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S. Baheerathan* and O.K. Hagen 

Norwegian Defence Research Establishment, P.O.Box 25, N-2027, Kjeller, Norway 

ABSTRACT   

A typical unmanned aerial system combines an Inertial Navigation System (INS) and a Global Navigation Satellite 
System (GNSS) for navigation. When the GNSS signal is unavailable, the INS errors grow over time and eventually 
become unacceptable as a navigation solution. Here we investigate an image-aided inertial navigation system to cope 
with GNSS failure. The system is based on tightly integrating inertial sensor data with position data of image-feature-
points that corresponds to landmarks over an image sequence. The aim of this experiment is to study the challenges and 
the performance of the image-aided inertial navigation system in realistic flight with an Octocopter. The system 
demonstrated the ability to cope with the GNSS failure by reducing the position drift drastically compared to the position 
drift of free-inertial. 
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1. INTRODUCTION  
A precise and robust navigation system is very important for an Unmanned Aerial Vehicle (UAV). In a typical UAV 
navigation system, this is fulfilled by combining data from an Inertial Navigation System (INS) and the position data 
from a Global Navigation Satellite System (GNSS). When the GNSS signal is unavailable, INS alone can only provide 
an acceptable solution for a short time before the INS error exceeds acceptable limits. Therefore, there is a need for an 
alternative to the GNSS-aided navigation system, to cope with GNSS failure. 

 One of the main research activities to reduce the dependency on GNSS-aided navigation is image-aided navigation. The 
Norwegian Defence Research Establishment (FFI) has been investigating an image-aided inertial navigation system to 
cope with GNSS failure1-12. All the developed systems track image-feature-points (T in Figure 1) in video streams or 
image sequences, from a monocular camera. In the earlier approaches2-4 these were integrated with a flight dynamics 
model, and a digital terrain model (DTM) for initial estimate of the range to the landmark (L in Figure 1), in an Extended 
Kalman Filter (EKF). In6 this was further developed by integrating an inertial measurement unit (IMU) in a strap-down 
INS implementation, where there is no longer a need for a flight dynamics model. The last system developed9 is also 
based on a tight integration with an INS using an error-state EKF, but has no need for a DTM, or any other world 
models. 

 

 

 

 

 

 

 

 

 

Figure 1. A landmark (L) is a static point on a surface in the scene. The image-feature-point (T) is the projection of this 
landmark onto the image plane via a camera model. 
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As a continuation of image-aided inertial navigation research at FFI, this work studies the performance and the 
challenges of the image-aided inertial navigation system in a realistic UAV flight with an Octocopter. In the previous 
method9, tracking of image-feature-points was guided by the current estimates from the Kalman filter. In the present 
system, tracking of image-feature-points is not necessarily guided by the estimate from the Kalman filter, and is 
therefore able to also run independently from the Kalman filter. A major advantage with this improvement is the ability 
to independently filter tracks of unreliable image-feature-points before integration with the Kalman filter.  

The paper is organized as follows: Related work is presented in Section 2. Section 3 describes the studied image-aided 
inertial navigation system in brief and Section 4 details the inertial navigation system integration. Section 5 presents the 
experimental setup and the performance of the studied image-aided INS is presented in Section 6. Section 7 presents the 
summary 

 

2. RELATED WORK 
An image-aided inertial navigation system, which integrates imaging sensors with inertial sensors, is able to cover the 
limitations and deficiencies of a standalone system13-16. In general, there are two architectures for vision and INS 
integration: loosely-coupled and tightly-coupled. In the loosely-coupled architecture, the position and the attitude 
obtained by the camera images are used to aid the INS. In the tightly-coupled architecture, the pixel coordinates of 
feature positions in an image, instead of the position and attitude obtained from them, are fused with inertial 
measurements. Performance of the tightly and loosely-coupled architecture is compared by simulation in17.   

