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This report describes a theoretical and experimental investigation for transversal shear stress determination in the core 
of a sandwich panel. The outlined method is based on strain gradient measurements on the surface of the faces. The 
method is applicable both to isotropic and anisotropic sandwich plates. Experiments have been carried out on a fully 
clamped, rectangular plate with a concentrated load in centre. Strain gauges have been cemented at areas where one 
expects the highest shear stresses to occur, ie two points located near the clamping. Two tests have been carried out, one 
with load 5000 N and one with load 10000 N. Gradients have been measured in both x-, y- and 45 degree direction, but 
it is shown that it is only necessary to measure the steepest gradient to obtain acceptable values. This, together with 
exploitation of symmetry, simplifies the instrumentation of the plate. Measured strains and calculated shear stresses are 
compared to corresponding values from a finite element model of the same plate problem. The values match quite well, 
but it is difficult to measure the steepest gradients. The analytical stress values are in general somewhat higher than the 
simulated values, but this can be caused by weaknesses in the finite element model. For future measurements optical 
Bragg gratings will be used and not strain gauges as in this report. This as an attempt to measure the steepest gradients 
more accurate. Optical Bragg gratings are also the foundation of the existing CHESS project at FFI 
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The work in this thesis has been done as an extension of the development project �������	
�
�
������
��
���
��������	
� (CHESS), which is a collaboration between FFI and Naval 
Research Laboratory in Washington D.C. The CHESS project has developed a sensor system 
based on fibre optic Bragg gratings for real-time monitoring and analysis of the load on the hull 
of a high speed Surface Effect Ship (SES). The hull is made of glass fibre reinforced composite 
material with a so-called sandwich structure and was built for the Royal Norwegian Navy by 
Kvaerner Mandal, located in Mandal, Norway.  
 
An important aspect of hull monitoring is to detect phenomena that can result in damage. It is 
well known that damage in the core material due to large shear stresses can cause delamination 
of the composite material and catastrophic failure of large sections of the hull. It is therefore 
important to determine the shear stresses in the core of a sandwich material. It is difficult to 
measure these parameters directly. The shear stresses are however, as we will see later, closely 
related to the strain gradients at the surface. One can in principle calculate the shear stresses 
based on measurements of strain gradients. It would therefore be of great interest to include this 
technique in the hull monitoring system that is being developed in the CHESS project. 
 
This thesis is a continuation of the work done by the author in the report (1). This work 
represents a thorough investigation of mechanical aspects of composite materials and serves as a 
theoretical background for the work to follow in this thesis. The two reports can be read 
separately, but they may very well be read together. The most important parts from (1), which 
are the foundation for the work to follow, will be included in this report. However for the 
complete theoretical background the reader is referred to (1). Furthermore, for the reader who is 
not so familiar with composite mechanics, (1) will serve as an introduction to the field. 
 
The thesis (1) together with this thesis can be regarded as a step further from the work done in 
(3) and (11). In those works strain gradients were measured on a sandwich beam, having a strain 
gradient only along the beam axis. Now the problem is extended to a plate problem, with strain 
gradients in several directions. A plate will be the most typical construction element where the 
strain gradient measurement technique will be used in real life. 
 
Chapter 2 is an extract from the most relevant content in (1). The mechanical background for the 
experimental strain gradient method is presented. Both a beam and a plate are considered. All 
mechanical expressions used in the later experiments are presented here. The thesis (1) only 
considers an isotropic sandwich plate. As we shall see later the plate we are going to use is not 
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fully isotropic. The strain gradient technique from (1) will therefore in chapter 2 be extended to 
anisotropic sandwich plates. 
 
Chapter 3 presents the measurement techniques, which will be used in the experiments. To 
measure the strain gradients both strain gauges and fibre optic Bragg gratings can be used. In 
this work strain gauges have been used. Strain gauge measurement is a cheap and established 
technique and serves well for measurements in the laboratory. But in measurements outside the 
laboratory where problems with noise are much more dominating, we have to use fibre optic 
Bragg gratings. Another advantage of Bragg gratings is the lower noise floor compared to strain 
gauges. Therefore both techniques will be outlined in this chapter. The thesis is written from a 
mechanical point of view, so to speak. The emphasis of this report will therefore not be to 
explain all the details in the measurement and the rather advanced equipment. A short 
presentation will be given. The interested reader is referred to (3), for instance, and the 
references given in that report. This report serves mainly as a first investigation of the suitability 
of the method when it comes to practical measurements. One of the goals is to find out how 
many strain sensors (gauges or gratings) that are actually needed. When this is known, one can 
for future measurements use Bragg gratings. 
 
The geometry, lay-up, mechanical properties and clamping of the sandwich plate are presented 
in Chapter 4. Chapter 5 contains the performed FEM-simulations and experiments, both static 
and dynamic. Furthermore the strain results from simulations and experiments are compared 
here. Chapter 6 contains the shear stresses in the core calculated from the strain gradient 
measurements. The calculated shear stresses are also compared to values from the FEM-model. 
In Chapter 7 the results are discussed and conclusions are drawn. Suggestions for further work 
are also given.  

(� ���	���������������)��������������	�����	�������

(*'� ��#��+, #����

This chapter contains the technique developed in (1) giving the connection between strain 
gradients on the surface and shear stresses within the material. It is these results from (1) which 
are the foundation of the work to follow. The technique will be shown both for a sandwich beam 
and a sandwich plate, but experiments will only be performed on the plate problem. As 
mentioned in Chapter 1 we have extended our method developed in (1) to also apply to 
anistropic sandwich plates. 

(*(� 	!!,&-#���!�

The theory is based on Whitneys shear deformation theory. When considering a sandwich plate 
we have to make some assumptions due to this shear deformation theory. The theory is well 
described in (1) (page 27), but will be summarised here. Bellow is a numbered list with 
assumptions in Whitneys shear deformation theory. 
 
1. The core material is much thicker than the two faces. 
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2. The stresses in the plane of the core, σ����σ�� and σ� , can be ignored. 
3. The displacements 
� and �� in the core are linear functions of �. 
4. The faces are made of a given number of plies of orthotropic materials bound together. The 

orthotropic axes in the individual plies do not have to coincide with the global �- and �-axes 
for the plate. 

5. The displacements 
 and � are uniform trough the thickness of the skins. 
6. The transversal shear stresses σ� and σ� can be ignored in the faces. 
7. The plate displacements are small compared to the plate thickness. 
8. The strains in the plane, ε���ε� and ε� are small.    
9. The displacement � is independent of the � coordinate. As usual in plate theory σ� and ε� are 

neglected. 
10. Core and faces obey Hookes law. 
11. Core and faces have constant thickness. 
12. Temperature effects are ignored assuming that the plate and environment have equal and 

constant temperature. 
 
 

σ4

x

y

z

σ1

σ5

σ5
σ4

σ3

σ2

σ6σ6

 
���
�
����� �	�
���������
�	����������	
�
�
�
�	� 
 
 
Figure 2.1 shows all the stress components that act on an infinite small plate element. The strain 
components have identical directions. Look into the above list to see what components may 
vanish in faces and core. 
 
Some of the assumptions in the list are self-explaining, or the result is obvious. Assumptions 2 
and 6 however deserve some explanation, and a comment on what consequences they have for 
the stress distribution through the cross section of the sandwich plate. In figure 2.2 and 2.3 the 
normal stress distribution and shear stress distribution, respectively, are given across the cross 
section. Both the approximate and exact distributions are given. As we can see from the figures, 
the faces take all the normal stresses and the core takes the shear stresses. Because the faces are 
thin compared to the core, they can be regarded as membranes. From this follows the constant 
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normal stress distribution across the thickness. In the real case for the shear stress distribution 
the distribution is as it is because the shear stresses on the surface have to be zero, and we have 
breakpoints at the interface between faces and core.  
 
 
 

approximated       "real"

 
���
�
�����  �������	�
������	���
	����������������!����	
� 
 
 

approximated"real"

 
���
�
���"� �!
����	�
������	���
	����������������!����	
��
 
 
 
As in (1), simplified notation is used also here. The following statements are therefore valid, 
with reference to figure 2.1: 
 

���
σσσσσσ === 321 ,,  (2.1) 

 

������
τσττσττστ ====== 665544 ,,  (2.2) 

 
,,, 321 ���

εεεεεε ===  (2.3) 

 

������������
γεεγεεγεε ====== 22,22,22 654  (2.4) 

 
All of these forms will be used in this report. 
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The theory for sandwich beams are (as for classical beams) based on the Bernoulli deformation 
hypothesis 1 and the assumption that normal stresses on planes parallel to the beam can be 
neglected. The faces must be thin compared to the core thickness. The core is isotropic and 
linear elastic. The faces are assumed to be transversal isotropic, which means that isotropic 
theory can be used. No shear coupling in the plane would then appear, and Hookes law for 
isotropic materials can be used. To simplify the expressions, all dimensions are assumed to be 
constant along the beam length, see the geometry in figure 2.4. Both faces of the beam have 
equal thickness. 
 
