
Optimization of training programs for
competency-based training
- COMFORT model description

Eirik Løhaugen Fjærbu

20/00002FFI-RAPPORT

Optimization of training programs for
competency-based training
– COMFORT model description

Eirik Løhaugen Fjærbu

Norwegian Defence Research Establishment (FFI) 7 January 2020

FFI-RAPPORT 20/00002 1

Keywords
Modellering
Trening
Flygere
Kampfly
Java
Optimering

FFI report
20/00002

Project number
1449

Elektronisk ISBN
978-82-464-3250-2

Approvers
Stian Betten, Research Manager
Arne Petter Bartholsen, Director of Research

The document is electronically approved and therefore has no handwritten signature.

Copyright
© Norwegian Defence Research Establishment (FFI). The publication may be freely cited where the
source is acknowledged.

2 FFI-RAPPORT 20/00002

Summary

The Royal Norwegian Air Force (RNoAF) is in the process of phasing in new F-35 combat aircraft,
which will take on a wide range of roles. Efficient pilot training is crucial in order to make full use
of this investment. Simulator training will be an integrated part of the training program for the F-35
pilots. The simulators provide a means to better adapt the training to the needs of the pilots.

One possible approach to improve training efficiency is competency-based training, where training
is planned according to competency requirements rather than requiring pilots to complete specific
missions. Competency-based training is a promising approach that may improve the training outcome
and reduce costs. At the same time, the scheduling and resource allocation can be challenging due
to the high degree of flexibility required. In this report, we make use of optimization algorithms to
assess these challenges.

We consider a regime where the set of missions that the pilots can carry out and the set of
required competencies are given. Our aim is to minimize the total cost of the pilot training according
to a given cost function, while ensuring that the pilots train each competency a given number of
times. Two cases are considered: one where the training outcome of each mission is fixed and one
where it can vary between different repetitions of the same mission.

Both problems are formulated as Constrained Optimization Problems (COPs). For the case
where the training outcome varies, we compare two equivalent formulations. We implement a Java
program named COmpetency-Mission Frequency Optimizer for Readiness Training (COMFORT)
that solves the COPs using the software package OR-Tools. OR-Tools includes implementations
of three different COP solution algorithms. We compare the three solution algorithms in terms of
computation time for a set of example parameters and highlight some of their general strengths and
weaknesses.

FFI-RAPPORT 20/00002 3

Sammendrag

Luftforsvaret er i ferd med å fase inn nye kampfly av typen F-35, som skal fylle et vidt spekter av
roller. Et effektivt treningsopplegg for pilotene er avgjørende for å få fullt utbytte av denne inves-
teringen. Simulatortrening kommer til å bli en integrert del av treningsprogrammet til F-35-pilotene.
Simulatorene gir muligheter for å tilpasse treningen bedre etter pilotenes behov.

En mulig framgangsmåte for å effektivisere treningsopplegget er kompetansebasert trening,
hvor treningen planlegges ut fra kompetansekrav i stedet for krav om å gjennomføre spesifikke
oppdrag. Kompetansebasert trening er en lovende framgangsmåte som kan forbedre treningsutbyttet
og redusere kostnadene. Samtidig kan tidsplanleggingen og ressursallokeringen bli utfordrende på
grunn av den store fleksibiliteten som kreves. I denne rapporten bruker vi optimeringsalgoritmer for å
se på disse utfordringene.

Vi ser på et regime der det er kjent hvilke treningsoppdrag pilotene skal gjennomføre og hvilke
ferdigheter de må opprettholde. Målet er å minimere kostnaden av treningen ut fra en gitt kostnads-
funksjon og samtidig sikre at pilotene trener på hver ferdighet et gitt antall ganger per år. Vi ser på to
varianter av dette problemet: en hvor treningsutbyttet for hvert oppdrag er fast, og en hvor det kan
variere mellom ulike repetisjoner av oppdraget.

