part of the JID may be used to differentiate between a user’s chat clients at different
locations. This information may be sensitive, as it exposes the XMPP identities of the users to
other users across the Guard, as well as the times they are on duty. Discarding Presence stanzas
(as done by the Chat Guard prototype) eliminates this information leakage, but this makes the
Chat service more difficult to use (out-of-band signaling, e.g. via messages or phone, might be
needed to arrange a Chat session with the desired participants).

A better strategy would be to configure which users (addresses) are allowed to publish their
presence. This could use a list of allowed real user addresses (on the low side), or a list of
generic (anonymous) user addresses (on the high side). As an example, the high side could be
allowed to publish “subject matter A online”, without publishing details on who or how many

FFI-RAPPORT 17/01491 25

are actually logged on. A technical implementation by the Chat Guard could be to have a
configurable list of allowed users with a corresponding “anonymous” name, and sending a
Presence stanza for this name when a Presence stanza for the first of those users is received. See
also section 4.3 on Chat rooms below. Such a strategy could be extended to allow “any” users
on the low side, thus filtering only the high-to-low Presence stanzas.

4.2.2 IQ stanzas

IQ stanzas are client-client (via one or two servers), client-server, or server-server. The Chat
Guard prototype did not allow any IQ stanzas to pass through the Guard, for instance preventing
the chat room functionality. In the final Chat Guard IQ stanzas will have to be handled in a
more refined way.

Server-server IQ stanzas are exchanged between peers. The Guard negotiates these in each
Protocol Adapter module, and never involves the Guard Core. Client-server and client-client IQ
may pass through the Guard. These are used, among others, to query roster and chat room
configurations, and to exchange status and capabilities information between clients.

IQ stanzas are not strictly necessary for XMPP messaging through the Guard to work, except
that “discovery” queries must be supported for multi-user chat (chat room) to work across the
Guard. Since both the “get” and “result” stanzas may contain quite a bit of information, a Guard
that supports multi-user chat should be able to define filtering rules for this group of IQ stanzas.

The table below summarizes the roster and discovery IQ queries that should be allowed through
the Guard, possibly after filtering and identity transformations):

IQ type IQ namespace Request param Result type

get jabber:iq:roster

result jabber:iq:roster <item/> [1..n]

get http://jabber.org/protocol/disco#items

result http://jabber.org/protocol/disco#items <item/> [1..n]

get http://jabber.org/protocol/disco#info <identity/>

result http://jabber.org/protocol/disco#info <identity/> [1..n]

A roster query result will return an item-not-found error if no roster is defined for the user. If the
roster is defined, but empty, the return stanza will contain a query element with no contained
<item/> elements. A disco#items may return service-unavailable, forbidden or not-allowed
errors.

 26 FFI-RAPPORT 17/01491

Apart from the central IQ query namespaces discussed above, there are a number of more or
less specialized IQ namespaces that are less central from the Guard perspective:

Namespace Purpose Comment
Jabber:iq:auth Obsolete (defined non-SASL

authentication)
Dropped by the Chat Guard

Jabber:iq:gateway Client to gateway/proxy for
legacy IM

Dropped by the Chat Guard

Jabber:iq:last Query entity’s last activity IQ:last may reveal sensitive information, so
it should be possible to configure a drop for
this.

Jabber:iq:oob Out of Band Data URIs IQ:oob may be useful, but the current
Guard is not technically ready to support it.
If support is implemented, IQ:oob support
should be supplemented with Guard
Filtering Rules.

Jabber:iq:privacy Core functionality for setting
privacy (e.g. who may get
presence?)

Drop. IQ:privacy would normally not be
seen, as this is between a client and the
server it is logged in to. If this arrives, it
would imply a login attempt through the
Chat Guard, which is not supported.

Jabber:iq:private Store arbitrary XML on
server

Dropped by the Chat Guard

Jabber:iq:register E.g. dynamically register
with a server

Dropped by the Chat Guard

Jabber:iq:roster Retrieve user’s roster from
server

Dropped by the Chat Guard

Jabber:iq:rpc Perform XML-RPC call Dropped by the Chat Guard
Jabber:iq:search Non-standard (search

information repositories)
Dropped by the Chat Guard

Jabber:iq:version Return software version
representing the XMPP
entity

IQ:version is probably never very sensitive,
so this may be always-allow. If the version
number should be hidden to prevent easy
finger-printing, this IQ may be dropped.

