

FFI-rapport 2010/00411

LYBIN 6.0 – test report

Morten Bosseng, Elin Dombestein and Amund Gjersøe

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

15 February 2010

FFI-rapport 2010/00411

356901

P: ISBN 978-82-464-1706-6

E: ISBN 978-82-464-1707-3

Keywords

Akustisk deteksjon

Modellering og simulering

Programmering (Databehandling)

Approved by

Connie Elise Solberg Project Manager

Elling Tveit Director of Research

Jan Erik Torp Director

 2 FFI-rapport 2010/00411

English summary

The acoustic ray trace model LYBIN is a well established and frequently used sonar prediction

model owned by the Norwegian Defence Logistic Organisation. The model is used aboard navy

vessels as well as in training situations on shore. LYBIN has become an important tool in both

planning and evaluation of maritime operations, and earlier versions are already integrated in

combat system software, tactical decision aids and tactical trainers.

The calculation kernel of LYBIN is now implemented as a software module called LybinCom. In

addition there exists a graphical user interface which is used together with LybinCom to build a

stand alone executive application. We call this application LYBIN.

LybinCom has two different interfaces for data exchange with other software. The two interfaces

are the binary interface and the eXtensible Markup Language (XML) interface. The binary

interface enables fast transportation of large amounts of data to and from LybinCom. The XML

interface is not as fast, but is more robust because the format of the input files is not as strict. The

XML interface discards any parts of the input file it does not recognize.

On behalf of NDLO, the Norwegian Defence Research Institute (FFI) has been responsible for

testing, evaluation and further development of LYBIN since the year 2000. During this period,

two new versions of LYBIN have been released. LYBIN 6.0 was released in august 2009. This

document is a test report for LYBIN 6.0.

Most functional requirements to LYBIN 6.0 are tested well. When it comes to non-functional

requirements, some of the requirements are not tested or excluded from scope. In addition,

extensive verification tests are run through both interfaces. These are programmed in C#. Some

areas related to performance, value ranges and error handling should be further tested.

FFI-rapport 2010/00411 3

Sammendrag

Den akustiske strålegangsmodellen LYBIN er en etablert og mye brukt sonar ytelsesmodell som

eies av Forsvarets Logistikkorganisasjon. Modellen brukes både ombord på marinefartøy og i

treningssituasjoner på land. LYBIN er blitt et viktig verktøy både i planlegging og evaluering av

maritime operasjoner, og tidligere versjoner er allerede integrert i programvare for kampsystem,

taktisk beslutningsstøtte og taktiske trenere.

LYBINs beregningskjerne er nå implementert som en softwaremodul kalt LybinCom. I tillegg

eksisterer det et grafisk brukergrensesnitt som sammen med LybinCom brukes for å bygge en

frittstående eksekverbar applikasjon. Vi kaller denne frittstående applikasjonen for LYBIN.

LybinCom har to ulike grensesnitt for datautveksling med annen programvare. De to

grensesnittene er det binære grensesnittet og eXtensible Markup Language (XML) grensesnittet.

Det binære grensesnittet muliggjør rask transport av store mengder data til og fra LybinCom.

XML grensesnittet er ikke like raskt, men er mer robust fordi formatet til inputfilene ikke er så

rigid. XML grensesnittet forkaster de delene av inputfila det ikke gjenkjenner.

FFI har på vegne av FLO vært ansvarlig for test, evaluering og videreutvikling av LYBIN siden

år 2000. I løpet av denne perioden har to nye versjoner blitt utgitt. LYBIN 6.0 ble utgitt i august

2009. Dette dokumentet er en testrapport for LYBIN 6.0.

De fleste funksjonelle systemkrav til LYBIN 6.0 er testet godt. Når det gjelder ikke-funksjonelle

krav er det ikke like god dekningsgrad. Omfattende verifikasjonstesting programmert i C# er

gjennomført via begge grensesnitt. Områder relatert til ytelse, verdiområder og feilhåndtering bør

testes videre.

 4 FFI-rapport 2010/00411

Contents

1 Introduction 7

2 Overview of LYBIN 6.0 8

2.1 Making the application architecture 8

2.1.1 Use Cases 8

2.1.2 The application architecture of LYBIN 6.0 9

2.2 Implemented changes 11

2.3 How it will be used 13

3 Requirements 14

3.1 Functional requirements 14

3.2 Non-functional requirements 15

4 Test items 16

5 Test procedure 17

5.1 The process 17

5.2 The test cases 18

6 Test evaluation 18

6.1 Overall test evaluation 18

6.2 Detailed test evaluation per test item 18

6.2.1 Range dependent calculations 18

6.2.2 Precipitation 18

6.2.3 Calculations for passive sonar 19

6.2.4 Calculation of impulse response from a given point in the water volume 19

6.2.5 Calculation of travel time 19

6.2.6 New bottom loss model 19

6.2.7 Availability of results through binary and XML interface 19

6.2.8 Functions available through the binary and XML interface 19

6.2.9 The GUI 19

6.2.10 Improvement of reverberation algorithms 19

6.2.11 Denomination “dB” on all result data from LYBIN 20

6.2.12 Modification of format on message 20

6.2.13 Error handling 20

6.2.14 The binary interface 20

6.2.15 The XML interface 20

FFI-rapport 2010/00411 5

6.2.16 Security 20

6.3 Uncovered requirements 20

6.4 Areas not fully tested 21

7 Conclusion 21

References 22

Abbreviations 23

Appendix A Test cases 24

A.1 Input to the binary interface 24

A.1.1 Input parameters 24

A.1.2 Input environment dataset 36

A.2 Verification of result data via the binary interface 47

A.3 Comparison of parameters used via the binary interface versus via the

XML interface 50

A.4 Comparison of result data via the binary interface versus via the XML

interface 51

A.5 Comparison of result data from LYBIN 6.0 versus result data from LYBIN

4.0 55

A.6 GUI testing 58

A.6.1 First look 58

A.6.2 Setting parameters 59

A.6.3 Printing 60

A.6.4 NATO Bathy Message 60

A.6.5 View 60

A.6.6 Sonar self-noise 61

A.6.7 Environment Editor 62

A.6.8 Wind speed editor 63

A.6.9 Sound Speed editor 63

A.6.10 Bottom profile Editor 64

A.6.11 Bottom Type Editor 65

A.6.12 Bottom Loss Editor 65

A.6.13 Reverberation and noise Editor 66

A.6.14 Volume back scattering Editor 66

A.6.15 Bottom back scattering Editor 67

 6 FFI-rapport 2010/00411

1 Introduction

The acoustic ray trace model LYBIN is a well established and frequently used sonar prediction

model owned by the Norwegian Defence Logistic Organisation (NDLO). LYBIN is a range

dependent two-dimensional model. A detailed description of the model is given in [1].

On behalf of NDLO, the Norwegian Defence Research Institute (FFI) has been responsible for

testing, evaluation and further development of LYBIN since the year 2000. During this period,

two new versions of LYBIN have been released. LYBIN 6.0 was released in august 2009. This

document is a test report for LYBIN 6.0.

LYBIN 6.0 is implemented as a COM module (LybinCom) for the windows platform. In addition

there is a graphical user interface (GUI) which is used together with LybinCom in order to build a

stand-alone application. This GUI is totally redone; it is programmed in C# and new functionality

regarding range-dependency is added. The COM module enables LYBIN to interact with other

applications, such as mathematical models, web services, geographical information systems and

more.

The COM module has two different interfaces for data exchange. The two interfaces are the

binary interface and the eXtensible Markup Language (XML) interface. The interfaces are

described in detail in [2] and [3].

The purpose of this test report is to give a quality evaluation of LYBIN 6.0. Chapter 2 gives a

short overview of the product. Chapter 3 lists requirements derived from the project agreement

[4]. Chapter 4 lists the test items derived from the requirements and those which emerged during

the development period. Chapter 5 gives a brief description of the test process and chapter 6 gives

an evaluation of the quality by describing the testing performed on each test item. Chapter 7

concludes with lessons learned and recommendations for further testing. An appendix describing

the test cases used in LYBIN 6.0 testing ends this document.

FFI-rapport 2010/00411 7

2 Overview of LYBIN 6.0

2.1 Making the application architecture

Application architecture is the process of evaluating how to develop the application to meet the

user's functional needs, while following a defined structure. If done right, we can achieve a

maintainable and expandable application by defining the application architecture.

2.1.1 Use Cases

The architecture of LYBIN 6.0 is based on a Use Case model of the application, displayed in

Figure 2.1. The Use Case model defines roles and use cases to help architects and developers to

understand what type of roles the application is communicating with. The model also defines the

different roles to perform in the application.

uc Primary Use Cases

Lybin 6.0

Analyst

Load complete input
model

Edit input data

Sav e complete
model

Generate NATO
Bathy message

Compute ray trace

Load input data

NATO message sender

Figure 2.1 Use Case model for LYBIN 6.0

We have defined two different user roles for LYBIN: the analyst and the NATO message sender.

The analyst is the most common user role where LYBIN is used to compute raytraces. To be able

to compute, the role needs functionality to load or manually input data. The results must be

displayed on the screen. The user must also be able to save the input data used in computations.

 8 FFI-rapport 2010/00411

The NATO message sender is a role where an officer wants to convert a sound speed profile to a

defined NATO Bathy message format.

2.1.2 The application architecture of LYBIN 6.0

LYBIN 6.0 has a three layered architecture divided in the presentation-, domain- and data access

layer. We group classes that are related in packages, and display them as shown in Figure 2.2.

pkg Archtecture

DataAccess Layer

Domain Layer

Presentation Layer

Lybin Data Model

Lybin Results ModelInterfaces

AnalystViews

Data Access

NatoMessageSenderViews

«COM»
Components::LybinCom v6.0

«Add-on»
Components::

NatoMessageCreator

Figure 2.2 Package model of the LYBIN 6.0 architecture

The packages of classes assumed to be needed is as follows:

- AnalystViews: contains the user interfaces, and is dependent on the Lybin Data Model

and the Lybin Results Model.