Begge problemene formuleres som føringsbaserte optimeringsproblemer (COP-er). For tilfellet
hvor treningsutbyttet kan variere, sammenligner vi to ekvivalente formuleringer. Vi implementerer et
Java-verktøy kalt COmpetency-Mission Frequency Optimizer for Readiness Training (COMFORT)
som løser COP-ene ved hjelp av programvarepakken OR-Tools. OR-Tools inneholder implementas-
joner av tre ulike løsningsalgoritmer for COP-er. Vi sammenligner beregningstiden som brukes med
de ulike algoritmene for et sett med eksempelparametre, og trekker fram noen generelle styrker og
svakheter ved hver algoritme.

4 FFI-RAPPORT 20/00002

Contents

Summary 3

Sammendrag 4

1 Introduction 7
1.1 Training Media 7
1.2 Continuation Training 7
1.3 Competency-Based Training 8
1.4 Outline 9

2 Optimization and Simulation 10
2.1 Constraint Satisfaction Problems 10

2.1.1 Basic Algorithms 10
2.2 Linear Optimization 11

2.2.1 Linear Programming 11
2.2.2 Branch-and-Cut Algorithm 12

2.3 Discrete-Event Simulations 13
2.3.1 Pilot Scheduling as a COP 14

3 OR-Tools 15
3.1 Constraint Solver 15
3.2 SAT Solver 15
3.3 IP Solvers 16

4 COMFORT 17
4.1 Baseline Problem 17
4.2 Cost Functions 18
4.3 Focus Competencies 19

4.3.1 Individual Sorties 19
4.3.2 Combinations of Competencies 20

4.4 Parameters and Return Values 21

5 Implementation 23
5.1 CP1 – Constraint Solver 23
5.2 SAT1 – SAT Solver 24
5.3 IP1 – IP Solver 25
5.4 CP2 – Individual Sorties 25
5.5 IP3 – Combinations of Competencies 26

6 Example Parameters and Results 27
6.1 Parameters 27

FFI-RAPPORT 20/00002 5

6.2 Baseline Problem 29
6.3 Focus-Competency Problem 30
6.4 Computation Time 31

7 Discussion 36
7.1 Solution Algorithms 36
7.2 Complexity 37
7.3 Improvements 37
7.4 Conclusion 38

References 39

6 FFI-RAPPORT 20/00002

1 Introduction
Training of pilots is crucial in order to utilize the full capabilities of combat aircraft, but requires a
lot of time and resources. Therefore, efficient pilot training is of great importance. Combat readiness
requires a high degree of competency over a wide range of skills, which must be maintained
within the constrained pilot schedules. Furthermore, many of the necessary competencies can only
be obtained through training in real combat aircraft (live training) [1], which is associated with
significant costs and risks.

The Royal Norwegian Air Force (RNoAF) is in the process of acquiring new combat aircraft of
the type F-35A CTOL Lightning II. These aircraft are capable of carrying out a wider range of
tasks [2], and will fulfill a greater number of roles than the F-16A/B Fighting Falcons [3, 4], which
the F-35s will replace. This will entail new competency requirements for the pilots, which in turn
must be reflected in the pilot training [5].

The Norwegian Defence Research Establishment (FFI) has analyzed F-35 pilot training for a
number of years, in support of RNoAF [5–13]. In this report, we present an optimization algorithm
for use in pilot training. Before we describe the optimization algorithm, we will briefly discuss the
use of simulators and competency-based approaches in pilot training.

1.1 Training Media

In the F-16 training program, simulator training only makes up a small fraction [1]. For the F-35
pilots, simulator training is an integrated part of the training program. In conjunction with the new
combat aircraft, the RNoAF has acquired eight Full Mission Simulators (FMSs) that model the F-35
aircraft [14] for the purpose of pilot training. In contrast to the simulators used by F-16 pilots, the
new FMSs will be connected in a network [1], allowing pilots to carry out tactical training missions.
Additionally, opposing aircraft (red-air) can be modeled by Computer-Generated Forces (CGFs)
or controlled via simpler simulators dedicated to red-air (RATS) [6]. Missions involving a large
number of aircraft are difficult and costly to organize live, and are therefore particularly well suited
for simulator training.