4.2.3 Stanza errors

The Chat Guard prototype accepted responsibility for a stanza on reception, rather than when
the stanza was delivered to the XMPP server on the other side. This could cause stanzas to be
lost. A full implementation would need to either act as a store-and-forward unit (i.e. store any
received stanzas until they can be delivered to the next unit), or return error indications in case
of problems. The Mail Guard is based on the latter principle, and the Chat Guard should
therefore also use this strategy. Some stanza errors may thus be generated by the Chat Guard.
This is noted in the table below.

FFI-RAPPORT 17/01491 27

The stanza errors listed below are defined in the standard. Most of these may pose information
leak potential, so in scenarios involving at least one security domain with sensitive information,
it may be desirable to configure which error types to permit through the guard. Configurations
should be separate for each direction, and logically belongs within the “directional” section of
the Configuration Vector.

No XMPP functionality unconditionally relies on any of these error types to pass freely, so
dropping all error messages is functionally safe (and explicitly permitted by the standard’s
Security Considerations).

Error name RFC explanation Comment

Bad-request The sender has sent XML that is malformed
or that cannot be processed (e.g., an IQ
stanza that includes an unrecognized value
of the 'type' attribute); the associated error
type SHOULD be "modify".

If received, this is the Guard’s
responsibility, and it shall not be
passed through.

conflict Access cannot be granted because an
existing resource or session exists with the
same name or address; the associated error
type SHOULD be "cancel".

Configurable error type. If
revealing resources/sessions is
undesirable, drop this.

feature-not-
implemented

The feature requested is not implemented by
the recipient or server and therefore cannot
be processed; the associated error type
SHOULD be "cancel".

Configurable error type. If
revealing features is undesirable,
drop this.

forbidden The requesting entity does not possess the
required permissions to perform the action;
the associated error type SHOULD be
"auth".

If received, these are targeted at
the guard, and will never be
passed through.

gone The recipient or server can no longer be
contacted at this address (the error stanza
MAY contain a new address in the XML
character data of the <gone/> element); the
associated error type SHOULD be
"modify".

Configurable error type. If
revealing individual status is
undesirable, drop this.

 28 FFI-RAPPORT 17/01491

internal-
server-error

The server could not process the stanza
because of a misconfiguration or an
otherwise-undefined internal server error;
the associated error type SHOULD be
"wait"

Configurable error type. This
indicates a temporary error, and
most likely contains no sensitive
information, so it may be passed
through.

item-not-
found

The addressed JID or item requested cannot
be found; the associated error type
SHOULD be "cancel".

Configurable error type. If
revealing individual status is
undesirable, drop this.

This could be used if a stanza
cannot be delivered to the
destination XMPP server.

jid-
malformed

The sending entity has provided or
communicated an XMPP address (e.g., a
value of the 'to' attribute) or aspect thereof
(e.g., a resource identifier) that does not
adhere to the syntax defined in [3]; the
associated error type SHOULD be
"modify".

If this is received, it’s related to
the Guards reconstructed stanza,
and should be handled by the
Guard, so the message should
not be passed through.

not-
acceptable

The recipient or server understands the
request but is refusing to process it because
it does not meet criteria defined by the
recipient or server (e.g., a local policy
regarding acceptable words in messages);
the associated error type SHOULD be
"modify".

Configurable error type. Local
policy decisions is a core Guard
function, which often is not
communicated back to the
sender, but instead registered in
an audit trail for Manager
consideration. In this case, a
modify response may be seen as
too revealing. Option to drop, or
to return a not-allowed instead.

not-allowed The recipient or server does not allow any
entity to perform the action; the associated
error type SHOULD be "cancel".

Configurable error type. Also
core Guard decisions, which we
possibly want to restrict to the
audit trail. Option to drop.

not-
authorized

The sender must provide proper credentials
before being allowed to perform the action,
or has provided improper credentials; the
associated error type SHOULD be "auth".