The bending stresses in the faces are given by 
 

�
#

�$� �

�

)(
=σ  (2.5) 

 
# is the flexural rigidity of a beam. # represents in our case the flexural rigidity of the cross 
sections of the faces and core measured around the �-axis (see figure 2.4). For a rectangular 
cross section, as in our case, # becomes 
 
 
 

t

z

b

L

x

y

y

c    d    h

 
���
�
���%�� #��
�������&���	!
��������!��
����
 
 
 

1226

32

,

3 ��
�

�	�
�

�	
�'�# ��

���

��� ++== ∑
=

 (2.6) 

 
�	  and ��  are the elasticity modulus (Young’s modulus) for faces and core, respectively. ' is the 
second moment of area. The value of �	 is dependent on the plies in the laminates, and the 
expression is 
 

∑
=

−−⋅=
�

�

����� ���
	

�
1

3
13
)(

4
2  (2.7) 

 

                                                 
1 Cross sections perpendicular to the beam axis remain perpendicular after deformation. 
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�
�is the distance from the centre of the laminate, ��(), to the i’th lamina. *�
+�
��, is thereby the 
thickness of each ply (lamina) in the laminate. 	 is the thickness of each face.  
 
The connection between the strain on the surface along the beam length and the bending 
moment in a given position is obtained by setting �(±!-� and introducing Hookes law σ	(�	ε	  
in equation 2.5: 
 

���

� !

#
�

!�

#
�$ εε 22
)( ==  (2.8) 

 
The connection between moment and shear force is given by: 
 

��
��$

�.
)(

)( =  (2.9) 

 
From classical beam theory we get the connection between transversal shear and the shear force, 
and modified for a sandwich beam we have: 
 

∑
=

=
���

���� ��
#�
�.

,

)(τ  (2.10) 

 
�
 is the first moment of area for each of the plies. # is the flexural rigidity for the whole cross 
section. By using the equations (2.8)-(2.10) the connection between strain gradients on the 
surface and the shear stress in the core can be established: 
 

��

�

!�

��
����� ��

��

ε
τ

∑ == ,
2

 (2.11) 

 

2.3.1 Rectangular cross section 

 
For a rectangular cross section we get 
 

∑
=















−+=

���

��

�� �
��	��

���
,

2
2

422
 (2.12) 

 
Equation (2.11) in the rectangular case becomes 
 

��

�

!

�
��	��

��

��

ε
τ















−+

=

2
2

xy

422
2

 
(2.13) 

 
which gives a parabolic distribution across the cross section. The maximum shear stress value is 
obtained by setting �() in the above expression: 
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[ ]

��

�

!

�� ���
�

��
��

�

����	

ε
τ 4

,

2

2 +
=  (2.14) 

 
The equation is only applicable for small deflections. 
 
As shown in figure 2.3 it is assumed that the core alone takes all the shear stresses and that these 
are constant across the cross section. Assuming constant shear stresses we can write 
 

�

�� /
�. )(=τ  (2.15) 

 
where /� is the cross section area of the core. By using equation (2.8) and (2.9) we obtain 
 

��
�

!/
#

�

�

��

ετ 2=  (2.16) 

 

(*/� 0,�!��!�#��-� �!��+�� "�-%�#��

This section contains the method giving the connection between strains at the surface and shear 
stresses within the material for isotropic sandwich plates. In (1) different types of material 
symmetries are treated, and one of these are transversal isotropy. For a sandwich plate this 
means that in the faces there exists a plane where the mechanical properties are the same in all  
principal directions. The method developed in (1) and given below only applies to isotropic 
faces and not in general to anisotropic faces. The report (1) explains more about the conditions 
for anisotropic and isotropic sandwich plates. In the next section the method will be extended to 
anisotropic sandwich plates where we have to deal with different plate stiffnesses in all principal 
directions.  
 
Considering an equilibrium condition the shear forces can be expressed as 
 

�

$

�
$

0 ���

� ∂
∂

+
∂

∂=  (2.17) 

 

�

$

�

$
0 ���

� ∂
∂

+
∂

∂
=  (2.18) 

 
The moments are 
 











+=

��

�� �
�

�
#$

11
 (2.19) 
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









+=

��

�� �
�

�
#$

11
 (2.20) 

 

��

������ �
#$$

1==  (2.21) 

 
where �
�etc are the radii of curvature and �-��
  etc are the curvatures. #
��#� and #
� are the 
plate stiffnesses in the �+���+ and shear direction and � is Poisson’s ratio. The strains in the plate 
can be expressed by the radii of curvature and can generally be written as 
 

�

� �

�=ε  (2.22) 

 
where � is the direction of thickness (transversal direction). The surface strain, where �(!-�, 
becomes 
 

�

� �
!

2
=ε  (2.23) 

 
 

�

� �

!

2
=ε  (2.24) 

 
 

��

���� �
!

22

1 == εγ  (2.25) 

 
By finding the curvatures expressed by the strains from equation (2.23)-(2.25), the moments can 
be expressed by the strains: 
 







+=

!
�

!
#$ ��

��

εε 22
 (2.26) 

 
 







+=

!
�

!
#$ ��

��

εε 22
 (2.27) 

 
 

!
#$$ ��

������

γ
=−=  (2.28) 

 
For an isotropic sandwich plate we have #
(#�≠#
�� The moment expressions are derived and  
inserted into equation (2.17) and (2.18) and we finally obtain: 
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 (2.29) 
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γεε2
 (2.30) 
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z
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The expressions for the plate stiffnesses are taken from (1). We have: 
 

)1(12)1(12)1(12 2

3

2

3

2

3

�� �

��

�

��

�

!�
##

−
+

−
−

−
==  (2.31) 

 

)1(48)1(48)1(48

333

�� �

��

�

��

�

!�
#

+
+

+
−

+
=  (2.32) 

 
Here �	 and �	 are Young’s modulus and Poisson’s ratio, respectively, for the faces and �� and �� 
are the corresponding values for the core. ! is the total plate thickness, while � is the core 
thickness. As mentioned before we assume constant shear stress across the core thickness. The 
shear stresses are then given by 
 

�
0

�

��
=τ  (2.33) 
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0
�

��
=τ  (2.34) 

 
0
 and 0� are the shear forces from eq. (2.29) and (2.30), � is the core thickness, assuming that 
only the core feels the shear forces. Figure 2.5 shows how strains, shear forces and –stresses 
appear in the structure. 
 
The stresses in the plane, σ
��σ� and τ
�, are neglected in the core, see assumption 2 section 2.2. 
The values of σ
 and σ� in the faces are obtained from Hookes law by use of equation (2.23) and 
(2.24), and we get 
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We will now extend the method outlined in (1) and in section 2.4 to include anisotropic 
sandwich plates. As we shall see later, the plate used in experiments has an anisotropic lay-up. 
The method from (1) is therefore incomplete to use for this plate. As in (1) the underlying theory 
is taken from (2) and (10).  
 