FFI-rapport 2010/00411 9

- NatoMessageSenderViews is totally separated from the rest of LYBIN, and is thus

defined as a loose component to LYBIN 6.0 through its dependency to the

NatoMessageCreator.

- Lybin Data Model is a package containing the input data to the LYBIN calculation. It

implements interfaces defined in the Interfaces-package, and depends on LybinCom.

- Lybin Results Model is a package containing the result data from a LYBIN calculation. It

implements interfaces defined in the Interfaces-package, and depends on the Lybin Data

Model package.

- Interface is a package of interfaces used for polymorphism.

- NatoMessageCreator is a component that is an optional add-on to LYBIN 6.0.

- LybinCom v6.0 is a component which is vital for LYBIN 6.0

- Data Service Layer is a package containing classes for mapping data from a file format to

the Lybin Data Model, and depends on the Lybin Data Model package.

cmp Components

«COM»
LybinCom v6.0

ILybinModelCom

IModelData

IPlatform

ISensor

IPuls

IEnvironment

IOcean

Lybin 6.0

Written in C++
(Unmanaged memory)

Written in .NET
(Managed memory)

LybinDataModel

Interop.LybinCom

ILybinModelCom

IModelData

IPlatform

ISensor

IPuls

IEnvironment

IOcean

ILybinModelComBin

Lybin GUI

«Add-on»
NatoMessageCreator

ILybinModelComBin

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

Figure 2.3 Component model of LYBIN 6.0

LYBIN 6.0 is developed in two different environments: C#.NET with managed memory, and

C++ with unmanaged memory. This is due to legacy and efficiency. LybinCom is legacy code

developed and maintained in C++. C#.NET increases the developer's progress, but is not as

efficient when performing calculations. Thus Lybin's combination of C++ and C# is reasonable.

 10 FFI-rapport 2010/00411

As displayed in Figure 2.3, LYBIN 6.0 is a component dependent on LybinCom. LYBIN 6.0

contains the main parts of a user interface component called LYBIN GUI, a domain model

component called LybinDataModel, and a .NET wrapper for the COM called Interop.LybinCom.

LybinCom defined as a COM with a set of interfaces. This enables other developers to implement

LybinCom independent of the graphical user interface delivered by LYBIN 6.0.

NatoMessageCreator is a component automatically detected and used by LYBIN 6.0 if installed.

2.2 Implemented changes

The graphical user interface (GUI) is totally rebuilt to LYBIN 6.0. A detailed description of all

new functionality is out of scope for this document, but a brief introduction is provided here to

give an impression of the test effort.

The editors now use data grid views from .NET and data binding linked to these. Property grids

from .NET are also used in input parameter setting. Figure 2.4 gives an overview of the new GUI.

Figure 2.4 An overview of the new GUI.

More parameters to control the display of plots are added in a new tab. Figure 2.5 gives an

overview of the new tab for display parameters.

FFI-rapport 2010/00411 11

Figure 2.5 An overview of the new Display tab.

A new Environment plot is added. In addition to display this plot in a tab next to the Settings tab,

a dedicated editor is implemented. The editor gives possibilities to visualize environment input

parameters varying over a distance. The editor is displayed in Figure 2.6. Here the variation in

wind speed is given by the wave height, the variation in sound speed is given by the colours and

the variation in bottom type is displayed with shades of grey.

Figure 2.6 The Environment Editor.

All editors have been changed to use standard .NET forms components. However, additional

changes have been performed on some editors. One worth mentioned here is the new Sound

Speed Profile Editor. The new version of this editor supports range dependent input of sound

speed profiles. In addition, a visualisation of the profile is included. If files in format “edf” are

 12 FFI-rapport 2010/00411

imported, information about where the bathy drop has taken place will be displayed. The new

editor is displayed in Figure 2.7.

Figure 2.7 The Sound Speed Profile Editor in LYBIN 6.0.

The entering of parameters is adjusted to fit standard GUI components. Figure 2.8 gives an

example.

Figure 2.8 An example displaying how input of several values is solved in LYBIN 6.0.

2.3 How it will be used

LYBIN is an acoustic ray tracing software widely used by the Norwegian Navy for sonar

performance prediction. It is a stand alone executive application with a graphical user interface to

interact with the calculation kernel and to display calculation results [5].

FFI-rapport 2010/00411 13

The calculation kernel of LYBIN, LybinCom, is implemented as a COM module for the windows

platform in order to ease the integration with other applications such as weapons systems, training

simulators and planning tools.

The military employment of LYBIN adds stringent demands to the software regarding hardening

settings.

3 Requirements

The following requirements to new functionality were identified to LYBIN 6.0. These are

requirements that are derived from the Project Agreement document [6].

3.1 Functional requirements

Functional Requirements describe the features, behaviour, business rules and general

functionality that the new release must support.

Input requirements

 Range dependent bottom type

 Range dependent sound speed

 Range dependent wind speed

Calculation requirements

 Calculation of detection range for passive sonar.

 Calculation of beam travel time.

 Calculation of impulse response.

 Possibility to take precipitation into account in the calculations

 Calculation of range dependent thermal loss

Output requirements

 The calculated travel time shall be available on binary format.

 The calculated impulse response shall be available on binary format.

 It should be possible to define which result data that is going to be returned from LYBIN.

User Interface requirements

 The GUI shall handle range dependent data input and visualization.

Business rules requirements

 The reverberation algorithms shall be improved. Tests have shown that the error can be

up to 10 dB in some cases, this error will be corrected.

 Result data returned from LYBIN shall be given in decibel.

 To improve the calculation time over consecutive runs, LYBIN will have internal

memory so only parameters that differs from the previous run is needed as input.

 14 FFI-rapport 2010/00411

 A new model for calculation of bottom loss, valid for frequencies bellow 1 kHz, will be

included.

3.2 Non-functional requirements

The non-functional requirements typically describe performance criteria, reliability, security and

other operational parameters.

Performance

 The response time for the existing functions in LYBIN 4.0 shall not be extended in

LYBIN 6.0.

Extendibility

 It should be easy to extend functionality for treatment of existing result data.

 It should be easy to retrieve new result data

 It should be easy for other GUIs or applications to link to the kernel.

Security

 LYBIN shall run without any error under NSM’s server hardening settings. The

hardening settings are described in [7]. A security assessment from project P6344 – Ula

Class Sonar Upgrade is given in [8].

Documents

The following documents shall be written:

 An interface document describing the interface and how to integrate LYBIN into a third-

party solution.

 A user manual describing functionality accessed from the LYBIN GUI.

 A test report documenting the quality of the software.

 A test plan with test cases.

FFI-rapport 2010/00411 15

4 Test items

Some requirements were postponed and some were added during the development period. In

addition, more thorough testing of existing functionality was performed to ensure good quality.

No structured system test of functionality was performed on the previous releases. The project

therefore spent effort on testing the COM-module through the interfaces and through the

graphical user interface (GUI).

The GUI was totally rebuilt with C# to LYBIN 6.0. This resulted in a major part of the test effort

had to be performed on the GUI. But by accessing LYBIN through the GUI, a lot of other test

items were tested as well.

The following test items were identified in the test plan[9] and during the development period:

 Range dependent calculations.

 Taking precipitation into account.

 Calculations for passive sonar.

 Calculation of impulse response from a given point in the water volume.

 Calculation of beam travel time.

 Transmission loss related to passive calculations.

 New bottom loss model.

 Availability of all results on binary and xml format.

 Functions available through the binary and the xml interface.

 Full test of the GUI.

 Improvement of reverberation algorithms.

 Denomination “dB” on all result data from LYBIN.

 Modification of format on message.

 Error handling.

 Printing from GUI.

 Flags which indicate how bottom reverberation and bottom loss is calculated.

 New type of result data: Ambient Noise.

 Binary interface.

 Xml interface.

 Choice whether to use wave height or wind speed.

The following was excluded from the 6.0 scope:

 Implementation of control switches to control which calculations to be performed.

 Help functionality in GUI.

 Save results from GUI.

 16 FFI-rapport 2010/00411

5 Test procedure

5.1 The process

Much effort was spent on setting up test cases in Visual Studio 2008 Test Edition[10]. This was

done to form a basis of test cases to be run for all releases in the future. When updates were done

in the code, these programmed test cases were run to ensure that existing functionality did not

break. A clean run of the test cases indicates that the code has good quality and may be ready to

be released to the customer.

Some time was also used on studying test planning. There are several internet sites covering the

subject. The book “Software Testing with Visual Studio Team System 2008” [11] gave good help

during the implementation of the tests.

White-box testing was performed by the developers while they were implementing new

functionality. A dedicated test resource performed black-box testing with the programmed test

cases. In addition, some in-house resources were given access to a beta-version of the product for

testing.

An excel-sheet [12] was used to control the test process. The sheet had the following columns:

 ID

 Area

 Description

 Responsible

 Status

 Severity

 Comments/rev history

 Created by

 Date created

All found errors (defects) were inserted as rows in the sheet with product owner set as the

responsible. The defect was then distributed to the appropriate developer. All comments or

actions performed by the project members were noted in the column for comments along with

date and resource id. This sheet will of course be helpful when this test report is written, but also

in later releases when one tries to understand why a problem solution was chosen. A simple excel

sheet was chosen over a bug-tracking tool due to the fact that the project has a small number of

resources and did not prioritize to use the time to implement such a tool.

FFI-rapport 2010/00411 17

5.2 The test cases

Test cases that have been run on to the release of LYBIN 6.0 are described in Appendix A. Some

test cases are programmed, but some are manual test cases that have to be run by a user through

the LYBIN GUI.

6 Test evaluation

6.1 Overall test evaluation

The testing has focused on functionality and that the correct data is included in the calculations.

Some inspection is performed on the result data but further testing should be performed here to

ensure that they are correct.