Tight integration with image features and INS have been done by several authors. Although the name inverse depth is 
used in18, the parameterization used herein is different. In18 camera position, direction and inverse distance to landmarks, 
6 states per landmark, are added to the state vector, while we only use 3 states per landmark: normalized pinhole 
coordinates and inverse depth along the optical axis. The parameterization we use for the landmark states is the one in19 
that used a single landmark in a local frame. In20 the parameterization was extended to multiple landmarks in a global 
frame. The latter two works used a direct Unscented Kalman Filter (UKF) in the implementation of the INS. In our 
approach, we use an INS with an error-state (indirect) EKF. 

This work also builds on9-10.  There, the image-feature-points are tracked using feature vector computed from the circular 
integral of pixel values5, and tracking is guided by the current estimates from the Kalman filter, meaning that the 
tracking is performed within a search region around a predicted pixel position. Here we instead use the Kanda-Lucas-
Tomasi (KLT) tracker21-23 which does not use search region. Then the tracking runs independently from the Kalman 
filter, so that it is possible to independently filter unreliable tracks. Another difference is that we now exploit the 
structure of the differential equations to solve these more efficiently, and accurately. 

3. IMAGE-AIDED INERTIAL NAVIGATION SYSTEM 
The concept of the image-aided inertial navigation system is illustrated in Figure 2. The integrated navigation tool 
NavLab24 is used to integrate the imaging sensor with the inertial navigation sensors. Initially, ranges to the landmarks 
are set by the approach described in11 (more details in Section 4). 

Then, at each time step, the INS computes the estimation of the aircraft’s state, and this estimate is used together with the 
landmark positions by the Kalman filter to predict the positions of the image-feature-points along with their 
uncertainties. 

In9, tracking of the image-feature-points was guided by the current estimates from the INS, by projecting the estimated 
uncertainties of the Kalman filter into a search region in the image pixel plane. The image processing unit then tracked 
the image-feature-points within these search regions, and their tracked positions were used to update the Kalman filter of 
the INS. Using these search regions are beneficial for real-time tracking. However, in the tightly-coupled system, we 
found that unreliable tracks could affect the navigation solution adversely12.  

 

Proc. of SPIE Vol. 10640  106400J-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/10/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Camera Image processing
unit

IL

1

1

Predicted image-feature- point;
positions with search regions

INS

Tracked image- feature-
points positions

1 Kalman Filter

Inertial Measurement unit Navigation Equations
1

Error reset

 
 

 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2. Image-aided inertial navigation system 

In the current system, the image processing unit tracks the image-feature-points without necessarily using prediction or 
search regions from the Kalman filter (dashed line in Figure 2). The image processing unit runs independently from the 
Kalman filter. Thus, the current system is not as tightly integrated as the system in9. This is beneficial for the possibility 
of independent filtering of the unreliable tracks, and it also gives the possibility to test and develop the tracking process 
independently of the Kalman filter, which saves execution time in offline processing. However, the current system has 
the possibility to also use the search regions around the predicted positions to track the image-feature-points. 

 

3.1 Image processing 

The image processing unit performs image-feature-points selection, tracking and validation. The image-feature-points 
selection process has two steps. In the first step, image-feature-points are selected within a predefined region in an image 
using one of the standard feature detection methods such as SIFT25, SURF26, ORB27, FAST28 or Harris29. Here we used 
the ORB method. Then the image-feature-points that have high scores of goodness measure (Harris corner measure29), 
and an intra distance above a predefined distance, are selected for tracking. An algorithm for identifying image-feature-
points which correspond to static points is presented in9. Each selected image-feature-point is represented by an image-
patch of 27 x 27 pixels around its position8. 

The selected image-feature-points are tracked in the consecutive images of an image sequence using the KLT23 tracking. 
KLT makes use of spatial intensity information in different levels of image pyramid to search for the position that yields 
the best match.  

