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(U) Summary

Numerous chemical and biological agents can be lethal or cause permanent human injury. Through
evaporation or aerosolization, many such agents can be dispersed through air and subsequently be
inhaled by people. The concentration of a toxic agent in air, required to estimate the inhaled dosage,
is highly case-dependent and difficult to ascertain. For a given scenario, extensive experimental
work or rigorous numerical simulations are needed to get a good estimate of how the concentration
field varies in space and time, thereby enabling estimation of e.g. human casualty rates.

The present report aims to show how human casualty rates can be estimated by numerical
simulations of dispersion of a released toxic agent in air. The goal is to increase the general
understanding of realistic indoor dispersion processes, as well as to demonstrate the possibilites of
advanced numerical simulation methods to assess consequences of specific threat scenarios. An
indoor scenario at a conference center is used to exemplify how numerical simulations can quantify
the potential consequences, such as casualty rates and time available for evacuation, of the release
of a CB agent. Such results can help improve risk assessment and consequence evaluation within
both civil emergency preparedness and military operations.
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(U) Sammendrag

Biologisk eller kjemisk terror, der biologiske eller kjemiske stoffer benyttes for å skade eller ta livet av
sivile, er en trussel med store potensielle konsekvenser. Flere kjemiske og biologiske trusselstoffer
kan være dødelige eller forårsake varig helseskade. Ved fordamping eller aerosolisering kan slike
stoffer spres gjennom lufta og derved pustes inn av mennesker. Konsenstrasjonen av et giftig stoff i
luft er sterkt scenarioavhengig og vanskelig å fastslå, men kunnskap om dette er nødvendig for å
beregne inhalert dose. Det kreves ofte omfattende eksperimentelt arbeid eller detaljerte numeriske
simuleringer for å få et godt anslag over hvordan konsentrasjonsfeltet varierer i tid og rom, slik at for
eksempel antall tapte menneskeliv kan estimeres.

Denne rapporten har som mål å synliggjøre hvordan populasjonsdødelighet kan beregnes ved
hjelp av numeriske spredningssimuleringer for trusselstoffer. Målet er å øke den generelle forståelsen
av realistiske spredningsprosesser innendørs. Samtidig ønsker vi å demonstrere mulighetene
som ligger i avanserte numeriske beregningsmetoder for å vurdere konsekvenser av spesifikke
trusselscenarioer. Vi har brukt et innendørs gassutslipp på et konferansesenter for å vise hvordan de
mulige konsekvensene av utslippet kan kvantifiseres gjennom for eksempel populasjonsdødelighet
og tilgjengelig evakueringstid. Slike resultater kan bidra til økt teknisk trusselforståelse og bedre
konsekvensvurderinger både innenfor sivil beredskap og i militære operasjoner.
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Preface

This report is the result of work performed within two different FFI-projects, “Evaluation of biological
threats IV” (Project 1443) and “Aerosols III” (Project 1393).
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Abbreviations
The following abbreviations are introduced and used in the text:

AEGL acute exposure guideline levels
CAD computer-aided design
CB chemical and/or biological
CFD computational fluid dynamics
DNS direct numerical simulation
FVM finite-volume method
LD50 dosage corresponding to 50 % mortality rate
LES large-eddy simulation
RANS Reynolds-averaged Navier-Stokes
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1 Background

1.1 Introduction

Numerous chemical and biological (CB) agents can be lethal or cause permanent human injury.
Through evaporation or aerosolization, many such agents can be dispersed through air and
subsequently be inhaled by people or animals. Such dispersion incidents can be caused by both
accidental (e.g., Evensen and Olsen (2002) or Wenck et al. (2007)) or intentional (e.g., Tu (2007) or
Pita and Domingo (2014)) releases of CB agents.

For most toxic agents, critical thresholds exist to estimate the health effect of a given dosage
inhaled by humans; such measures include AEGL levels (Bruckner et al., 2004) or LD50 thresholds
(Gill, 1982). However, the concentration of a CB agent in air, required to estimate the inhaled
dosage, is highly case-dependent and difficult to ascertain a priori. For a given scenario, extensive
experimental work or rigorous numerical simulations are needed to get a good estimate of how the
concentration field varies in space and time, thereby enabling estimation of e.g. human casualty
rates.

Moreover, by means of experimental or numerical work, it is also possible to investigate effects
of agent source types, sizes, locations as well as other external conditons (such as changes in
ventilation systems indoor or weather outdoor).

The present report aims to show how human casualty rates can be estimated by numerical
simulations of dispersion of a released CB agent in air in a given scenario. Relevant data processing
to assess the agent dispersion process is also demonstrated. The goal is to increase the general
understanding of realistic indoor CB agent dispersion processes through an example, as well as
demonstrate the possibilites of state-of-the-art numerical simulation methods to assess consequences
of specific CB dispersion scenarios.

1.1.1 Objectives

The main objective of this study is two-fold, i.e.
• show how numerical simulations can be used to assess consequences of specific CB scenarios,
and

• exemplify how indoor CB dispersion progresses in time and space.

1.2 Dispersion modeling

Several classes of numerical models exist to estimate dispersion of CB agents in air. For large-scale
outdoor dispersion, operational models utilizing mean wind velocities and simple geometrical
shapes like triangles or circles are the most simple. Gaussian models can include more complex
phenomena, though at a higher computational cost. The most complex class of models comprise
models based on computational fluid dynamics (CFD).

In a somewhat similar manner, indoor models range from simple assumptions of instantaneous
uniform mixing to statistical methods and, furthermore, to the most complex high-fidelity models of
CFD. In the following, indoor dispersion will be discussed, although many concepts apply equally
well to outdoor dispersion modeling.

In CFD-based models, equations describing the physics of fluid flow are solved. Typically,
CFD solvers aim to generate solutions which satisfy momentum and mass conservation at all points
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within a specified geometry. By solving additional equations governing the dispersion of CB agents,
reliable dispersion predictions can be obtained. Consult e.g. Versteeg and Malalasekera (1995) for
an introduction to CFD. Due to increasing computational resources, CFD has become a popular
tool for reasonably accurate dispersion modeling in recent years (Lien and Yee, 2004; Coirier et al.,
2005; Lien et al., 2006; Santiago et al., 2007; Lateb et al., 2016).

Dispersion modeling within the CFD framework has been carried out at the Norwegian Defence
Research Establishment (FFI) in many different contexts, both military and civilian, over the
previous decade (Wingstedt et al., 2012a,b; Fossum and Petterson Reif, 2012; Fossum et al., 2012;
Gjesdal et al., 2013; Vik et al., 2015; Aalbergsjø and Vik, 2016; Endregard et al., 2016; Wingstedt
et al., 2017; Osnes et al., 2017). Applications range from simple Reynolds-averaged Navier-Stokes
(RANS) models of passive, neutral gas dispersion in closed geometries to outdoor dispersion of
dense gases in stratified environments and dispersion from improvised explosive devices (IEDs)
utilizing so-called large-eddy simulations (LES).

The dispersion processes studied in the following are modeled by means of CFD.

1.3 Problem description

As an example case used throughout the remainder of this report, an indoor scenario at a conference
center will be used to exemplify how numerical simulations can shed light on consequences of
the release of a CB agent. Similar scenarios in the same conference center have been numerically
investigated in previous studies (Endregard et al., 2010; Wingstedt et al., 2012b; Aalbergsjø and
Vik, 2016), though with different parameters, models and data processing methods than will be
used in the following.

Consider an indoor environment as shown in Figure 1.1a. The geometry consists of a large
conference hall (colored blue in the figure), divided into eight subsections by temporary walls not
reaching the ceiling, as well as a corridor (colored green in the figure) with two entrances into the
conference hall. The ventilation system is also included in the figure; there are several vents where
air enters or exits the indoor area.

Figure 1.1b shows the geometry from above, and the three horizontally different release locations
are labeled A, B, and C. Simulated dispersion from different heights at each of these three locations
will be discussed in the present report. From location A, release heights of 0, 1.5, and 8.8 m are
used. From locations B and C, release heights of 0 and 1.5 m are used. Table 1.1 summarizes
relevant aspects of the geometry as well as the simulated releases. Note that the release rate and
type of CB agent are deliberately left out of the present report and are thus not included in Table
1.1, as this is classified information.

Given the geometry and releases described in the above, the remainder of this report will discuss
how such dispersion processes can be simulated numerically (Part 2) and what may happen in the
specific dispersion scenario that has been described (Part 3).

1.4 Document structure

This report is intended as a general documentation of the typical CFD dispersion methodology
utilized by the group “Strømning og materialer” (“Flow and materials”) at FFI. As such, this
document may serve as a useful citation in future FFI reports, thereby enabling future reports to
treat the subject of CFD a little more superficially and instead focus more on problem-specific
extensions and results.
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(a) Perspective view, including ventilation system. (b) Top view (ventilation system not
shown), including release loca-
tions A, B, and C.

Figure 1.1 The indoor geometry used in the dispersion simulations.

Table 1.1 Characteristics of the indoor geometry (above line) and releases (below line) used in the
dispersion simulations.