If received, these are targeted at
the Guard, and will never be
passed through.

FFI-RAPPORT 17/01491 29

payment-
required

The requesting entity is not authorized to
access the requested service because
payment is required; the associated error
type SHOULD be "auth".

Configurable error type. May be
used to deduce restricted
information from the opposite
side. If payment-required
services are allowed in a secure
scenario at all, this may
optionally be dropped, to reduce
the leak potential.

recipient-
unavailable

The intended recipient is temporarily
unavailable; the associated error type
SHOULD be "wait" (note: an application
MUST NOT return this error if doing so
would provide information about the
intended recipient's network availability to
an entity that is not authorized to know such
information).

Configurable error type. May
reveal information regarding
individual presence, but is
probably often a desirable
function. Drop if considered
sensitive.

This could be used if a stanza
cannot be delivered to the
destination XMPP server.

redirect The recipient or server is redirecting
requests for this information to another
entity, usually temporarily (the error stanza
SHOULD contain the alternate address,
which MUST be a valid JID, in the XML
character data of the <redirect/> element);
the associated error type SHOULD be
"modify".

Configurable error type. May
reveal information regarding
individual presence, but is
probably often a desirable
function. If such “readdressing”
is considered sensitive, this
should be dropped (possibly
one-way, if the information is
not sensitive in the other
domain)

registration-
required

The requesting entity is not authorized to
access the requested service because
registration is required; the associated error
type SHOULD be "auth".

Configurable error type. May be
used to deduce restricted
information from the opposite
side. If registration-required
services are allowed in a secure
scenario at all, this may
optionally be dropped, to reduce
the leak potential.

 30 FFI-RAPPORT 17/01491

remote-
server-not-
found

A remote server or service specified as part
or all of the JID of the intended recipient
does not exist; the associated error type
SHOULD be "cancel".

Configurable error type. No
sensitive information leak (apart
from possibly to map available
remote servers/services).
Optionally drop.

This could be used if a stanza
cannot be delivered to the
destination XMPP server.

remote-
server-
timeout

A remote server or service specified as part
or all of the JID of the intended recipient (or
required to fulfill a request) could not be
contacted within a reasonable amount of
time; the associated error type SHOULD be
"wait".

Configurable error type. This is
a temporary problem: No
sensitive information leak (apart
from possibly to map available
remote services). Optionally
drop.

resource-
constraint

The server or recipient lacks the system
resources necessary to service the request;
the associated error type SHOULD be
"wait".

Configurable error type. This is
a temporary problem: No
sensitive information leak, but
may conceivably be used in
preparation for, or in
conjunction with a (D)DOS
attack. Optionally drop.

service-
unavailable

The server or recipient does not currently
provide the requested service; the associated
error type SHOULD be "cancel".

Configurable error type. May
pass information about available
services through the Guard.
Optionally drop.

This could be used if a stanza
cannot be delivered to the
destination XMPP server.

subscription-
required

The requesting entity is not authorized to
access the requested service because a
subscription is required; the associated error
type SHOULD be "auth".

Configurable error type. May be
used to deduce restricted
information from the opposite
side (e.g. the opposite side has
an indicated entity, but that
entity has not granted the
requestor the right to subscribe
to its status information).
Optionally drop.

FFI-RAPPORT 17/01491 31

undefined-
condition

The error condition is not one of those
defined by the other conditions in this list;
any error type may be associated with this
condition, and it SHOULD be used only in
conjunction with an application-specific
condition.

Unknowns of any kind provide
possible security bypass
mechanisms, so this should be
dropped.

unexpected-
request

The recipient or server understood the
request but was not expecting it at this time
(e.g., the request was out of order); the
associated error type SHOULD be "wait".

This is in effect an “unknown”,
which in a secure setting
normally is not wanted, so this
error should be dropped.

4.3 Multi-User Chat (Chat rooms)

The prototype Chat Guard did not support Multi-User Chat (MUC), as a result of the choice to
not support IQ or Presence stanzas, and partly due to the stanza re-signing issue described
below. Group chat is however a very effective and much used way of communicating with more
than one person. In fact, experience from the SMART activity shows that group messaging and
discussions are used far more than one-to-one chat, especially when coordinating actions and
sharing observations. Adding support for group chat is thus important.