From an equilibrium consideration we get the shear forces expressed in the same way as for 
isotropic sandwich plates, equation (2.17) and (2.18). For 	!�� laminates we can approximate the 
moments to: 
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We observe that we now have different plate stiffnesses and Poisson’s ratios in the principal 
directions (� and �). Furthermore, the same relation between radii of curvature and strains is still 
valid, equation (2.22). We substitute equation (2.23)-(2.25) into the moment expressions above 
to obtain the moments expressed by the strains. Finally we insert these moments into the 
equations for the shear forces and obtain for anisotropic plates: 
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The new plate stiffnesses can be found by modifying the expressions for the isotropic plate 
stiffnesses. We remember that we now have different Young’s moduli and Poisson’s ratios in 
the �- and �-directions. Moreover, we have to use the shear modulus, 3
�, in the expression for 
#
�, because there is no simple relation between the elasticity modulus, the shear modulus and 
Poisson’s ratio for anisotropic materials. The expressions for the anisotropic plate stiffnesses 
becomes: 
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The equations in section 2.4 for the shear stresses, eq. (2.33) and (2.34), are of course still valid. 
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It is natural to assume that when we want to prevent delamination and core fracture, we must in  
a way combine the two shear stresses found from equation (2.33) and (2.34). Since the core 
material is an isotropic material we can use the von Mises failure criterion to add the shear 
components. We then obtain the effective shear stress. Delamination occurs when the effective 
shear stress in the plane between face and core reaches a critical value. Core fracture occurs 
when the effective shear stress in the core material reaches a critical value.  
The general von Mises failure criterion is taken from (12) and is given as 
 

( ) ( ) ( )[ ] 222222 333
2

1
�������������

τττσσσσσσσ +++−+−+−=  (2.45) 

 
where σ� is called effective stress, equivalent stress or von Mises stress. The other symbols are 
defined in figure 2.1. According to the list in section 2.2 all stress components except τ
� and τ��  
vanish in the core. In our case (the core material) equation (2.45) then becomes  

 
Delamination: 
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22 )(3 ���������	 ττττσ ≥+==  (2.46) 

 
Core fracture: 
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 ,
22 )(3 ττττσ ≥+==  (2.47) 

 
Figure 2.6 shows how the stresses appear in the core material when fracture begins to develop. 
As we see the shear fracture is actually a tensile fracture. The theory predicts the maximum 
shear stress 45° on the maximum tensile stress, see (9) or (12). The 45°’s fracture line is also 
what we see in fracture tests of sandwich panels with transversal loading. The report (15) is an 
excellent example of this. Figure 2.7 is taken from (15) and shows a sample where the fracture 
starts in the core and propagates to the face-core interface at 45° angle relative to the core plane. 
The further propagation does not seem to be delamination, but rather debonding at and near the 
face-core interface. The bonding of the face and core is generally stronger than the core. The 
most important fracture criterion for the sandwich panel is therefore (2.47). Allthough we do not 
have delamination in the strictest meaning of the word since the further fracture happens in (the 
top of) the core, the consequences over a larger area will be the same: We will get a face 
uncoupled from the core acting like a free membrane.  
.  
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The shear forces are now expressed by the strain gradients. It is these strain gradients that are 
measured by strain gauges or fibre optic Bragg gratings. The beam is the simplest case, because 
here we only have a gradient in one direction, the direction along the beam. The plate is more 
complicated, because we have strain gradients in three directions: �+���+ and shear direction. A 
gradient is measured with two gratings or gauges a little distance apart. In the beam case we 
only need one strain gauge in two points on the beam to get a shear stress value. The plate case 
however requires four points with three strain gauges in each point to get the shear stress values. 
This can be seen from the strain gradients in equation (2.29) and (2.30).  
The strain gradients are generally obtained as: 
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where index 1 and 2 indicate values when we go in �-direction and index 3 and 4 indicate values 
in �-direction. 
 
As we will see later the problem will be further simplified when it comes to strain gradients 
when we take advantage of symmetries in our plate problem. 
 
We cannot measure the shear strain γ
� directly. The strain in a 45°’s angle to the �-axis is 
measured, and by help of an expression from strain analysis we can calculate γ
� from the strains 
in the �-, �- and 45°’s directions. The expression is taken from (12) and given below. 
 

ϕγϕ
εεεε

ϕε 2sin
2

1
2cos

22
)(

��

���� +
−

+
+

=  (2.54) 

 
ϕ is in our case 45°, resulting in ����ϕ�(�) and ����ϕ�(��. Ergo: 
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Finally, solving for γ
� we get: 
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In this work strain gauges have been used to measure the strains at the surface of the plate. In 
the CHESS project fibre optic Bragg gratings are used to measure strain. Since the work to 
follow is done in the laboratory only, strain gauges have been chosen. Strain gauges are very 
sensitive to noise due to radiation from electrical equipment in the surroundings. This does not 
affect the optic gratings. Since we do not have the problem with heavy noise in the laboratory, 
the much cheaper strain gauges are chosen. Strain gauges have a higher measurement 
uncertainty than optical gratings have. However, when all forces and constraints are under 
control as they are here, and an estimate of the strain field already exists from a finite element 
model (explained later), the distances in the strain gradients can be chosen to reduce the 
uncertainty in the strain gauge measurement technique. It is however a fact that when the strain 
gradient becomes sufficient small, it cannot be detected by strain gauges. The same problem 
occurs when the gradient is very steep. Optical gratings have possibilities to measure smaller 
strain levels, and they can also be mounted much closer (on the same fibre) than strain gauges. 
Therefore, if the experimental method turns out to be successful, optical gratings will be used in 
future measurements.  
 
Since the strain gradients can be measured in both of the above two techniques, the underlying 
theory of both will be briefly explained here. The interested reader is referred to (3) and (14), for 
instance, and the references given here for a more complete presentation. 
 

.*'� �#�������,��!�

Measurements using strain gauges have developed to become a simple, usable and precise 
technique to measure both strain and vibrations. The main advantages are that the equipment is 
easy available and rather cheap. In addition, small amounts of education are needed. The 
technique is well established and accepted. Some disadvantages have already been mentioned: 
The strain gauges are sensitive to electric and magnetic fields, also, when measuring over large 
areas the amount of cables and equipment will be extensive.  
 
The technique itself is based on the principle that a live cable will change its resistance when the 
length (or cross section) of the cable is changed. A strain gauge is a conductor with very small 
cross section cemented to the test object. The cross section of the strain gauge is changed when 
the object is loaded, ie strain is introduced. By use of the so-called Wheatstone bridge, see figure 
3.1, we can increase the signal even from very small changes in resistance.   
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In the Wheatstone bridge the following important relation for the two “arms” is true: 
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In figure 3.1 the resistors can be regarded both as ordinary resistors or strain gauges. We have 
three different ways that the Wheatstone bridge can be used in: full bridge, half bridge or quarter 
bridge. The names full, half and quarter indicate that we have four, two or one active strain 
gauges in the circuit.  
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The relation between strain and change in resistance is given by 
 

86
6 1∂=ε  (3.2) 
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where 6 is resistance [Ω], ∂6 is change in resistance and 8 is the gauge factor which is given by 
the manufacturer for each strain gauge. The relation between strain and the voltages � 
(excitation voltage) and . in the bridge is given by 
 

�
.

����	 ⋅= .ε  (3.3) 

 
The constant is dependent on what strain gauge (gauge factor) and bridge we choose.  
To get a secure calibration and accurate tuning for practical measurements a special amplifier is 
used. In the amplifier it is possible to calibrate the output signal by giving the relation of 
voltage, .-�, a magnitude that is given for a known strain. This relation between .-� and strain 
is then used to calculate unknown strain levels from other output signals of .-�. When strain 
gauges are used to measure strain (gradients) on the surface, the amplifier converts the strain to 
electrical signals of varying voltage as output signals. 
 

3.1.1 The Quarter Bridge 

For the strain measurements in the experiments the bridge to use is the quarter bridge. Therefore 
this bridge will be briefly examined here. In the quarter bridge we only have one active strain 
gauge. Let 6� in fig. 3.1 be the active strain gauge. When a change in resistance is introduced, 
the resistance becomes 69∂6, while the other resistances remain unchanged (=6). For this 
configuration the measured voltage over the bridge becomes 
 

6
6�

.
4

∂±=  (3.4) 

 
By use of (3.2) and rearranging we get the relation between strain and voltage: 
 

�8
.4=ε  (3.5) 

 

This important relationship shows that there is a direct connection between the applied strain 
and the voltage in the measuring link. If the excitation voltage � and the gauge factor 8 are 
known, it is only necessary to measure the out-of-balance voltage . to obtain the strain level. 
 
When the strain levels become sufficiently small, temperature effects can play a great role in 
the overall strain value, i.e. the strain is not a result only of mechanical loading. This is 
compensated for in the Wheatstone bridge by insertion of a compensation resistor into one of 
the bridge arms. This resistor has a temperature characteristic calculated to compensate for the 
resistance change in the active gauge due to temperature variation. The simplest and most 
commonly employed method to obtain a compensation resistor with the desired characteristic, 
is to use a strain gauge with identical specification as the active gauge. The compensating 
gauge must be placed close to the active gauge, but not at the loaded object, so that it 
experiences the same temperature changes but not strain from mechanical loading.  
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For further details on strain gauge measurements, see (14). 
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The presentation here is based on (6) and (7). For further details see these reports. Two strain 
sensor systems will shortly be presented here: strain sensor system with interferometric 
interrogation and strain sensor system with scanning Fabry-Perot filter interrogation. 
 