However, some missions are only suited for one training medium (i.e. live aircraft or simulator).
For example, highly classified tactical maneuvers may be infeasible to execute live without risk of
being detected by foreign surveillance [1]. Conversely, for some maneuvering exercises the strong
g-forces experienced in the aircraft—which cannot be reproduced in the FMS simulators—are an
essential part of the training [1].

1.2 Continuation Training

Combat aircraft pilots are assigned an operational classification as Combat Ready (CR), Limited-
Combat Ready (LCR), or Non-Combat Ready (NCR) according to their competency, which
determines whether a pilot can participate in combat operations. In order to retain their classification
as combat ready, pilots must undergo continuation training. The squadron commanders are ultimately
responsible for the assignment of the operational classification [15]. However, there are formal
requirements for the types of missions the pilots should complete and which training medium should
be used. These requirements specify the number of times each type of mission should be completed
(sorties) within given time intervals (typically a year or 6 months) in order to be classified as CR.
We will refer to such training regimes as frequency based.

FFI-RAPPORT 20/00002 7

The formal requirements for continuation training of F-16 pilots are given in the Combat Training
Program (CTP) [16]. Based on the F-16 CTP and the new roles of the F-35 [4], a preliminary CTP
was developed for the purpose of analyzing the training needs for F-35 pilots [17].

The simulation model TREFF was developed at FFI on the basis of this training program, in
order to estimate the resources that are required for continuation training of F-35 pilots [5–7]. A
number of studies have been performed using TREFF, where different scenarios and aspects of the
training were analyzed [8–10]. Extending this work, a new simulation tool named TREFF2—which
more accurately reflects how pilot training takes place—was developed in order to explore how
training of F-35 pilots can be optimized [11–13].

1.3 Competency-Based Training

Aswe discussed above, combat aircraft pilots are required tomaintain a large number of competencies.
Competency-based training (CBT) is an approach that focuses on competencies as objectives rather
than completion of missions. Here, we consider it as an alternative to the frequency-based approach
discussed in section 1.2. CBT does not refer to a specific procedure, it can be implemented in
several different ways. CBT is used in a range of different fields, both civilian and military [18, 19].

Several studies have shown that CBT can improve the learning outcome of pilot training
compared to traditional approaches [20–22]. In particular, CBT has been successfully used for
training in simulators [1, 20, 22]. Simulators are particularly well suited for CBT because they give
complete control of flying conditions and the tactical environment, and because they allow for short
sequences to be repeated quickly [1].

Determining the level of proficiency for each competency is an important part of a CBT
regime. Ideally, performance data for each pilot should be obtained throughout the year, allowing
instructors to adapt the training program to individual needs with a short response time. Such data
can be obtained by automatic logging in the aircraft or simulator, self-evaluation, or evaluation
by instructors. The data may be collected during regular training or in special missions designed
to test proficiencies. In practice, the amount of data gathered will be limited due to the time and
resources required to obtain the data, and by our ability to relate the data to specific competencies.
If the available data is limited, the degree of proficiency may be estimated based on an expected
competency retention interval [23]. In this case, the CBT program can be reduced into a training
program with a set of missions and required frequencies like the CTP. However, this approach—
where the training program is derived based on a set of competencies—may lead to significant
changes to the contents of the training program.

The National Aerospace Laboratory (NLR) of the Netherlands has developed a method for
designing such training programs, which is intended to be applied to several different types of
aircraft including the F-35 [24]. Their CBT approach involves a hierarchy with a large number
of low-level competencies and a smaller number of higher-level competencies [24,25]. Training
programs are designed by combining exercises that emulate complete missions (whole-task training)
with smaller exercises that focus on specific low-level competencies (part-task training). The NLR
has also identified a number of complexity factors, which are operating conditions that affect the
execution of training missions. Examples include light- and weather conditions and technical issues
with the aircraft. Complexity factors can alter the outcome of both training- and real operations
significantly, and pilots may have to practice handling them.