The primary challenge with multi-user chat is the stanza signing. The multi-user chat protocol
specifies that “groupchat” messages arriving at the chat room shall be duplicated into separate
“chat” messages to each chat room occupant, rewriting the from/to attributes of the message.
This invalidates the signature of the message.

Therefore, for multi-user chat to work, it seems necessary to employ an XMPP server which is
able to verify the original signature, and resign each of the duplicates. Once such a server is
employed, the Guard only needs to be extended to allow “groupchat” message types.

As discussed in chapter 4.2.2, in order to support chat rooms across the Guard, Discovery as
specified by XEP-0030: Service Discovery5 must be supported.

5 https://xmpp.org/extensions/xep-0030.html

 32 FFI-RAPPORT 17/01491

Multi-user chat discovery is typically performed like this

1. The client sends an initial disco#items get query to the XMPP server the client wants to
find chat rooms on.

2. The server returns a disco#items result IQ stanza containing a list of registered items
(some of which may be chat rooms)

3. The client sends a disco#info get query to the server for each of the items in the list
returned in the previous step.

4. The server returns a disco#info query result IQ stanza containing an <identity/> element
and a list of <feature/> elements for each item indicated in the previous step.

5. The client checks if the <identity> contains the property category=”conference”, and if
one of the <feature/> elements contains a var=”http://jabber.org/protocol/muc” IQ
namespace reference. If so, the JID of the item in question identifies a chat room
service.

Discovering the actual chat rooms of the service is done in the same way, a “disco#items” sent
to the JID of the chat room services will provide a list of the chat rooms hosted by the service,
and a “disco#info” directed to the JID of a particular chat room item will provide a list of
features configured for the chat room.

Beyond message stanzas, multi-user chat relies heavily on presence stanzas, so for multi-user
chat support, the Guard must accept Presence stanzas, and provide for defining presence-related
filtering rules in the guard’s Configuration Vector.

4.4 Attachments and content checking

The experiments performed as part of the SMART activity indicates that there may be strong
operational requirements for being able to include pictures as attachments in chat messages,
thereby imposing a requirement on the Guard to support/allow such attachments. However, in
the current prototype implementation of the Guard attachments are not allowed.

Attachments represent additional security risk, as they may leak sensitive content or contain
malicious content such as malware. If these risks are deemed acceptable, the Guard could
simply be configured to allow specific attachment types to be included. In that case, no security
check would be performed on the attachment apart from verifying that the security label of the
message is releasable according to policy and verifying that the signature is correct and covers
the attachments. However, some type of content checking will likely be required in many
scenarios.

FFI-RAPPORT 17/01491 33

ICAP [13] compliant plug-in content checkers are supported through the content checking
interface of the Guard. This allows including both generic content checkers, such as antivirus, as
well as content checkers for specific attachment types. The selection of which attachment
checker(s) to invoke may potentially be performed by an orchestrating content checker, thereby
not requiring this functionality to be provided by the Guard itself.

For text content, it is quite common to use a dirty-word checker, scanning for specific words
considered to indicate sensitive content. For attachments, this requires the content checker to be
able to read the specific type of attachment (e.g., file type). It is also possible to use more
advanced data loss prevention (DLP) solutions for content checking to detect sensitive content,
e.g., based on techniques from machine learning or information retrieval [14]. While known
sensitive documents/content can be detected with high accuracy using such methods, it is more
difficult to detect transformed data leaks (i.e., where known sensitive information has been
modified/rewritten and/or mixed with other text) or previously unknown sensitive content. To
avoid a prohibitively high number of false alarms/positives, detection may be performed for
each entity (e.g., transmitting user) on a longer timescale (i.e., over multiple messages),
detecting more long-term discrepancies between the security labels applied by a user and those
determined by the DLP solution [15].

Apart from antivirus and image metadata, content checkers for images may use fingerprinting
techniques to check whether an image is closely related to a known sensitive image.
Alternatively, image recognition/classification may be used to classify an image into one or
more categories, where some categories may be allowed for release or not. By performing
character recognition, images could potentially also be scanned for sensitive text content.