Dimensions (l × w × h) [m] 82.4 × 82.4 × 16.6
Total volume [m3] 6.75·104

Air circulation volume [m3/s] 34.7
Number of ventilation inlets 43
Number of ventilation outlets 4
Number of release positions 7
Release duration [min] 5
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The second goal of this report is to present the results of the indoor dispersion scenario, as
already discussed in Section 1.3. The results and conclusions from this particular case should
be accessible even to readers without any prior knowledge of CFD, numerical methods or fluid
mechanics.

In light of the above, it should be remarked that readers focused solely on the indoor dispersion
case per se need only read Chapter 1, 3 (for details), and 4. The methodological details are generally
contained within Section 2. This section treats the CFD framework in more detail, and are thus
well-suited for readers with some knowledge of or interest in CFD.
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2 Methodology

2.1 Introduction

This section treats the CFD framework in more detail, and are thus well-suited for readers with
some knowledge of or interest in CFD. Readers purely interested in the indoor dispersion case may
skip to Section 2.4 or, for the results of the simulations, to Chapter 3.

As discussed in Section 1.2, the dispersion process discussed in the present study is modeled by
means of CFD. The general aim of CFD methods is to solve equations representing the physics of
the fluid-dynamical phenomena that are relevant to the problem at hand.

In the following, the first chapter will describe the mathematical equations governing the fluid
flow and dispersion, thus providing a mathematical framework for the CFD methodology. The
second chapter will then focus on more practical aspects of the CFD methodology, i.e. the general
workflow of CFD as well as how the specifics of the present dispersion problem have been accounted
for.

2.2 Mathematical background

The governing equations of fluid motion state that mass and momentum are conserved, and they are
thus referred to as conservation equations. The conservation equation for momentum follows from
Newton’s second law.

In the following, index notation is used in conjunction with Einstein’s summation convention.
Unless stated otherwise, free indices range from 1 to 3, and repeated indices imply summation.

A Cartesian coordinate system is assumed. The general spatial position vector is given by

x = (x1, x2, x3) = (x, y, z),

whereas time is denoted t. As seen in figure 1.1a, x and y are horizontal coordinates, whereas z is
taken as the vertical direction. The corresponding three-dimensional instantaneous velocity vector
field is denoted

ũ(x, t) = (ũ1(x, t), ũ2(x, t), ũ3(x, t))

= (ũ(x, t), ṽ(x, t), w̃(x, t)),

and the three-dimensional instantaneous pressure field is denoted p̃(x, t). Moreover, partial
differentiation is abbreviated by

∂i = ∂/∂xi = (∂/∂x, ∂/∂y, ∂/∂z),

∂t = ∂/∂t,

for spatial and temporal gradients, respectively, when this is beneficial.
The conservation equations for momentum and mass for an incompressible, Newtonian fluid

can be written

∂t ũi + ũk∂k ũi = −
1
ρ
∂i p̃ + ν∂k∂k ũi + FV,i, (2.1)

∂k ũk = 0, (2.2)
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respectively. Here, ρ is the (constant) fluid density and ν = µ/ρ is the kinematic viscosity, with µ
being the dynamic viscosity. The term FV,i represents any other volume forces affecting the fluid,
such as buoyancy (gravitation) or rotation.

If scalars, such as gases, aerosols, or temperature, are transported passively in the fluid, each of
them is also governed by its own transport equation, reading

∂t c̃ + uk∂k c̃ = γ∂k∂k c̃, (2.3)

in which c̃ = c̃(x, t) is the transported scalar, and γ is its diffusivity.
Generally, for the system of partial differential equations to have a unique solution, initial and

boundary conditions must be provided. In a few simplified cases, such as steady-state laminar pipe
flow, only boundary conditions are required, and the equations can even be solved analytically.
In more complex cases, numerical algorithms must be employed to obtain three-dimensional,
time-dependent solutions.

The second term on the left-hand side of Eq. (2.1) is the advective term. Its nonlinearity
makes the solution of this equation system highly susceptible to minimal perturbations in initial and
boundary conditions, which in turn may lead to a turbulent solution. The nonlinearity generally
makes the equations impossible to solve analytically. Even with the help of powerful computers,
only a narrow range of real-life problems can be solved exactly by so-called direct numerical
simulation (DNS). For most flow systems, approximate models related to this nonlinearity are
utilized, so-called turbulence models.

2.2.1 Turbulence modeling: Large-eddy simulation (LES)

Presently, the flow turbulence arising from the nonlinear nature of Eq. (2.1) is modeled through
so-called large-eddy simulation (LES).

The basis of LES is the decomposition of fluid flow fields into resolved and subgrid (unresolved)
parts, e.g. ũri (x, t) and ũs

i (x, t), respectively, for the velocity field. Formally, the decomposition is
obtained via a filtering operation, in which the field, say, ũi(x), is filtered by a filter function G(x)
through the convolution

ũri (x) =
∫ ∞

−∞

G(x − r)ũi(x) dr,

to produce the resolved field, ũri , and, by extension, the subgrid field ũs
i = ũi − ũri .

The Fourier transform of a filter function is its associated transfer function, which represents
the corresponding filtering in spectral space. The most common filter in LES algorithms based on
the finite-volume method (FVM) is an implicit running-mean filter, where the spatial averaging size
directly depends on the size of the local computational cell1.

Regardless of the specifics of the filter function, the filtered – i.e. the resolved – conservation
equations for momentum, mass, and scalars can be formulated

∂t ũri + ũrk∂k ũri = −
1
ρ
∂i p̃r + ν∂k∂k ũri − ∂kτik + FV,i, (2.4)

∂k ũrk = 0, (2.5)
∂t c̃r + urk∂k c̃r = γ∂k∂k c̃r − ∂k fk, (2.6)

in which τik = (ũiũk)r − ũri ũr
k
and fk = (c̃ũk)r − c̃r ũr

k
represent the unresolved and thus unknown

subgrid stresses and scalar subgrid fluxes, respectively. These are the terms that require modeling.
1In spectral LES codes, a wave cutoff filter is commonly used instead.
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In the indoor dispersion simulations, the dynamic Smagorinsky model is used to model the subgrid
stresses and fluxes. A short description of the theoretical basis for this modeling approach can be
found in Appendix A.

Note the resemblance of Eqs. (2.4)–(2.6) to Eqs. (2.1)–(2.3). In Eq. (2.4), it is assumed
that the volume force FV,i passes through the filter unchanged. The solution of Eqs. (2.4)–(2.6)
yields resolved velocity, pressure and scalar fields. These fields are generally three-dimensional
time-dependent approximations to the full flow fields and can thus be subjected to Reynolds
decomposition, e.g. ũri = Ur

i + uri for the velocity field, in order to compute flow field statistics (see
Section 2.2.2).

Despite the advantages of LES in predicting details of turbulent flows, near-wall treatment
at high Reynolds numbers remains a challenge. At lower Reynolds numbers, the viscous, high-
shear region close to solid boundaries may be fully resolved, but for most real-life flows, this is
unfeasible. If wall-generated shear is the main instigator of turbulence, near-wall modeling akin
to Reynolds-averaged Navier-Stokes (RANS) wall models must be employed to obtain reasonable
results. However, if other turbulence sources dominate, e.g. jets, vortex shedding, or shear from
geometric roughness, LES may be well-suited. The latter is the case for the geometry considered in
this study.

A final concern regarding LES, shared with DNS, is that of appropriate boundary conditions,
particularly in the case of velocity inlets or free-stream boundaries. The prescription of physically
realistic conditions consistent with the mathematical models and numerical implementation of a
solver is still an area of active research, cf. e.g. Keating et al. (2004); Wu (2017). That said, exact
boundary conditions are not essential to all studies of turbulent flow.

Note that in the following, the ‘r’ superscript notation is dropped for brevity. Hence, ũi , p̃, and
c̃ always refer to instantanous LES-resolved fields.

2.2.2 Flow statistics

A turbulent flow field is random and stochastic in nature (Wyngaard, 2010, p. N). So-called
Reynolds decomposition separates a turbulent field into two parts: By averaging the field, the mean
flow field is obtained, and the difference between the full field and the mean field then comprises
the fluctuating flow field. Mathematically, the Reynolds decompositions can be written

ũi = Ui + ui,

p̃ = P + p,

c̃ = C + c

for the velocity field, pressure field and an arbitrary scalar field, respectively. Here, symbols marked
by a tilde ( ·̃ ) denote full four-dimensional fields – or, in the present case of LES fields, resolved
(filtered) four-dimansional fields – whereas the uppercase and lowercase symbols denote mean and
fluctuating fields, respectively. Note that the average of a mean field returns the same mean field,
whereas the average of a fluctuating field is identically zero.

Formally, the averaging procedure is an ensemble average of infinitely many flow realizations.
In practice, however, a finite spatial or temporal average (or a combination of both) is commonly
used when possible. For example, for a temporal average of a statistically steady velocity field,
Ui(x) = 〈ũi〉 ≈ 1

T

∫ T

0 Ui(x, t) dt, in which 〈·〉 denotes the averaging process and T is the averaging
period. Such an approximation to the true average is valid only if the flow is ergodic with respect to
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the averaging dimension (time, t, in the previous example), i.e. homogeneous in one or more spatial
directions (for spatial averaging) or statistically steady (for temporal averaging).

For finite agent releases in inhomogeneous geometries, the concentration field of the agent is
not ergodic in time or space. Hence, an ensemble average of a finite number of realizations (i.e.
“averaging several dispersion timelines”) is the only feasible approximation to the true ensemble
average. The velocity field, on the other hand, is statistically steady and thus lends itself to temporal
averaging.