The binary interface has been tested with many test cases. The quality is good when it comes to

functionality. A beta version of the product was also released to in-house users and they have

accessed LybinCom through the binary interface via Matlab [13].

Some problems linked to the XML interface have been discovered. The problems were solved

close up to the release, and some high-level testing has been performed. However, this area is not

as well tested as the access through the binary interface. High-level tests on sending input

parameters over the XML interface have been performed. Returning results as XML are

thoroughly tested.

The LYBIN GUI is totally rebuilt. In addition to implementation and testing, much effort has

been spent on evaluating how to implement functionality. This area has gone through extensively

testing compared to other test areas. However, the editors in the GUI could have been tested

further and there may still be errors especially linked to range dependent input requirements.

6.2 Detailed test evaluation per test item

6.2.1 Range dependent calculations

The functionality is tested through the GUI and with programmed test cases through the binary

interface. The code is stepped through and the resulting plots are visually checked for abnormal

changes of gradients and values. Range dependent sound velocity profiles are also used and

compared to measured data in [14] and [15].

6.2.2 Precipitation

The implemented code for this new functionality is implemented in Matlab[13] as well. Plots are

visually analyzed to ensure that the energy loss due to precipitation corresponds with the expected

loss for various frequencies.

 18 FFI-rapport 2010/00411

6.2.3 Calculations for passive sonar

The implementation of calculations for passive sonar is thoroughly described in [16]. Tests are

run that ensure that passive sonar parameters are used in the calculation. Tests are also run from

Matlab[13]. A sonar processing chain for passive calculations is prepared in Matlab and the

results are compared with the processing chain in LYBIN 6.0.

6.2.4 Calculation of impulse response from a given point in the water volume

The results are compared to the results from an impulse response prototype. Calculated impulse

response is also compared with simple analytical solutions in some cases.

6.2.5 Calculation of travel time

This test item is tested with constant sound velocity. The travel time result data is analyzed and

calculations are performed to come back to the sound velocity. The results are also compared to

the results from a beam travel time calculating prototype.

6.2.6 New bottom loss model

The new bottom loss model was first implemented in Matlab [13], where the calculated bottom

loss values were compared with the correct analytical solution. The bottom loss model was then

written into C++ code and included in LYBIN. The new bottom loss model in LYBIN is tested by

comparisons of calculated transmission loss with reference solutions including both single and

multiple bottom hits.

6.2.7 Availability of results through binary and XML interface

Most results are available through both interfaces. The new result data

AMBIENTNOISELEVELUSED [2] is available through both interfaces. Impulse response and

beam travel time are not available through the XML interface.

6.2.8 Functions available through the binary and XML interface

All functions described in [2] are available through the binary interface. However, there are only

general functions for model update and result retrieval available through the XML interface.

6.2.9 The GUI

The LYBIN GUI is totally rebuilt. In addition to implementation and testing, much effort has

been spent on evaluating how to implement functionality. This area has gone through extensively

testing compared to other test areas. However, the editors in the GUI could have been tested

further and there may still be errors especially linked to range dependent input requirements

6.2.10 Improvement of reverberation algorithms

The improvements are tested versus test cases described in [17].

FFI-rapport 2010/00411 19

6.2.11 Denomination “dB” on all result data from LYBIN

All result data are visually analyzed and run through some high-level programmed checks. The

calculated transmission loss included in the impulse response calculations is not given in decibels,

due to the costumer’s request.

6.2.12 Modification of format on message

The NATO Bathy message creator is an add-on to LYBIN 6.0, giving LYBIN functionality to

create a NATO Bathy message. This has been written according to ATP32 (D) [18]. The feedback

from the customer, after evaluating the functionality, has resulted in a change in the NATO Bathy

message functionality to be rewritten according to ATD32 (C) [19].

6.2.13 Error handling

This has been an ongoing activity while the product has been developed. The error handling from

the GUI has been greatly improved. Errors occurring in the kernel of LybinCom are normally

suppressed, and the calculation results will be empty. Improvements in error handling in

LybinCom concern the information sent through the COM interface. Now, when trying to fetch

empty results, a COMException is thrown along with a message: "No data available". In addition,

some basic error information is sent over the COM interface when the XML-parser is unable to

read a xml-string sent through ChangeModelData[2], and if some basic input parameters are

invalid when trying to run DoCalculation[2].

6.2.14 The binary interface

This interface has been thoroughly tested.

6.2.15 The XML interface

High-level tests on sending input parameters over the XML interface have been performed.

Returning results as XML are thoroughly tested.

6.2.16 Security

High-level tests are run on a virtual pc set up with the NSM hardening settings [7].

6.3 Uncovered requirements

Most functional requirements are covered. When it comes to non-functional requirements, some

of the requirements are not tested or omitted.

The response time for existing functions in LYBIN 4.0 has not been tested. However, the added

functionality in the new release have been mostly added as new functions and not implemented in

existing code. In addition, efficiency improvements are implemented in the existing code. We

therefore believe that the response times have not been heavily affected.

Documents listed in the non-functional requirements are produced. One document that is not yet

released is the GUI user manual. This document will be released the spring og 2010.

 20 FFI-rapport 2010/00411

The document describing the XML interface, [3], is obsolete to LYBIN 6.0. Our goal is to write a

new description of this interface within the next release. This description is also planned to

contain more extensive descriptions of how to access the XML interface.

6.4 Areas not fully tested

More extensive testing of result data was originally planned in the following areas:

 Comparison of result data with similar result data in the previous release.

 More extensive testing of setting input through the XML interface.

 Performance tests

 Tests of the valid value range of input parameters have not been performed on either

interfaces.

 Tests verifying correct exception handling for invalid values on input parameters have

not been fully performed on either interface.

 Validation of calculation results with other models and real measurements.

7 Conclusion

On behalf of NDLO, the Norwegian Defence Research Institute (FFI) has been responsible for

testing, evaluation and further development of LYBIN since the year 2000. During this period,

two new versions of LYBIN have been released. LYBIN 6.0 was released in august 2009. The

purpose of this report is to give a quality evaluation of LYBIN 6.0

Most functional requirements to LYBIN 6.0 are tested well. When it comes to non-functional

requirements, some of the requirements are not tested or excluded from scope. In addition,

extensive verification tests are run through both interfaces. These are programmed in C#. Some

areas related to data quality, performance, value ranges and error handling should be further

tested. These are described in Section 6.4.

In addition other testing should be considered:

 Send the new release to NURC for testing. NURC have run comparisons with other

models before. This is described in [20].

 Get an overview over the different coding languages/environments used to access

LybinCom. Set up test cases for these and run them.

 Analyze defects found after release, learn from them and build automated test cases to

avoid them in the future.

 Since the LYBIN GUI is new to LYBIN 6.0, more detailed testing of the various editors

should be considered.

FFI-rapport 2010/00411 21

References

 [1] S. Mjølsnes, "LYBIN SGP-180(C) - Model Description," The Royal Norwegian Navy

Materiel Command, Bergen,2000.

 [2] E. Dombestein, A. L. Gjersøe, and M. Bosseng, "LybinCom 6.0 - description of the binary
interface,"2009/00188, 2009.

 [3] E. Dombestein and S. Alsterberg, "LYBIN XML grensesnitt versjon 1," FFI Rapport
2006/00266, 2006.

 [4] "Oppdragsavtale mellom FFI og FLO angående "Videreutvikling av LYBIN", Kontraktsnr.
4500114743," Project agreement Oct.2008.

 [5] K. T. Hjelmervik, S. Mjølsnes, E. M. Dombestein, T. S. Såstad, and J. Wegge, "The
acoustic raytrace model Lybin - Description and applications, UDT 2008," 2008.

 [6] "Oppdragsavtale mellom FFI og FLO angående "Videreutvikling av LYBIN", Kontraktsnr.
4500114743," Project agreement Oct.2008.

 [7] Nasjonal sikkerhetsmyndighet, "Baseline SCE settings for W2003/XP,"2006.

 [8] KONGSBERG DEFENCE & AEROSPACE AS, "P6344 . Ula Class Sonar Upgrade,
Security Assessment Document," BEGRENSET 2008.

 [9] M. Bosseng, "LYBIN 6.0 - test plan," Internal working document 2009.

[10] "msdn.microsoft.com," 2009.

[11] S. Subashni and K. N Satheesh, Software Testing with Visual Studio Team System 2008
2008.

[12] "LYBIN 6.0 - issues document," Internal working document 2009.

[13] "www.mathworks.com," 2008.

[14] P. Østenstad, "Oseanografiske variasjoner i testområde for KNM Fridtjof Nansens
akseptansetester, mars 2007," FFI Rapport 2007/01313, 2007.

[15] H. S. Olsen, "Lydutbredelse i havområder med avstandsavhengig oseanografi,"
Masteroppgave 2008.

[16] S. Alsterberg and E. Dombestein, "Software specification of passive sonar calculations in
LYBIN 4.0," FFI Rapport 2005/03388, 2005.

[17] M. Collin, M. Ainslie, and R. v. Vossen, "Rumble 2: Technical Report on the Selection of
the Forward Model (DE04),"2009.

[18] "ATP 32(D) Navy - NATO handbook of military oceanographic information
services,"2008/01457, 2008.

 22 FFI-rapport 2010/00411

http://www.mathworks.com,/

[19] "ATP 32(C) Navy - Nato handbook of military oceanographic information

services,"2005/03950, 1999.

[20] S. M. Ferla, C. Isoppo, G. Martinelli, and F. B. Jensen, "Performance assessment of the
LYBIN-2.0 propagation model, SACLANTCEN SM-384,"2001.

Abbreviations

FFI Norwegian Defense Research Institute
NDLO Norwegian Defense Logistic Organization
LYBIN LYdBane og INtensitetsprogram (acoustic model)
XML Extensible Markup Language
COM Component Object Model

FFI-rapport 2010/00411 23

Appendix A Test cases

This appendix describes the test cases which were used for testing of the LYBIN 6.0 release.

