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Position calculations, e.g. adding, subtracting, interpolating, and averaging positions, 
depend on the representation used, both with respect to simplicity of the written code and 
accuracy of the result. The latitude/longitude representation is widely used, but near the 
pole singularities, this representation has several complex properties, such as error in 
latitude leading to error in longitude. Longitude also has a discontinuity at ±180˚. These 
properties may lead to large errors in many standard algorithms. Using ellipsoidal Earth 
model also makes latitude/longitude calculations complex or approximate. Other common 
representations of horizontal position include UTM and local Cartesian ‘flat Earth’ 
approximations, but these usually only give approximate answers, and are complex to use 
over larger distances. The normal vector to the Earth ellipsoid (called n-vector) is a non-
singular position representation that turns out to be very convenient for practical position 
calculations. This paper presents this representation, and compares it with other 
alternatives, showing that n-vector is simpler to use and gives exact answers for all global 
positions, and all distances, for both ellipsoidal and spherical Earth models. In addition, two 
functions based on n-vector are presented, that further simplifies most practical position 
calculations, while ensuring full accuracy. 
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1  I N T R O D U C T I O N  
Calculations involving global position, i.e. position relative to the Earth, are central in 
many fields, such as navigation, radar/sonar calculations, geodesy, and vehicle guidance 
and control. In these calculations, the position can be represented by different mathematical 
quantities, each with its own properties. There are several well-known representations for 
global position, such as latitude/longitude, UTM (Universal Transverse Mercator (Snyder, 
1987)), and Cartesian 3D vector (Earth-centred-earth fixed). These position representations 
will be discussed in Section 3, focusing on their limitations, and how their properties may 
induce significant errors in common calculations. Many of the problems and limitations of 
these alternatives are avoided if using the normal vector to the Earth ellipsoid (called n-
vector) to represent the position. Although this representation has been briefly mentioned in 
some texts (e.g. Aeronautical Systems Div Wright-Patterson AFB OH, 1986) a thorough 
presentation of this alternative, including comparisons with the more well-known 
representations is not found in the literature. This paper will present the n-vector alternative 
by first discussing the geometrical properties of n-vector in Section 4. Section 5 presents 
various n-vector calculations, illustrating the fact that calculations involving n-vector are in 
general remarkably simple. To simplify implementation further, two functions are 
presented, which turn out to cover a majority of practical position calculations. In Section 
6, several examples comparing the use of latitude/longitude with n-vector for specific 
calculations are studied. The practical usefulness of n-vector in real-life applications is the 
topic of Section 7, where the experience is that research groups prefer using n-vector in 
many of their position calculations after becoming familiar with it.  
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2  N O T A T I O N  
A unified and stringent notation is of utmost importance when describing the kinematics of 
multiple rotating systems, and a full notation system with definitions of the central 
quantities has been developed by the author (to be published). A short, simplified extract 
from this system, with only the symbols relevant in this paper, is given below. 

2.1 Coordinate frame 
A coordinate frame is defined as a combination of a point (origin), representing position, 
and a set of basis vectors, representing orientation. Thus, a coordinate frame has 6 degrees 
of freedom and can be used to represent the position and orientation of a rigid body. A 
listing of the specific coordinate frames relevant in this paper is found in Appendix A. 

2.2 General notation 
A general vector can be represented in two different ways (McGill and King, 1995), 
(Britting, 1971): 
 
• x  (Lower case letter with arrow): Coordinate free/geometrical vector (not decomposed 

in any coordinate frame) 
• Ax  (Bold lower case letter with right superscript): Vector decomposed/represented in a 

specific frame (column matrix with three scalars) 
 
The physical world to be described by the kinematics is modelled in terms of coordinate 
frames. Hence, quantities such as position, angular velocity, etc. relate one coordinate 
frame to another. To make a quantity unique, the two frames in question are given as right 
subscript, as shown in Table 1.  
 
Note that in most examples in Table 1, only the position or the orientation of the frame is 
relevant, and the context should make it clear which of the two properties is relevant (for 
instance, only the orientation of a frame written as right superscript is relevant, since it 
denotes the frame of decomposition, where only the direction of the basis vectors matters). 
If both the position and the orientation of the frame are relevant, the frame is underlined to 
emphasize that fact. 
 

Table 1.  Symbols used to describe basic relations between two coordinate frames. 

Quantity Symbol Description 

Position 
vector ABp  

A vector whose length and direction is such that it goes from 
the origin of frame A to the origin of frame B, i.e. the position 
of B relative to A. 

Velocity 
vector ABv  

The velocity of the origin of frame B, relative to frame A. The 
underline indicates that both the position and orientation of A 
is relevant (whereas only the position of B matters). 

Rotation 
matrix ABR  A 3x3 direction cosine matrix (DCM) describing the 

orientation of frame B relative to frame A. 
Angular 
velocity ABω



 The angular velocity of frame B relative to frame A. 

 
For generality, the vectors in Table 1 are written in coordinate free form, but before 
implementation in a computer, they must be decomposed in a selected frame (e.g. C

ABω  is 

the angular velocity ABω


 decomposed in frame C).  
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3  S T A N D A R D  P O S I T I O N  R E P R E S E N T A T I O N S  
Before introducing n-vector, the standard position representations are discussed as a 
background for comparison. 

3.1 Cartesian 3D vector 
When representing the position of a general coordinate frame B relative to a reference 
coordinate frame A, the most intuitive quantity to use is the position vector from A to B, 
decomposed in A, A

ABp . This paper focuses on global positioning, and using the frames 
defined in Appendix A, we can represent the position of a body frame (B) relative to the 
Earth (E), by using E

EBp . This (Cartesian) vector is often referred to as Earth Centred Earth 
Fixed (ECEF) vector. While this representation is non-singular and intuitive, there are 
many situations where other representations are more practical when positioning an object 
relative to the Earth reference ellipsoid. 