The validation process has three steps. In the first step, the image-feature-points that are identified as invalid by the KLT 
tracker are not accepted. The accepted points undergo step 2 and 3. In step 2, tracked image-feature-points which have 
pixel positions outside the predefined image border are not accepted. In the third step, template matching based on 
normalized cross-correlation (NCC30) is performed between the image-patch which represents an image-feature-point 
and the image-patch around its tracked pixel position. The image-feature-points which have NCC values less than a 
predefined threshold are not accepted. When the number of accepted tracked image-feature-points is less than a 
predefined minimum required number, new image-feature-points are selected and added to the KLT tracker. 
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4. INERTIAL NAVIGATION SYSTEM INTEGRATION 
4.1 Reference systems 

We introduce the following notation for the reference systems: 
 

• I – an earth centered inertial reference frame. 
• E  – an earth-fixed earth centered reference frame. 
• L  – a local level reference frame with origin in the platform body. 
• B  – a body-fixed reference frame with the same origin as L . 
• cB – a camera reference frame with origin at camera focal point, x-axis outwards along optical axis, y-axis right 

and z-axis down. 
• imuB - a body-fixed reference frame with origin and axes defined by the particular IMU sensor. 

•  C – image plane at 1x = in cB , y- and z-axis aligned with cB . 

• P – pixel plane, origin at top-left image corner, y- and z-axis aligned with C . 
 

By landmark we mean a point on a surface that is static in the E reference frame. A landmark-projection-point is the 
projection of a landmark on to the C image plane, while an image-feature-point is the corresponding point in the P pixel 
plane. 

In the mathematical description below, we will for notational convenience only, assume that B = Bimu = Bc. The real 
implementation of the system described herein, however, compensates for the different lever arms and alignments 
between the different sensors and the platform. 

 

4.2 Strap-down inertial navigation 

A strap-down INS is based on integrating measurements from a body-fixed IMU, assumed now in B. The INS solves a 
set of differential equations, based on Newton’s 2nd law with accelerometer and gyro input, to estimate velocity, position 
and orientation of B. We use a wander azimuth mechanization31 frame L for these equations. 

The orientation is then represented by the rotation matrix from the navigation frame to L to B, LBR . The velocity vector 

of B w.r.t E, decomposed in L, is represented by L
EBv , and the horizontal position is represented by the rotation matrix 

from E to L, ELR ,  while scalar L
EBz   denotes the vertical position. 

The strap-down differential equations are then given by31 

 

( ( ))B T T E L
LB LB IB LB EL IE EL= − +R R S ω R R ω ω   

(2 )L B T E L L L
EB LB IB EL IE EL EB IB= − + × +v R f R ω ω v g      (1) 

                                           ( )L
EL EL EL=R R S ω   

                                          , .L L
EB EB zz v=    

In order to solve (1), we use gyro measurements for B
IBω   , specific force measurements for B

IBf   , while E
IEω  is a model 

of earth-rotation, and L
IBg   is the local plumb-bob gravity model. The last missing term, L

ELω , is the turn-rate of the 
navigation frame that depends on the platform’s velocity and the local earth curvature31.  
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4.3 Error-state extended Kalman filter 

To implement the INS integration, we use NavLab 4, a flexible version of NavLab described in24 that allows for a 
programmable state vector. NavLab 4 is a software package in MATLABTM, developed by FFI that implements an error-
state EKF32 based on INS error equations derived from equation (1).  

NavLab 4 can also integrate a variety of aiding sensors to the INS, e.g. GPS, pressure sensor, magnetometer, through 
measurements updates to the error-state EKF. There are then two main computation loops in NavLab 4, the navigation 
equations (1) solved at IMU-rate, and the error-state EKF running at the combined aiding sensors measurements rates. 
We denote the nominal error-states, including any bias of the usual aiding sensors of the EKF by INSδx . 