Transcoding could potentially be applied to protect against malicious content being transferred
through media attachments, however, it should be noted that this would change the attachment
(breaking the signature) and is not a content checker as such.

4.5 Read confirmation

One of the key features of chat is presence, which lets you know that the people you are
exchanging messages with actually are available. As described in section 4.2.1, presence
messages were not allowed to pass through the prototype Chat Guard. The effect is that users on
the different sides must send messages in the blind, not knowing if the recipient is online, away
or otherwise not able to reply.

Adding a form of read confirmation may be one way of reducing the effect of the missing
presence information. With read confirmation a message is sent back to the sender when the
message is read by the receiving user. This could be solved by establishing a manual user
procedure where the recipient actually types “message read” in the chat stream similar to how
two users interacts on voice communication. Using such manual procedures is however error
prone and an automatic solution should be implemented.

 34 FFI-RAPPORT 17/01491

Implementing read confirmation requires establishing a protocol between sender and receiver,
either standardized or proprietary. Either way will require implementing support for these
standards within the chat clients. Using standardized specifications is recommended and within
the XMPP community several specifications exist that either tries to solve this or partially do.
The “XEP-0333: Chat markers”6 describes a solution for marking the last received, displayed
and acknowledged message in a chat. This specification is however still considered
experimental and not recommended for production systems until it reaches draft status. At the
time of writing the specification has not been updated since October 2015.

Using the specification “XEP-0184 Message delivery receipts”7 a sender can request
notification when the message is sent to a client under the control of the recipient. This does
however not imply that the message is actually read by the recipient. Some indication of what
the recipient is doing can also be provided by the specification “XEP-0085 Chat state
notification”8 which is used to indicate whether a chat partner is typing, paused, inactive or
gone. This information can at least provide some indication on whether the message has been
read or not.

Read confirmation is also a useful functionality even though presence information is available.
In many cases it very useful for the sender to actually know if the message has been read. It was
also one of the features requested by the users of the SMART system.

4.6 Border protection devices

The Chat Guard constitutes the mechanism that both connects and keeps the two security
domains separate by providing the functionality described in section 2.1. Depending on the
scenario, other border protection devices may also be necessary. The Chat Guard will typically
be deployed as part of a larger cross-domain sharing solution, for instance a NATO Information
Exchange Gateway (IEG) or a Norwegian SIU (“Sikker Informasjons-Utveksling”).

Other protection mechanisms serve two purposes, first adding to the total protection of the
internal domain and second to protect the Chat Guard itself. Border protection devices may
include firewalls, virus and malware checking, content checkers, intrusion detection systems
(IDS), de-militarized zones (DMZ) and other cyber threat detection systems. Which border
protection system that is required depends on the scenario and the risk involved.

6 https://xmpp.org/extensions/xep-0333.html
7 https://xmpp.org/extensions/xep-0184.html
8 https://xmpp.org/extensions/xep-0085.html

FFI-RAPPORT 17/01491 35

4.7 Handling of certificates

Securing XMPP streams is done with SASL/TLS authentication and encryption. This implies
use of certificates and cryptographic keys. In the prototype, certificates issued by a self-signed
Thales CA were used, with corresponding private keys stored as plain files.

The certificate of an XMPP server is identified by having the “xmpp-domain” name as Common
name. In the prototype, both the real XMPP server, and the Guard proxying interface in the
other domain used the same certificate and private key.

In a real scenario, one would wish to use separate certificates for the Guard proxying interface
and the real XMPP server. The two exist in separate security domains, which would normally be
supplied with separate certificate authorities and lookup services. This, and the fact that the
certificate lookup is based simply on the CommonName attribute of the certificate, provides a
solution where there are different valid certificates for the XMPP server in the two security
domains. In this scenario, there is no need for the Guard and the real XMPP server to use the
same certificates and keys. In a real scenario, it would also be expected that all private key
handling is performed via a Hardware Security Module (HSM).

The Chat Guard will normally require that XMPP stanzas are digitally signed in order to ensure
that release criteria (e.g. security label) are correctly bound to the content by an authenticated
user. This is important on the “high” side to ensure only approved information can be released,
but might also be important on the “low” side as a mechanism to verify the integrity of any data
delivered to the “high” side. In some scenarios this may not be possible, e.g. because there is no
PKI on the “low” side. The Guard must allow such configurations.