3.2 Separating horizontal and vertical components 
For many position calculations, it is desirable and most intuitive to treat horizontal and 
vertical positions independently. This is for instance useful in a navigation system, where 
horizontal and vertical position are usually measured by different sensors at different points 
in time, or in a vehicle autopilot, where horizontal and vertical position are often controlled 
independently. In such applications, we usually compare two horizontal positions, and thus 
we need a quantity for representing horizontal position independently of the vertical 
height/depth. It should thus be possible to represent horizontal position without considering 
the vertical position, and vice versa. If the vector E

EBp  is used, the horizontal and vertical 
positions are not separated as desired. 

3.2.1 Latitude and longitude 
A common solution for obtaining separate horizontal and vertical positions is the use of 
latitude, longitude and height/depth (related to a reference ellipsoid, discussed in Section 
4.1). However, this representation has a severe limitation; the two singularities at latitudes 
± 90°, where longitude is undefined. In addition, when getting close to the singularities, the 
representation exhibits considerable non-linearities and extreme latitude dependency, 
leading to reduced accuracy in many algorithms, as exemplified in Section 6. Thus, these 
coordinates are not suitable for algorithms that should be able to calculate positions far 
north or far south. In addition, calculations near ±180˚ longitude become complicated due 
to the discontinuity. 

3.2.2 Local Cartesian coordinate frame (flat Earth assumption) 
Another common solution for separating the horizontal and vertical components is to 
introduce a local Earth-fixed Cartesian coordinate frame, with two axes forming a 
horizontal tangent plane to the reference ellipsoid at a specified tangent point. Assuming 
several calculations are needed in a limited area, position calculations can be performed 
relative to this system to get approximate horizontal and vertical components. This 
coordinate frame is not used as a global position representation (since the local origin 
(tangent point) must still be represented relative to the Earth), but is rather a way to get 
horizontal and vertical directions in the local position calculations.  
 
However, the local Cartesian representation corresponds to a local flat Earth assumption 
and does not give exact horizontal and vertical directions for positions that are not directly 
above or below the tangent point. The further away from the tangent point the calculations 
are done, the greater the error in the horizontal and vertical directions. In an application 
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with e.g. moving vehicles, the system typically has to be repositioned regularly in order to 
minimize these errors. 

Finally, most local Cartesian frames are aligned with the north/east directions at the tangent 
point, and are often treated as a linearization of the meridians and parallels. However, when 
getting close to the poles the linearization is sufficiently accurate only for a very small area. 
Here, an error in the assumed position can give errors in the assumed north/east directions 
as well. At the pole points the north and east directions are undefined. Thus, calculations 
operating with a north/east aligned coordinate frame can generate significant errors in the 
Polar Regions.  

3.2.3 UTM and UPS 
Horizontal position can also be represented by defining an Earth fixed coordinate system 
based on a map projection (i.e., a mapping of points on a curved surface to a plane) valid in 
a limited geographical area. One such system is Universal Transverse Mercator (UTM), 
specifying 60 longitude zones, covering the globe except for the Polar Regions (Snyder, 
1987). For the Polar Regions, a similar system, Universal Polar Stereographic (UPS), 
defines horizontal positions (Hager et al., 1989). 

While these systems are well-defined and the coordinate values approximately correspond 
to metres, they have an inherent distortion due to the projection and thus a corresponding 
error in many calculations (e.g. a difference vector between two UTM coordinates will give 
a length (in metres) and direction (relative to north) that both have errors compared to the 
true values). In addition, general calculations get very complex when crossing zones (Hager 
et al., 1989). 

3.2.4 Rotation matrix 
In a set of navigation equations, integrating measurements from an inertial measurement 
unit, horizontal position is often stored together with an azimuth angle in a rotation matrix 
(Savage, 2000). Although it has nice properties with respect to the pole singularities 
(similar to n-vector), this matrix representation is not suited for pure horizontal position 
representation. More about this alternative is found in Section 5.5. 

4  n - V E C T O R  
We will seek an alternative for representing horizontal position. The vertical position 
representation (height/depth from the reference ellipsoid) is very convenient and will still 
be used.  

It should be noted that the terms horizontal and vertical directions implicitly introduce a 
reference surface, and the terms are valid for a given point at the surface. The horizontal 
direction is given by the surface tangent plane (2D) and the vertical direction is the normal 
to the surface (1D). Thus, the task of finding a non-singular representation of horizontal 
position can in general be viewed as finding a suitable representation of 2D position on a 
surface. 

We define a surface as associated with a coordinate frame, if the surface is fixed relative to 
the coordinate frame. We also define a surface as strictly convex if it is or can be extended 
to a closed surface whose enclosed volume is strictly convex. Realising that the 2D position 
on a strictly convex surface can be uniquely represented by the normal vector to the 
surface, leads to the idea of using this vector as a position representation. 

Definition of n-vector: 
A strictly convex and differentiable surface is associated with coordinate frame A. 
A coordinate frame B is located at the surface. The n-vector representation of the 
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position of B relative to A is defined as the outward pointing normal vector of the 
surface at the B-position, with unit length. The n-vector is denoted as ABn . 

 
The surface might consist of several patches/pieces, as long as they can be extended to a 
closed surface with a strictly convex interior. Since the surface is differentiable, the 
boundary of each piece is not part of the surface (the edges are open). 
 
In the definition above, B is at the surface since n-vector is a representation of horizontal 
position only. How to use the n-vector for 3D positions is discussed in Section 4.3. 

4.1 Reference ellipsoid 
Note that the alternatives for global positioning discussed in Section 3 are defined relative 
to a reference ellipsoid, e.g. WGS-84 (National Imagery and Mapping Agency, 2000). 
When using n-vector to represent global position (i.e. position relative to the Earth frame, 
E), it must also relate to a reference ellipsoid. The reference ellipsoid is a surface that is 
both strictly convex and differentiable, and for n-vector this ellipsoid is the surface 
associated with E. The vehicle/object to be positioned is typically denoted B (Body), and 
thus the n-vector for global positioning is denoted EBn . Hence, EBn  conveniently 
represents horizontal position at the Earth surface without singularities. 
 