8 FFI-RAPPORT 20/00002

1.4 Outline

In this report, we consider the relationship between the competency requirements and the repetition
frequencies of the missions in a competency-based training regime. We start with a predetermined
set of competency requirements and a set of training missions, where each mission can be used to
practice a subset of the competencies. We consider a range of different methods to determine the
optimal number of repetitions for each mission according to some cost function.

The remaining chapters are laid out as follows: In chapter 2, we describe some relevant models
and mathematical problems. Section 2.1 and 2.2 introduce two classes of optimization problems,
and outline some of the existing solution algorithms. Section 2.3 describes simulation-based tools
developed at FFI in order to study F-35 pilot training, and the pilot scheduling used in these
simulations. Chapter 3 introduces the open-source software package OR-Tools, which we use to
solve optimization problems. In chapter 4, we formulate the optimization problem of missions and
competencies mathematically, and define three different variants of the problem. We have created
a number of different implementations of the optimization problem, corresponding to different
variants and solution algorithms. These implementations are described in chapter 5, along with an
overview of our source code. In chapter 6, we describe an example problem and its optimal solutions.
We compare the results given by different solutions algorithms and the required computation time.
These results and their implications are discussed in chapter 7.

FFI-RAPPORT 20/00002 9

2 Optimization and Simulation
Beforewe go any further, wewill describe themathematical formalism that wewill use throughout the
rest of the report. We will formulate our optimization problems as either Constrained Optimization
Problems (COPs) or Integer Programs (IPs). These classes of optimization problems are discussed
in section 2.1 and 2.2, respectively. We also include a short discussion on simulations used to study
pilot training at FFI in section 2.3.

2.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a mathematical problem defined in terms of three parts:
a set of variables, the corresponding domains, and a set of constraints for the variables [26]. The
goal is to assign a value to each variable from the corresponding domain so that all the constraints
are satisfied. An assignment of a value to a variable is referred to as a label. A constraint is defined
on a subset of the variables of the CSP, and specifies a set of allowed compound labels for the
relevant variables. It is also assumed that all the variables have finite domains. Continuous domains
such as position coordinates should therefore be reduced to finite domains, for instance by grouping
the relevant positions into a finite number of regions.

In a CSP, all solutions are equivalent. However, it is often useful to define an objective function
which assigns a number to each solution, and then determine the solution where the objective has the
highest (or lowest) value. This type of problem is sometimes referred to as Constrained Optimization
Problems (COPs). A COP can be solved iteratively by finding a solution to the corresponding
CSP, adding a constraint requiring that the next solution is more optimal than the previous one,
and repeating until there are no more solutions. All the problems that we solve in this work are
formulated as COPs.

So far, we have not specified what the elements of the domains are, only that there is a finite
number of elements. In practice, it is often useful to represent each element with an integer. We
name the resulting integer variables x1, x2, ..., xn, where n is the number of variables. Each constraint
i can be specified in terms of a function gi that maps the integer variables onto a real number. If gi
returns a negative number wherever constraint i is satisfied, and a positive number otherwise, the
constraint i corresponds to

gi(x1, x2, ..., xn) ≤ 0. (2.1)

In many cases, the functions gi can be defined in terms of simple mathematical relations. The
resulting problem is equivalent to the original CSP. For COPs, we also include an objective function
o(x1, x2, ..., xn). In this form, COPs are often referred to as nonlinear integer programs [27].

2.1.1 Basic Algorithms

CSPs are a very general class of mathematical problems, but there exist general algorithms that
can be used to determine one or all solutions given that enough time is available. We refer
to implementations of such algorithms as general-purpose CSP solvers. There is a wide range
of available solvers, but many of them are based on two basic algorithms: search with simple
backtracking and problem reduction.