4.4 Tight integration with inverse depth parameterization 

In the Kalman filter integration of the camera measurements, each landmark i  is first given by three coordinates 
( , , )i i iX Y Z  in the camera reference system, which we, for notational simplicity only, assumed to be the same as B . 

When we project the landmark on the image plane at 1X =  , we get the two normalized pinhole coordinates 
( , )i iy z C∈  of the landmark–projection-point i . The last parameter we use to complete the parameterization is the 

inverse depth iρ   of the landmark-projection-point9, 19-20. The inverse depth is the reciprocal of the distance iX   along 

the optical axis from the camera’s focal point to the landmark, as shown in Figure 3, i.e. 
1

i
iX

ρ = .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Inverse depth parameterization of a landmark. 

 

In order to integrate this with the INS, we differentiate the inverse depth parameterization with time, exploiting that the 
landmark is static in E , and get the following differential equation for the landmark-projection-point9-10 
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R v ω






                (2) 

Here  B
EBω  denotes the angular velocity of the body with respect to E , which we find from the gyro measurements, 

compensating for the earth rotation and the turn-rate of the navigation frame. Since equation (2) depends on (1), but not 
the other way around, we can solve (2) efficiently. First we integrate the strap-down equations (1) at IMU-rate between the 
EKF measurements. The landmark-projection-points are then updated over this time interval by analytical triangulation9. 
The triangulation ensures that the solution from the integration of (1) and (2) satisfy the epipolar constraint33. 

The low order of non-linearity in (2) makes it feasible to integrate with the error-state EKF. The error states of the inverse 
depth parameterization of the landmarks in (2) are denoted by ,lm iδx . The corresponding error-state differential equation 
is found to first order by a Taylor series expansion of the differential equation in (2). Since (2) is dependent on the INS 
solution, we recognize that the differential equations establishes correlation between INSδx  and ,lm iδx , including gyro 

errors, but also between different landmark–projection-point error states ,lm jδx and ,lm iδx .  

Our complete error state then consists of nominal INS states and the landmark–projection-point states, 3 per current 
landmarks being tracked. When a landmark–projection-point goes out of the camera’s field-of-view, it is discarded and the 
states are recycled for use by a new landmark.  

The measurement equation of the EKF is straightforward, depending only on the camera model. For example, for a camera 
with effective focal length ( , )y zf f , optical axis center ( , )y zc c  and radial distortion coefficient k0, we get 

 

                                                    
 2 2

0

 0
(1 ( )) .

0    

P C
y yi i

i i
i iz z

f cy y
k y z

z zf c
      

= + + +      
      

             (3) 

Because of the correlations established by (2), these measurement updates (3) will contribute to the estimation of the INS 
states, but also to the estimation of the inverse depth of the landmark, if the motion of the camera allows this to become 
observable34. 

One major problem is the initialization of the inverse depth for a new landmark. We adopt the heuristic approach 
suggested in18, were the initial guess of ρ  follows from a requirement that it should be Gaussian distributed with a 95% 

confidence interval from a configurable near range, minX , of the camera and to infinity, i.e. [ ]min0,  1/ X .  

 

 

5. EXPERIMENTAL SETUP 
FFI’s experimental UAV, Freefly CineStar 8 octocopter (Figure 4) is used this study. It is 1240 mm in diameter and 
weighs 3640 g. With payload and batteries, the weight is close to 11 kg. The onboard data collection system consists of 
three Grasshopper-3 cameras from PointGrey, an MTi100 MEMS IMU from Xsens, a u-blox GPS receiver, a solid state 
disk (SSD) with 512 GB and a Pico 880 microcomputer from Axiomtek. The microcomputer is connected to the three 
cameras through a USB 3.0 interface. The computer controls the camera exposure and stores the image data on the SSD. 
Each camera provides gray-scale images with 12 Hz frame rate and resolution of 2448 x 2040 pixels. 
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Figure 4. Freefly CineStar 8 Octocopter 

The IMU is mounted over the middle camera. The navigation sensors are read out by a custom FPGA-based logging 
board which also triggers the cameras. Navigation data are time stamped and stored on an SD card together with the time 
stamp of the trigger pulses. The three cameras are mounted on a metal plate with a fixed angle between them such that 
the field-of-view within the cameras has an overlap. The whole data collection system is mounted under the octocopter 
(Figure 5).   