Figure 1 shows n-vector as the normal to the reference ellipsoid surface. Note also, as 
shown, that n-vector corresponds to geodetic latitude (Snyder, 1987). Geodetic latitude is 
the latitude most commonly used, and when using the term latitude in the rest of this 
document, this always means geodetic latitude. 
 

 
Figure 1 Earth reference ellipsoid with n-vector, geodetic and geocentric latitude. Two 

axes and the origin of the E-frame (blue) and the origin of the B-frame (green) are also 
shown. 

 

geodetic 
latitude 

n-vector,  

geocentric 
latitude 

North Pole 

E y 

x 
B 

EBp  

Equator 
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4.2 One-to-one property 
n-vector is a one-to-one representation, i.e. any normal vector corresponds to one unique 
surface position, and any surface position corresponds to one unique n-vector. This one-to-
one property is not held by various other representations, such as latitude/longitude (many-
to-one), roll/pitch/yaw (many-to-one) or quaternions (Zipfel, 2000) (two-to-one). 
 
Note 1: If the surface is closed, any unit vector will be a valid n-vector, and thus it will 
correspond to one unique position. 
 
Note 2: The one-to-one property of n-vector is due to the strict convexness and 
differentiability of the associated surface: 

a) If the surface had not been strictly convex, n-vector would be one-to-many. (In 
addition, the lack of strict convexness means that the term ‘outward pointing’ is not 
defined all over the surface, and in general n-vector cannot be uniquely defined for 
such surfaces.) 

b) If the surface had not been differentiable, n-vector would be many-to-one. 
 
The two cases are illustrated in Figure 2. 
 

 
Figure 2 a) The surface is differentiable, but not strictly convex: One n-vector 

corresponds to many positions. b) The surface is strictly convex, but not differentiable: 
Many n-vectors correspond to one position. 

 

4.3 3D positions 
So far, n-vector has been used to represent a position on the reference surface, but in the 
same manner as for latitude/longitude, a 3D position can be represented by adding a 
height/depth parameter (above/below the nearest part of the reference ellipsoid surface). 
Mathematically, this is a very convenient combination since the n-vector defines the exact 
direction in space where the height/depth is valid (e.g., if we need the vector from the 
ellipsoid surface to a given 3D position, it is simply found as the product of n-vector and 
the height). When B is not at the surface, the B in EBn  represents the horizontal position of 
B. 
 

(a) (b) 
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As mentioned in Section 3.2, it is usually most convenient with separate horizontal and 
vertical position representations. However, this is not the case if working with positions 
near1 the Earth’s centre, since the horizontal and vertical directions are not defined there.  

5  n - V E C T O R  C A L C U L A T I O N S  
We have seen that from a geometrical point of view EBn works very well as a 
representation of horizontal position. The overall usefulness also depends on how easy it is 
to work with n-vector in practical calculations. 
 
In most practical calculations, n-vector is decomposed in the E-frame, i.e. E

EBn . If, for 
example, we want to represent the South Pole, we see from the definition of the E-frame in 

Appendix A that 
1

0
0

E
EB

− 
 =  
  

n . It should also be noted that n-vector has approximately the 

same direction as the position vector E
EBp  (see Figure 1, where the ellipticity is 

exaggerated). If assuming spherical Earth, the directions are equal, i.e. 
 

 
E

E EB
EB E

EB

=
pn
p

  (1) 

 
where | | denotes the vector length (vector 2-norm).  
 
Note that for all equations in this paper that are valid only for spherical Earth, this is stated 
directly before the equation. All other equations in this paper are valid for both ellipsoidal 
and spherical Earth. 

5.1 Simplified notation 
For the general quantities in Table 1 there are many possible frames (such as the position of 
a sensor relative to a vehicle), but for global position, the frames are often E and B. If all 
positioning is relative to Earth (E) and only one object is positioned, the subscript is 
redundant and can be omitted, so we can simply use En . This is similar to situations where 
it is sufficient to use only the variables latitude and longitude (without further 
specification). 

5.2 Converting to or from latitude and longitude  
The relations between latitude/longitude and n-vector are found in this section. Note that 
the relations are valid for any reference ellipsoid or sphere.  
 
Mathematically, the longitude and latitude are the first two angles of an x-y-z Euler angle 
representation of the orientation of a local level frame (such as N or L, see Appendix A) 
relative to E. The latitude (λ) and longitude (μ) have the following dynamical intervals: 
 

 
[ 2, 2]
( , ]

∈ −
∈ −

λ π π
µ π π

  (2) 

 
                                                      
1 Positions where the depth is equal to or greater than the ellipsoid radius of curvature. 
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5.2.1 From latitude and longitude to n-vector  
By observing simple geometry, we get the following relation:  
 

 
sin( )

sin( ) cos( )
cos( ) cos( )

E

 
 = ⋅ 
 − ⋅ 

n
λ

µ λ
µ λ

  (3) 

 
This equation has no singularities, i.e., one can always calculate a unique n-vector from a 
set of latitude and longitude. At the poles (λ = ±π/2), a zero factor, cos(λ), in both the y and 
z components makes the actual value of the (undefined) longitude irrelevant. 
 
It is also clear from (3) how the discontinuity of longitude at ±π is eliminated when using n-
vector, since both cos( ) and sin( ) are continuous for an angle going through this value. 
 
Note that the order and signs of the vector elements in (3) obviously depend on the choice 
of E-frame axes, see Appendix A. 

5.2.2 From n-vector to latitude and longitude  
From the geometry, we get the following relations: 
 
 ( )arcsin E

xn=λ   (4) 
 
 ( )arctan ,E E

y zn n= −µ   (5) 
 
where arctan(b,a) is the four quadrant version of arctan(b/a). The x, y and z subscripts 
indicate the three components of n-vector. The longitude singularity at the poles is apparent 
in the arctan( ) expression, which is undefined for the input (0,0) (however, in practical 
programming languages, a default output is usually returned also in this case, making it 
possible to convert back to n-vector with (3) also at the poles). 

Implementation considerations 

Equation (4) is not recommend for implementation, since the arcsin( ) function is 
numerically inaccurate near the poles2 and also will return imaginary results if the input 
should be outside ±1 due to numerical inaccuracy. An equivalent alternative that is robust 
against numerical errors is given in (6). 
 