3.2.1 Strain sensor system with interferometric interrogation 

The main principle in this technique is to convert a change in wavelength introduced by strain 
into a phase change. Light from a broadband source is sent trough an optic fibre with gratings 
inscribed in the fibre where we want to measure the strain. These gratings are cemented to the 
loaded object. Each grating is produced to have a unique wavelength. Light is reflected from 
each grating and sent through an interferometer in order to convert the wavelength changes 
induced by the strain into phase changes ∆φ given by 
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where � is the effective fibre index, � is the geometrical path imbalance, λ� is the Bragg 
grating wavelength, ���(�)��� is the effective photoelastic constant and ε is the strain. Figure 
3.2 gives an overview of the equipment needed for this technique. The channels from the 
interferometers are demultiplexed in the WDM filters, splitting the light into eight fibres, 
where each channel is detected and the phase retrived.  
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3.2.2 Strain sensor system with scanning Fabry-Perot filter interrogation 

The second interrogation system is based on a scanning fibre optic Fabry-Perot filter. The 
configuration is shown in figure 3.3. 
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The light source is an erbium broadband source (BBS). The input light is filtered by the Fabry-
Perot filter (FPF) and sent to four Bragg grating arrays. (FBGA). The light returned from each 
array is detected at a separate photodiode (PD). The passband of the Fabry-Perot filter is 
scanned through the wavelengths of interest, and a peak is detected every time a grating 
reflection wavelength coincides with the passband. In addition to the optical components, the 
system consists of analogue electronics for detection and amplification of the light. The system 
also contains digital electronics for generation of signals for the Fabry-Perot filter, and for 
communication with a PC where strain values are calculated. 

/� �	��������
	����������4�	�������	���	
������������

/*'� �"5!� �%�+�&��!���!����#"��-%�#�*��%�&-����

The composite sandwich plate used in the tests in this report is the same plate used in the 
former drop experiments done by the CHESS project team at FFI and collaborators at NTNU 
and MARINTEK. The plate is fabricated by FiReCo a.s. Dimensions are as follows: 
• Length, �: �)))��� 
• Width, �: 4))��� 
• Core thickness, �: �1��� 
• Plate thickness, !: �=��� 
• Laminate thickness, 	: ���� 
The core material is Divinycell H 200 and the laminates are built up by several layers of Glass 
Reinforced Polyester (GRP).  
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The aluminium frame that was firmly attached to the sandwich plate is used both as substitute 
for the bulkheads that would support such a panel in a ship, and to clamp the boundary as 
rigidly as possible. Rectangular areas limited by stiffeners as in a ship hull may be described 
mechanically as rectangular plates clamped along all four edges. The frame is shown in red 
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and grey in figure 4.2. The green contact points act like force transducers. The bottom (yellow) 
framework is used to mount the sandwich plate in the material test machine, and to transfer 
force during the experiment. 
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The panel is built from a porous core with GRP laminates on either side. The core is a 25 mm 
H 200 plate with a weight of 210 kg/m3. The laminates on both sides of the core are composed 
of a combination of two different glass fibre mats: 
• 100 g/m2 CSM M113-100-127-BS    Vetrotex 
• 2 x DBL 850 – E01 (425/199/199 – 0/45/-45)   Devold AMT 
• 100 g/m2 CSM M113-100-127-BS    Vetrotex 
• Matrix: Synolite 0288      DSM 
Table 4.1 gives the material properties of the multidirectional CSM mat (theoretical values), 
together with a unidirectional layer of the Devold mat. The zero-axis of the 0/45/-45 was 
oriented parallel to the shorter plate edge. As we see the stacking sequence of the laminate, 
(0/45/-45/0/45/-45)s (the two faces summed), gives an anisotropic lay-up, which means that we 
have to use the anisotropic formulas in section 2.5. If one of the zero-layers is replaced by a 90 
degree layer, our laminate become (quasi)isotropic. 
 
Material data CSM* Unidirectional** 
�
 (MPa) 7500E6 28000E6 
�� (MPa) 7500E6 7500E6 
���(MPa) 5000E6 7500E6 
ν
�� 0.32 0.28 
3
� (MPa) 3000E6 2500E6 
Density, ρ (kg/m3) 1460 1650 
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The load case for the experiments is a concentrated force at the centre of the above mentioned 
sandwich plate, see figure 5.1. This is a rather simple load case and it is easy to obtain in the 
laboratory. The plate with attached framework is placed in a material test machine (MTS-810) 
and a steel cylinder generates the force at the centre, see figure 5.2. Applied force, time, strains 
at different locations and deflection in centre were recorded. The piston with the steel cylinder 
is hydraulically pressed down. The force and displacement are computer controlled. The 
displacement that is recorded is not the real deflection of the plate centre, but the displacement 
of the whole system (plate + frame). Therefore an analogue measuring clock was placed under 
the centre of the plate to measure the real deflection.  
 



 27  
 

 
   

 
 

a

x

y

P

b

 
���
�
�1���� >!
���������
B�6
�	���
�����������!����	
���	!�������
�	��	
�����������
�	�
��
 
 
 

 
���
�
�1���� >!
��	�	���	
�	�������	!��������!����	
������	

��������
���
 



 28  
 

 
   

 
 
A Finite Element Model (FEM) of the same plate problem made in MSC/NASTRAN exists at 
FFI and has been used in earlier work in the CHESS program. In this report the model has 
been used for two purposes: Firstly, it has been used to simulate the experiments. The values 
of strains and shear stresses from the load case in the model will be compared to the same 
values obtained from the experiments. Some results from the simulations are shown in 
Appendix C and D. In this way we will try to verify the experimental method explained in 
chapter 2. Secondly, the model has been used to decide the distances that separate the strain 
gauges when calculating the strain gradients. This is explained further beneath.   

1*(� ��!#�,&��#�#����

When we choose the points on the plate where we want to calculate the shear stresses, several 
considerations have to be made. The point load at the centre will for instance generate the 
greatest shear stresses where it acts on the plate. These shear stresses could be greater than the 
shear stresses along the clamped edges of the plate. To measure these stresses in the centre is 
of less importance for two reasons: On one hand the strain gradients here are so steep that it is 
practically impossible to measure the gradients accurately because the measuring points must 
be so close. On the other hand and more important, such a concentrated force is not 
recommended on a sandwich plate because it can generate large local deformations. The great 
shear stresses (and strains) that we experience here are not representative “outside the 
laboratory”. The most relevant shear stresses act ������	!
����������
��
���	�	!
���		������
� 
The points where we measure the strains to obtain the shear stresses in the experiment are 
therefore chosen here. From figure C.3 and C.4 in Appendix C we see that for the stress and 
strain shown there, the levels are highest on the �-axis. Furthermore, the greatest shear stresses 
along the clamping edges will act where the �- and �-axis in figure 5.1 meet the clamping. The 
condition is known as �������������
�������The curvature from the clamping is greatest here 
and therefore the strain gradients along the clamping also have their highest values at these 
four points. 

5.2.1 Advantage of symmetry 

In the general case we need 12 strain gauges to determine the shear stress values of τ
� and τ��. 
This can be seen from equation (2.48)-(2.53) where we have six gradients that require two 
strain values each. In the general case we place our points off the �- or �-axis of the plate. In 
our case the points are on the axes, and we can take advantage of the symmetry in our problem. 
Figure 5.3 shows the two points on the axes close to the clamping. We realise that when the 
plate is statically deflected at the centre (or vibrates in first mode) the points on the �-axis have 
symmetry in the �-direction, and the points on the �-axis have symmetry in the �-direction. The 
gradients in these directions are therefore zero. This means that for each point we only have 
strain gradients in one direction, i e along the plate axis on which the point lies. The problem is 
therefore reduced from six strain gradients to three strain gradients for each of our points. 
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We still have to decide on the exact placement of the strain gauges, their separation when 
calculating  the strain gradients for the two chosen points in figure 5.3. This is done with help 
of the simulated load case in the FEM model. In Appendix C some examples of contour plots 
of the strains and shear stresses are given for the outer CSM layer in the bottom face for a 
quarter plate. In Appendix D XY-plots are given for the strains needed in �-, �- and shear 
direction, but now only along the �- and �-axes for the same quarter panel, i.e. on the axes 
where our points are. These XY-plots show how the strain varies along the plate, or in other 
terms how the gradient changes. These plots are therefore useful when we choose our 
distances. Where the gradient is steep the distance must be short and where the gradient is 
gentle the distance between the gauges can be longer. As equation (2.48)-(2.53) show, we use 
a linear approximation for the gradients. The two points must therefore be in such a distance 
apart that the gradient between them is nearly linear. This is visualised in the plots in Appendix 
D, where the suitable distances are marked for each strain plot in order to obtain a linear 
gradient. Moreover Appendix D shows that the distances for the gradients in each point can be 
different depending on how steep the gradients in the �+���+ and 45°-direction are. This implies 
that the optimal points will not always be exactly in the middle of the two strain gauges that 
measure the gradients, but since the gradients are assumed to be linear, this is of secondary 
interest. 
From Appendix D we have: 
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Point 1, �-axis: 
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��� 6045 =∆  (5.3) 