Conceptually, search with backtracking consists of choosing one variable at a time, trying to
assign values to it and checking if any constraints are violated. If no constraints are violated, we
choose a new variable and repeat the process. If a constraint is violated, we try a new value and

10 FFI-RAPPORT 20/00002

check the constraint again. If no value is allowed, we go back to the last variable that was assigned
and try to assign it differently (backtracking). It is relatively easy to make an algorithm of this type
which is guaranteed to find a solution eventually, but it is often challenging to define the order in
which the computer chooses variables and values so that it finds a solution quickly.

Problem reduction refers to reducing the domains of variables and tightening constraints by
removing values and compound labels that cannot lead to any solutions. For instance, if a value
in a domain is forbidden by a constraint for all possible assignments of the other variables, it can
be removed from the domain safely. Problem reduction reduces the size of the search space of the
backtracking algorithm without removing any viable solutions. In many cases, it is useful to apply
both problem reduction and a search algorithm to the same CSP in order to solve the problem more
efficiently [26].

There are also several solution algorithms that apply only to specific types of CSPs, but which
can be much more efficient than simple backtracking and problem reduction. We will consider one
such case later on.

Another useful concept is soft constraints, which are conditions that we ideally want to satisfy,
but where we might be interested in solutions where the constraint is broken. For example, this
might be the case if we have a large number of constraints that cannot all be satisfied at once, but we
want to satisfy as many as possible. In this nomenclature, the constraints from the CSP are called
hard constraints. Soft constraints are included by adding a penalty to the objective function in a COP
when the constraint is broken. The soft constraints are then prioritized through the optimization
process according to the severity of the penalties.

2.2 Linear Optimization

If the constraint functions gi of equation 2.1 and the objective function o are all linear, we refer to
the problem as a (linear) Integer Program (IP). In this sense, IPs are a subclass of COPs. IPs are
of great interest because there are much more efficient solution algorithms than the general ones
outlined in section 2.1.1. IPs can be written on several equivalent forms, we define them as follows:
Each variable x1, x2, ..., xn is an integer restricted to a finite interval u j ≤ xj ≤ vj . Each constraint i
is specified by a linear combination of the variables and a boundary value bi,

ai,1x1 + ai,2x2 + ... + ai,nxn ≤ bi . (2.2)

The objective function o is also given by a linear combination of the variables,

o(x1, x2, ..., xn) = c1x1 + c2x2 + ... + cnxn. (2.3)

The coefficients a, b, and c can be any real numbers. We will outline an efficient solution algorithm
for IPs in section 2.2.2. However, we first have to consider a closely related class of optimization
problems known as Linear Programs (LPs).

2.2.1 Linear Programming

Linear Programs (LPs) take the same form as Integer Programs, but the variables are allowed to be
any real numbers within a finite range, rather than being restricted to the integers. As in a COP,
an objective function is maximized or minimized in an LP, while subject to a set of constraints.
However, since the variables in LPs are real numbers, they do not have finite domains. Therefore,

FFI-RAPPORT 20/00002 11

Figure 2.1 Two-dimensional linear program consisting of five constraints (lines) and an
objective (gradient and black arrow). The interior of the pentagon is the set of
feasible solutions. The simplex algorithm traverses the vertices from the bottom
(yellow) to the top (green) along the red line from one neighbor to another, always
choosing the neighbor with the most optimal objective value (red arrows).

linear programs are not COPs. Like integer programs, LPs may be defined in several different
equivalent ways. We use the same formalism as for the integer programs defined above.

We illustrate an example of an LP with two variables in figure 2.1. For such two-dimensional
LPs, each constraint corresponds to requiring that the solution lies on a given side of a straight line,
and the objective function corresponds to the projection of the position onto an axis. The red and
blue lines in figure 2.1 correspond to the constraints, and the objective function is the projection
onto the vertical axis.