 ( ) ( )2 2
arctan ,E E E

x y zn n n = + 
 

λ   (6) 

 
Note that the four quadrant arctan( , ) is used even when we know that latitude is limited to 
two of the quadrants (see (2)), to avoid division by zero at the poles. Because the second 
parameter is non-negative, this function will always return answers in the correct quadrants. 

5.2.3 Quaternion comparison 
Orientation (three degrees of freedom) is often represented by three Euler angles or three 
other parameters (Craig, 1989). However, all three-parameter orientation representations 
have singularities (Stuelplnagel, 1964), and by using 4-parameter quaternions (Zipfel, 

                                                      
2 The arcsin( ) is in general numerically inaccurate for calculating angles close to ±π/2, just as arccos( ) is 
inaccurate close to zero and π. Arctan( ) is accurate for all angles. 
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2000), the singularities are avoided. The quaternion has a restriction of unit length to ensure 
it only has three degrees of freedom.  
 
Similarly, a surface position has two degrees of freedom, and can be represented by two 
parameters with singularities, such as latitude and longitude. n-vector adds a third 
parameter to avoid the singularities, and also has a restriction of unit length. Converting 
between Euler angles and quaternions yields equations similar to (3), (4), and (5), i.e. the 
quaternion is found by products of sin( ) and cos( ), and the reverse equations consist of 
arctan( ) and arcsin( ) functions. 

5.3 n-vector relations 
This section includes several useful calculations involving n-vector, illustrating its 
properties.  

5.3.1 Horizontal and vertical parts of an arbitrary vector 

Using n-vector, it is easy to find the vertical and horizontal parts of an arbitrary vector Ek , 
 
 ( )E E E E

vertical = ⋅k n k n   (7) 
 
The horizontal part is found by subtracting the vertical part, 
 
 ( )E E E E E

horizontal = − ⋅k k n k n   (8) 
 

5.3.2 North and east directions 
Outside the poles, the (horizontal) directions of north and east are often of interest. The east 
direction (normal to the meridian plane) is simply given by 
 

 
1
0
0

E E
east

 
 = × 
  

k n   (9) 

 
Similarly, the north direction (normal to the transverse plane3) is given by  
 

 
1
0
0

E E E
north

 
 = × × 
  

k n n   (10) 

 
Since the triple cross product is associative when the first and last vectors are equal, no 
parentheses are needed to specify the order of operation.  
 
The rotation matrix relating the N and E frames is useful in many calculations, and is found 
from (9) and (10), 
 

                                                      
3 The transverse plane is normal to the meridian plane and contains n-vector 
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E E

Enorth east
EN E E

north east

 
 = −
  

k kR n
k k

  (11) 

 

5.3.3 Angular velocity of local frame 

The angular velocity of a local frame L (see Appendix A) relative to E, E
ELω , is a useful 

quantity, for instance in a navigation system. From the linear velocity of B relative to E, 
E
EBv , and the meridian and transverse radius of curvature at the current height (rroc,meridian , 

rroc,transverse), this angular velocity is given by 
 

 , ,

, ,

E E
EB north EB eastE E

EL
roc meridian roc transverser r

 
= × +  

 

v v
nω   (12) 

 
Equation (12) is valid for an ellipsoidal Earth model, while for a spherical model, the 
relation is simply 
 

 
E
EBE E

EL
rocr

 
= ×  

 

v
nω   (13) 

  
where rroc is the radius of curvature, i.e. Earth radius + height. 

5.3.4 Derivative of n-vector and height/depth 
The angular velocity found in (12) or (13) can be used directly to describe the derivative 
(with respect to time) of n-vector (also for elliptical Earth), 
 
 E E E

EL ×n n= ω   (14) 
 
The vertical part of the angular velocity vector does not affect the update of n-vector, and 
hence the angular velocity of any local level coordinate frame could be used in (14), for 
instance of N (i.e. E

ENω ). The derivative of n-vector is useful for instance when integrating 
velocity to get position as n-vector (as will be done in Section 6.5).  
 
If integrating to get 3D position, an update of the height/depth would also be needed. 
Updating height (h) is simple when knowing n-vector,  
 
 E E

EBh = ⋅n v   (15) 
 

5.3.5 Surface distance 
If assuming spherical Earth, the surface distance (length of geodesic) between two positions 
(given by E

EAn  and E
EBn ), is easy to find by utilizing the properties of the dot and cross 

products, 
 

 
( )

( )
arccos

arcsin

E E
AB EA EB roc

E E
EA EB roc

s r

r

= ⋅ ⋅

= × ⋅

n n

n n
  (16) 
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where sAB is the surface distance between A and B. For implementation, note that the 
arccos( ) expression is ill-conditioned for small angels, and the arcsin( ) expression is ill-
conditioned for angles near π/2 (and not valid above π/2). Full numerical accuracy for all 
angles is achieved by combining the two expressions into an arctan( , ) expression as before 
(see Section 5.2.2). 

5.3.6 Horizontal geographical mean 
If m horizontal positions are given as n-vectors, the geographical mean, BGM, is simply 
given by (assuming spherical Earth) 

 
1

= unit
GM i

m
E E
EB EB

i=

 
 
 
∑n n   (17) 

 
where 

i

E
EBn  is the i‘th position, and ‘unit( )’ makes the input vector’s length/magnitude 

equal to one. Equation (17) gives the exact answer for any set of global positions (except in 
the case where the horizontal mean is undefined, i.e. for a set of antipodal positions, 
cancelling each other).  

5.4 n-vector and Cartesian position vectors 
In many practical calculations, there is a need to combine global position with position 
differences given as Cartesian vectors (typically relative positions within a limited area). If 
assuming spherical Earth, the relations are simple when using n-vector. For elliptical Earth, 
exact calculations have almost the same complexity as (geodetic) latitude and longitude, 
since n-vector is also a geodetic quantity. However, such calculations can be easily handled 
in practice by using two general functions: 
 

1. ‘A and B ==> delta position’: Two global positions A and B are given as n-vectors (
E
EAn  and E

EBn ) with heights. The function calculates the position vector from A to 

B, E
ABp . 