By utilizing Reynolds decompositions in Eqs. (2.1) and (2.2) (or, similarly, in Eqs (2.4) and
(2.5)) and then applying an averaging procedure, the RANS equations are obtained. These equations,
not shown here, describe the evolution of the mean flow fields and also form the basis for the RANS
class of turbulence models. The transport equation for a mean scalar field, such as the concentration
of a CB agent, can be derived in a similar manner.

The RANS equations are very similar to Eqs. (2.1) and (2.2), with the exception of an additional
source term, ∂jri j , in which ri j is referred to as the Reynolds stresses. This term originates from the
advection term in Eq. (2.1). The Reynolds-stress tensor can be written

ri j = 〈uiu j〉,

i.e. each tensor component is a single-point correlation between fluctuating velocity vector
components. The Reynolds stress tensor does not really represent physical stresses, but it has the
same units. Physically, it is associated with momentum transport due to turbulent fluctuations, so-
called turbulent momentum flux. Note also that the three normal components of the Reynolds stress
tensor correspond to the statistical variances of the three flow velocity components, respectively,
thus providing measures of the velocity fluctuations in the flow.

The turbulence kinetic energy, often used to estimate the flow turbulence level, is defined by an
index contraction on the Reynolds stresses, i.e. k = 1

2 〈uiui〉.

2.3 Computational fluid dynamics

As discussed in Section 2.2, the governing equations of fluid motion cannot generally be solved
analytically. The solution of Eqs. (2.1)-(2.2), as well as possible additional equations, by means of
numerical algorithms on a computer is commonly called computational fluid dynamics (CFD). The
methodology of CFD varies greatly from application to application and software to software, but
the general workflow is often as outlined in Figure 2.1. The main steps in the workflow will be
described briefly in the following.

2.3.1 Geometry and meshing

Firstly, the geometry of the problem needs to be supplied, whether this be a simple box or a complex
urban area with lots of details. In the case of complex geometries, it is often necessary to clean
up the geometry to reduce the demands for computational resources when solving the governing
equations numerically. For example, details with relatively little impact on the flow field (such as
window-frames or road signs in the case of an urban city center), can and should be removed.

In the present case, the geometry – already described in Chapter 1 – is well-suited for CFD
simulations and can be meshed without further adjustments.

With rare exceptions, the geometry and the volume it encloses must be subdivided into
computational cells for the CFD solver to give reasonable results. This is a process referred to as
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Figure 2.1 Typical CFD workflow (from left to right).

meshing or gridding. Depending on the application, everything from a few thousand to hundreds of
millions of cells may constitute a computational mesh. The CFD code solves a linearized system of
the governing equations (Eqs. (2.4) and (2.5)) simultaneously for each computational cell.

Usually, the mesh is not uniformly spaced; regions of high shear, for example, tend to require
much smaller cells to capture the large velocity field gradients. Furthermore, the mesh must adhere
to the shape of the geometry while retaining adequate quality; particularly, large aspect ratios, highly
acute or obtuse angles, and rapidly varying cell sizes should be avoided.

In the context of implicit LES modeling, as used in this study, the mesh resolution, i.e. the
range of cell sizes, also determines the size of the smallest turbulent scales that are directly resolved
in the simulation, cf. Section 2.2.1.

2.3.2 Numerical discretization

The equations that are solved in a CFD program come in numerous variants (Gresho, 1991, cf. e.g.).
In LES, Eqs. (2.4)-(2.5) or equivalent equations are implemented.

The equation set needs to be approximated and discretized so it can be solved numerically.
For FVM solvers, this entails recasting the governing equations in conservative form so that each
computational cell in the mesh can be treated as a discrete control volume. The solver thus calculates
the solution to the transport equations by considering the fluxes through the surfaces of each cell in
the computational mesh. As an example, consider the advection term of Eq. (2.1). Integrating over
a volume and using Gauss’ divergence theorem, the term can be rewritten∭

V

uk∂kui dV =
∯
S

uiuknk dS,

where V and S are the volume and enclosing surface of a control volume – typically a computational
cell – respectively, while nk is the outward-pointing unit normal vector of the surface, S.

The resulting integral system can be discretized, i.e. converted into a system of algebraic
equations, by employing a number of substitutions, which depend on the specific variety of FVM
used, for the terms in the integrated equations. For incompressible flows, the discretized equations
are then solved for each computational cell in the mesh simultaneously, time step by time step.
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The solution for a given time step is computed by producing a linear system of equations of rank
Ntot × Ntot, where Ntot is the total number of computational cells, which is solved iteratively.

The quality of a numerical solver is often judged in terms of its convergence, consistence, and
stability (Versteeg and Malalasekera, 1995, p. 6), but in practice versatility and ease-of-use might
be equally important. In the context of LES, the numerical algorithm is particularly relevant since
the mesh can be quite coarse compared to DNS meshes.

Conservation of kinetic energy is also of particular importance to LES solvers; dissipative
numerical schemes tend to overwhelm the effect of the subgrid (and molecular) viscosity, whereas
straight-forward, non-dissipative central-differencing schemes lead to numerical instability (Mahesh
et al., 2004). Hence, the use of robust, non-dissipative numerical algorithms can be crucial to the
success of an LES solver.

2.3.2.1 CDP – a multipurpose LES code

The bulk of numerical results discussed in the present report are based on numerical simulations
performed with the FVM-based solver CDP v4.0.8 (Mahesh et al., 2002; Ham and Iaccarino, 2004;
Mahesh et al., 2004; Ham et al., 2006), and the most important features of the solver will be
summarized in the following. Some preliminary test simulations were also performed with the
commercial FVM-based solver ANSYS Fluent 18.2 (ANSYS), which produced largely similar
results.

The incompressible version of CDP, Vida, stores all flow fields in the mesh nodes. The code is
second-order in space and up to second-order in time, using a Crank-Nicholson/Adams-Bashforth
time-stepping algorithm. The pressure-coupling is based on a fractional-step approach.

The conceptual calculation of the subgrid viscosity in CDP’s dynamic Smagorinsky model is
described in Appendix A. CDP uses a test filter with twice the size of the ordinary filter width.

The advantages of CDP are similar to those of other FVM-based methods; in particular, the
code uses unstructured meshes to be able to handle complex geometries, and it is relatively easy to
extend the code by programming additional boundary conditions, source terms or data-processing
algorithms. Additionally, the numerical algorithms in CDP are formulated so as to maximize
conservation of kinetic energy without loss of numerical stability. Recent versions of the code is
written in C++ and is highly parallelized.

The major drawback of FVM-based solvers is reduced accuracy compared to e.g. finite element
methods, given similar mesh resolutions.

2.4 Particulars of the indoor dispersion scenario

2.4.1 Mesh

The geometry shown in Figure 1.1 was meshed using a tetrahedral mesh consisting of 987,428
computational nodes, illustrated in Figure 2.2.

To assess the mesh resolution at ground level, i.e. on the floor of the geometry, a common
nondimensional quantity can be used, defined presently as

z+ =
zuτ
ν
, where

uτ =
√
ν
[
∂3Ut

]
z=0.
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Figure 2.2 A portion of the numerical mesh, showing part of the corridor (left, yellow) and conference
hall (right, blue), as well as parts of the ventilation system.
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Here, uτ is the friction velocity on the ground and Ut is the velocity tangential to the ground. z+
values can be computed in all ground-adjacent points and thereby estimate how many viscous
length scales are contained in (or, equivalently, unresolved by) the cell closest to the ground. A
lower number implies higher mesh resolution, and for z+ ∼ 1, all turbulent scales (near the wall)
are resolved, i.e. no turbulence model is generally required. Typical RANS wall-models require
anything from z+ ∼ 10 to z+ & 100, depending on the model.

Low z+ values are essential if realistic transition to turbulence or boundary-layer build-up will
be simulated. In problems where wall-turbulence dynamics is less relevant, the requirement can be
relaxed, often significantly. Higher Reynolds-number flows, i.e. flows with more turbulence, have
smaller viscous scales. Hence, simulation of such flows require higher physical mesh resolutions
than simulation of flows with lower Reynolds numbers to yield the same z+ values.

The wall-normal z+ metric is intended for estimates of near-wall resolution. A more general
estimate of viscosity-based mesh resolution, which can be evaluated anywhere in the domain, is
given by

l+ = V1/3
cell

√
|S |/ν,

in which |S | =
√

2Si jSi j is the norm of the mean rate-of-strain tensor and Vcell is the computational
cell volume. The strain-rate tensor is given by Si j = 1

2 (∂iUj + ∂jUi). Similarly to z+, l+ indicates
how many viscous lengths scales any given computational cell contains (resolves).

Table 2.1 summarizes the most important characteristics of the mesh. The relatively large z+
values at the walls are acceptable here, since the turbulence is not instigated mainly by wall-shear.
Rather, the turbulent flow structures are initiated from vortex formation at the edges of air jets from
the ventilation fans, vortex formation due to jet impingement, and vortex shedding on the lee side of
geometric structures.

Table 2.1 Characteristics of the computational mesh. z+ and l+ are nondimensional measures of mesh
resolution, as described in the text.