Since there are infinitely many values of each variable to consider, one might expect that an
LP is more complicated to solve than a COP, but it turns out that the problem can be solved very
efficiently. George Dantzig showed this by developing the simplex algorithm [28], which we will
now outline. From looking at figure 2.1, one can convince oneself that in any two-dimensional
LP, the optimal solution must occur at a corner of the feasible region. If there is more than one
optimal solution, at least one of them must be at a corner. Thus, the relevant search space is already
reduced to the finite set of vertices. It can be shown that this extends to higher-dimensional problems.
Furthermore, it turns out that for any vertex of the feasible region except the optimal one, one of its
neighboring vertices is always more optimal. The simplex algorithm traverses the vertices in this
way until it reaches the optimal solution, see figure 2.1.

2.2.2 Branch-and-Cut Algorithm

As a strategy for solving IPs, one might naively try to solve the corresponding LP and look for an
integer solution in the vicinity of the LP solution. However, this approach turns out to be insufficient,
as the best integer solution can be very different from the best non-integer solution. Nevertheless,
the LP solution does give us an upper (or lower) bound for the objective function, and it can be used
to guide our search for an optimal solution.

12 FFI-RAPPORT 20/00002

The branch-and-bound- and cutting-plane algorithms are two well-known algorithms for solving
IPs [29]. The simplex method is central to both approaches. The branch-and-cut algorithm combines
the two approaches into one algorithm, which can be more efficient than either approach alone [30].

The branch-and-bound procedure divides the feasible region iteratively into smaller and smaller
regions. For each region, one starts by finding the optimal solution of the corresponding LP with the
simplex method. If the LP solution is integer-valued, we have found the IP solution for this region,
so we move on to the next region. If the LP solution is less optimal than one of the IP solutions we
have found before, we know that the region cannot contain the optimal IP solution, so we move
on. If none of these are the case, we choose one of the non-integer variables and divide the region
into two: one where that variable must be higher than for the LP solution and one where it must be
smaller. The two regions are shrunk further by rounding the boundaries up and down to the nearest
integers values, respectively. If one proceeds to split each regions into smaller ones in this way, the
LP solution of some regions should eventually be integer-valued, so that less optimal regions can be
disregarded.

In the cutting-plane algorithm, one starts by solving the LP problem using the simplex method.
Based on the results of the simplex algorithm, it is possible to add a new constraint called a cutting
plane, which is satisfied by all the feasible integer solutions, but not by the optimal LP solution. This
process is repeated until the LP solution is integer-valued. The cutting-plane algorithm is usually
slow compared to branch-and-bound [29]. However, cutting planes have been added as an additional
step in the branch-and-bound procedure in order to give a more efficient method. This is referred to
as a branch-and-cut algorithm [30].

2.3 Discrete-Event Simulations

The simulation models TREFF and TREFF2 were developed at FFI in order to analyze training
of F-35 pilots [5–7, 11–13]. Both TREFF and TREFF2 are Discrete-Event Simulations (DESs),
where all changes to the state of the system are described by a countable set of events [31]. The
state of the system changes instantaneously at the time of an event, and remains constant between
consecutive events. Therefore, it is sufficient to model the events in order to describe the whole
range of time. Examples of events in TREFF are pilots arriving at work or starting a mission, and
possible states for a pilot include flying a mission, being briefed, or being on holiday [7]. Both
TREFF and TREFF2 are implemented using the simulation tool AnyLogic [32].

In order to carry out the simulations, we create schedules specifying which activity each pilot
should be doing at any given time. Conditions such as weather, illness, and technical issues cannot
be predicted far in advance, but can affect the pilot training schedule significantly. They are therefore
treated as stochastic variables in the simulations. Therefore, the outcome of a simulation can vary
between executions even for the same model. The pilot schedules often have to be modified due to
such stochastic events, and are therefore created as part of the simulation.