Certificates and CRLs are assumed to be issued by separate PKIs on the two sides, and the
Guard therefore has separate interfaces for accessing certificates and CRLs on each side. This
functionality must allow different strategies for CRL distribution point, CRL caching, and
possibly configurable certificate policies.

4.8 Chat clients

The usage scenario with a number of chat clients logging on to an XMPP server introduces the
question of how chat clients can be authenticated by the Chat Guard. Assuming the chat client
can digitally sign the information using a key referenced to a certificate, the signature may be
used as authentication. If the XMPP server generates the signature (or if signatures are not
used), the Chat Guard must rely on the XMPP server to perform authentication of the chat
client. This may have a bearing on which chat clients and XMPP servers that can be used in a
given scenario, particularly on the “high” side.

The Chat Guard requires that stanzas can be validated in order to release them to the other side.
This validation is typically based on confidentiality labels and digital signatures, but other
strategies are possible as shown below.

 36 FFI-RAPPORT 17/01491

Normally, a Chat client must include a confidentiality label on each Message stanza, and bind
the security label to the content using a digital signature. This is not a standard feature in COTS
Chat clients, thus requiring either a purpose-built Chat client or extension of an existing Chat
client. A prototype Chat client was built as part of this activity, allowing Message stanzas to be
labeled and signed (see section 2.8). It also supports verification of signature and label on
incoming stanzas. Beyond this, only a bare minimum of XMPP functionality was included.

There may be cases where Chat users are physically connected to the “high” side, but the users
themselves are trusted to only include “approved” information within Message stanzas. In such
cases it might be acceptable to allow the XMPP server to perform labeling and signing on behalf
of the clients, thus allowing the use of standard Chat clients.

There may also be cases where labeling and signing can be dispensed with altogether (in effect
stating that “this XMPP server is trusted to only send releasable information to the Guard”). In
such cases it clearly becomes vital to ensure the stanzas actually come from the correct XMPP
server.

The Chat Guard should allow the different strategies above, and should allow the strategy to be
different in each direction.

However, there are at this time no other known, available Chat Clients that support this, so for a
full Chat Guard solution, it may be necessary to extend the prototype Chat Client towards full
XMPP support.

4.9 Multiple XMPP servers in each security domain

The Chat Guard prototype supported only one XMPP server in each of the attached security
domains. This was chosen as a means to reduce the complexity of the prototype, while still
being able to demonstrate the central principles.

The XMPP protocol is designed for direct communication between XMPP servers, i.e. messages
are never relayed via a third server. Figure 4.1 shows a simple typical scenario with four
separate XMPP servers. The servers communicate directly with each other and messages are
never relayed by intermediate XMPP servers.

FFI-RAPPORT 17/01491 37

Figure 4.1 Multiple XMPP servers

If we consider the servers to actually belong in two separate security domains which we want to
separate by one or more security gateways, the XMPP network might look like Figure 4.2.

Figure 4.2 Multiple XMPP servers in separate domains

XMPP stanzas are sent to servers based on the domain part of the recipient XMPP address,
typically using DNS to look up the IP address from a fully qualified hostname. The Chat Guard
may need to filter the address information to avoid leakage as described in chapter 4.1, but this
does not in itself prevent the Chat Guard from connecting to multiple XMPP servers on one or
both sides. But it does require any address mapping to be reversible, at least for the
“domainpart” component.

 38 FFI-RAPPORT 17/01491

Note, however, that this assumes all XMPP servers on each side use the same PKI when signing
messages. Having separate PKIs for each XMPP server could result in significantly more
complexity related to certificate and CRL handling. Also, more advanced filtering may be
required if there are restrictions on the connectivity between XMPP servers (e.g. server “A” on
the “high” side is only allowed to communicate with servers “X” and “Y” on the “low” side).

As seen from the Guard, there are two main differences from the prototype:

• The XMPP Proxy listener must be able to accept and support multiple, concurrent
XMPP streams, and to masquerade as a number of different XMPP servers in each
security domain. This also implies that DNS queries regarding XMPP servers across the
Chat Guard must resolve to the IP address on the “near” side of the Guard.