Most tests will be programmed and run via Visual Studio 2008 [10]. But some tests was run

manually and via other software (e.g. Matlab [13]).

A.1 Input to the binary interface

The tests in this chapter verify that parameters and input dataset can be set programmatically from

C# code through the binary interface. XML is collected from LybinCom by running

GetResultModelData before and after parameters are set.

A.1.1 Input parameters

Description Expected result

Calculation Swithches

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter

BottomReverberationCalculation to false.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat a) – g) for:

- ProbabilityOfDetectionCalculation

- RayTraceCalculation

- SignalExcessCalculation

- SurfaceReverberationCalculation

- TransmissionLossFromTargetCalculation

- TransmissionLossToTargetCalculation

- VolumeReverberationCalculation

The two XMLs shall not be equal. Only

the altered value shall be changed.

DepthCells

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetDepthScaleAndDepthCells with

parameters 100 and 20.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

DepthCellSize should be 5.0 and the

value for DepthSteps should be 400.

 24 FFI-rapport 2010/00411

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

DepthCellSize-1

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetDepthScaleAndDepthCellSize with

parameters 100 and 5.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

DepthCells should be 20 and the value

for DepthSteps should be 400.

DepthCellSize-2

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetDepthCellSizeAndDepthSteps with

parameters 5 and 400.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

DepthScale should be 100 and the value

for DepthCells should be 20.

DepthScale

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetDepthScaleAndDepthSteps with

parameters 100 and 400.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

DepthCellSize should be 5 and the

value for DepthCells should be 20.

DepthSteps

This parameter is tested in the previous tests.

DepthStepSize

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

FFI-rapport 2010/00411 25

(startXML).

c) Call SetDepthScaleAndDepthSteps with

parameters 100 and 400.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

DepthStepSize should be 0,25.

ImpulseResponseCalculation

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter ImpulseResponseCalculation

to true.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

ImpulseResponseDepth

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter ImpulseResponseDepth to

99.0.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

NoiseCalculation

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter NoiseCalculation to false.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed.

 26 FFI-rapport 2010/00411

g) Collect the value from the actualXML and

compare it with the default value.

PassiveCalculation

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter PassiveCalculation to true.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

RangeCells

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetRangeScaleAndRangeCells with

parameters 100 and 20.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

RangeCellSize should be 5.0 and the

value for RangeSteps should be 200.

RangeCellSize-1

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetRangeScaleAndRangeCellSize with

parameters 100 and 5.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

RangeCells should be 20 and the value

for RangeSteps should be 200.

RangeCellSize-2

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetRangeCellSizeAndRangeSteps with

parameters 5 and 200.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

RangeScale should be 100 and the

value for RangeCells should be 20.

FFI-rapport 2010/00411 27

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

RangeScale

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetRangeScaleAndRangeSteps with

parameters 100 and 200.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

DepthCellSize should be 5 and the

value for DepthCells should be 20.

RangeSteps

This parameter is tested in the previous tests.

RangeStepSize

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Call SetRangeScaleAndRangeSteps with

parameters 100 and 400.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

The two XMLs shall not be equal. Only

the altered value shall be changed, they

shall be equal when the value is set

back to default. The value for

RangeStepSize should be 0,25.

TravelTimeAngleRes

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter TravelTimeAngleRes to 99.0.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

TravelTimeCalculation

a) Create an instance of

LybinModelComBinClass.

The two XMLs shall not be equal. Only

the altered value shall be changed.

 28 FFI-rapport 2010/00411

b) Collect XML with GetResultModel

(startXML).

c) Set parameter TravelTimeCalculation to true.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

TypeOfRevNoiseCalculation-1

a) Create an instance of

LybinModelComBinClass.

b) Insert various bottom types over the range.

c) Set parameter TypeOfRevNoiseCalculation

to 1.

d) Collect XML with GetResultModel

(startXML).

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

TypeOfRevNoiseCalculation will be set

to 0, since the value 1 indicates that a

bottom back scatter dataset is available.

TypeOfRevNoiseCalculation-2

a) Create an instance of

LybinModelComBinClass.

b) Insert a bottom back scattering dataset.

c) Set parameter TypeOfRevNoiseCalculation

to 1.

d) Collect XML with GetResultModel

(startXML).

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

The two XMLs will be equal since the

calculation switch is set to use the

available bottom back scattering

dataset.

TypeOfRevNoiseCalculation-3

a) Create an instance of

LybinModelComBinClass.

b) Insert a rev and noise dataset.

c) Set parameter TypeOfRevNoiseCalculation

to 0.

d) Collect XML with GetResultModel

(startXML).

e) Run calculation.

f) Collect XML with GetResultModel

TypeOfRevNoiseCalculation will still

be set to 0. The inserted rev and noise

dataset will be removed since it is not

used in the calculation.

FFI-rapport 2010/00411 29

(actualXML).

g) Inspect the actualXML

TypeOfRevNoiseCalculation-4

a) Create an instance of

LybinModelComBinClass.

b) Insert a rev and noise dataset.

c) Set parameter TypeOfRevNoiseCalculation

to 2.

d) Collect XML with GetResultModel

(startXML).

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

TypeOfRevNoiseCalculation will still

be set to 2. The inserted rev and noise

dataset will still be present since the

value 2 indicates that the rev and noise

dataset is to be used.

UseMeasuredBottomLoss-1

a) Create an instance of

LybinModelComBinClass.

b) Insert a bottom loss dataset.

c) Collect XML with GetResultModel

(startXML).

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Inspect the actualXML

The bottom loss dataset will not be

present since the parameter

UseMeasuredBottomLoss is not set to

true.

UseMeasuredBottomLoss-2

a) Create an instance of

LybinModelComBinClass.

b) Insert a bottom loss dataset.

c) Set the parameter UseMeasuredBottomLoss

to true.

d) Collect XML with GetResultModel

(startXML).

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

Both switch and dataset will be present

in the actualXML.

UseRayleighBottomLoss-1

a) Create an instance of

LybinModelComBinClass.

b) Insert a Rayleigh bottom loss dataset.

c) Collect XML with GetResultModel

(startXML).

d) Run calculation.

The Rayleigh bottom loss dataset will

not be present since the parameter

UseRayleighBottomLoss is not set to

true.

 30 FFI-rapport 2010/00411

e) Collect XML with GetResultModel

(actualXML).

f) Inspect the actualXML

UseRayleighBottomLoss-2

a) Create an instance of

LybinModelComBinClass.

b) Insert a Rayleigh bottom loss dataset.

c) Set the parameter UseRayleighBottomLoss to

true.

d) Collect XML with GetResultModel

(startXML).

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

Both switch and dataset will be present

in the actualXML.

UseRayleighBottomLoss-3

a) Create an instance of

LybinModelComBinClass.

b) Insert a Rayleigh bottom loss dataset.

c) Set the parameter UseRayleighBottomLoss to

true.

h) Insert a bottom loss dataset.

d) Set the parameter UseMeasuredBottomLoss

to true.

e) Collect XML with GetResultModel

(startXML).

f) Run calculation.

g) Collect XML with GetResultModel

(actualXML).

h) Inspect the actualXML.

Both switch and dataset will be present

in the actualXML.

UseMeasuredBottomLoss is overridden

by the rayleigh switch and will be set to

false. The Bottom loss dataset will be

removed.

VisualRayTraceCalculation

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter VisualRayTraceCalculation to

true.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

FFI-rapport 2010/00411 31

VisualSurfaceHits

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter VisualSurfaceHits to 99.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

VisualBottomHits

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter VisualBottomHits to 99.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

VisualNumRays

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter VisualNumRays to 99.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall not be equal. Only

the altered value shall be changed.

Other Model Parameters

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter MaxBorderHits to 99.

d) Run calculation.

The two XMLs shall not be equal. Only

the altered value shall be changed.

 32 FFI-rapport 2010/00411

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat a) – g) for:

- SignalExcessConstant

- TerminationIntensity

- TRLRays

Simple Ocean properties

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter AmbientNoiseLevel to 99.0.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat a) – g) for:

- PH

- ShipDensity

- SourceLevelTarget

- SurfaceScatterFlag

- TargetStrength

- TargetSpeed

The two XMLs shall not be equal. Only

the altered value shall be changed.

PrecipitationType

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter PrecipitationType to

PrecipitationType.LightRain.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat the procedure for

PrecipitationType.HeavyRain (2),

The two XMLs shall not be equal. Only

the altered value shall be changed. The

parameter should be set to 1, 2, 3 or 4.

FFI-rapport 2010/00411 33

Platform properties

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter Selfnoise to 99.0.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat step a) – g) for:

- SelfNoisePassive

- Speed

The two XMLs shall not be equal. Only

the altered value shall be changed.

Sensor properties

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter BeamWidthReceiver to 99.0.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat step a) – g) for:

- BeamWidthTransmitter

- CalibrationFactor

- Depth

- DetectionThreshold

- DirectivityIndex

- Frequency

- IntegrationTimePassive

- PassiveBandWith

- PassiveFrequency

- SideLobeReceiver

- SideLobeTransmitter

- SonarTypePassive

- SouceLevel

The two XMLs shall not be equal. Only

the altered value shall be changed.

 34 FFI-rapport 2010/00411

- SourceLevelPassive

- SystemLoss

- TiltReceiver

- TiltTransmitter

EnvelopeFunction

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter EnvelopeFunction to “test”.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall be equal. Altering

of this property should always give

“hann”.

Other Pulse properties

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter FilterBandWidth to 99.0.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

h) Repeat step a) – g) for:

- FMBandWidth

- Length

The two XMLs shall not be equal. Only

the altered value shall be changed.

Form

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set parameter Form “test”.

d) Run calculation.

e) Collect XML with GetResultModel

(actualXML).

f) Compare the two XMLs.

g) Collect the value from the actualXML and

compare it with the default value.

The two XMLs shall be equal in the

first case. Altering of this property to a

value other than “CW” should always

give “FM”.

The second case should give two

different XMLs.