 
Point 2, �-axis: 
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��� 8545 =∆  (5.6) 

 
where the indexes ���� and %1 indicates the orientation of the strain gauges separated by the 
given distance. We observe that in equation (5.2) the distance is set to 10mm and not to 20mm 
as in figure D.1 and D.13 (Appendix D). The reason is, as we will see later, that we were 
unable to obtain agreement between model and experiments in this particular area close to the 
frame for point 1. On the background of later experiments a distance of 10mm was chosen, ie 
we use the closest strain gauge to the frame for point 1 in figure 5.4 b), ε��. 
 
Figure 5.4 shows the instrumentation for each point, position and number for each strain 
gauge.  
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The XY-plots in Appendix D show that the strain is greatest in the �-direction for point 1 and 
in the �-direction for point 2. This is natural because the curvature is greatest here. The 
gradients are definitely also steepest in those directions. To check for agreement between 
experiments and simulations for these strains, several strain gauges are mounted with a short 
distance along the �-axis for point 1 and the �-axis for point 2, see figure 5.4 b). Figure 5.4 b) 
shows the opposite corner of the plate than figure 5.4 a). This means that the strain gauges in 
5.4 b) are not at point 1 and 2, but as the plate is loaded in centre, the quarter plate in 5.4 a) and 
5.4 b) experience the same strains. We can therefore use results from strain gauges in b) in the 
gradient calculations. The positions of the strain gauges in figure 5.4 b) are as follow: For 
point 1 starting from the frame: 10 mm, 20 mm, 40 mm, 60 mm and 80 mm. For point 2 
starting from the frame: 20 mm, 30 mm and 55 mm. The photo in figure 5.5 shows the strain 
gauges in figure 5.4 a) for point 2 on the �-axis. All strain gauges used are TML, type FLA-6-
11-1L, produced by Tokyo Sokki Kenkyujo Co. The gauge factor is 2.12, gauge resistance is 
120 ohm and gauge length is 6 mm. 
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�1�%��,� 
 
The necessary strain gradients from equation (2.48)-(2.53) can now be expressed with 
reference to figure 5.4 as: 
 
Point 1: 
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�
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1313 εεεεε −
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−
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∂
∂

 (5.7) 
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=
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∂
 (5.9) 

 
The shear strain values in equation (5.9) are obtained from equation (2.56) and can be 
expressed as 
 

)(2 111,451)( ����
εεεγ +−=  (5.10) 
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Point 2: 
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The shear strain values in equation (5.14) are again obtained from equation (2.56) and can be 
expressed as 
 

)(2 111,451)( ����
εεεγ +−=  (5.15) 

 
)(2 322,452)( ����

εεεγ +−=  (5.16) 

 
In equation (5.8) and (5.12) the first strain value in the gradient is assumed to be zero. The 
distances here are so small that it is difficult to place a strain gauge and we know that the strain 
where the clamping ends is close to zero (fully clamped plate). Note also that ε�� in equation 
(5.8) and ε�� in equation (5.12) are from strain gauges in figure 5.4 b). 

1*/� 0,�!�8!#�#� ��9-���&��#!�

Two experiments of this type have been performed. One with load 5000 N in centre and 
another with load 10000 N. The panel was carefully loaded up to the decided forces as 
previous described. Because the amplifier only monitors six gauges at the same time, two 
measurements had to be done of the gauges for each point in figure 5.4 a). The first time we 
measure six of the gauges, and the second time we replace one of the six with the seventh 
remaining. In this way we also get an impression of the reproducibility of the strain values, 
which seems to be acceptable. For the strain gauges in figure 5.4 b) only one measurement for 
each point is necessary.  
The test machine has no option to get a plot of microstrain versus force, but it is programmed 
to reach 5000 N after 800 seconds and 10000 N after 1600 seconds, which can be seen from 
the graphs. (The forces begin to increase from zero after about 60 seconds).  
In this section the experimental results from the static testing are presented. They will be 
further discussed in section 5.6, together with dynamic test results presented in section 5.5. 
Figure 5.6 to 5.9 and table 5.1 to 5.4 show the results for the strain gauges in figure 5.4 a). 
Figure 5.10 to 5.13 and table 5.5 to 5.8 show the results from the strain gauges in figure 5.4b). 
The tables summarise the graphs. The measured strain values in the tables are rounded off to 
the nearest integer and given in µε. 
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1*1� �5��&� ��9-���&��#!��

Dynamic tests have been performed to see whether the strain gauges in figure 5.4 a) will give 
the same strains as in the static tests with identical load. The following figures 5.14-5.20 show 
the strain values at point 1 when a dynamic lateral load 5000 N with frequency 2 Hz acts in 
centre of the panel (identical to the static tests). Figure 5.21-5.27 show the same values for 
point 2. The tables show the maximum (or minimum) values. The results will be further 
discussed in section 5.6. 
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5.6.1 Quasi-static tests 

Most of the experimental values seem reasonable. The strains increase as we come closer to 
the load area. However, the most interesting areas are close to the frame for both points, in the 
*-direction for point 1 and in the �-direction for point 2. As we can see from figure D.1 and 
D.13 (point 1) and figure D.8 and D.20 (point 2) in Appendix D, the strain in these directions 
varies most, and has indeed the steepest gradients. Especially for point 1 the strain gauges 
placed here have difficulties in measuring these strains. Point 2 has a greater distance to the 
load centre than point 1. The strain levels are therefore not so high and steep here and easier to 
measure. For point 1 the problem is critical for gauge 2 in table 5.1 and 5.2 and for gauge 1-3 
in table 5.5 and 5.6. This will be further commented in section 5.7 where experimental and 
simulated values will be compared.  
 
Close to the frame we would expect negative strain values. Because of the fully clamped plate 
edges, the curvature of the surface close to the frame has to shift from negative to positive, and 
so must the strain. This can be seen when we compare all the values in table 5.5 and 5.6. 
Another evidence of this is strain gauge 1 in figure 5.7. The strain is first negative and then 
becomes positive as the force increases. It is natural to believe that the “shift area” is pressed 
closer and closer to the frame when the force in centre increases, which explains the shift in 
sign for the strain gauge. 
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5.6.2 Dynamic tests 

The dynamic test results are in good agreement with the static tests. Only strain gauges in 
figure 5.4 a) have been tested dynamically. All of them reach the same strain level as in the 
static tests. This is also as expected since the frequency is as low as it is (2 Hz). It is only when 
we reach the area of natural frequencies we can expect more serious deviations. Shear 
deformation and inertia problems can have great effect here. This is however outside the scope 
of this thesis, and is left as further work. 

5.6.3 Calculation of shear strains 

We will now use equation (5.10), (5.11), (5.15) and (5.16) to calculate shear strain values in 
the vicinity of point 1 and 2. These strains cannot be measured directly, we have to use the 
formula outlined in the end of section 2.7. The positions of the calculated shear strains are 
where the rosettes are placed in figure 5.4 a), which means that for each point we get two shear 
strain values. The values from equation (5.10), (5.11), (5.15) and (5.16) are given in table 5.11. 
For each point subscript 1 denotes the shear strain value closer to the frame and subscript 2 
denotes the shear strain value at the greater distance from the frame.  
 
Point 1 Point 1 Point 1 Point 1 Point 2 Point 2 Point 2 Point 2 
5000 N 5000 N 10000 N 10000 N 5000 N 5000 N 10000 N 10000 N 
eq (5.10)  eq (5.11) eq (5.10) eq (5.11) eq (5.15) eq (5.16) eq (5.15) eq (5.16) 
γ������ γ������ γ������ γ������ γ������ γ������ γ������ γ������

.(� '((� 3� (3<� (� 2'� 8(� ;:�

>���
�1���� ����
��	
���!
����	��������

���

 
As we shall see in section 5.7 the shear strains should be close to zero. Taking into account 
errors in the measurement, values below 100 µε are acceptable. The values 122 and 270 are 
therefore too high. One explanation for this is that the location for these measurements is so 
close to the steel cylinder that it influences the measurements more than first expected. The 
fact that we do not have the same problem for point 2 supports the explanation. 