Total number of computational nodes 987,428
Cell types Tetrahedrons only
Cell volume; min, avg, max [m3] 5.1 · 10−5, 0.11, 0.29
z+ at ground; min, avg, max 3.1 · 10−2, 17, 40
l+; min, avg, max 4.8, 51, 380

That said, the mesh resolution should ideally be higher, and a mesh sensitivity study should be
performed to quantify the uncertainty related to resolution. However, the main objective of the
present study is to prove a concept (fluid dynamical simulations as a means of assessing risk) and
develop suitable data processing routines. Consequently, mesh sensitivity has not been studied
systematically at present.

2.4.2 Ventilation

The indoor air circulation is instigated by the ventilation system. The volume flow of air of each
individual inlet and outlet vent is taken from earlier simulations of the same building (Aalbergsjø
and Vik, 2016). The total air circulation is 42.5 kg/s. Zero recycling of the extracted air is assumed.
The air flow within the ventilation system itself has not been simulated.
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Although the flows from the ventilation inlets are in fact turbulent, they have been modeled as
laminar flows in the present study. This has negligible impact on the ambient velocity field in the
room.

Prior to the release and dispersion of CB agents, the simulations reported presently were
subjected to a run-up time of 27.5 minutes2. This ensured that the air flow field was statistically
steady before any CB agent was released.

2.4.3 Release and dispersion

After a run-up period, CB agents were released from multiple locations. The release locations are
listed in Table 2.2. General information about the releases can be found in Table 1.1. The release
marked with an asterisk (*) in the table denotes the release for which an ensemble average was
estimated (see Section 2.4.3.1).

Table 2.2 CB agent release locations.

Notation in Figure 1.1b Coordinates
A (48, 55, 0)
A (48, 55, 1.5)
A (48, 55, 8.8)
B (30, 30, 0)
B* (30, 30, 1.5)
C (30, 2, 0)
C (30, 2, 1.5)

The released gas is assumed to be neutrally buoyant, i.e. it is transported passively in the air
without altering the air flow. This is often an acceptable assumption, provided that the concentration
of gas is not too high.

2.4.3.1 Ensemble averaging

The turbulent nature of the flow field indicates that one release and dispersion event – one realization
or sample – might not be representative of a typical such event. Since the dispersion process is
transient and inhomogeneous, spatial or temporal averaging is not applicable. Thus, ensemble
averaging must be applied to say something about the statistics of the dispersion process.

In practice, the ensemble average of muliple realizations is obtained by simulating all realizations
after each other in time. In order to ensure that each realization is statistically uncorrelated with
preceding and succeeding realizations, the time separation needs to be large enough for the flow
field to be statistically uncorrelated.

Formally, the correlation time of the flow at any given location is found from the autocorrelation
function of the velocity signal at that location. The correlation time is on the same order of
magnitude as the integral turbulent time scale, the so-called eddy turnover time. In the present case,
this can be estimated as τ ∼ Tc = Lc/Uc . 6 m/0.5 ms−1 = 12 s, in which τ is the integral time

2The time step was not constant during this process; the first 17.5 minutes of simulation had a time step of approx.
0.03 s, whereas subsequent simulation used a time step equal to 0.05 s.
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scale, whereas Tc, Lc, and Uc are characteristic time, length and velocity scales of the problem.
The characteristic scales are estimated from the height of the dividing walls and an assumed typical
velocity based on the flow through the ventilation inlets. The estimate has been corroborated by
inspection of simulation data, cf. Appendix B.

The estimated correlation time implies that the time separation between successive CB agent
releases should exceed at least 12 s. A temporal separation of 60 s were used in the present study.

Assuming normal distribution, the number of samples required for the sample mean to be within
a distance M of the true (population) mean must satisfy

Nrealizations ≥
(σcconf

M

)2
. (2.7)

Here, σ is the standard deviation and cconf is a coefficient chosen based on the required confidence
level. Typically, cconf = 2, which implies that one can be 95 % confident that the sample mean
differs no more than M from the population mean.

Note that σ in Eq. (2.7) is a prioiri unknown and needs to be estimated from simulation data or
empirical data. However, by expressing M in terms of σ, an estimate of the required sample size
can be found:

To be 95 % confident that the sample ensemble average is within half a standard deviation
from the population (“true”) ensemble average, Nrealizations = 16 samples, i.e. 16 realizations, are
required, seen by insertion of cconf = 2 and M = σ/2 into Eq. (2.7). In fact, 40 realizations – i.e.,
40 releases – were simulated from release location B at height 1.5 m and ensemble averaged in the
present study, in order to assess the representativeness of one realization.

2.4.4 Health effects

One of the key aspects of a CB dispersion event is its potential consequences for public health.
More specifically, given a concentration of a toxic agent, how does this concentration translate into
potential health effects?

Different health effect models can be divided into two classes: The concentration-dependent
models estimate health risks by assuming exposure to a given concentration of a CB agent for a
specified period of time. In the context of numerical simulation, the concentration level is taken
from the simulated concentration field at any given time. On the other hand, the dosage-dependent
models estimate health risks by using the total dosage, i.e. concentration integrated over time, of
CB agent for a specified period of time. Here, a time series of the simulated concentration field is
used as input to the model. Both types of models rely heavily on empirical toxicity data.

The main advantage of the concentration-dependent models is their simplicity; no detailed time
history of the concentration field is needed, no integral needs to be computed. Simply supply the
concentration value and get the health effect estimate.

The major advantage of the dosage-dependent model is its ability to incorporate varying
concentration levels in time, thus utilizing more information to get a potentially more accurate
health effect estimate.

Regardless of the choice of model, assumptions about agent toxicity, person mass, respiration
rate, etc., must also be incorporated into the model – explicitly or implicitly. Furthermore, the
model output, i.e. the health effect estimate, can be given in a range of different ways, such as
percentage mortality rates, classes of symptoms (e.g., ranging from annoying to lethal), or multiples
of lethal dosages.
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Two common health effect models are the Acute Exposure Guideline Levels (AEGL) model
(Bruckner et al., 2004), which is a concentration-dependent model commonly used for chemical
agents, and the 50% Lethal Dosage (LD50) model (Gill, 1982), which is a dosage-dependent
model used both for chemical and biological agents. The latter has been used in the present indoor
dispersion simulations and will be discussed in more detail in the following.

2.4.4.1 Dosage

In order to utilize the LD50 model, the dosage needs to be computed from the simulated time- and
space-dependent concentration field for the CB agent. Given a time frame, T , and a path walked by
a person in that time, the dosage to which the person is exposed can be calculated as

Ds =

∫
S

f c̃ dt,

where S is the path described by r(t), 0 ≤ t ≤ T , and c̃ = c̃(x, t) = c̃(r(t), t) is the concentration
field. The coefficient, f , is a product of the respiration rate and airway deposition efficiency. These
are empirical parameters for which typical values of 10 liters/minute and 100 % efficiency are used
in the present calculations. It is assumed that the integral’s time period is short enough that no
clearance of the CB agent from the body need to be considered.3

In the simpler case of a stationary person standing at location r0 for a time T , the integral
becomes

Ds =

∫ T

0
f c̃(r0, t) dt.

The dosage integral can be computed during simulation, but a more flexible solution is to save
the entire concentration field at sufficient temporal resolution and then calculate the integral as
a post-processing routine later. This enables the choice of position (or path) and time frame for
exposure to be decoupled from the simulation per se. Since such post-processing calculations are
rather quick, it is easy to “experiment” with how different human behavior models affect the outcome
(e.g., number of casualties), using the same concentration field (i.e., the same dispersion event) as
input every time. Note also that since the dosage integrals are linear operators on the concentration
field, multiplying the amount of CB agent that is released, i.e. multiplying the concentration field,
will multiply the dosages correspondingly.

2.4.4.2 The LD50 model

The LD50 model compares calculated dosage with a reference toxicity threshold in order to assess
the health risk. Specifically, the LD50 threshold is the dosage for which lethality is expected in 50
% of the exposed subjects - hence the name 50 % lethal dosage. In the notation of the previous
section, this means that if

Ds ≥ DLD50 ∗ mp,

where DLD50 is the LD50 threshold dosage (per body mass) and mp is the body mass of the exposed
person, then there is a statistical mortality probablity of 50 %. 4

The LD50 threshold is based on empirical data and might be highly uncertain. In many instances,
the thresholds are based on animal trials. Consult e.g. Gill (1982); Weil (1983); Randhawa (2009)

3The clearance rate could also be included in the integral, provided that the clearance rate of the CB agent is known.
4The criteria is obviously intended for use on a population scale and not on an individual level.
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or references therein for more details relating to how LD50 thresholds are determined and examples
of thresholds for different compounds.

In general, there is no linear relationship between dosage and mortality rates. In other words,
multiplying the dosage to which a population is exposed will not multiply the mortality rate by a
proportional factor. This means that dosages less or greater than DLD50 cannot be used to estimate
mortality rates at those exact levels; rather, such data can only be used to say how far away the
encountered dosage is from the LD50 threshold, e.g. by considering multiples of DLD50.