2. ‘A and delta position ==> B’: One global position is given as E
EAn  with height, and 

a position vector to the point B is given ( E
ABp ). The function calculates E

EBn  with 
height. 

 
The implementation of the functions is described in Appendix B. It turns out that most 
calculations involving global position and local position vectors can easily be solved using 
these two functions (e.g. calculations involving bearing/elevation/range from a sonar/radar 
or when an estimated error or a lever-arm should be subtracted from a global position). 

5.5 Using the orientation of a local coordinate frame to represent position 

In (11) we saw that ENR  has minus n-vector as the last column, and thus this matrix 
contains horizontal position information. If replacing the singular N-frame with a non-
singular L-frame (given in Appendix A), ELR  will be a non-singular position representation 

(also with minus n-vector as last column). ELR  is the matrix mentioned in Section 3.2.4, 
and since this matrix is often of interest in an inertial navigation system, it is also used for 
horizontal position representation (Savage, 2000). It has the same qualities as n-vector with 
respect to the pole singularities, but as a rotation matrix, it has six extra elements with one 
extra degree of freedom (the wander azimuth angle described in Appendix A) that for most 
position calculations are not relevant.  
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6  C O M P A R I N G  L A T I T U D E / L O N G I T U D E  A N D  n - V E C T O R  
The latitude and longitude angles are Euler angles (see Section 5.2), and they have 
singularities just like any set of three Euler angles representing orientation. For orientation, 
if calculations near or at the singular points might be relevant, the Euler angles are usually 
replaced with a quaternion or a rotation matrix, see for example (Fortescue et al., 2003), 
(Levine, 2000), (Phillips, 2004), or (Obaidat and Papadimitriou, 2003). The replacement is 
in these references motivated by the common knowledge that singularities give problems, 
and they do not study what would actually happen if trying to perform calculations using a 
singular representation near or at a singular point. In the following, we will demonstrate 
some of these problems by looking at some examples where we use latitude and longitude 
near or at a pole. 
 
Other important reasons for using n-vector, which are also important far away from the 
poles, are the ease of use, and the exact results obtained. Some examples will focus on these 
properties as well. 

6.1 Example 1, relative position 
A common calculation is to convert positions given by latitude/longitude (located within a 
limited area), to relative positions in a local metric grid, often with north and east axes (e.g. 
when an estimated position is compared with a measured position). In practice, such 
calculations often involve the equations 
 

 
( )
( ) cos( )

north B A roc

east B A roc C

r

r

λ λ

µ µ λ

∆ = −

∆ = −
  (18) 

 
for two positions A and B, where λC typically is one of the involved latitudes, or an average. 
We immediately see that the discontinuity of longitude at ±180˚ can lead to large errors in 
(18) (but this problem can be handled by adding specific code). Problems that are more 
serious would appear if trying to use (18) near one of the poles. If the two latitudes were at 
opposite sides of a pole, the north distance would be wrong. Near a pole, the east distance 
in (18) will be along a clearly curved line and it will also depend heavily on the latitude 
used. If one of the positions is at the pole, the longitude is undefined and calculating delta 
east is problematic. In fact, when near a pole, the north and east directions will vary 
considerably even within a limited area, and at the polar point, the directions are undefined.  
 
With n-vector, the vector difference is decomposed in E, with no problems for any 
positions. It is found by a simple vector difference multiplied with rroc for spherical Earth, 
or by the function in Section 5.4 for ellipsoidal Earth. If the delta north and east 
components are desired (away from the poles), the difference vector is simply multiplied 
with (11). 

6.2 Example 2, surface distance 
A typical calculation for many applications is to find the surface distance (length of 
geodesic) between two horizontal positions. Even if assuming spherical Earth, calculating 
the great circle distance between two positions requires several steps to find exactly from 
latitudes and longitudes (an approximation is often found by square summing the deltas in 
(18)). The resulting expression found in many books, such as (Longley et al., 2005), 
(Weisstein, 2003) and (Hofmann-Wellenhof et al., 2003) gives the result as an arccos 
expression, see first part of (19). However, as discussed in Section 5.2.2, an implementation 
finding an angle from arccos will give numerical problems for small angles. In (Sinnott, 
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1984) an arcsin expression accurate for small angles is found (assuming spherical Earth). 
The two expressions for surface distance, sAB, are 
  

 

( ) ( ) ( ) ( ) ( )( )

( ) ( )2 2

arccos sin sin cos cos cos

2 arcsin sin cos cos sin
2 2

AB A B A B A B roc

B A B A
A B roc

s r

r

λ λ λ λ µ µ

λ λ µ µλ λ

= + − ⋅

 − −   = ⋅ + ⋅         

  (19) 

 
If using n-vector rather than latitude/longitude, we saw from (16) that it is easy to find the 
(non-singular ) n-vector versions of both the arccos and arcsin expressions in (19). 

6.3 Example 3, horizontal geographical mean 
In several applications, it is interesting to find the geographical mean of multiple horizontal 
positions. If the positions are given as latitudes/longitudes, even when assuming spherical 
Earth, taking the arithmetical mean will give an answer that is only approximately correct 
for a small area, away from the poles and the ±180˚-line. Finding the exact answer is 
complicated when using latitudes and longitudes. On the other hand, if the positions are 
given as n-vectors, the geographical mean is simply given by (17). 

6.4 Example 4, interpolated position 
A variant of the above example is the calculation of an interpolated position. Using the 
standard formula for linear interpolation on the latitude/longitude coordinates will not give 
positions that are at the shortest path (geodesic) between the two original positions. Errors 
will increase near the poles and at larger distances. In addition, positions at each side of μ = 
±180˚ will give wrong answers. With n-vector, the standard formula for interpolation gives 
the correct result for all positions. 

6.5 Example 5, integrating velocity 
In several applications, such as dead-reckoning systems and simulators, the velocity of a 
vehicle/object is typically integrated to give global position. We shall investigate the error 
build-up in the integration process when using latitude/longitude or n-vector as the position 
representation. 
 