1*3� ��&-���!������&��!,��+���+�!�&,%�#�+�!#����!��

In this section tables will be given which compare the measured and simulated surface strains. 
All strain gauges (measured strains) in the tables are written with reference to figure 5.4, 
except the shear strain values, which were calculated in the above section. The simulated 
values are found from the graphs in Appendix D. Two simulations have been performed, one 
with load 5000 N and one with load 10000 N. In the FEM-model a steel ball and not a steel 
cylinder is pressed down at the centre of the plate. This gives a much greater deflection for the 
same force than using a steel cylinder. To overcome this problem we have measured the 
deflection of the plate centre in the performed tests. These deflections are used in the FEM-
simulations rather than the forces to ensure the same deflection function. We believe that the 
more “distributed” load will not have significant effect on our measurements compared to a 
concentrated load because the areas of interest are close to the frame, and not close to the 
cylinder. The plate test with load 5000 N gave a deflection in centre of 1,80 mm and load 
10000 N gave a deflection of 3,39 mm. Theses deflections are used in the FEM-simulations. 
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Table 5.12-5.15 show the comparisons (M – measured, S – simulated). 
 
 
 
 
 
Point 1: 
  
� ε��� ε��� ε��� ε��� ε	�� ε��� ε
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Point 2: 
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What we see here is that the measured and simulated strains match quite well, except from the 
strain gauges placed closest to the clamping for point 1 (in italic in the tables). We have 
modified the FEM-model with a finer mesh in the area around the frame, see figure C.1 in 
Appendix C, but we have not succeeded in getting an agreement between model and measured 
values here. It seems from the tables like the shift area of the curvature is located closer to the 
frame in the experiments than in the model. Furthermore, the strain peaks are higher in the 
model, as we can see from figure D.1 and D.13 in Appendix D. The great positive peak from 
the model at the transition from frame to plate is impossible to measure. What we also see 
from the tables is that the simulated shear strains are (close to) zero. As mentioned in the 
section above some of the measured shear strains for point 1are therefore too high (also in 
italic in the tables). However, as we will see in the next chapter, the shear strains play a minor 
role in the calculations of the shear stresses in the core. 
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We are now ready to use the strain values found from the experiments and given in table 5.12-
5.15 in our method for anisotropic plates from chapter 2, section 2.5. The sections to follow 
perform the necessary calculations for the two points. Also calculated are von Mises stresses 
from section 2.6. At the end all calculated shear stresses will be compared to the FEM 
simulations.   

2*'� ��% ,%�#�������#���!=��!�%� ����!"����!#��!!����&��9-���&��#�%���!,%#!�

As we saw in section 5.2.1 and 5.3 our choice of points to calculate the shear stresses results in 
a great deal of symmetry. Instead of six gradients we only have to deal with three along the �+ 
and �-axes. For point 1 we have no gradients in the �-direction and for point 2 we have no 
gradients in the �-direction. This means that equation (2.40) and (2.41) for the shear forces will 
be simplified for our two points. We get: 
 
Point 1: 
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Point 2: 
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 (6.3) 
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 (6.4) 

 
The plate stiffnesses #�� and Poisson’s ratios ν
�� are given in Appendix B. ! is the total plate 
thickness. 

6.1.1 Load 5000 N 

6.1.1.1 Point 1 

The strain gradients for point 1 are calculated from equation (5.7)-(5.9). The necessary strain 
values from table 5.12 are inserted into the equations and we obtain: 
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=+=

∂
∂

 (6.5) 

 



 48  
 

 
   

��
���

� /9,23
10

239 µεµεε
−=−=

∂
∂

 (6.6) 
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The gradients from the above three equations together with the plate stiffnesses and Poisson’s 
ratios from Appendix B are inserted in equation (6.1) and (6.2) to obtain: 
 

�� 0
�

/2,0−=  (6.8) 

 
�� 0

�
/2,20−=  (6.9) 

 
We finally obtain the shear stresses from equation (2.33) and (2.34): 
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��
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where � is the core thickness. 
If we look at the calculated gradients, equation (6.5)-(6.7), we see that the gradient for ε��is 
much greater than the two other gradients. The error we do when neglecting the gradients for 
ε��and γ���will therefore be small. The shear forces will after this simplification be expressed as: 
 

0=0  (6.12) 
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The new shear forces inserted into equation (2.33) and (2.34) yield: 
 

0=
�

τ  (6.14) 
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6.1.1.2 Point 2 

The strain gradients for point 2 are calculated from equation (5.12)-(5.14). In the same way the 
necessary strain values, now from table 5.14, are inserted into the equations to obtain: 
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The gradients from the above three equations together with the plate stiffnesses and Poisson’s 
ratios from Appendix B are similarly used in equation (6.3) and (6.4) to obtain: 
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We finally obtain the shear stresses from equation (2.33) and (2.34): 
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Furthermore we realise that for this point the gradient for ε��is much greater than the other two. 
We therefore ignore the gradients for ε��and γ���.�The shear forces are now expressed as: 
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 (6.23) 

 
0=0  (6.24) 

 
The new shear forces inserted into equation (2.33) and (2.34) yield: 
 

$<�
�

20,0−=τ  (6.25) 

 
0=

��τ  (6.26) 

 

6.1.2 Load 10000 N 

The procedure is the same as in section 6.1.1. All the details will therefore not be shown here. 
Only the final results for the shear stresses will be given. 



 50  
 

 
   

6.1.2.1 Point 1 

Necessary values from table 5.13 are used to calculate the gradients in equation (5.7)-(5.9). 
The gradients are used in equation (6.1) and (6.2) and we obtain the shear forces. Finally we 
find the shear stresses to be: 
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We do the same simplifications as in section 6.1.1.1 and obtain the new shear stresses as: 
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6.1.2.2 Point 2 

The gradients, equation (5.12)-(5.14), are now calculated with values from table 5.15. 
Equation (6.3) and (6.4) give the shear forces and we obtain the shear stresses as: 
 

$<�
�

34,0−=τ  (6.31) 
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006,0−=τ  (6.32) 

 
The same simplifications as in section 6.1.1.2 now give 
 

$<�
�

37,0−=τ  (6.33) 

 
0=��τ  (6.34) 

2*(� ��% ,%�#�������=�����!�!�!#��!!�!����#"�� ����

In section 2.6 the fracture formula for the core based on the von Mises criterion was outlined. 
As we can see it only depends on the shear stresses calculated in section 6.1. The expression is 
repeated below. 
 

��������	�	 ,
22 )(3 ττττ ≥+=  (6.35) 

 
Our core material is H 200 from Divinycell. The maximum shear stress for this core material is 
3,3 MPa (given from the manufacturer).  
 

$<����� 3,3,200 =τ  (6.36) 
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Table 6.1 shows the results when we use equation (6.35) on our shear stress values from 
section 6.1. Exact value means that all three gradients are used in the calculations. Simplified 
value means that only the steepest gradient is used. 
 
 Point 1 Point 1 Point 2 Point 2 
 5000 N 10000 N 5000 N 10000 N 
exact '>/<����� />3/����� <>.'����� <>1:�����
simplified '>1'����� />;;����� <>./����� <>2/�����

>���
�4��� .���$��
���	�
��
�����	!
����
���	
������

 
As we can see the von Mises stress at point 1 for 10000 N is higher than the limit in equation 
(6.36). Possible reasons for this will be discussed in chapter 7, but we have seen no evidence 
of shear fracture in the core material. Still, fracture is difficult to detect when it is only present 
in the core. The only way to see if fracture has occurred, is to remove the faces (without 
damaging the core) and thereby destroy the plate. Table 6.1 will be further discussed in chapter 
7. 

2*.� ��&-���!�����#"�!�&,%�#�+� ����!"����!#��!!�!�

In this section tables will be given which compare the calculated and simulated core shear 
stresses, both τ����τ�� and von Mises. The results will be commented and discussed in chapter 7. 
For the calculated values in the tables, the numbers in parentheses represent the simplified 
values from section 6.1. Again, simulated values are found in Appendix D. 
 