When the LD50 threshold criterion is used in the present report, it has been assumed that the
average weight of the exposed population is 70 kg, that their average breating rate is 10 liters/min
and that most individuals are of sound health.
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3 Results
In the following, the results of the numerical simulations will be discussed. Firstly, some information
about the air flow in the building will be given, based on the simulated flow. Secondly, a collection
of dispersion simulation results for the set of different release locations will be given. Finally, one
of the release locations will be treated in more detail, ending in a practical example in which the
potential for human casualties will be assessed.

3.1 Flow field

As previously discussed, the air flow within the simulated indoor geometry is driven by the
ventilation system.

There are 43 relatively small ventilation inlets, most of which can be discerned from the velocity
magnitude contours shown in Figure 3.1a. The ventilation outlets are fewer and larger than the
inlets and, as opposed to the inlets, do not produce significant air jets.

(a) Mean velocity magnitude (units are m/s). (b) Mean vertical velocity (units are m/s).

Figure 3.1 Flow statistics. Contours shown in a plane at height z = 1.5 m.

Both the mean air flow and the turbulence in the indoor environment are caused only by the air
circulation system. At around head-level height (1.5 m above floor), the main contributor to the
peaks in velocity magnitude is the vertical motion which stems from inlets directed downward from
the ceiling, as shown in Figure 3.1b.

The number of ventilation inlets, in combination with the geometry of the conference hall
and corridor, implies that the mean flow will be rather complex, which is also evident from both
subfigures of Figure 3.1. Moreover, the jets give rise to vortical motions in the flow, illustrated in
Figure 3.2a.

The relatively high velocity magnitudes (as well as the combination with multiple inlets and
complicated geometry) indicate that the flow will be highly turbulent, as is the case for almost
all real-life flows. Indeed, Figure 3.2b shows significant levels of turbulence kinetic energy, i.e.
energy contained in turbulent motion of air. Unsurprisingly, this is consistent with an estimated
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(a) Mean vorticity magnitude (units are s−1). (b) Turbulence kinetic energy (units are m2/s2).

Figure 3.2 Flow statistics. Contours shown in a plane at height z = 1.5 m.

bulk Reynolds number of
Re0 =

UcLc

ν
∼ 105

in which Uc and Lc are characteristic velocity and length scales of the problem, and ν = 1.46 · 10−5

is the kinematic viscosity of air. In the Reynolds number estimate above, typical fan diameters
(approximately 0.5 m) and bulk exhaust velocities (typically around 5 m/s) are used.

The Reynolds number is the ratio between inertial and viscous forces in the flow; a higher
Reynolds number implies higher levels of turbulence in the flow due to more inertial forcing. In
circular pipe flow, a bulk Reynolds number higher than ≈ 2 · 103 generally implies a fully turbulent
flow5.

Figure 3.2b reveals that the turbulence kinetic energy is highest close to the ventilation inlets,
which to be expected. Consequently, turbulent mixing (of a CB agent, for example) is expected to
be most significant in these areas. That said, as the flow is fully turbulent everywhere, efficient
mixing can be expected everywhere in the domain. This is an essential feature of the flow system in
the context of dispersion of a CB agent.

3.2 Dispersion of the CB agent

Several numerical simulations were performed to investigate the release and dispersion of the CB
agent, with different purposes.

A set of 8 releases, one from each source location (cf. Section 1.3), was studied to assess the
effect of source location on the dispersion. The results of these simulations are discussed in Section
3.2.1.

One of the 8 cases – release from location B at 1.5 meters – was then selected for more extensive
analysis, which is reported in Section 3.2.3. That section provides examples of more detailed data
processing, as well as an example of how such simulation data can be used to assess the health risk
for facility occupants.

5This is by no means an exact rule.
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Finally, 39 additional dispersion events were simulated from location B (at different times) in
order to compute an estimate of the ensemble average of a dispersion event. The result, discussed
in Section 3.2.2, is used to assess to what degree one disperion simulation is representative of a
“typical” (i.e. average) dispersion event. This gives an indication of the level of uncertainty inherent
in the single-realization data discussed in the rest of the report.

3.2.1 Effect of source location

When designing dispersion scenarios for numerical simulations, only a finite number of source
locations is typically used. Different criteria can be applied to select such locations depending on
the objective of the study.

In any case, it is of interest to assess the importance of the particular choice of source location.
In other words, how much does the dispersion outcome differ depending on source location, given
the same flow field. To address this question, dispersion from sources at three different horizontal
locations were simulated (A, B and C, as shown in Figure 1.1b). For these three locations, different
source heights were also used, as described in Section 1.3. The effects of varying the source location
will now be discussed.

Figure 3.3 shows two CB agent concentration fields 20 min after the releases have stopped.
Figure 3.3a shows the concentration field from a source at location B and height 0 m (i.e. at the
ground), whereas Figure 3.3b shows the concentration field from a source at the same location, but
with height 1.5 m.

(a) Release from 0 m (at location B). (b) Release from 1.5 m (at location B).

Figure 3.3 Countours of nondimensional concentration, c̃∗ = c̃/Cperf, after 20 minutes in a cutplane at
z = 1.5 m.

In Figure 3.3, the nondimensional concentration values, c̃∗, have been normalized (uniformly)
by

Cperf = ma/V,

in which ma is the total mass of CB agent being released, and V is the total volume of the
computational domain. Cperf thus represents the result of a simple “perfect mixing” model, which
assumes that all of the agent would be dispersed uniformly in the room instantaneously.
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As seen in Figure 3.3, the concentration fields are generally within the same order of magnitude,
indicating that the height of the source has little effect on the subsequent dispersion. The two
concentration fields shown in the figure have the largest overall statistical difference between two
different release heights (for the same horizontal location) among all the simulated releases. This is
seen from Table 3.1, to be discussed shortly, in which statistical comparisons between other source
heights are also reported. As seen, the differences in concentration resulting from changes in source
height appear to be minor for the cases that have been simulated.

Given these results, only releases at height 1.5 m are considered when comparing dispersion
from different horizontal locations. Three different horizontal locations (A, B, and C) have been
used in the simulations, cf. Figure 1.1b. Figure 3.4 shows the nondimensionalized CB agent
concentration fields from these three locations 20 min after the releases have ceased.

(a) Release from location A (at 1.5 m height). (b) Release from location B (at 1.5 m height).

(c) Release from location C (at 1.5 m height). (d) Top view (ventilation system not shown),
including release locations.

Figure 3.4 Countours of nondimensional concentration, c̃∗ = c̃/Cperf, after 20 minutes in a cutplane
at z = 1.5 m. Contour levels are capped at c̃∗ = 1 for clear visualization, even though
max(c̃∗) = 2.2. The bottom-right figure is identical to Figure 1.1b, included here for ease of
access.
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Clearly, the horizontal position of the source is significantly more important than the height;
there are relatively large qualitative differences between the concentration fields from source A, B,
and C. This is corroborated from the statistical differences summarized in Table 3.2.

Figure 3.4 also indicates that it takes time for the CB agent to disperse out into the corridor
outside of the conference hall, regardless of source position. As expected, the source near one of
the exits (at location C) appears to result in the highest concentration levels in the corridor.

A more quantitative measure of the effect of source position can be carried out via statistical
analysis. The Mean Relative Bias (MRB) (Duijm et al., 1996) is a measure of systematic positive or
negative deviations in one field, Ca, compared to another field, Cb. The metric is defined by

MRB = 2
(
Ca − Cb

Ca + Cb

)
,

where the overbar denotes an average over the entire data set. Note that negative MRB values imply
a negative systematic deviation in Ca relative to Cb, and that positive MRB values consequently
imply a positive systematic deviation in Ca.

A closely related metric is the Mean Relative Square Error (MRSE) (Duijm et al., 1996), which
is related to the variance of the difference between the compared data sets and is thus a measure of
the scatter in the comparison of the two sets of values. The MRSE is defined by

MRSE = 4
(
Ca − Cb

Ca + Cb

)2
.

When considered together, the MRB/MRSE pair gives information both on the level of positive
and negative systematic deviations and to what extent the deviations are consistent within the
compared data sets. This can be shown by noting that

MRSE ≥ MRB2,

with equality in the case of fully systematic discrepancies. If MRB vs. MRSE is plotted there will be
an “ideal” trend curve with the shape of a parabola. The extent to which two data sets are consistent
can be assessed by the distance of their MRB/MRSE pair to the trend curve.

Table 3.1 and 3.2 list the MRB and MRSE metrics for comparisons of the dispersion from
sources of different heights and horizontal locations. The MRB/MRSE calculations presented
here are based on data in a uniform grid spanning the entire z = 1.5 m plane. The tabular data is
summarized in Figure 3.5, in which the aforementioned trend curve is also included. As discussed,
the figure clearly shows that source height is rather insignificant, whereas the horizontal location of
the source has a large effect on the dispersion pattern.

As seen from the MRB/MRSE data, the maximum systematic deviation between different
release heights is MRB = -0.0645, corresponding to a -6.25 % deviation in concentration from the
ground-level release at location B relative to the release at 1.5 m. For the comparison between
different horizontal locations, on the other hand, the maximum deviation is 15.3 % (MRB = 0.1651).
Moreover, the scatter in the data is generally below MRSE = 0.02 for the release height comparisons,
whereas it lies between 0.2 and 0.35 for the horizontal changes in location. The latter fact indicates
that the dispersion pattern varies considerably when changing the horizontal location, even if the
average concentration in the room does not.