• XMPP stanzas arriving from the different XMPP servers will have different JID
“domainparts”. The Guard filtering rule engine is designed to support this (a JID, after
all, is a form of originator/recipient address). Apart from this, the Guard must
implement a simple “routing” mechanism, to ensure that incoming stanzas are routed
into the correct outgoing XMPP stream.

4.10 Consequences of proxying

Since the Guard acts as a transparent proxy, a connecting XMPP server will believe that it has
an established stream towards the destination XMPP server, while it is fully possible that the
destination is not available. This may be discovered at a later stage, when the Guard releases the
stanza to the recipient, and the attempt to establish the XMPP channel fails. In such a scenario,
the prototype Guard would silently drop the stanza without notifying the sender.

A better solution would be to allow the system manager to configure whether this should be
indicated to the sender in the form of an appropriate error return.

5 Conclusions

Informal messaging is rapidly becoming an important means of communication, both one to one
and in groups. However, due to differences in classification, users of military systems are often
prevented from taking advantage of this opportunity. In this document we have described a
prototype guard solution that enables users in different security domains to send chat messages
to each other.

FFI-RAPPORT 17/01491 39

The development and testing of the prototype Chat Guard has proven that is both feasible and
useful to implement a high assurance guard for chat messaging. Re-using and extending an
already existing guard platform has enabled us to create a working prototype in a relatively
short amount of time. Reuse of an already existing high assurance guard platform should also
simplify the process of certification since much of the security critical code is unchanged.

When creating security mechanisms it is critical to find the right balance between protection and
functionality. Information may be compromised if too lax and the system may be rendered
useless if too strict. Which information and types of messages that should be allowed is
dependent on the scenario and the finished Chat Guard should be adaptable by configuration.
Also the risk involved and the level of risk that is acceptable will play an important role when
configuring and deploying the guard. There is often an asymmetry to what is allowed and not,
usually more elements are allowed to flow from low to high, than the other way. This fact may
be utilized when creating services using the Chat Guard.

The need for solutions that enables users to work together across systems of different
classifications is well-known. The Chat Guard prototype has shown that it is possible to enable
this for chat while still providing the needed level of security. When this technology can be used
is dependent on the scenario and the risk involved and the level of risk that can be accepted.

The testing of the Chat Guard prototype has identified some areas that may need further work.
Chat rooms have been requested as a highly desired service. Also, there is an operational need
to see that chat messages have been read. Finally, there is a need to provide Chat clients (or in
some scenarios XMPP servers) that can add security labels and digital signatures, at least on the
high side.

 40 FFI-RAPPORT 17/01491

References

[1] R. Haakseth, N. A. Nordbotten, B. Kristiansen, Ø. Jonsson and M. Andreassen, “CD&E
EP 1328 Guard for cross-domain information exchange”, FFI-rapport 2014/01182,
2014, (Begrenset)

[2] R. Haakseth, N. A. Nordbotten, B. Kristiansen and Ø. Jonsson, “A high assurance guard
for use in service-oriented architectures”, IEEE International Conference on Military
Communication and Information Systems, 2015

[3] P. Saint-Andre, ”Extensible Messaging and Presence Protocol (XMPP): Core”, Internet
Engineering Task Force (IETF) RFC 6120, 2011

[4] P. Saint-Andre, ”Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence”, Internet Engineering Task Force (IETF) RFC 6121, 2011

[5] P. Saint-Andre, ”Extensible Messaging and Presence Protocol (XMPP): Address
Format”, Internet Engineering Task Force (IETF) RFC 7622, 2015

[6] NATO Standardization Organisation (NSO), “Confidentiality Metadata Label Syntax”,
ADatP-4774, 2016

[7] NATO Standardization Organisation (NSO), “Metadata Binding Mechanism (DRAFT),
ADatP-4778, 2016

[8] D. Box et.al., “Web Services Addressing (WS-Addressing)”, W3C recommendation,
2004

[9] K. Wrona and N. Menz, “Protection profile for the NATO high assurance abac guard
(haag) version 1.3”, NCIA Technical Report TR-2012-SPW0084-18-13-4, NATO
Communications and Information Agency (NCIA), 2013.