 
 

 

 

 

 

 

 

 

 

Figure 5. Onboard data collection system mounted under the Octocopter 

The experimental data is collected using the octocopter with the rig shown in Figure 5 in a flight in winter conditions at 
Eggemoen airstrip, about 90 km north-west of Oslo, Norway. Sample images from all three cameras are shown in Figure 
6. The selected image-feature-points in the upper camera are shown in Figure 6(a). 
 

 

 

 

 

 

                   (a)                              (b)                               (c) 

Figure 6. Sample images from all three cameras. (a) Upper camera image with selected image-feature-points  (b) Mid 
camera image (c) Down camera image 
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The purpose of having three cameras is to track image-feature-points for a long time through all three cameras. Image-
feature-points that fall outside the field-of-view of a camera can be tracked in the adjacent camera’s field-of-view. 
However, only the images from the upper camera are used in this study. The reason is that the images from the mid and 
down camera have no texture (snow only) in most of the images, as illustrated in the Figure 6. 
 

6. PERFORMANCE 
The data is processed and analyzed offline using the integrated navigation tool NavLab 4. The IMU data and GPS data 
are post-processed with the smoother in NavLab 4 and provide a reference data set for the flown position (north, east and 
altitude) and orientation of the Octocopter. 

A GPS denied scenario (free-inertial) is simulated by disabling the GPS data after 900 seconds from the start for 430 
seconds (900-1330) in NavLab 4. The Figures 7, 8 and 9, show the position drift of the free-inertial compared to the 
reference position in north, east and altitude respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Position drift of free-inertial in north direction compared to the reference position. 

 

 

 

 

 

 

 
 
 
 
 

 

 
Figure 8. Position drift of free-inertial in east direction compared to the reference position. 
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Figure 9. Altitude drift of free-inertial compared to the reference altitude. 

The position drift of free-inertial in north and east direction is about 10000 m and in altitude 1000 m within 430 seconds. 
The position drift clearly describes the vulnerability of missing GPS for a short time, especially when using MEMS 
IMU. 

The proposed image-aided INS is tested with image data (6 image-feature-points with 2 Hz frequency) and IMU data 
within the period of GPS failure (900–1330 sec.). The trajectory (Figure 10) and the position data of image-aided INS 
are compared with the reference data. 

 

 

 

 

 

 

 

 

 

                                  

                                                                                                                                                                                       

 

 

 
 
 
 

Figure 10. Comparison of flight trajectory. Left:  Whole trajectory. Right: Trajectory at the beginning. Reference trajectory 
(green). Image-aided trajectory (blue). 
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Figure 10 shows that the image-aided trajectory (blue) closely follows the reference trajectory (green). Note in particular 
the similarities of the small curved trajectories at the beginning (Figure 10- right). However, there is an increased 
difference between the image-aided and the reference trajectory at the end. 

Figure 11, 12 and 13 shows the position drift of the image-aided INS compared to the reference position in north, east 
and altitude respectively. In addition, the figures show the standard deviation (1 sigma) estimated by the EKF (blue 
dashed line) which depends on the models of the uncertainty of the sensors and the trajectory flown. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Position drift of the image-aided INS in north direction compared to the reference position and the estimated error 
(one sigma) by EKF (dashed line). 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 12. Position drift of the image-aided INS in east direction compared to the reference position and the estimated error 
(one sigma) by EKF (dashed line). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Altitude drift of the image-aided INS compared to the reference altitude and the estimated error (one sigma) by 
EKF (dashed line) 
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The position drift in all three directions, north, east and altitude, is within 5 m in 430 seconds. Comparing the position 
drift of free-inertial with position drift of image-aided INS, the image-aided INS reduces the drift drastically. The 
position drift in north and east direction is reduced from 10000 m to 4 m, and in altitude from 1000 m to 5 m. The drift 
reduction clearly demonstrates the performance of the proposed image-aided INS. 