The differences between two data sets can also be evaluated from scatter plots in which the data
values from each data set is plotted against each of the two respective axes. Thus, the straight line
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Figure 3.5 Statistical measures of differences between data sets, MRB vs. MRSE, for the present
simulations 20 minutes after the releases have stopped. Blue circles correspond to compar-
ison of variation in source height, whereas red squares represent the comparisons between
different source locations. The black line is the ideal trend curve, MRSE = MRB2.

30 FFI-RAPPORT 18/02185



Table 3.1 Statistical measures of differences between releases at different heights 20 minutes after the
releases have stopped; Mean Relative Bias (MRB) and Mean Relative Square Error (MRSE).

Location Heights compared [m] MRB MRSE
A 0 vs. 1.5 0.0038 0.0004
A 0 vs. 8.8 0.0164 0.0037
A 1.5 vs. 8.8 0.0126 0.0018
B 0 vs. 1.5 -0.0645 0.0178
C 0 vs. 1.5 0.0300 0.0175

Table 3.2 Statistical measures of differences between releases at different (horizontal) locations 20
minutes after the releases have stopped; Mean Relative Bias (MRB) and Mean Relative
Square Error (MRSE).

Location MRB MRSE
A vs. B 0.1651 0.2006
A vs. C -0.0049 0.3458
B vs. C -0.1576 0.2488

x = y represents the “ideal” trend line; if all points fall on this line, the two data sets are identical.
Points further from the line indicate larger discrepancies between the data sets. Figure 3.6 shows
such scatter plots for all the comparisons listed in Table 3.1 and 3.2.

The scatter plots in Figure 3.6 correspond well to the results already discussed. For example, the
top left plot, comparing release heights 0 and 1.5 m at location A, indicates a strong correlation in
the data. On the other hand, the bottom-left plot shows how the data correlation between dispersion
from location A and dispersion from location C is virtually non-existent and with a lot of scatter.
Overall, the scatter plots also support the notion that the source height is less important than the
horizontal location of the source.

There are two main interrelated aspects of this particular flow that likely cause the exact source
height to be insignificant: Firstly, the geometry is rather homogeneous in the vertical direction; only
low dividing walls, some variation in the height of the ceiling, and very small ventilation pipes at
select locations provide vertical inhomogeneities.

Additionally, the turbulent mixing is very efficient (as discussed in Section 3.1), which diffuses
the concentration field and thus reduces differences in small-scale features between dispersion from
different source heights.

Note that even though the height of the source is a near-negligible parameter for the present
case, this is not a general conclusion; other geometries or ventilation systems might cause the height
to be a critical parameter.

Due to the strongly horizontally inhomogeneous geometry, all the walls in particular, the
significant effect of horizontal source location is no surprise. As time passes, however, the
differences between the concentration fields from the different sources also decrease due to turbulent
mixing.

3.2.1.1 Health effects

In this section, the health effects of different horizontal source locations will be evaluated by means
of dosage calculations combined with the LD50 criteria, cf. Section 2.4.4. Differences in source
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Figure 3.6 Scatter plots comparing c̃∗ = c̃/Cperf for two different release locations, as noted on the
horizontal and vertical axes of each respective subplot. The scattered points represent grid
data in a cutplane at height z = 1.5, taken 20 minutes after the releases have stopped. The
solid red line indicates the “ideal” trend line (y = x), on which all points would fall if the data
sets were identical. The two dashed red lines indicate the 20 % error margins.
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height will not be discussed, in light of results in previous sections. Further health considerations
for one single release is discussed a bit more extensively in Section 3.2.3.

As discussed in Section 2.4.4 (and its subsections), several parameters aside from the CB agent
concentration itself will affect the mortality rate in an exposed population; properties of the exposed
population (overall health, body mass, breathing rate, etc.) as well as the exposure time can be
critical. In the following, it has been assumed that the average weight of the population is 70 kg,
that the average breating rate is 10 liters/min and that most individuals are of sound health.

Figure 3.7 shows the time evolution of the average dosage accumulated for people at around
head-level height when exposed to the dispersed CB agent for 5 and 30 minutes, respectively. The
dosages are given in terms of LD50-threshold multiples, which implies that values above one
correspond to a 50 % human casualty rate or higher. Only values significantly below one can be
considered safe.

(a) 5-minute exposure period. (b) 30-minute exposure period.

Figure 3.7 Accumulated dosages in terms of critical LD50-threshold multiples as a function of time after
the release has stopped. Dosages are based on releases at 1.5 m height from locations
A (blue lines), B (red lines) and C (black lines). Spatial averages (solid lines) and spatial
averages plus two standard deviations (dashed lines) are shown. For consistency with the
time reference used in previous figures, t = 0 corresponds to the time at which the CB
release is stopped.

As expected, longer exposure corresponds to greater health risks. On average, the health risk is
rather low for both exposure periods (for the amount presently released). However, there is large
variation within the domain, as indicated by the large standard deviations seen in Figure 3.7. This is,
in large part, due to the local nature of the location of the release, near which accumulated dosages
will be much higher. Obviously, people close to the release location is exposed to significantly
higher dosages.

It can be seen, particularly from the 30-minute exposure, that location B is the most dangerous
release location in terms of health outcome. On average, it yields roughly twice the accumulated
dosage compared to release from location A. This is not unexpected; as location B is in the middle
of the conference hall, the released CB agent has more room to spread before being removed
through the ventilation system. On the other hand, location A is situated near the corner of the
room. A larger portion of the released agent will thus be transported upwards instead of horizontally
outwards.
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Now, consider a more potent source, either due to a more toxic CB agent or due to a larger
amount of dispersed agent. Since the dosage integral is a linear operator, the previous results
can simply be multiplied by an appropriate factor. For example, if the amount of CB agent was
multiplied by a hundred, the LD50-scaled dosages would increase correspondingly, as shown in
Figure 3.8. This would obviously have dramatic consequences for the outcome of the scenario in
terms of human casualties (as shown in Section 3.2.4).

(a) 5-minute exposure period. (b) 30-minute exposure period.

Figure 3.8 Accumulated dosages in terms of critical LD50-threshold multiples as a function of time after
the release has stopped. Dosages are based on releases at 1.5 m height from locations A
(blue lines), B (red lines) and C (black lines), but with 100 times more CB agent released
than in Figure 3.7. Spatial averages (solid lines) and spatial averages plus two standard
deviations (dashed lines) are shown. For consistency with the time reference used in
previous figures, t = 0 corresponds to the time at which the CB release is stopped.

From Figure 3.8, it can be seen that even brief (5 minutes) exposures can be lethal, particularly
in parts of the domain where concentrations are higher than average. For longer exposures, casualty
rates will be severe, regardless of source location; it takes only 10 minutes before the critical LD50
threshold is passed, even for the CB agent released from location A, which yields the lowest risk
among the three locations.

3.2.2 Ensemble averaging

The results discussed in previous sections represent individual release and dispersion events, i.e.
single realizations. In order to assess the statistical significance of such individual simulations, the
ensemble average should be estimated and considered, as discussed in Section 2.4.3.1.

In order to estimate the ensemble average, 40 different releases and subsequent dispersion
processes have been simulated. Then, all the dispersion time lines have been averaged in order
to produce an estimate of the (statistically transient) ensemble average. Several other ensemble-
statistical estimates can be computed as well, such as the ensemble standard deviation and the
ensemble maximum.

Figure 3.9 compares one of the 40 realizations to the ensemble estimate average. Qualitatively,
it appears that a single realization represents a “typical” release and dispersion event quite well;
there are no striking differences in either dispersion area or typical concentration values.

The ensemble average is more chaotic than might be expected. Generally, this could mean that
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(a) Data from a single realization; c̃∗ = c̃/Cperf. (b) Ensemble-averaged data; C∗ = C/Cperf.

Figure 3.9 Countours of nondimensional concentration in a cutplane at z = 1.5, 20 minutes after the
release of CB agent has stopped.

the statistics are not converged, meaning that more realizations are required. Presently, however, the
mean flow field is in fact likely to be rather chaotic, due to the complexity of the geometry and the
large number of ventilation inlets. Indeed, the evolution of the ensemble average with increasing
number of included realizations (cf. Appendix C) shows that an acceptable average is obtained with
roughly 20 realizations for most points of interest.

The ensemble standard deviation sheds more light on the variability of different realizations;
Figure 3.10a shows that the relative standard deviation, i.e. the standard deviation relative to
the mean concentration is quite large in areas where the concentration values are low; this is not
surprising and should be of little concern.

In the conference hall, the relative standard deviation is less than 0.3, usually much smaller. This
also corroborates the notion that a single realization is relatively similar to the ensemble average;
for example, at the time shown in Figure 3.9, the mean concentration is C∗ ≈ 1 in the area around
location B, and the corresponding relative standard deviation is generally . 0.2. This implies that,
statistically, about 95 % of all realizations can be expected to have concentration values in the range
0.6 ≤ C∗ ≤ 1.4, assuming a normal distribution6.

Another way to use the ensemble statistics is to consider the pointwise maximum value of all
the realizations. This will provide a more “worst-case” estimate than a single realization or the
average, as it shows what maximum concentration was obtained from 40 simulated releases at
a given position and time. The ensemble maximum is visualized in Figure 3.10b. As seen, the
ensemble maximum is not strikingly different from the mean in the present case. The maximum
values near location B are consistent with the 95 % confidence interval given by the standard
deviation, discussed in the previous paragraph.