[10] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1”,
Internet Engineering Task Force (IETF) RFC 4346, 2006

[11] A. Melnikov and K. Zeilenga, “Simple Authentication and Security Layer (SASL)”,
Internet Engineering Task Force (IETF) RFC 4422, 2006

[12] F. T. Johnsen, M. R. Brannsten, A-K. Elstad, T. H. Bloebaum and F. Mancini,
“SMART: Situational awareness experiments with the Norwegian home guard using
Android”, FFI-rapport 2017/0073

[13] J. Elson and A. Cerpa, “Internet Content Adaption Protocol (ICAP)”, Internet
Engineering Task Force (IETF) RFC 3507, 2003

FFI-RAPPORT 17/01491 41

[14] K. W. Kongsgård, N. A. Nordbotten, F. Mancini and P. E. Engelstad, “Data Loss
Prevention Based on Text Classification in Controlled Environments”, Information
Systems Security, Springer, 2016.

[15] K. W. Kongsgård, N. A. Nordbotten, F. Mancini and P. E. Engelstad, “An
Internal/Insider Threat Score for Data Loss Prevention and Detection”, Proc. ACM
International Workshop on Security and Privacy Analytics, 2017.

About FFI
The Norwegian Defence Research Establishment (FFI)
was founded 11th of April 1946. It is organised as an
administrative agency subordinate to the Ministry of
Defence.

FFI’s mission
FFI is the prime institution responsible for defence
related research in Norway. Its principal mission is to
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief
adviser to the political and military leadership. In
particular, the institute shall focus on aspects of the
development in science and technology that can
influence our security policy or defence planning.

FFI’s vision
FFI turns knowledge and ideas into an efficient defence.

FFI’s characteristics
Creative, daring, broad-minded and responsible.

Om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.
Instituttet er organisert som et forvaltningsorgan med
særskilte fullmakter underlagt Forsvarsdepartementet.

FFIs formål
Forsvarets forskningsinstitutt er Forsvarets sentrale
forskningsinstitusjon og har som formål å drive forskning
og utvikling for Forsvarets behov. Videre er FFI rådgiver
overfor Forsvarets strategiske ledelse. Spesielt skal
instituttet følge opp trekk ved vitenskapelig og
militærteknisk utvikling som kan påvirke forutsetningene
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs visjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdier
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisation

Forsvarets forskningsinstitutt
Postboks 25
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller

Office address:
Instituttveien 20
N-2007 Kjeller

Telephone: +47 63 80 70 00
Telefax: +47 63 80 71 15
Email: ffi@ffi.no

	Summary
	Sammendrag
	Content
	1 Introduction
	2 Chat Guard
	2.1 Functional description
	2.2 Basic guard design
	2.3 Chat guard design
	2.4 Chat guard protocols
	2.5 Chat Guard requirements and restrictions
	2.5.1 Message
	2.5.2 Presence
	2.5.3 IQ
	2.5.4 Streams
	2.5.5 Confidentiality label
	2.5.6 Multi-User Chat (Chat rooms)
	2.5.7 Error responses
	2.5.8 Digital signatures
	2.5.9 XML
	2.5.10 Certificates and Certificate Revocation Lists

	2.6 Platform
	2.7 Use cases
	2.8 XOchat – test client

	3 Guard testing and demonstration
	3.1 Generic Chat Guard testbed
	3.1.1 Chat Guard configuration
	3.1.2 XMPP server configuration
	3.1.3 Clients
	3.1.4 Certificates

	3.2 Testing with the SMART initiative

	4 Discussions
	4.1 Address exposure
	4.2 Presence and IQ stanzas
	4.2.1 Presence stanzas
	4.2.2 IQ stanzas
	4.2.3 Stanza errors

	4.3 Multi-User Chat (Chat rooms)
	4.4 Attachments and content checking
	4.5 Read confirmation
	4.6 Border protection devices
	4.7 Handling of certificates
	4.8 Chat clients
	4.9 Multiple XMPP servers in each security domain
	4.10 Consequences of proxying

	5 Conclusions
	References
	Blank Page