FFI-rapport 2010/00411 35

h) Repeat a) to g) with “CW” as input.

A.1.2 Input environment dataset

Description Expected result

SetFirstSoundSpeedProfile

a) Set array:
 double[,] ssp = new
 double[2, 2];
 ssp[0, 0] = 5;
 ssp[0, 1] = 1480;
 ssp[1, 0] = 100;
 ssp[1, 1] = 1500;

b) Run method

SetFirstSoundSpeedProfile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7.34237407719774</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>12.454777078951</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

AddSoundSpeedProfile-1

Adding without SetFirst

a) Set array

b) Run method AddSoundSpeedProfile.

c) Run calculation

d) Run GetResultModelData

e) Check the resulting XML string

The new profile will be added to the first default

one. Therefore one should run the method

SetFirstSoundSpeedProfile first.

AddSoundSpeedProfile-2

Adding after SetFirst

a) Set array

b) Run method

SetFirstSoundSpeedProfile.

c) Set a new array

d) Run method AddSoundSpeedProfile

e) Run calculation

f) Run GetResultModelData

g) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7.34237407719774</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>12.454777078951</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
<SOUNDSPEEDPROFILE>
<START>20</START>
<STOP>40</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7.34237407719774</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>

 36 FFI-rapport 2010/00411

</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>12.454777078951</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>

SetFirstSalinityProfile

a) Set array:
 double[,] ssp = new
 double[2, 2];
 ssp[0, 0] = 5;
 ssp[0, 1] = 50;
 ssp[1, 0] = 100;
 ssp[1, 1] = 65;

b) Run method SetFirstSalinityProfile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>2.5324008720775</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>-2.52970563308613</TEMPERATURE>
<SALINITY>65</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>

AddSalinityProfile-1

Adding without SetFirst

a) Set array

b) Run method AddSalinityProfile.

c) Run calculation

d) Run GetResultModelData

e) Check the resulting XML string

The new profile will be added to the first default

one. Therefore one should run the method

SetFirstSalinityProfile first.

FFI-rapport 2010/00411 37

AddSalinityProfile-2

Adding after SetFirst

h) Set array

i) Run method

SetFirstSoundSpeedProfile.

j) Set a new array

k) Run method AddSoundSpeedProfile

l) Run calculation

m) Run GetResultModelData

n) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>2.5324008720775</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>-2.52970563308613</TEMPERATURE>
<SALINITY>65</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
SOUNDSPEEDPROFILE>
OUNDSPEEDPROFILE>
<START>20</START>
<STOP>40</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>2.5324008720775</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>-2.52970563308613</TEMPERATURE>
<SALINITY>65</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

SetFirstSoundSpeedAndSalinityProfile

a) Set array:
 double[,] ssp = new
 double[2, 3];
 ssp[0, 0] = 5;
 ssp[0, 1] = 1480;
 ssp[0, 2] = 50;
 ssp[1, 0] = 100;
 ssp[1, 1] = 1500;
 ssp[1, 2] = 65;

b) Run method SetFirstSalinityProfile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>2.5324008720775</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>2.24331394608708</TEMPERATURE>
<SALINITY>65</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>

AddSoundSpeedAndSalinityProfile-2

Adding after SetFirst

a) Set array

b) Run method

SetFirstSoundSpeedProfile.

c) Set a new array

d) Run method AddSoundSpeedProfile

e) Run calculation

f) Run GetResultModelData

g) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>2.5324008720775</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>2.24331394608708</TEMPERATURE>
<SALINITY>65</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>

 38 FFI-rapport 2010/00411

<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>2.5324008720775</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>2.24331394608708</TEMPERATURE>
<SALINITY>65</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

SetFirstSoundSpeedAndTempProfile

a) Set array:
 double[,] ssp = new
 double[2, 3];
 ssp[0, 0] = 5;
 ssp[0, 1] = 1480;
 ssp[0, 2] = 5;
 ssp[1, 0] = 100;
 ssp[1, 1] = 1500;
 ssp[1, 2] = 10;

b) Run method

SetFirstSoundSpeedAndTempProfile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>5</TEMPERATURE>
<SALINITY>42.2584246373972</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>42.029761904762</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>

AddSoundSpeedAndTempProfile-2

Adding after SetFirst

a) Set array

b) Run method

SetFirstSoundSpeedAndTempProfile.

c) Set a new array

d) Run method

AddSoundSpeedAndTempProfile

e) Run calculation

f) Run GetResultModelData

g) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>5</TEMPERATURE>
<SALINITY>42.2584246373972</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>42.029761904762</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>5</TEMPERATURE>
<SALINITY>42.2584246373972</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>42.029761904762</SALINITY>

FFI-rapport 2010/00411 39

<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

SetFirstTempProfile

a) Set array:
 double[,] ssp = new
 double[2, 2];
 ssp[0, 0] = 5;
 ssp[0, 1] = 700000;
 ssp[1, 0] = 100;
 ssp[1, 1] = 10;

b) Run method SetFirstTempProfile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>700000</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>75777670196249.2</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1491.42775</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

AddTempProfile-2

Adding after SetFirst

a) Set array

b) Run method SetFirstTempProfile.

c) Set a new array

d) Run method AddTempProfile

e) Run calculation

f) Run GetResultModelData

g) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1478.672257375</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1491.42775</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
<SOUNDSPEEDPROFILE>
<START>50</START>
<STOP>70</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>11</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1493.424205375</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>11</TEMPERATURE>
<SALINITY>35</SALINITY>
<SOUNDVELOCITY>1494.979201</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

SetFirstTempAndSalinityProfile

a) Set array:
 double[,] ssp = new
 double[2, 3];
 ssp[0, 0] = 5;
 ssp[0, 1] = 7;
 ssp[0, 2] = 50;
 ssp[1, 0] = 100;
 ssp[1, 1] = 10;

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1497.450757375</SOUNDVELOCITY>

 40 FFI-rapport 2010/00411

 ssp[1, 2] = 60;

b) Run method

SetFirstTempAndSalinityProfile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>60</SALINITY>
<SOUNDVELOCITY>1521.87775</SOUNDVELOCITY>
</PROFILE></SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

AddTempAndSalinityProfile-2

Adding after SetFirst

a) Set array

b) Run method

SetFirstTempAndSalinityProfile.

c) Set a new array

d) Run method

AddTempAndSalinityProfile

e) Run calculation

f) Run GetResultModelData

g) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1497.450757375</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>60</SALINITY>
<SOUNDVELOCITY>1521.87775</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
<SOUNDSPEEDPROFILE>
<START>20</START>
<STOP>25</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1497.450757375</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>60</SALINITY>
<SOUNDVELOCITY>1521.87775</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

SetFirstSoundSpeedTempAndSalinityProfile

a) Set array:
 double[,] ssp = new
 double[2, 4];
 ssp[0, 0] = 5;
 ssp[0, 1] = 1480;
 ssp[0, 2] = 7;
 ssp[0, 3] = 50;
 ssp[1, 0] = 100;
 ssp[1, 1] = 1500;
 ssp[1, 2] = 10;
 ssp[1, 3] = 60;

b) Run method

SetFirstSoundSpeedTempAndSalinityP

rofile.

c) Run calculation.

d) Run GetResultModelData.

e) Check the resulting XML string

<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>
<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>60</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

AddSoundSpeedTempAndSalinityProfile-2
<SOUNDSPEEDFILE>
<SOUNDSPEEDPROFILE>

FFI-rapport 2010/00411 41

Adding after SetFirst

a) Set array

b) Run method

SetFirstSoundSpeedTempAndSalinityP

rofile.

c) Set a new array

d) Run method

AddSoundSpeedTempAndSalinityProfi

le

e) Run calculation

f) Run GetResultModelData

g) Check the resulting XML string

<START>0</START>
<STOP>20</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>5</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1480</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>100</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>60</SALINITY>
<SOUNDVELOCITY>1500</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
<SOUNDSPEEDPROFILE>
<START>20</START>
<STOP>40</STOP>
<LATITUDE>0 S</LATITUDE>
<LONGITUDE>0 W</LONGITUDE>
<DATE></DATE>
<TIME></TIME>
<PROFILE>
<DEPTH>10</DEPTH>
<TEMPERATURE>7</TEMPERATURE>
<SALINITY>50</SALINITY>
<SOUNDVELOCITY>1000</SOUNDVELOCITY>
</PROFILE>
<PROFILE>
<DEPTH>50</DEPTH>
<TEMPERATURE>10</TEMPERATURE>
<SALINITY>60</SALINITY>
<SOUNDVELOCITY>1000</SOUNDVELOCITY>
</PROFILE>
</SOUNDSPEEDPROFILE>
</SOUNDSPEEDFILE>

SetWindSpeedMeasurement

Setting windspeedmeasurements

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set array:
 double[,] ws = new
 double[2, 3];
 ws[0, 0] = 0;
 ws[0, 1] = 5;
 ws[0, 2] = 2;
 ws[1, 0] = 5;
 ws[1, 1] = 4;
 ws[1, 2] = 10;

d) Set parameter

WindSpeedMeasurements to ws.

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

The two XMLs shall not be equal. Only the

altered value shall be changed.

SetWaveHeight - 1 The two XMLs shall be equal.

 42 FFI-rapport 2010/00411

Setting waveheight without setting parameter

UseWaveHeight.

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set array:
 double[,] wh = new
 double[2, 3];
 wh[0, 0] = 0;
 wh[0, 1] = 5000;
 wh[0, 2] = 1;
 wh[1, 0] = 5000;
 wh[1, 1] = 10000;
 wh[1, 2] = 2;

d) Set parameter Waveheight to wh.

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

SetWaveHeight - 2

Setting waveheight with parameter

UseWaveHeight.= true.