The velocity vector to be integrated is EBv , and when the vehicle position is represented by 
latitude/longitude, it is updated using north and east velocity. These are achieved by 
decomposing the velocity vector in the N frame, i.e. N

EBv , and the derivatives of latitude and 
longitude can be found by (assuming spherical Earth)  
 

 

,

,

cos( )

N
EB y

roc
N
EB x

roc

v
r

v
r

µ
λ

λ

=
⋅

=





  (20) 

 
We assume correct initial position and velocity input, and thus we only study the errors 
arising from the integration process itself.  
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6.5.1 Part 1, demonstrating the error effects 
To visualise the error effects appearing when integrating latitude/longitude close to a pole, 
we will use an example where much error arises during few time steps. A ship such as an 
LCC (large crude carrier) has low dynamics, and we assume that 1 Hz forward or backward 
Euler integration is sufficiently accurate to integrate its position. We use spherical Earth 
model in this example and first assume that the ship follows a great circle with a speed of 
7.5 m/s and zero height. It passes the North Pole with a minimum distance of 10 metres, as 
illustrated with d2 in Figure 3, and we will look at a 50 seconds interval, where there are 20 
seconds (corresponding to d1) before passing at the closest distance. 
 

 
Figure 3  View from directly above the North Pole. The trajectory (passing the pole at 
d2 metres distance) is shown in solid (with an arrowhead showing the direction). Dotted 

straight lines: constant longitudes. Dotted circles: constant latitudes. 

 
 
To investigate the drift in an algorithm, a true trajectory is needed as a reference. With 
spherical Earth and no vehicle turning, it is easy to calculate the true trajectory analytically 
i.e. to directly calculate an exact true position and velocity for any point in time (we use the 
fact that seen from the E frame, the trajectory follows a great circle (geodesic) that is tilted 
relative to the meridians). The true trajectory is shown together with the results from the 
Euler algorithms in Figure 4. 
 

Longitude = 0˚ 

Longitude = ±180˚ 

d2 

d1 
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Figure 4  Latitude and longitude versus time. The true longitude and latitude are 

calculated directly from an exact function. 

 
Looking at the upper part of Figure 4, we see that the Euler algorithms follow the true 
latitude relatively well until the Pole passing. Due to the high curvature in latitude during 
the Pole passing, the algorithms get an error of about ±7.5 metres as shown in Figure 5 
(which shows the errors converted to metres). 
 
For longitude (Figure 4, lower part), the Euler algorithms also get problems when the graph 
starts curving, but far more serious is the error from the latitude dependency, see (20). The 
too large value in the forward Euler latitude in the last half of the Pole passing causes the 
longitude to be increased far too much based on the velocity in (20). The opposite is true 
for the backward Euler method. 
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Figure 5 Error from the forward and backward Euler methods when using the latitude 

and longitude representation (calculated trajectory minus true trajectory) 

 
Another weakness of the latitude/longitude representation is the high rate of change of 
longitude when close to the pole. A longitudinal error of only 0.01 metres at the closest 
point in the example corresponds to an error of about 6400 metres at the equator. Thus, 
small insignificant position errors generated close to the poles are magnified many orders 
of magnitude when moving away from the pole. In the above example, the errors that arose 
during the pole passing are magnified as shown in part 2 of Figure 5. Even without these 
effects, small errors in the initial position, in the velocity or in the timing (such errors are 
not included in the example), would be scaled to significant levels when increasing the 
distance from the Pole.  

Higher order integration method 

Looking at the errors from forward or backward Euler, it is tempting to try a second order 
integration method like the trapezoid method. As expected, this reduces the error 
significantly (down to 56 metres/14˚ in longitude), but the error is probably still too large 
for most applications. Using a higher rate than 1 Hz also improves the result (as studied in 
Section 6.5.2), but for any rate, we could pass the Pole at a shorter distance, and the error 
would again be unacceptable. This illustrates that the fundamental problem is the 
singularity of the latitude/longitude representation, and as we will see in the next section, 
replacing latitude/longitude with the non-singular n-vector is a far better solution than using 
a more complex integration method or a higher rate. 
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Calculating position using n-vector 

Updating n-vector is done using the velocity decomposed in the E-frame, E
EBv . Note that 

this is a more realistic and better suited velocity input than N
EBv . E

EBv  can be obtained by 
measuring Doppler shift from GPS or from underwater transponders with known position. 
While E

EBv  has no error due to own position error, N
EBv  is decomposed in the north and east 

directions, and in the Polar Regions these directions themselves will have errors given 
directly by the error in our assumed position.  
 
Combining (13) and (14), we find that the derivative of n-vector is calculated by (assuming 
spherical Earth) 
 

 
E
EBE E E

rocr
 

× ×  
 

v
n n n=   (21) 

 
Note that even if the full 3D vector E

EBv  is used, only the horizontal component will 

contribute due to the cross product with En . 
 
Using the derivative as input, updating n-vector with the forward and backward Euler 
methods gives the result shown in Figure 6. The difference from the true trajectory is too 
small to be visible in this figure, but as we did for latitude and longitude, we can calculate 
the error in metres, shown in Figure 7. This is done using the calculated and true n-vector in 
(16), or by multiplying the difference vector with rroc, which gives the same result for small 
angles. By comparing with Figure 5, we see that replacing latitude and longitude with n-
vector has reduced the accumulated error from ca. 228 metres (great circle error, found by 
using (3) and (16)) to only 2.1x10-9 metres (both numbers are the largest error from either 
the forward or backward Euler method). The latter is at the level of errors from the 
computer’s numerical precision used in the test, i.e. IEEE 754 double precision, which near 
the surface of the Earth gives a precision of rroc/252 ≈ 1.4x10-9 metres. 
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Figure 6 The components of n-vector versus time. The true n-vector is calculated 

directly from an exact function. (The errors of the Euler methods are too small to be visible 
in this plot.) 
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Figure 7 Error from the forward and backward Euler methods when using the n-vector 

representation. 