 Point 1 Point 1 Point 2 Point 2 
 5000 N 10000 N 5000 N 10000 N 
Calculated 8<><'��6<7� 8<><(/��6<7� 8<>';��68<>(<7� 8<>./��68<>.37�
Simulated <� <� 8<><1� 8<>'<�

>���
�4��� �������������&�τ���*$<�,���

 
 Point 1 Point 1 Point 2 Point 2 
 5000 N 10000 N 5000 N 10000 N 
Calculated 8<>;'��68<>;37� 8(>3/��68(>;(7� 8<><</��6<7� 8<><<2��6<7�
Simulated 687<>2<� 687'>'<� <� <�

>���
�4�"� �������������&�τ���*$<�,��

 
 Point 1 Point 1 Point 2 Point 2 
 5000 N 10000 N 5000 N 10000 N 
Calculated '>/<��6'>1'7� />3/��6/>;;7� <>.'��6<>./7� <>1:��6<>2/7�
Simulated '><� '>:<� <><;� <>'1�

>���
�4�%� �������������&�����$��
���	�
��
��*$<�,��

 
The reason for the minus signs in parentheses for two of the simulated values in table 6.3 is the 
choice of  local coordinate system in the elements in the FEM-model. It is chosen opposite 
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compared to our global choice, shown for instance in figure 5.3. This results in the two shear 
stresses being positive in the simulations, but according to our definition used in the 
experimental method, they have to be negative.   

3� ����������>�����
������	����������������

3*'� ��! ,!!������+� �&-���!������!"����!#��!!�=�%,�!�

As we can see from table 6.1 and 6.4 all von Mises stresses from the experimental method are 
below the allowed limit, equation (6.36), except the values for point 1, 10000 N. The direct 
reason for this is the high strain value ε�� from figure 5.11 and table 5.6. The strain gauge is 
mounted as close to the frame as possible. As commented earlier when the load is as high as 
10000 N the shift area for the curvature is pressed closer and closer to the frame for the fully 
clamped plate. The strain value will therefore become more and more negative. If we compare 
all strain values in table 5.6 there is reason to believe that this shift area is located right after 
ε��. Figure 5.11 shows that the next strain gauge, ε��, goes from negative values for low forces 
to a small positive value for the final 10000 N force. The location of the shift area is probably 
the reason for the high (negative) value for ε��. What is strange is that the strain does not 
progress linearly. After about 1300 s (ca. 7000 N) it increases faster than before. The reason 
for this can still be the shift area, but the sudden increase in strain can also be caused by a 
growing core separation. A core crack will make the local structure less stiff. However, what is 
most likely is that we have seen the effects of a very local first ply failure (FPF) in the face. 
First ply failure means that fracture occurs in the matrix that bonds the fibres together. The 
fibres will thereby take all the strain directly. First ply failure curves will typically have the 
shape shown in figure 5.11. We see a linear increase before and after the crack but with 
different slopes. If we now assume that first ply failure has not occurred we extrapolate the 
first part of the curve up to the final load and thereby get the same slope in the whole load 
interval. This is shown by the dashed line in figure 5.11. The new strain value now becomes -
500 µε. Redoing the calculations we find a shear stress value of 1,73 MPa (exact) and 1.81 
MPa (simplified). The von Mises stress becomes 2,99 MPa (exact) and 3.14 MPa (simplified). 
We see that the stresses are now below the limit in equation (6.36), but the new calculated 
values for point 1, 10000 N, are still higher than the corresponding simulated values in table 
6.3 and 6.4. 
 
From table 6.2-6.4 we see that the calculated (experimental) stresses approximated to zero are 
in good agreement with the FEM-model. However, the other calculated shear stresses are in 
general somewhat higher than the simulated stresses. We must, however, be aware that our 
FEM-model has some important weaknesses. The plate is modelled with linear shell elements 
in the layers in the faces, QUAD4, and linear solid elements for the core, HEXA8. One has 
found that the composite module in NASTRAN does not calculate the stresses correctly in all 
cases. The staff at FiReCo a.s has concluded that, in fact, the stresses may be estimated ���
� 
than they really are according to analytical solutions of simple cases. If this is true for our plate 
we would expect the analytical values to be higher than the simulated values. As shown above 
this is also what we see. 
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We now calculate the fraction S/C (simulated/calculated stresses). In this way we quantify how 
much the simulated values are below the analytical. For point 1 at 10000 N we have ignored 
first ply failure and used the new values found in this section. Table 7.1 shows the results. All 
calculated values are exact values. 
 
Point 1 Point 1 Point 1 Point 1 Point 2 Point 2 Point 2 Point 2 
5000 N 10000 N 5000 N 10000 N 5000 N 10000 N 5000 N 10000 N 
S/C τ�� S/C τ�� S/C Mises S/C Mises S/C τ�� S/C τ�� S/C Mises S/C Mises 
<>3/����
(2?�

<>2/����
.2?�

<>3'����
(:?�

<>2/����
.2?�

<>(;����
3(?�

<>(:����
3'?�

<>(1����
31?�

<>(1����
31?�

>���
�5��� ����	����B����
��	
�-����
��	
���	�
��
������������������������������������������������������������������������������
<
��
�	��
�B��!������!����
�!�	!
����
��	
�����

����
��
����	!
������	�����
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We see that the differences between simulations and calculations are greater for point 2 than 1. 
This is perhaps logical because the strain levels are much smaller for point 2 than 1 and the 
stresses may therefore be harder to calculate accurately. On the other hand it is easier to 
measure the strains at point 2 where we do not have the steep gradients as in point 1. It benefits 
the method that it becomes more accurate for higher strain levels, ie the closer we come to the 
fracture toughness of the core. Furthermore, what can be concluded from table 7.1 and also 
6.2-6.4 is that the fracture formula based on the von Mises criterion is a correct assumption. 
We see from table 7.1 that the fractions and percentages for von Mises match the 
corresponding shear stress fractions and percent numbers. Further, if we use equation (6.35) on 
the simulated values in table 6.2 and 6.3, we get the same answers as the simulated values in 
table 6.4.    

3*(� 
�&�#�#���!�

The strain gradient method outlined and tested in this report now handles both isotropic and 
anisotropic sandwich panels. The theory of the cases is explained in section 2.4 and 2.5. As we 
see the method is able to deal with changes in mechanical properties in faces as well as core. In 
this section the limitations of the method will be summarised. We must remember that the list 
in section 2.2 still underlays all theory and experiments. If we focus on what we may call 
“geometrical” assumptions (1, 4, 7 and 11) the method is only valid when: 
 
• The core material is much thicker than the two faces.  
• The faces are made from a given number of plies of orthotropic materials, which are bound 

together. The orthotropic axes in the individual plies do not have to coincide with the 
global �- and �-axes for the plate. 

• The plate displacements are small compared to the plate thickness. 
• Core and faces have constant thickness. 
 
All these four assumptions are normally fulfilled for sandwich plates in common use, but there 
can exist plates with rather thick faces. The reason for the third point is that our theory is a first 
order theory – it requires small deformations.  
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The most important limitation for the method is different stacking and materials in the two 
faces. The faces can also have different thickness. This leads to different mechanical properties 
(Young’s moduli and Poisson’s ratios) for the two faces. One can in principle calculate the 
mechanical properties for each of the faces and from this calculate the plate stiffnesses. We 
then have to sum up face + core + face in our equations for the plate stiffnesses, and not what 
we have done before: 2×face + core. Another problem arises when we do not know exactly 
where the neutral axis in the plate is located. This has to be determined before we can calculate 
the plate stiffnesses. We cannot assume as we did when we had equal faces that it is located in 
the middle of the plate and thereby set �(!-� in equation (2.22). When we had identical faces 
we had equal surface strain (with opposite signs) in the two faces. This is no longer the case, 
but expressions exist in the mechanics of materials, that allows the new location of the neutral 
axis to be determined. The case of different faces is obviously more complicated, and the 
practical difficulties may be too big for a solution to be found.  