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set array:
 double[,] wh = new
 double[2, 3];
 wh[0, 0] = 0;
 wh[0, 1] = 5000;
 wh[0, 2] = 1;
 wh[1, 0] = 5000;
 wh[1, 1] = 10000;
 wh[1, 2] = 2;

d) Set parameter Waveheight to wh.

e) Set parameter UseWaveHeight to true.

f) Run calculation.

g) Collect XML with GetResultModel

(actualXML).

h) Compare the two XMLs.

The two XMLs shall not be equal.

SetBottomProfile

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Set array:

The two XMLs shall not be equal.

FFI-rapport 2010/00411 43

 double[,] bp = new
 double[2, 2];
 bp[0, 0] = 0;
 bp[0, 1] = 300;
 bp[1, 0] = 1000;
 bp[1, 1] = 380;

i) Set parameter BottomProfile to bp.

j) Run calculation.

k) Collect XML with GetResultModel

(actualXML).

d) Compare the two XMLs.

SetBottomLoss

a) Create an instance of

LybinModelComBinClass.

b) Set array:
 double[,] bl = new
 double[3, 2];
 bl[0, 0] = 10;
 bl[0, 1] = 4.2;
 bl[1, 0] = 30;
 bl[1, 1] = 6.4;
 bl[2, 0] = 80;
 bl[2, 1] = 9;

c) Run method SetFirstBottomLossTable

d) Collect XML with GetResultModel

(startXML).

e) Set array:
 double[,] bl2 = new
 double[3, 2];
 bl2[0, 0] = 20;
 bl2[0, 1] = 8.2;
 bl2[1, 0] = 60;
 bl2[1, 1] = 18.4;
 bl2[2, 0] = 160;
 bl2[2, 1] = 18;

f) Run method AddBottomLossTable

l) Run calculation.

m) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

h) Pick the first BottomLossTable with

GetBottomLossTable

The two XMLs shall not be equal.

SetBottomType

a) Create an instance of

LybinModelComBinClass.

b) Collect XML with GetResultModel

(startXML).

c) Sett array:
 double[,] bt = new
 double[2, 3];

The two XMLs shall not be equal.

 44 FFI-rapport 2010/00411

 bt[0, 0] = 0;
 bt[0, 1] = 5;
 bt[0, 2] = 4;
 bt[1, 0] = 5;
 bt[1, 1] = 10;
 bt[1, 2] = 2;

d) Set parameter BottomType to bt.

e) Run calculation.

f) Collect XML with GetResultModel

(actualXML).

g) Compare the two XMLs.

SetBottomBackScatter

a) Create an instance of

LybinModelComBinClass.

b) Sett array:
 double[,] bc = new
 double[3, 2];
 bc[0, 0] = 10;
 bc[0, 1] = 35;
 bc[1, 0] = 30;
 bc[1, 1] = 25;
 bc[2, 0] = 80;

 bc[2, 1] = 23;

c) Run method

SetFirstBottomBackScatterTable

d) Collect XML with GetResultModel

(startXML).

e) Set array:
 double[,] bc = new
 double[3, 2];
 bc[0, 0] = 20;
 bc[0, 1] = 65;
 bc[1, 0] = 60;
 bc[1, 1] = 45;
 bc[2, 0] = 160;

 bc[2, 1] = 43;

f) Run method

AddBottomBackScatterTable

g) Set parameter

TypeOfRevNoiseCalculation to ‘1’.

h) Run calculation.

i) Collect XML with GetResultModel

(actualXML).

j) Compare the two XMLs.

k) Pick the first BottomBackScatterTable

with GetBottomBackScatterTable

The two XMLs shall not be equal.

SetVolumeBackScatter

a) Create an instance of

LybinModelComBinClass.

The two XMLs shall not be equal.

FFI-rapport 2010/00411 45

b) Sett array:
 double[,] vc = new
 double[2, 2];
 vc[0, 0] = 10;
 vc[0, 1] = 35;
 vc[1, 0] = 30;
 vc[1, 1] = 25;

c) Run method

SetFirstVolBackScatterTable

d) Collect XML with GetResultModel

(startXML).

e) Set array:
 double[,] vc2 = new
 double[3, 2];
 vc2[0, 0] = 20;
 vc2[0, 1] = 65;
 vc2[1, 0] = 60;
 vc2[1, 1] = 45;

f) Run method AddVolBackScatterTable

g) Run calculation.

h) Collect XML with GetResultModel

(actualXML).

i) Compare the two XMLs.

j) Pick the first VolBackScatterTable

with GetVolBackScatterTable

 46 FFI-rapport 2010/00411

A.2 Verification of result data via the binary interface

This section verifies that the result data over the binary interface contains reasonable data values

(dB).

Description Expected result

Transmission loss from transmitter to target

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘0’.

d) Check that the values are dB-values within

the area -160 to 250.

All returned values shall be from -160

db to 250 dB. 0 in intensity from

LYBIN is interpreted as -160 dB.

Transmission loss from target to receiver

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘1’.

d) Check that the values are dB-values within

the area -160 to 250.

All returned values shall be from -160

db to 250 dB. 0 in intensity from

LYBIN is interpreted as -160 dB.

Signal Excess

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘2’.

d) Check that the values are dB-values within

the area -160 to 250.

All returned values shall be from -160

db to 250 dB. 0 in intensity from

LYBIN is interpreted as -160 dB.

Probability of detection

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘3’.

d) Check that the values are dB-values within

the area 0 to 100.

All returned values shall be from 0 to

100.

Total reverberation

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘4’.

d) Check that the values are dB-values within

the area -160 to 250.

All returned values shall be from -160

db to 250 dB.

Surface reverberation All returned values shall be from -160

FFI-rapport 2010/00411 47

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘5’.

d) Check that the values are dB-values within

the area -160 to 250.

db to 250 dB.

Volume reverberation

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘6’.

d) Check that the values are dB-values within

the area -160 to 250.

All returned values shall be from -160

db to 250 dB. 0 in intensity from

LYBIN is interpreted as -160 dB.

Bottom reverberation

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘7’.

d) Check that the values are dB-values within

the area -160 to 250.

All returned values shall be from -160

db to 250 dB.

Noise after processing

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘8’.

d) Check that the values are dB-values within

the area -160 to 250.

The returned value shall be from -160

db to 250 dB.

Ambient noise

a) Run LybinCom with default parameters.

b) Create array to handle return values from

method GetResultsBin.

c) Run GetResultsBin with parameter ‘9’.

d) Check that the values are dB-values within

the area -160 to 250.

The returned value shall be from -160

db to 250 dB.

Travel time

a) Run Lybincom with default parameters.

b) Set TravelTimeCalculation to true.

c) Collect TravelTimePathCount (number of

beams)

d) Collect TravelTimePathLength (number of

point in a selected beam)

e) Collect the values using functions

TravelTimePathAsDoubleArray and

The values should be returned in a

double array and an array of type

TravelTimePoint.

 48 FFI-rapport 2010/00411

TravelTimePath.

Ray trace

a) Run LybinCom with default parameters.

b) Collect VisualRayTracePathCount (number

of beams)

c) Collect VisualRayTraceLength (number of

point in a selected beam)

d) Collect the values using functions

GetVisualRayTrace.

The values should be returned in a

double array.

Impulse response

a) Set PassiveFrequency to 500.

b) Set Rayleigh bottom loss parameters.

c) Set UseRayleighBottomLoss to true.

d) Set ImpulseResponseCalculation to true.

e) Set ImpulseResponseDepth to 100.

f) Run LybinCom.

g) Collect number of ranges calculated with

ImpulseResponseNumranges.

h) Collect number of families at a specified

range with

GetImpulseResponseNumFamilies.

i) Specify parameters:

string familyName,

double intensity

double meanArrivalTime

double arrivalTimeStandardDeviation

double phase

double firstArrival

j) Collect an ImpulseResponseFamily for a

defined range and family with the specified

parameters as output parameters. Use the

method GetImpulseResponseFamilyAsArray.

The values should be returned in an

object.

GetAllResults

a) Run LybinCom with default parameters.

b) Run GetAllResults

The resulting XML-file should

contain all available result data.

FFI-rapport 2010/00411 49

A.3 Comparison of parameters used via the binary interface versus via the XML

interface

In this section the parameters are altered in two instances of the binary and the XML interface

respectively. LYBIN calculations are performed for both instances and the used model is

compared. The tests will reveal if any parameters are not set correct through the XML interface

since the binary interface already is tested for errors in setting already.

One test case which will apply for all input parameters will be described here. How the test cases

will differ can be derived from the test cases described in A.1.

Description Expected result

BottomReverberationCalculation

a) Create one instance of

LybinModelComBinClass (binary interface)

and one instance of LybinModelComClass

(XML interface).

b) Set BottomReverberationCalculation to false

in the binary interface.

c) Run DoCalculation() through the binary

interface.

d) Run GetResultModelData through the binary

interface and return XML string.

e) Create an instance of LybinModelData, set

the property

DoBottomReverberationCalculation to false.

f) Serialize the LybindataModel to a string.

g) Run ChangeModelData with the string.

h) Run DoCalculation() through the XML

interface.

i) Run GetResultModelData through the XML

interface and return XML string.

j) Compare the XML strings.

The two XMLs shall be equal.

 50 FFI-rapport 2010/00411

A.4 Comparison of result data via the binary interface versus via the XML

interface

This section describes the use cases for comparison of the result data received via the binary and

the xml interface.

Description Expected result

Transmissionloss from transmitter to target

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘0’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘0’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

Transmissionloss from target to receiver

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘1’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘1’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

Signal Excess

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘2’ over the

All returned values shall be equal

with a tolerance of 0.000001.

FFI-rapport 2010/00411 51

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘2’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

Probability of detection

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘3’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘3’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

Total reverberation

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘4’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘4’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

Surface reverberation

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘5’ over the

xml-interface.

All returned values shall be equal

with a tolerance of 0.000001.

 52 FFI-rapport 2010/00411

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘5’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

Volume reverberation

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘6’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘6’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

Bottom reverberation

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘7’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘7’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

Noise after processing

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘8’ over the

xml-interface.

d) Create array to handle return values from

All returned values shall be equal

with a tolerance of 0.000001.