The results shown in the above indicate that a single realization is an acceptable representation
of a typical (“average”) CB event for the scenario discussed here. Nevertheless, in the following
section, ensemble statistics will be used for all figures and subsequent discussion.

6The assumption of normally distributed values in the set of realizations may be incorrect here; the assumption is
used simply to illustrate a point.
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(a) Relative ensemble standard deviation of the concen-
tration field.

(b) Ensemble-maximum nondimensional concentra-
tion.

Figure 3.10 Contours in a cutplane at z = 1.5, 20 minutes after the release of CB agent has stopped.

3.2.3 Temporal evolution of dispersion from location B

The evolution in time of the dispersion of CB agent released from location B (at 1.5 m) will now be
considered. Figure 3.11 shows the ensemble-averaged normalized concentration field, C∗ = C/Cperf
at 0, 15, 30 and 45 minutes after the release of agent has stopped.

From Figure 3.11, it can be seen that as the release stops (i.e. 5 minutes after it has started), the
center of the hall is already filled with high concentrations of CB agent, whereas the corners of the
room and the corridor outside is still unaffected. After 15 more minutes, however, the CB agent
has dispersed significantly, filling most of the conference hall. It also begins to flow out into the
corridor. At 30 and 45 minutes, the CB agent has been thoroughly mixed; the concentration is more
spatially homogeneous and fills a larger volume, and the pointwise concentrations are thus lower.

It should be noted that the decrease in concentration in time is not only because of the dispersion,
which “spreads” the CB agent over a larger volume. Additionally, polluted air is constantly being
ejected from the domain through the ventilation outlets, while new, clean air is introduced trough
the inlets. From Figure 3.12, it can be seen that 30 minutes after the release has stopped, only about
half of the agent remains in the domain. After an hour, only 20 % of the agent remains.

The temporal evolution of the cloud of CB agent can also be summarized in a single figure
by means of so-called “arrival time”, i.e. the time at which a non-negligible concentration of
agent reaches a location. Figure 3.13 shows that the dispersion within the conference hall is rather
quick, whereas it takes considerably longer for the CB agent to reach the corridor outside. This is
consistent with the results shown in Figure 3.11.

Figure 3.14 illustrates the accumulated dosage to which people at different locations in the
domain will be exposed if they remain in the same place during the dispersion. The dosages are
shown in terms of LD50 multiples, for which values > 1 indicate at least a 50 % statistical mortality
rate (cf. Section 2.4.4).

The dosages are generally low; in most of the domain, the accumulated dosage does not exceed
10 % of the LD50 threshold for the type and amount of agent used presently. Unsurprisingly, close
to the source there is considerably higher risk of injury. It can also be seen from Figure 3.14 that
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(a) Time t = 0 min after release has stopped. (b) Time t = 15 min after release has stopped.

(c) Time t = 30 min after release has stopped. (d) Time t = 45 min after release has stopped.

Figure 3.11 Countours of ensemble-averaged nondimensional concentration, C∗ = C/Cperf in a cut-
plane at z = 1.5 m.
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Figure 3.12 Temporal evolution of the total amount of CB agent in the domain relative to the total
amount released. For consistency with the time reference used in previous figures, t = 0
corresponds to the time at which the CB release is stopped.

Figure 3.13 Contours of arrival time for the cloud of CB agent, i.e. the earliest time at which C∗ > Cthr,
where Cthr ∼ 10−2 is a threshold value. For consistency with the time reference used
in previous figures, t = 0 corresponds to the time at which the CB release is stopped.
(Negative values thus correspond to minutes before the release is stopped.)
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(a) Time t = 0 min after release has stopped (i.e. 5-
minute exposure).

(b) Time t = 15 min after release has stopped (i.e.
20-minute exposure).

(c) Time t = 30 min after release has stopped (i.e.
35-minute exposure).

(d) Time t = 45 min after release has stopped (i.e.
50-minute exposure).

Figure 3.14 Countours of LD50-normalized accumulated dosage, Ds/DLD50mp (cf. Section 2.4.4), in
a cutplane at z = 1.5 m.
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Table 3.3 Percentage sizes of a population in the conference hall exposed to different accumulated
dosage intervals (relative to the LD50 threshold) of CB agent, 30 minutes after the release.
The “original amount” corresponds to the amount of agent used in the original simulations
discussed throughout this report.

Ds/DLD50 interval Original amount 100 × orig. amount
< 0.5 100 % 10.8 %
[0.5, 1) 0 % 11.6 %
[1, 2) 0 % 22.4 %
≥ 2 0 % 55.2 %

after the inital release and subsequent 15 minutes, not much changes with respect to the pointwise
accumulated dosage. This is consistent with the previous results which have shown that the cloud is
vey diluted late in the dispersion process, and much of the CB agent has left the domain by means
of the ventilation outlets.

Note, however, that for a more potent CB agent (or, equivalently, a larger amount of the present
agent) the risk would be much higher than exemplified here. For example, if the amount released
was multiplied by a hundred, the dosages would increase correspondingly. This would imply a
dosage of more than one LD50-threshold for a large portion of the conference hall after only 15
minutes. Also keep in mind that the LD50 threshold implies a 50 % mortality rate, meaning that
dosages should be significantly below this level to ensure no loss of life.

3.2.4 A practical example: Estimated casualty rates

The results discussed in the previous section, particularly the accumulated dosages, can be used to
estimate casualty rates.

There are several choices involved in estimating casualties; if desired, complex models for
human behavour can be used to make assumptions about walking paths, distribution of people
etc. Similarly, assumptions about the population can be arbitrarily complex with regards to health
level, body mass, respiration rates etc. In either case, the underlying concentration field is used to
compute the dosages people are exposed to, cf. Section 2.4.4.

Presently, the following simple assumptions have been applied to exemplify how casualty rates
can be estimated:

• The population has an average body mass of 70 kg.
• The population has an average respiration rate of 10 l/min.
• The population is generally healthy.
• The deposition efficiency of the CB agent in the airways is 100 %.
• The entire population is in the conference hall (i.e. the corridors are empty), and no one exits
the hall.

• The concentration of people (i.e. their distribution in the conference hall) is uniform.
By applying these assumptions, in conjunction with the concentration field and dosage integrals,

the fractions of the population exposed to different accumulated dosages can be computed. Table
3.3 give the sizes of such population fractions after 30 minutes for two different released amounts
of CB agent.

Table 3.3 clearly reveals the significant differences in health effects from a small to a large
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release of a CB agent. In the former case, no one is exposed to dosages higher than half the LD50
threshold, whereas for the large release, half the population are exposed to dosages more than twice
the threshold.

It is not straight-forward to predict the death toll of a population purely from the dosages given
in Table 3.3, for reasons given in Section 2.4.4. However, coarse estimates can be calculated, given
crude assumptions about dosage response. Such assumptions are usually highly uncertain and must
be regarded with great care.

For example, it could be assumed that if the dosage exceeds the LD50 threshold, regardless of
how much, 50 % of the population dies. If the dosage is below the LD50 threshold, it is assumed that
no one dies. This assumption is lacking for several reasons; for example, note that this assumption
can never yield a casualty rate above 50 %, which is unrealistic for many situations.

Another assumption is that of a linear response to the accumulated dosage. For such an
assumption, the casualty rate is directly related to the dosage by means of a linear function. That is,
one could assume that for a dosage of one LD50 threshold, half the population dies, whereas for 0.5
and 2 times the LD50 threshold, a quarter and all of the population dies, respectively.

Given the latter of these two assumptions, a crude estimate of the number of casualties can be
found. For example, if there are 500 people in the conference hall during the release and dispersion
of the CB agent, the complete dosage data set (which is merely summarized in Table 3.3) implies
that for the small (original) release, approximately 7 people (1.4 %) will die, whereas for the larger
release, 358 people (71.6 %) will die.
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4 Concluding remarks

4.1 Concluding remarks

It has been shown how CFD can be used to numerically simulate a CB release and dispersion event
and thus predict the event’s outcome in terms of health risks and potential casualty rates. The
general CFD framework has been summarized, and the ability to easily assess effects of changing
parameters, such as the location of the release or the amount of CB agent released, has also been
exemplified. Moreover, a brief discussion of health-effect models and dosage calculations based on
CFD data has been given.

In the particular scenario discussed in this report, it is seen that the height of the release location
is relatively insignificant, while the horizontal location can have a larger effect on the dispersion of
the CB agent. For all locations, the dispersion progresses rather quickly within the conference hall,
but it takes more time (& 15 min) for the CB agent to reach the outside corridor. The flow field
within the conference hall is complex and highly turbulent, consistent with the complexity of the
geometry and the large number of ventilation inlets. This leads to efficient mixing of the released
agent.

For the releases originally simulated in the present study, the health risks are generally low; it
can be estimated that the casualty rate will be less than 2 %, given that the area is evacuated wihin
30 minutes. However, if the amount released is increased, the outcome quickly becomes worse; for
example, if the released amount of CB agent is multiplied by 100, a resulting casualty rate of more
than 70 % can be crudely estimated.

Expectedly, the area close to the release location is by far the more dangerous during and shortly
following the release. It takes about 30 minutes for the CB agent to be well-mixed in the conference
hall. At this time, 50 % of the agent has also been ejected from the domain through the ventilation
outlets.