In TREFF, at the start of each day, the scheduler prioritizes the pilots according to who has
completed the fewest missions so far [6]. Then, it considers all pilots and all the missions that
they have left to complete this year in the prioritized order. The scheduler determines whether the
mission can be carried out live or in the simulator according to a flowchart with a set of conditions.
When a mission is chosen, a new series of flowcharts is used to assign the remaining pilots to the
exercise, and at what time of day the mission will take place.

FFI-RAPPORT 20/00002 13

2.3.1 Pilot Scheduling as a COP

Mathematically, the pilot training schedule can be represented as a set of variables with finite
domains. The requirements that govern pilot training correspond to constraints on these variables.
Thus, the scheduling problem can be formulated as a CSP. Here, additional requirements can be
added to the schedule conveniently by adding new constraints, whereas the flow-chart approach in
TREFF may require a lot of changes. In many cases it is useful to include an objective function,
turning the scheduling problem into a COP. For instance, the objective function may represent the
amount of time needed to complete a training program, or the amount of time a pilot is idle.

In TREFF2, the scheduling is performed by a separate module named SOFT [11]. In SOFT, the
scheduling problem is formulated as a COP, with variables representing what each pilot is doing in
a given time slot. SOFT also groups the pilots according to which formations they are qualified to
lead, and accounts for these qualifications in the schedule. These qualifications are not accounted for
in TREFF. Several properties of the schedule can be included in the cost function of the COP, such
as whether the pilots complete too many or too few sorties of each type [12]. Rather than making a
schedule for one day at a time, SOFT creates schedules for longer periods of time, which is also the
case in actual squadrons. This also gives the scheduler more flexibility than the flowcharts used
in TREFF. For instance, if a mission has to be flown on two different days, one might reduce the
number of pilots taking part on the first day so that fewer pilots have to repeat the mission. In this
way, the increased flexibility can be used to reduce the total number of sorties.

14 FFI-RAPPORT 20/00002

3 OR-Tools
OR-Tools is an open-source software suite for solving CSPs and optimization problems [33]. It
contains a set of functions used to define a CSP, solve it, and read out the solutions. Four different
versions of OR-Tools are available, for use with the programming languages C++, python, C#, and
Java. We used the Java version for this work. Some parts of the functionality differs between the
different programming languages. For instance, all the languages except Java allow for operator
overloading, so that operators can interact with objects defined in OR-Tools.

The OR-Tools Java library defines a set of classes representing concepts such as variables,
constraints, objectives, and solvers. The functions used to define and solve CSPs are methods
associated with these classes. OR-Tools includes two general-purpose solvers for CSPs, which we
refer to as the constraint solver and the SAT solver. Each of these solvers has its own set of classes
and methods, with different names and functionality. Therefore, some work is required in order to
switch between these two solvers. OR-Tools also provides a separate set of classes for defining and
solving integer- and linear programs. Several different IP solvers can be called using the same set of
classes and methods. One such solver—CBC—is included in OR-Tools, whereas others must be
obtained separately.

3.1 Constraint Solver

The constraint solver has been part of OR-Tools for several years, and appears to have the most
diverse set of functionality based on the examples we considered in this work. It allows the user to
define and solve a wide range CSPs on the form given in section 2.1, using mathematical relations
such as scalar products and inequalities to specify the constraints. The pilot-scheduling module
SOFT is based on this solver [12]. In this work, we want to compare it to other CSP- and IP solvers,
both in terms of functionality and performance.

The constraint solver uses a search algorithm with backtracking, see the discussion in section
2.1.1. The order in which variables are chosen and values from the domains are assigned are left as
options for the user. These settings are specified using a DecisionBuilder-object [12]. This gives the
user a lot of flexibility to optimize the solution algorithm and guide the solver towards the optimal
solution. However, finding the optimal settings requires a lot of insight from the user and may be
time-consuming.