 

6.5.2 Part 2, sensitivity analysis 
The trajectory used in Part 1 was practically straight (only curving due to Earth’s 
curvature), and thus errors arising in the Euler methods when the vehicle is turning were 
not included. The LCC in the example typically makes a heading change at 0.3˚/s, and a 60˚ 
turn (simplified to follow a circle segment) will generate an error of ±3.75 metres for 2D 
Cartesian coordinates with the 1 Hz Euler methods. The error is not dependent on the 
turning rate, but on the speed and the net number of degrees turned. 
 
We will now expand the scenario to start 10 minutes before the Pole passing 
(corresponding to d1 in Figure 3), include two 30˚ starboard turns and last for 1 hour, where 
the turns start at 15 and 30 minutes. The distance to the Pole (d2 in Figure 3) will be varied, 
and we will look at the final error as a function of this distance. The results from similar 
straight trajectories (i.e. no vehicle turning) are also included for comparison. For the 
straight trajectories, the true trajectory is found analytically as in Part 1, while for the 
curved trajectories the truth is found using NavLab (Gade, 2004) running at 100 Hz 
(NavLab uses the trapezoid method and has no pole singularities). 
 
Figure 8 shows the result, and for the curved trajectory, the error in latitude/longitude is 4.1 
metres when passing the pole at 300 km distance, while passing at 5 metres distance gives 
an error of about 42 km. For n-vector, the only visible error is the expected 3.75 metres 
arising from the turning, independent of the distance to the pole. For the straight trajectory, 
we get similar results, but the error of 3.75 metres from the turning is removed (and the 
small changes in n-vector error visible in Figure 8a is because the computer’s numerical 
precision gives different error accumulation at different locations). 
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(a) 

 
(b) 

Figure 8 Final error in the Euler methods (the method with the largest error is plotted) 
at different distances to the pole (d2). In part a, the magnitude of the spike is compressed by 
using a logarithmic scale at the y-axis. Part b is zoomed in without including the large spike 

and has a linear y-axis. 
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A common rule of thumb when considering error sources is to ignore an error source if it is 
below 10% of a known error. To reduce the extra error generated from the use of the 
latitude/longitude representation to this level compared to the error from the turning, 
requires a distance of about 250 km from the pole in this example. Note that in a practical 
application, there will be other error sources, other integration periods and other dynamics, 
and thus the distance where the extra error from the latitude/longitude representation could 
be neglected will vary from application to application. 

Sensitivity of integration period 

We could also do a sensitivity analysis by reducing the integration period to see if this 
would give acceptable performance for the 10 metres pole distance scenario. To be able to 
use the analytical true trajectory, the straight trajectory from above is used. The result is 
shown in Figure 9 where increasing the rate to 100 Hz reduces the latitude/longitude error 
to 170 metres. For n-vector, the higher rate first reduces the error in a similar manner, but 
for very high rates, the total number of iterations is considerably increased, and thus the 
accumulation of round-off errors increases the total error. 
 

 
Figure 9 Final error in forward or backward Euler (the one with largest error is plotted) 
at different integration rates for straight trajectory, with a minimum pole distance (d2) of 10 

metres. The y-axis is logarithmic. 

 

6.5.3 Conclusion 
Integrating position using latitude and longitude can give unacceptably large errors when 
close to a pole, particularly due to the coupling of error from latitude to longitude. In the 
given example, a distance in the order of 100 km from the pole was needed to be able to 
safely neglect this additional error source. By using n-vector instead, no additional error is 
introduced (the error here was determined by the actual curvature of the trajectory or by 
computer precision for straight trajectory). 
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6.6 Example 6, change reference of a position vector 
In many applications, an object’s (3D) position given relative to one frame needs to be 
expressed relative to another frame. For example, this calculation is needed if a vehicle 
position measured by one radar should be expressed relative to a second radar. The global 
positions of both radars are given, and a classical approach to this problem is to assume that 
each radar has an associated N-frame. The vector to the vehicle is given relative to and 
decomposed in one N-frame, and should be found relative to and decomposed in the second 
N-frame. Using the elliptical Earth model, a classical approach is based on latitude and 
longitude (Moore and Blair, 2000) and gives the answer using 16 lines of code. 
 
Solving the same problem using n-vector and the functions in Section 5.4 is intuitive, and 
only 4 lines of code need to be written. Counting the code lines inside the functions used, 
and multiplying for repeating use of functions gives a total of 10 code lines.  
 
The above problem used N-frames, and is thus inherently singular at any pole. Another 
variant of the problem would be if the original and final vectors were given in the radar 
frames (where they are measured), and the orientation was given relative to E (which is the 
natural measurement from a multi-antenna GPS), rather than N. This variant is also 
discussed in (Moore and Blair, 2000), and in the classical solution, new lines of code are 
needed for this variant (since the solution still goes via the N-frames). For n-vector, the 
total code now consists of only two lines, and in addition, the solution is completely non-
singular.  
 
If local level frames are desired also in the Polar Regions, non-singular code is easily 
achieved with the n-vector approach by replacing N with a non-singular frame. For the 
classical approach, this is not possible, since it is based on latitude and longitude. 

7  n - V E C T O R  U S A G E  
In practice, it turns out that n-vector can be used for most position calculations where 
global position is involved. After presenting this alternative for various research groups at 
FFI and collaborating universities and research institutes, n-vector has replaced other 
alternatives in numerous applications. Examples of military usage include position 
calculations for radars, passive submarine sonars and active ship sonars, where the position 
calculations include target tracking. For navigation applications, n-vector is central for the 
position calculations in NavLab, HAIN (Marthiniussen et al. 2004) and the HUGIN real-
time navigation system (Hagen et al., 2003) and (Jalving et al., 2004). Applications include 
real-time and post-processing implementations in Matlab, C++ and C#, where thousands of 
hours of sensor data have been processed using n-vector, since 1999. 