For a specific release location and type, a single simulated realization – i.e. simulation of one
CB event – seems to be an acceptable representation of the ensemble-average, i.e. a “typical” such
release, for this particular scenario. Hence, the concluding remarks given in the above can be
expected to be statistically relevant.

4.2 Sources of error

The error sources in this study can be divided into two types.
There are potential sources of error pertaining to the scenario parameters, such as the following.
• The geometry of the conference hall and corridor might not be up to date. The geometry
is based on a configuration from earlier (publicly available) studies, and it is a fact that the
conference hall often changes between conferences. In particular, the number and positions
of the dividing walls are not constant.

• The ventilation system parameters used here assume maximum ventilation. Depending on
the weather and number of visitors, the ventilation system can perform quite differently from
what is assumed here.

• The source description for the release, and the behavior of the CB agent, have been somewhat
simplified in the present study. For the case presently under consideration, the simplifications
are valid with negligible error. Generally, however, the near-source dispersion might differ
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significantly for gases very much denser or lighter than air or for very large spray velocitites.
Finally, second-order effects like far-field droplet agglomeration and surface deposition have
been neglected, which may lead to lower concentration values than what has been simulated
here.

• Input to the health effect models are based in large part on empirical data for the given CB
agent (if known). Improving the range and quality of such empirical data can significantly
reduce the uncertainties related to health effects in this study. Furthermore, knowledge about
the typical population in a given scenario (body mass, health, respiration, etc.) also increases
the certainty of the conclusions.

These uncertainties are difficult to quantify. Nevertheless, the reader should keep them in mind and
be aware that the conclusions given in this report are not general, but depends on specific scenario
information.

The other kind of potential errors relate to the numerical simulation itself. In particular, the
choice of computational mesh represents a major uncertainty of this study. Based on unsystematic
test simulations on different meshes and inspection of the results as a whole, the mesh utilized in
the present simulations appears to be adequate for the present use. Thus, the general conclusions in
this report are most likely valid.

However, as discussed in Section 2.4.1, a systematic mesh refinement study should ideally be
performed to quanitify the uncertainty related to the chosen mesh resolution. Such a study has been
omitted at present time, as the main objective has been to demonstrate fluid dynamical simulations
as a means of assessing risk, and to develop the appropriate data processing routines for such a use
of CFD.

4.3 Future work

This report merely gives an idea of the possibilities inherent in CFD simulation of CB dispersion
events. Depending on the specific scenario and what kind of assessment is desired, a range of more
detailed analyses can be performed.

In particular, much more extensive parameter studies can be performed, in which different
amounts of agent, different behavior models for people (such as various walking patterns and
evacuation routines) and different release locations can be investigated in more detail. It could also
be of interest to study the differences in scenario outcome for different room configurations, i.e.
changes in how the dividing walls are set up. Similarly, different ventilation-system settings could
be studied.

Lastly, if a more extensive parameter study is performed, it should be preceded by a systematic
mesh study to quantify the uncertainties inherent in the choice of mesh resolution.
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A Subgrid-viscosity modeling
The most common class of subgrid-stress models are subgrid-viscosity models, akin to the
Boussinesq eddy-viscosity hypothesis originally used within the RANS modeling framework. Lilly
(1967) assumed that the subgrid stresses were proportional to the resolved strain rate and suggested
that Smagorinsky’s 1963 eddy-viscosity form be used. In present-day terminology, that implies that

τ
Lilly
i j = −2νs s̃ri j, (A.1)

where the subgrid viscosity νs(x, t) = (CdL∆)2
√

2s̃ri j s̃
r
i j , in which L∆ is the LES filter width, Cd is

the Smagorinsky coefficient, and s̃ri j = (1/2)(∂j ũ
r
i + ∂iũ

r
j ) is the resolved strain rate.

In practice, L∆ is implicitly determined by the local computational cell size in most FVM solvers
(see also Section 2.3.1).

In FVM-based LES solvers, the scalar subgrid flux, fi, is frequently modeled similarly to the
momentum subgrid stresses, i.e. by a subgrid-diffusivitiy model of the form fi = γs∂i θ̃. Here,
γs is the subgrid diffusivity, for which various models exist, such as the very common relation
γs = νs/Prs, where the subgrid turbulent Prandtl number lies in the range 0.1 ≤ Prs ≤ 1 in the
literature, with Prs = 0.6 being typical (Sagaut, 2006, p. 463).

The original Smagorinskymodel suffers from the fact that the Smagorinsky coefficient inherently
depends on the flow regime, from zero in laminar flow to about Cd ≈ 0.15 in high-Reynolds
number turbulence (Pope, 2000, p. 619). The dynamic Smagorinsky model resolves this issue by
determining a suitable local value of the coefficient. The model, proposed by Germano et al. (1991),
can be outlined as follows (for convenience, the tilde symbols denoting full instantaneous fields are
dropped for the time being):

Given a subgrid-viscosity model,

τi j = 2CdL2
∆
|sr |sri j,

in which |sr | =
√

2sri j s
r
i j = 2Cdαi j , and the superscript r denotes resolved (filtered) variables as

usual, with the associated filter width L∆, a second model can be defined as

τ∗i j = 2CdL2
∆∗ |s

r∗ |sr∗i j = 2Cdβi j .

Here, the superscript r∗ denotes a second LES filter, with an associated filter size L∆∗. The second
filter is usually referred to as a test filter, and its filter size is often around twice the size of the
ordinary filter.

Now, letting Li j = ur∗i ur∗j − (u
r
i urj )

r∗, the properties of the LES filter implies that

−Li j = τ
∗
i j − (τi j)

r∗,

referred to as Germano’s identity. Furthermore,

−Li j = 2(Cdβi j − (Cdαi j)
r∗)

Li j ≈ 2Cd(α
r∗
i j − βi j)

= 2CdL2
∆

Mi j

Cd =
Li j

2L2
∆

Mi j

, (no summation on i, j)
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where Mi j = (L∆∗/L∆)2 |sr∗ |sr∗i j − (|s
r |sri j)

r∗. To improve the robustness of Germano’s model, Lilly
(1992) introduced a normalization and local spatial averaging procedure according to

Cd =
1

2L2
∆

〈Li jMi j〉

〈MrsMrs〉
,

which is the basis for the dynamic Smagorinsky models used in the present study.
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B Autocorrelation of the velocity signal
The autocorrelation function of a finite time series for a statistically steady velocity component, ui ,
can be written

Ru(t) =
1

T 〈uαuα〉

∫ T

0
uα(τ)uα(τ + t) dτ,

in which uα implies use of velocity component α with no summation on double indices, t is the
signal delay, and T is the chosen time range over which to average the series.

The temporal autocorrelation functionmeasures the average correlation of a data signal with itself
for varying time delays. A value of 1 (or -1) implies perfect correlation (or anticorrelation), whereas
a value of zero implies no correlation at all. The correlation time of the signal is approximately the
time at which the temporal autocorrelation approaches zero (within some threshold).

In Figure B.1, the temporal autocorrelation functions for components of the (fluctuating)
velocity field, ui, is plotted for two different locations in the domain. As seen, the evolution of the
autocorrelation function with increasing time delay suggests that the correlation time estimate from
Section 2.4.3.1 is appropriate; at (30, 10, 1.5), the autocorrelation decreases rapidly and, within 5 s,
fluctuates around zero. At (30, 30, 3.3), the correlation time is longer; within roughly 30 s, the x
and z components seem to approach zero, whereas the y component is slower.

Figure B.1 Temporal autocorrelation functions for the (fluctuating) velocity field, ui , at two different
locations.

Only two locations are shown in Figure B.1, for clarity, but autocorrelation data at other locations
corroborate the general picture discussed above: In the z = 1.5 plane (and below), the correlation
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time generally seems rather short (. 10 s), whereas in the z = 3.3 plane, the correlation time is
longer (∼ 60s). For the ensemble-averaged dispersion realizations, which are released at z = 1.5,
60 s should thus be an acceptable time-separation between successive releases in order to obtain
reasonably uncorrelated realizations.
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C Statistical convergence of ensemble averaging
Figure C.1 shows how the approximately ensemble-averaged concentration field, 〈c̃〉R, and the
difference between successive approximations vary with respect to number of realizations used.
Data from a uniform grid of 170 points in the z = 1.5 plane is shown in the figure. In Figure C.1b,
an additional threshold of C∗ = 10−5 is used, below which data is discarded because the mean value
approaches the computational tolerance of the numerical solver. This leads to a removal of 45
points, i.e. 26 %, from the data.

(a) Successive ensemble-mean approximations with
increasing included number of realizations.

(b) Evolution of the difference between two successive
ensemble-mean approximations as the included
number of realizations increase.

Figure C.1 Statistical convergence of the approximately ensemble-averaged concentration field, 〈c̃〉R,
with increasing number of realizations, R.

As seen from C.1a, the ensemble-average for each data point generally appears to reach an
approximately steady state at roughly 20 included realizations. This is confirmed by Figure C.1b,
which shows that for most points (> 95 %), the “realization-derivative” of the ensemble-average is
within 1.5 % when 40 realizations are used. These results are consistent with the estimate provided
in Section 2.4.3.1.
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