FFI-rapport 2010/00411 53

method GetResultsBin.

e) Run GetResultsBin with parameter ‘8’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

Ambient noise

a) Instantiate LybinModelComClass and

LybinModelComBinClass. Run LybinCom

via both interfaces, i.e. xx.DoCalculation().

b) Create string to handle return values from

method GetResults.

c) Run GetResults with parameter ‘9’ over the

xml-interface.

d) Create array to handle return values from

method GetResultsBin.

e) Run GetResultsBin with parameter ‘9’ over

the binary interface.

f) Compare each result in the xml-string with

the corresponding value in the array.

All returned values shall be equal

with a tolerance of 0.000001.

 54 FFI-rapport 2010/00411

A.5 Comparison of result data from LYBIN 6.0 versus result data from LYBIN 4.0

Obviously, only result data that are included in the LYBIN 4.0 release can be tested. To avoid

differences due to the random effect in the surface reflection modelling, the wind speed is set to

zero during the comparison.

The comparison of the two releases was performed in Matlab[13]. LYBIN 4.0 can not be started

externally, so this simulation was initiated through the graphical user interface, and the results

saved to file. The calculation kernel of LYBIN 6.0 was initiated directly from Matlab.

Several test cases have been compared. They do not differ much from each other, so just one

example is included here. The difference between LYBIN 4.0 and LYBIN 6.0 is not expected to

be high. The accuracy of the transmission loss in LYBIN 4.0 is known to be good[20], so just

minor improvements should be visible in the plots.

Figure 7.1 to Figure 7.3 shows transmission loss. The difference between the two simulations is

below 1 dB at most ranges. The greatest difference is close to the source, where some

modifications have been done during the development process. One can see marks from some of

the calculated rays in the difference plot, which means that the difference propagates along the

rays.

Figure 7.4 to Figure 7.6 shows reverberation curves. The difference in total reverberation is below

3 dB at all ranges. The bottom reverberation calculations have been improved in LYBIN 6.0,

resulting in higher bottom reverberation values than before. This improvement is not so visible in

this case though. The volume reverberation is unchanged between the two models, except for the

first returned value that has been corrected in the LYBIN 6.0 release. The surface reverberation

differ the most between the two releases in this test case. It can be seen from Figure 7.3 that the

difference in transmission loss is increased near the surface between 1 and 3 kilometers, witch

probably also is the cause of the difference in the surface reverberation in this area.

FFI-rapport 2010/00411 55

Range [km]

D
ep

th
 [

m
]

1 2 3 4 5 6 7 8 9

50

100

150

200

250

-90

-80

-70

-60

-50

-40

Figure 7.1 Transmission loss calculated with default input parameters in LYBIN 4.0 shown in

dB.

Range [km]

D
ep

th
 [
m

]

1 2 3 4 5 6 7 8 9

50

100

150

200

250

-90

-80

-70

-60

-50

-40

Figure 7.2 Transmission loss calculated with LYBIN 6.0. The transmission loss is calculated

with input parameters as default in LYBIN 4.0, and is shown in dB.

Range [km]

D
ep

th
 [

m
]

1 2 3 4 5 6 7 8 9

50

100

150

200

250
0

2

4

6

8

10

Figure 7.3 Difference in transmission loss between LYBIN 6.0 and LYBIN 4.0. The transmission

loss is calculated with input parameters as default in LYBIN 4.0, and is shown in dB.

 56 FFI-rapport 2010/00411

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Range

dB
//

1u
P

a

Surface

Bottom
Volume

Total

Figure 7.4 Reverberation curves calculated with default input parameters in LYBIN 4.0.

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Range

dB
//

1u
P

a

Surface

Bottom
Volume

Total

Figure 7.5 Reverberation curves calculated with LYBIN 6.0. The reverberation is calculated

with inputparameters as default in LYBIN 4.0.

0 2 4 6 8 10
-20

-10

0

10

20

30

Range [km]

dB
//

1u
P

a

Surface

Bottom

Volume

Total

Figure 7.6 Difference in reverberation between LYBIN 6.0 and LYBIN 4.0. The reverberation is

calculated with input parameters as default in LYBIN 4.0

FFI-rapport 2010/00411 57

A.6 GUI testing

This chapter describes the use-cases used to test LYBINs user interface.

A.6.1 First look

Description Expected result

Check of buttons and menus

a) Click all buttons and enter all menu options

All options should give

reasonable output.

Check of shortcuts

b) Go through then menu and test all shortcuts

All shortcuts should result in

the described action.

Inspection of the saved default model

c) Run a computation

d) Save the model-file

e) Visually check the saved model

All fields should exist within

the xml with default values.

Inspection of the saved model - 2

a) Do various changes in the Sonar-tab

b) Save the model-file

c) Visually check the saved model

All fields should exist within

the xml with altered values.

Inspection of the saved model - 3

a) Do various changes in the Ocean&Target-tab

b) Save the model-file

c) Visually check the saved model

All fields should exist within

the xml with altered values.

Inspection of the saved model - 4

a) Do various changes in the ModelParameters-

tab

b) Save the model-file

c) Visually check the saved model

All fields should exist within

the xml with altered values.

Inspection of the saved model - 5

a) Do various changes in the Display-tab

b) Visually check the plots.

The altering should result in

correct visual results.

 58 FFI-rapport 2010/00411

A.6.2 Setting parameters

Parameter Default Min Max
Depth 5 0,1 12000
Min depth 5 0,1 12000
Max depth 5 0,1 12000
Tilt transmitter 4 -90 90
Tilt receiver 4 -90 90
Min tilt (down) 4 -90 90
Max tilt (up) 4 -90 90
Sidelobe transmitter 13 5 43
Sidelobe receiver 13 5 43
Beam width transmitter 15 1 360
Beam width receiever 15 1 360
Relative bearing 45 0 359
Calibration factor 0 -20 20
Detection threshold 10 -100 100
Effect level 0 0 50
Frequency [kHz] 7 0,2 100
Directivity index [dB] 1 -100 100
Source level [dB] 221 0 500
Pulse length [ms] 60 0 30000
Filter bandwidth [Hz] 100 0 10000
FM bandwidth [Hz] 100 0 10000
System loss [dB] 0 -20 20
Integration time passive [s] 1 0,001 100
Passive band width [Hz] 100 0 10000
Source level passive [dB] 100 0 500
Processing gain noise
Processing gain reverberation

Not implemented.

Table 1 Limit values for sonar parameters.

Description Expected result

First look

a) Click all open fields and ensure that it

is possible to set all values according to

Table 1.

b) Inspect the GUI and ensure that the

correct fields are open for input.

c) Ensure that the combo boxes have the

correct permitted values.

d) Ensure that the correct cross-checking

of values are in place.

All values should be within the value ranges

defined in Table 1.

Run LYBIN with limit values

a) Run LYBIN for all limit values

mentioned in Table 1 one at a time.

LYBIN should run fine with all values.

FFI-rapport 2010/00411 59

Run LYBIN with limit values

a) Run LYBIN for set of limit values

mentioned in Table 1.

LYBIN should run fine with all set of values.

Run LYBIN with sonarparameters from file

a) Modify an xml to have values outside

the limit values.

b) Importe the model.

c) Run LYBIN.

The values should be set to the nearest permitted

value and LYBIN should run fine.

A.6.3 Printing

Description Expected result

Print – before calculation

a) Open LYBIN GUI.

b) Click Lybin -> print preview

c) Click Lybin -> print

A message “Nothing to print”

Print preview

a) Open LYBIN GUI.

b) Run a calculation.

c) Click Lybin -> Print preview

Observe that the raytrace can be printed.

Print

a) Open LYBIN GUI.

b) Run a calculation.

c) Click Lybin -> Print

d) Choose a printer and click “print”

The raytrace is printed on the selected printer.

A.6.4 NATO Bathy Message

Description Expected result

Message

a) Open NATO bathy message creator

b) Enter addresser and receiver

c) Confirm formatted message

d) Save and print document

A message containing a bath measurement

formatted according to ATP-32 (D) [18].

A.6.5 View

Description Expected result

View

a) Click through the various options

beneath the menu option View.

Switching between multi pane, single pane and

history mode is possible.

 60 FFI-rapport 2010/00411

A.6.6 Sonar self-noise

Create a default data model by clicking File --> Save Data Model

Click the Edit --> Ship, Sonars & Self noise

Description Expected result

Edit ship – first test

a) Click the edit ship button to access the

Ship Editor.

b) Add three sectors with the combo box

“Num sectors”, give the four rows

increasing values and press ok.

c) Save the data model with File --> Save

Data Model and inspect it.

The self-noise plot and the saved data model

should reflect the given values.

Edit ship – noise measurements for various

combinations

a) Click the edit ship button to access the

Ship Editor.

b) Use the Sonar depth, the frequency and

the ship speed to create combinations

with associated noise measurements.

The self-noise plot and the saved data model

should reflect the given values.

Edit ship – noise measurements for various

combinations - 2

a) Save the ship file to xml by clicking

Save.

b) Inspect the saved file.

The saved data model should reflect the given

values.

Edit ship – noise measurements for various

combinations - 3

a) Reload the default data model, File -->

Load Data Model

b) Go to the Ship Editor

c) Click Open and select the saved ship-

file.

The noise calculations should be loaded.

Edit ship – ship info

a) Edit the ship parameters and the noise

measurement info parameters

b) Save the ship file

c) Save the data model

Both the saved data model and the saved ship-

file should reflect the given values.

Edit ship – add sonars

a) Add a new sonar to the defined ship in

the bottom section of the Ship Editor.

b) Enter a new name

c) Click the button Edit Sonar, set the

parameters and press OK.

Both the saved data model and the saved ship-

file should reflect the given values.

FFI-rapport 2010/00411 61

d) Save the ship file.

e) Save the data model.