7.1 Using n-vector for attitude representation 
n-vector is usually decomposed in E for horizontal position representation. However, if n-
vector is decomposed in B, it will serve as a convenient and non-singular representation of 
roll and pitch. This is useful in several situations, since roll and pitch are often treated 
together, separately from yaw (heading). Actually Bn  relates to roll and pitch, in the same 
way as En  relates to latitude and longitude. Since the focus of this paper is on position 
representation, the treatment of Bn  as orientation representation will not be covered here. 

8  C O N C L U S I O N S  
Calculations involving global position often include the use of latitude/longitude, local 
north/east grids or map projections. The latter two alternatives involve limitations and 
approximations, and we have seen that the latitude/longitude representation has several 
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complex properties, such as error in latitude leading to error in longitude, a discontinuity at 
longitude = ±180˚, and longitude rate going towards infinity at the poles. Numerous 
examples have shown that the use of n-vector to represent horizontal position gives one or 
more of the following advantages compared to the traditional approaches (for elliptical or 
spherical Earth model): 

• There are no singularities at the poles or problems at longitude = ±180˚ (the code 
works equally well for all global positions). 

• An exact answer is returned (no approximations are made leading to increasing 
errors with increasing distances). 

• Fewer lines of code are needed to solve typical position calculations. 
• Implementation of the code is intuitive (no need to look up a specific procedure). 
• No if-statements or iterations are needed in the code. 

 
At FFI and collaborating universities and research institutes, n-vector has successfully been 
replacing other alternatives in numerous military and civilian applications and commercial 
products since 1999. 
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A P P E N D I X  A :  R E L E V A N T  C O O R D I N A T E  F R A M E S  

The coordinate frames relevant for this paper are defined in Table 2, and illustrated in 
Figure 10 (all right handed and orthonormal). 
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Table 2. Coordinate frame definitions 

Symbol Description 

E Name: Earth 

Position: The origin coincides with Earth’s centre (geometrical centre of ellipsoid 
model). 

Orientation: The x-axis is along the Earth’s rotation axis, pointing north (the yz-plane 
coincides with the equatorial plane), the y-axis points towards longitude +90° (east). 

Comments: The frame is Earth-fixed (rotates and moves with the Earth). The choice of 
axis directions ensures that at zero latitude and longitude, N (described below) has the 
same orientation as E. If roll/pitch/yaw are zero, also B (described below) has this 
orientation. Note that these properties are not valid for another common choice of the 
axis directions, denoted e (lower case), which has z pointing north and x pointing to 
latitude = longitude = 0. 

B Name: Body (typically of a vehicle) 

Position: The origin is in the vehicle’s reference point.  

Orientation: The x-axis points forward, the y-axis to the right (starboard) and the z-
axis in the vehicle’s down direction. 

Comments: The frame is fixed to the vehicle. 

N Name: North-East-Down (local level) 

Position: The origin is directly beneath or above the vehicle (B), at Earth’s surface 
(surface of ellipsoid model). 

Orientation: The x-axis points towards north, the y-axis points towards east (both are 
horizontal), and the z-axis is pointing down. 

Comments: When moving relative to the Earth, the frame rotates about its z-axis to 
allow the x-axis to always point towards north. When getting close to the poles this 
rotation rate will increase, being infinite at the poles. The poles are thus singularities 
and the direction of the x- and y-axes are not defined here. Hence, this coordinate 
frame is not suitable for general calculations. 

L Name: Local level, Wander azimuth 

Position: The origin is directly beneath or above the vehicle (B), at Earth’s surface 
(surface of ellipsoid model). 

Orientation: The z-axis is pointing down. Initially, the x-axis points towards north4, 
and the y-axis points towards east, but as the vehicle moves they are not rotating about 
the z-axis (their angular velocity relative to the Earth has zero component along the z-
axis). 

Comments: The L-frame is equal to the N-frame except for the rotation about the z-
axis, which is always zero for this frame (relative to E). Hence, at a given time, the 
only difference between the frames is an angle between the x-axis of L and the north 
direction; this angle is called the wander azimuth angle. The L-frame is well suited for 
general calculations, as it is non-singular. 

 
                                                      
4 Any initial horizontal direction of the x- and y-axes is valid for L, but if the initial position is outside the poles, 
north and east are usually chosen for convenience. 
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Figure 10 Coordinate frames E, N, L and B (figure uses spherical Earth). 

 

A P P E N D I X  B :  K E R N E L  F U N C T I O N S  

The functions described in Section 5.4 are very easy to implement if using two kernel 
functions. The kernel functions are the back and forth conversions between the two non-
singular alternatives for global position given in this paper: n-vector (with height) and the 
position vector ( E

EBp ). 

B.1 From n-vector to position vector 
Going from n-vector (and height) to E

EBp  is done with a single equation that can be found 
from the geometry (Gade and Gade, 2007), 
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where a and b are the semi-major and semi-minor axes of the ellipsoid model in use. 
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It should be noted that this task is almost the same as if we were going from latitude and 
longitude (and height/depth) to E

EBp  instead. The equation for the latter is given in 
textbooks such as (Strang and Borre, 1997). Thus, (22) can also be found by substituting n-
vector components (using (3)) in the standard equation (the substitution is very simple, 
since the equation already contains only terms that are equal to the three components in 
(3)). Thus, replacing latitude/longitude with n-vector makes the standard equation shorter in 
addition to removing the singular quantities. 

B.2 From position vector to n-vector 
Going from E

EBp  to n-vector is again a similar problem as going from E
EBp  to latitude and 

longitude. The solution of the latter is believed by many to require iterations (see for 
example (Zipfel, 2000) and (Strang and Borre, 1997)), but direct and exact (closed-form) 
solutions are available (Vermeille, 2004). Also in this solution, replacing latitude/longitude 
with n-vector gives a shorter and non-singular equation (Gade and Gade, 2007), 
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where e is the eccentricity of the Earth ellipsoid, given by 
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Note that by avoiding iterations, (23) runs faster than standard iterative solutions. Equation 
(23) is e.g. 2 to 3 times faster than the solution found in the current Matlab version 
(‘ecef2geodetic.m’ in the Mapping Toolbox), depending on the number of iterations needed 
(Gade and Gade, 2007). 
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