The position drift can be analyzed further by looking the root-mean-square (RMS) of the position drift in the north-east 
directions (horizontal direction) as shown in Figure 14 with the corresponding RMS of the standard deviations by the 
EKF. 

 

 

 

 

 

 

 

 

 

Figure 14. RMS of the position drift in horizontal direction of the image-aided INS compared to the reference position and 
the corresponding RMS of the standard deviations estimated by the EKF (dashed line). 

Figure 14 shows that the error increased within 1070-1100 seconds and stabilized afterwards within the estimated 
standard deviation by the EKF. The comparison of the drift with the estimated standard deviation shows that the drift in 
all directions, north, east, altitude and north-east, is insignificant until 1070 seconds, and slightly over the standard 
deviation after that. The video data shows that the Octocopter is hovering and in slow motion until 1070 seconds, and 
then begin to move faster. The IMU data shows that the Octocopter made a sharp maneuver at 1070 seconds and a 
couple of times later in the run. 

There could be a number of direct and indirect reasons for the error to increase. The image data under sharp maneuvers 
does not contain any tracked image-feature-points for aiding the INS, because of a total shift in the camera’s field-of-
view. Thus, the image-aided INS is in a free-inertial state, which causes the error to increase rapidly. This probably 
explains some of the variations in error throughout the flight. 

The consistent drift from 1070-1100 is, however, probably due to a different reason, and we have not concluded on this 
yet. One hypothesis is that the EKF becomes overconfident in its estimation of the inverse depth of the image-feature-
points when the Octocopter is hovering, which first leads to a bias in the estimate of the landmark positions. When it 
starts moving, this bias will be transformed into the EKF estimate of the velocity as a scale factor error, which again 
leads to drift in the position error. 

The problem of losing image-feature-point tracks due to sharp maneuvering could be solved by having a rig of 3 cameras 
with overlapping fields of view in horizontal directions, or the aircraft could be maneuvered more gently. If the other 
drift is caused by overconfidence in the EKF, this could be addressed by improved modelling, possibly using a higher 
order filter, if the bias is caused by nonlinearities, or by ensuring that the epipolar constraint is also satisfied by the EKF 
measurements update. 

7. SUMMARY 
 

The proposed image-aided inertial navigation system which integrates inertial sensor data with position data of image-
feature-points was tested with a realistic data set from a UAV flight with an octocopter. A rig of 3 cameras with 
overlapping fields-of-views in vertical direction and an onboard data collection system were used. Only the images from 
the upper camera were used in this experiment. 
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The comparison of the trajectories of the reference data with the proposed image-aided INS shows that the image-aided 
trajectory closely follows the reference trajectory, especially the small curve trajectory at the beginning. The image-aided 
INS reduced the drift drastically compared to the position drift of the free-inertial. The drift is insignificant, and well 
within the estimated standard deviation, for a time interval from the start when the aircraft is hovering in slow motion. 
After the motion begins there is a lager relative drift, but the overall drift reduction demonstrates the ability and the 
performance of the proposed system. 

Sharp maneuvers of an aircraft are quite normal in UAV operations. These kinds of maneuvers lead the image-aided INS 
to a free-inertial state and increase the drift. It may be handled by having a rig of multiple cameras in horizontal and/or 
vertical directions with overlapping field-of-views. We have also proposed that the overconfidence in the EKF is a 
possible explanation for the consistent drift for a short interval of the flight and suggested various improvements in the 
INS integration to address this.    
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