Edit ship – add pulse to the added sonar.

a) Load the case from the previous test

case.

b) Add a new pulse to the sonar

c) Set the parameters and press OK.

d) Save the sonar file.

e) Save the ship file.

f) Save the data model.

The saved data model, the saved ship-file and the

saved sonar file should reflect the given values.

A.6.7 Environment Editor

Create a default datamodel by clicking File --> Save Data Model

Click the Edit --> Environment

Description Expected result

Environment overview – add wind speed

a) Open the wind speed editor

b) Add some different wind speeds

c) Click OK.

The environment plot should show waves on the

top of the plot where the heights are dependent

of the wind speed values.

Environment overview – add sound speed

a) Open the sound speed editor

b) Add two profiles

c) Click OK.

The colouring in the environment plot should

reflect the sound speed values.

Environment overview – add bottom profile

a) Open the bottom profile editor

b) Add bottom depth values.

c) Click OK.

The bottom in the environment plot should

reflect the bottom profile.

Environment overview – add bottom types

a) Open the bottom type editor

b) Add two bottom types

c) Click OK.

The bottom colouring in the environment plot

should reflect the bottom types.

Environment overview – accessing the other

editors

a) Open the volume Backscatter editor

b) Add some values to two different

collections along the distance

c) Click OK to get back to the

environment editor.

d) Open the Bottom Backscatter editor

e) Add two values along the distance

f) Click OK to get back to the

environment editor.

g) Open the BottomLoss editor

The goal here is to check that the file with the

saved data model contains all data.

 62 FFI-rapport 2010/00411

h) Add two values along the distance

i) Click OK to get back to the

environment editor.

j) Open the ReverberationAndNoise

editor

k) Add two values.

l) Click OK to get back to the

environment editor.

m) Save the data model and inspect it.

Environment overview – Scales

a) Modify the scales

The environment plot should update accordingly.

Environment overview – Zooming

a) Click Allow zoom

b) Modify range and depth

The environment plot should update accordingly.

A.6.8 Wind speed editor

Description Expected result

Adding windspeed measurements

a) Add lineswith start/stop/velocity.

b) Try overlap, too high values, too low

values, unsorted values

c) Save the windspeed profile with Save

and inspect it.

d) Save the data model with File --> Save

Data Model and inspect it.

e) Run calculation.

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

Edit, delete

a) Load the default model again.

b) Load the saved windspeed profile.

c) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

a) Insert values and click Cancel

b) Open the editor again.

No values should have been updated.

A.6.9 Sound Speed editor

Description Expected result

Setting sound speed – first tests

a) Add lines with

depth/tempeature/salinity/soundspeed

samples.

b) Try overlap, too high values, too low

values, unsorted values

c) Save the sound speed profile with Save

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

FFI-rapport 2010/00411 63

and inspect it.

d) Save the data model with File --> Save

Data Model and inspect it.

e) Run calculation.

Edit, delete

a) Load the default model again.

b) Load the saved bottom loss profile.

c) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

a) Insert values and click Cancel

b) Open the editor again.

No values should have been updated.

Delete sound speed profiles in range

a) Insert several profiles

b) Delete profiles by clicking the “X”-

button in the lower toolbar.

c) Save the data model with File --> Save

Data Model and inspect it.

The profile should be deleted

Add edf sound speed profiles

a) Insert a profile

b) Add a new saved edf profile.

c) Save the data model with File --> Save

Data Model and inspect it.

The edf profile added should appear as a new

profile in the data model.

A.6.10 Bottom profile Editor

Load the default xml-model.

Description Expected result

Setting bottom profile – first tests

a) If the bottom is not flat, click “Clear

bottom”.

b) Click in the editor and verify that a

bottom profile is created.

c) Click OK

d) Run LYBIN

e) Save the data model and inspect it

The saved data model should reflect the given

values. The plots should show the new bottom

profile.

Modifying bottom profile

a) Modify by dragging the points around

in the plot.

b) Save the profile from the bottom

editor.

The range, depth should be visible all the time.

Bottom type should be visible while the mouse is

over the bottom.

Modifying model scales

a) Modify the model scale parameters. Set

a higher range.

b) Modify the bottom through the whole

The model scales should be updated when

running LYBIN. Opening of old bottom profiles

should be possible.

 64 FFI-rapport 2010/00411

range.

c) Save the profile from the bottom

editor.

d) Import the bottom profile from the

previous test case.

e) Click OK

f) Run LYBIN.

Zooming

a) Click “Allow zoom”.

b) Vary the values in “Editable Area”.

c) Click OK and run LYBIN.

It should be possible to zoom in on a bottom

profile. The LYBIN calculations should not be

affected.

Adjust scales

a) Modify the model depth.

b) Click OK and run LYBIN.

c) Open the bottom editor again.

d) Click “Adjust Scale”.

The lowest point will be placed at the bottom

line in the plot.

Clear bottom

a) Click “Clear Bottom”.

The bottom should be a flat bottom which fit the

bottom of the editor.

A.6.11 Bottom Type Editor

Description Expected result

Setting bottom type – first tests

a) Add lines with start/stop/bottom type.

b) Try overlap, too high values, too low

values, unsorted values

c) Save the bottom type profile with Save

and inspect it.

d) Save the data model with File --> Save

Data Model and inspect it.

e) Run calculation.

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

Edit, delete

a) Load the default model again.

b) Load the saved bottom type profile.

c) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

a) Insert values and click Cancel

b) Open the editor again.

No values should have been updated.

A.6.12 Bottom Loss Editor

Description Expected result

Setting bottom loss – first tests

f) Add lines with start/stop/bottom loss

samples.

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

FFI-rapport 2010/00411 65

g) Try overlap, too high values, too low

values, unsorted values

h) Save the bottom loss profile with Save

and inspect it.

i) Save the data model with File --> Save

Data Model and inspect it.

j) Run calculation.

Edit, delete

d) Load the default model again.

e) Load the saved bottom loss profile.

f) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

c) Insert values and click Cancel

d) Open the editor again.

No values should have been updated.

A.6.13 Reverberation and noise Editor

Description Expected result

Setting RevAndNoise – first tests

a) Add lines with rang/value samples.

b) Try overlap, too high values, too low

values, unsorted values

c) Save the profile with Save and inspect

it.

d) Save the data model with File --> Save

Data Model and inspect it.

e) Run calculation.

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

Edit, delete

a) Load the default model again.

b) Load the saved bottom loss profile.

c) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

a) Insert values and click Cancel

b) Open the editor again.

No values should have been updated.

A.6.14 Volume back scattering Editor

Description Expected result

Setting volume back scattering – first tests

a) Add lines with start/stop/bottom loss

samples.

b) Try overlap, too high values, too low

values, unsorted values

c) Save the bottom loss profile with Save

and inspect it.

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

 66 FFI-rapport 2010/00411

FFI-rapport 2010/00411 67

d) Save the data model with File --> Save

Data Model and inspect it.

e) Run calculation.

Edit, delete

a) Load the default model again.

b) Load the saved bottom loss profile.

c) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

a) Insert values and click Cancel

b) Open the editor again.

No values should have been updated.

A.6.15 Bottom back scattering Editor

Description Expected result

Setting bottom back scattering – first tests

a) Add lines with start/stop/bottom

backscatter samples.

b) Try overlap, too high values, too low

values, unsorted values

c) Save the bottom loss profile with Save

and inspect it.

d) Save the data model with File --> Save

Data Model and inspect it.

e) Run calculation.

The saved data model should reflect the given

values. The plots should give another result than

with no measurements.

Edit, delete

a) Load the default model again.

b) Load the saved bottom back scattering

profile.

c) Delete lines and edit values

The saved profile should be loaded and altering

should be possible.

Cancel

a) Insert values and click Cancel

b) Open the editor again.

No values should have been updated.

	1 Introduction
	2 Overview of LYBIN 6.0
	2.1 Making the application architecture
	2.1.1 Use Cases
	2.1.2 The application architecture of LYBIN 6.0

	2.2 Implemented changes
	2.3 How it will be used

	3 Requirements
	3.1 Functional requirements
	3.2 Non-functional requirements

	4 Test items
	5 Test procedure
	5.1 The process
	5.2 The test cases

	6 Test evaluation
	6.1 Overall test evaluation
	6.2 Detailed test evaluation per test item
	6.2.1 Range dependent calculations
	6.2.2 Precipitation
	6.2.3 Calculations for passive sonar
	6.2.4 Calculation of impulse response from a given point in the water volume
	6.2.5 Calculation of travel time
	6.2.6 New bottom loss model
	6.2.7 Availability of results through binary and XML interface
	6.2.8 Functions available through the binary and XML interface
	6.2.9 The GUI
	6.2.10 Improvement of reverberation algorithms
	6.2.11 Denomination “dB” on all result data from LYBIN
	6.2.12 Modification of format on message
	6.2.13 Error handling
	6.2.14 The binary interface
	6.2.15 The XML interface
	6.2.16 Security

	6.3 Uncovered requirements
	6.4 Areas not fully tested

	7 Conclusion
	References
	Abbreviations
	Appendix A Test cases
	A.1 Input to the binary interface
	A.1.1 Input parameters
	A.1.2 Input environment dataset
	A.2 Verification of result data via the binary interface
	A.3 Comparison of parameters used via the binary interface versus via the XML interface
	A.4 Comparison of result data via the binary interface versus via the XML interface
	A.5 Comparison of result data from LYBIN 6.0 versus result data from LYBIN 4.0
	A.6 GUI testing
	A.6.1 First look
	A.6.2 Setting parameters
	A.6.3 Printing
	A.6.4 NATO Bathy Message
	A.6.5 View
	A.6.6 Sonar self-noise
	A.6.7 Environment Editor
	A.6.8 Wind speed editor
	A.6.9 Sound Speed editor
	A.6.10 Bottom profile Editor
	A.6.11 Bottom Type Editor
	A.6.12 Bottom Loss Editor
	A.6.13 Reverberation and noise Editor
	A.6.14 Volume back scattering Editor
	A.6.15 Bottom back scattering Editor