3*.� ��� %,!������+��,�#"������@�

 
This report demonstrates that the proposed method is valid also for practical measurements of 
the shear stresses in sandwich plates, with some practical limitations or weaknesses that will be 
summarised in this section. Alone or as a part of a larger hull monitoring system the method 
gives an estimate of the shear stress values in the core and a reason for closer investigation of 
the sandwich panel under consideration if measured values exceed allowable limits. It also 
seems that the method is more accurate for higher strain- and stress levels than for lower. The 
report serves mainly as a first investigation of the suitability of the method when it comes to 
practical measurements.  
The comprehensive instrumentation of the plate shown in figure 5.4 is not necessary. In figure 
5.4 the instrumentation is already simplified by use of symmetry arguments. As explained 
earlier, the shear stresses are greater on these axes where we can exploit symmetry in the �- 
and �-directions. Finite element analyses with a distributed pressure on the plate instead of a 
concentrated load have also been performed (not included in this report). They show the same 
shear stress distribution as the load case we have used here. The same advantage of symmetry 
and the same instrumentation can therefore also be used in the case of a distributed pressure. In 
addition to these symmetry simplifications we also have what we can call gradient 
simplifications. In section 6.1 shear stress values are calculated from all three measured 
gradients as well as from only the steepest (exact versus simplified values). We see that the 
difference are small and for most purposes acceptable. The author will therefore propose the 
very simple instrumentation shown in figure 7.1. By this instrumentation we only measure the 
steepest gradient for each of the points. If we want a more exact value we can also measure the 
perpendicular strains. These are still of minor importance both because they are multiplied 
with Poisson’s ratio and because the gradient itself is smaller. The shear strains are so small 
that they need not be measure at all. The author concludes therefore that the instrumentation in 
figure 7.1 and equation (6.13) and (6.23) are accurate enough. 
During this work the author has seen and experienced some practical weaknesses or 
challenges, mainly two, that will briefly be mentioned here. Firstly it is difficult to measure the 
steep strain gradients close to the frame accurate enough. It was in this area it was hardest to 
obtain accordance between measurements and model. An attempt to solve this problem is the 
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instrumentation in figure 7.1. By mounting strain gauges or Bragg gratings close to each other 
we can get an impression of the strain along the axes. Since the sensors require a certain 
distance to measure over, errors will always arise when the gradients become too steep over a 
short distance. However, the capability to measure steep gradients is much better for Bragg 
gratings. One can place them closer when they are on the same fibre, and they can be made 
shorter than strain gauges. Therefore Bragg gratings will be preferred for the instrumentation 
in figure 7.1 in future measurements. 
The second weakness for the method is that first ply failure can occur, as explained in section 
7.1. Fortunately the stress-strain curve for this type of incident is easy to recognise and a likely 
example is the curve of the first strain gauge in figure 5.11. 
As stated in the beginning of this section this report serves mainly as a first investigation of the 
suitability of the method when it comes to practical measurements. At the very end of this 
report proposals for further work will therefore be given.  
It would be interesting to test the method on more dynamic cases, where the frequencies reach 
the area for the resonance frequency of the plate. In real life, for instance a ship hull in sea, a 
great deal of the loads will have a dynamic nature. To test the method’s suitability for these 
types of loads would be of great interest.  
Secondly it would be of great value to fabricate a sandwich plate with a core fracture and see 
how shear stress distributions (and frequencies) change compared to a perfect plate. In this 
way we would gain knowledge on how strain gradients and shear stresses act in an already 
damage plate. For example, if we see that a gradient suddenly disappears over a distance we 
have reason to believe that the face acts like a free membrane uncoupled from the core in this 
area, and core fracture may have occurred. If we at the same time see that other strain sensors 
nearby the fracture area suddenly experience an increase in strain, it could mean that the shear 
forces have a smaller cross section to act on because of the fracture. It could also be interesting 
to run a destructive test on a perfect plate to see if we can create a shear fracture in the core, or 
if the plate is damaged in other ways before shear fracture occurs. Finally, an important test 
would be to measure on a naval ship with sandwich hull during operation to find the level of 
shear stress the wet deck experiences during heavy slamming in rough sea. 
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��

/�  core cross section area 
����  length of plate in �- and �-direction, respectively 
�  beam width 
�  core thickness 
#  flexural rigidity 
#��  plate stiffnesses  
�  average thickness; geometrical path imbalance 
�  Young’s modulus (=Elasticity modulus); excitation voltage  
��  Young’s modulus, core 
�
  Young’s modulus, faces 
&  frequency 
3  shear modulus 
!  plate thickness 
'  moment of inertia, second moment of area 
���D��8  indices, possible values 1, 2, 3 
8  gauge factor 
H���  length 
$  moment 
�  effective fibre refractive index 
<  concentrated load 
��  effective photoelastic constant 
0α  shear forces (plate) 
6��∂6  resistance; change in resistance 
������-����� radii of curvature, curvatures 
�  first moment of inertia 
	  face thickness; time 

������  displacement in �-, �- and �-direction 
.  shear force (beam); bridge voltage 
α��β  indices, possible values 1, 2 
∆φ  phase change 
δ  deflection of plate centre 
ε  (normal)strains 
γ  shear strains 
ϕ  angle of rotation 
λ���∆λ�  Bragg grating wavelength; change in Bragg grating wavelength 
ν  Poisson’s ratio 
ν�  Poisson’s ratio, core 
ν
   Poisson’s ratio, faces  
ρ  density 
σ  (normal)stresses 
σ�  von Mises stress, effective stress, equivalent stress 
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τ  shear stresses 
 
c  superscript denoting a value related to the core 

s  subscript denoting that a laminate has a symmetric lay-up 

)� �	����	
���������������������	��������
	���

 
In this appendix Young’s moduli, Poisson’s ratios and plate stiffnesses for the experimental 
method from section 2.5 will be calculated in detail. The expressions are given in equation 
(2.42)-(2.44) and will be repeated here: 
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We have the following values for our plate: 
 
Plate thickness: ! = 29 mm 
Core thickness: � = 25 mm 
Face thickness: 	 = 2 mm 
 
Young’s modulus, core:  �� = 0,22 GPa 
Poisson’s ratio, core:   ν� = 0,33 
 
�� and ν� are taken from (17) and can also be obtained from the supplier.  
 
To obtain the material constants for the faces in equation (B.1)-(B.3) the program 
LAMPROG.xls designed by Nils Petter Vedvik, Dept of Machine Design and Materials 
Technology at NTNU, has been used. For each layer in the two faces we give orientation, 
thickness and material properties along and transverse of the fibre direction. The material 
properties are taken from table 4.1. The output from the program is the global material 
properties in �- and �-direction that we need in equation (B.1)-(B.3). In the calculations the two 
faces are treated as one laminate, but the changes in the output values are insignificant if we 
only consider one face. We obtain: 
 
Young’s moduli, faces: �
� = 8,75 GPa 

  �
��( 13,36 GPa 
Shear modulus, faces:  3
�� = 5,50 GPa 
Poisson’s ratios, faces:  ν
�� = 0,32 

ν
�� = 0,49  
 
We are now ready to calculate the plate stiffnesses. We insert the above values in the 
expressions and get: 
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These values are used in the calculations in chapter 6.  
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This appendix gives a few examples of the contour plots from the FEM-model of the plate. 
The load case is the fully clamped plate with a concentrated load in centre. The plots are not 
used in further calculations because they are too inaccurate. They are still included in the 
report to visualise some strain- and shear stress distributions. The plots are only for the case 
5000 N. The first two figures show the element mesh for the plate. The mesh is finest at the 
clamping where the strain gradients are steepest.  
 
In figure C.3 the plot shows the strain in the global �-direction. The figure says strain in �-
direction, but the reason is that the local coordinate system for the elements in the FEM-model 
is defined different than our global coordinate system, shown for instance in figure 5.3. 
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This appendix contains the plots of the strains and shear stresses along the plate axes, i.e. the �- 
and �-axis in figure 5.3. All strain plots are in the CSM surface layer (layer 8) in the bottom 
face. All stress plots are for the core. The plots are used to decide the distances when 
calculating the gradients in equation (2.48)-(2.53), and to compare the experimental and 
simulated results. The strain values are drawn (by hand) in the figures for the positions of all 
strain gauges in order to compare them with the experimental values.  
The plots must be as linear as possible in the area where we want to find the gradients. The 
gradients and distances are therefore drawn in the plots (also by hand) trying to keep them in a 
fairly linear area. In section 5.3 the distances are given and used in further calculations. 
Calculated and simulated strains and shear stresses are compared in section 5.7 and 6.3, 
respectively.             
The shaded “column” in the figures represents the position of the frame.   
  
 
All stresses have unit [MPa]. 
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D.1.1 Plots along the �-axis of the plate (Point 1) 
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D.1.2 Plots along the �-axis of the plate (Point 2) 
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D.2.1 Plots along the �-axis of the plate (Point 1) 
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D.2.2 Plots along the �-axis of the plate (Point 2) 
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