For COPs, the constraint solver might compare all possible solutions of the corresponding CSP
before it determines which is the optimal one. In order to find the optimal solution more efficiently,
one can choose the order of the search so that the optimal solution will be found quickly. Then, one
can stop the search before the solver has found all possible solutions. Again, this requires the user to
know a lot about the problem beforehand. Finally, it may be beneficial to reduce the problem before
passing it to the solver, for instance by removing values from the domains that cannot be part of any
solutions, or adding constraints to remove redundant solutions.

3.2 SAT Solver

The SAT solver in OR-Tools is a new general-purpose CSP solver, which is recommended by the
developers for most purposes [33]. Here, SAT refers to Boolean SATisfiability problems. This
solver is intended to allow the user to specify a CSP in a similar way as the constraint solver, but at
the same time solve the problem faster. In order to do so, the CSP given by the user is translated

FFI-RAPPORT 20/00002 15

into an SAT, in which all the variables can take only two values. The SAT is then solved using a
Conflict-Driven Clause Learning (CDCL) algorithm [34,35].

The CDCL algorithm is a form of search algorithm like the one described in section 2.1.1, but
built specifically for problems involving Boolean variables. When any variable is assigned, the
solver goes through all the conditions to see if any other variables follow from this assignment.
Furthermore, the backtracking in the CDCL solver is implemented differently from the simple
backtracking of section 2.1.1. If a conflict is found, rather than simply jumping back to the previous
variable that was assigned and trying the next value, the solver determines which variables that
caused the conflict and makes a new constraint for those. The solver then jumps back to the first
variable that is part of the new constraint, which was not necessarily the last one that was assigned.

Since the search algorithm is not working with the same formulation of the CSP as the one given
by the user, it is not straightforward for the user to specify the behavior of the search algorithm.
The SAT solver does not require any user input regarding how the search is carried out. If the SAT
solver is to outperform the constraint solver when the DecisionBuilder is well-configured, the CDCL
algorithm has to be faster than simple backtracking inherently. We will compare the run time of the
constraint solver and the SAT solver in section 6.4. The SAT solver may be easier to use than the
constraint solver, especially for new users who have little experience with solving CSPs, because
one does not have to configure the DecisionBuilder.

3.3 IP Solvers

The final set of classes in OR-Tools that we consider is built specifically for integer programs. It is
possible to use these classes to call several different IP solvers, namely CBC [36] (Open-Source),
GLPK [37] (Open-Source), SCIP [38] (Open-Source), and Gurobi [39] (Commercial). The CBC
solver is included in OR-Tools, and is based on a branch-and-cut algorithm.

Since these classes are built specifically for IPs, the objective is specified using a function that
sets one of the coefficients ci, j from equation 2.3 at a time. Similarly, the constraints are specified
using functions that set the coefficients ai, j and the boundary bj of equation 2.2. Like the SAT-solver,
the IP-solver does not require any user input to specify how the search should be carried out, it
is sufficient to specify the problem at hand. For IPs formulated in the form of section 2.2, the IP
solvers are expected to be much faster than general-purpose CSP solvers. Furthermore, since integer
programs are NP-complete [40], any CSP can be represented by a set of IPs. However, the set of IPs
may be harder to solve than the original CSP, even with efficient IP solvers.

16 FFI-RAPPORT 20/00002

4 COMFORT
As we discussed in section 1.3, competency-based training is an approach where training is
planned according to a set of required competencies. COmpetency-Mission Frequency Optimizer
for Readiness Training (COMFORT) is an analysis tool that determines optimal mission repetition
rates subject to competency requirements. We consider a scenario where we want to make a training
program consisting of a predetermined set of missions for pilot continuation training. We also
assume that a set of competencies has been identified, and that there are requirements specifying
how many times each competency should be practiced in a year. Our objective is finding an optimal
number of repetitions for each mission according to some cost function, that also satisfies the
competency requirements. We formulate the basis optimization problem more rigorously in section
4.1. Section 4.3 describes two alternative variants of the optimization problem that represent a
slightly different situation than the basis problem.

The main objective of this work is to explore the available methods for such optimization,
not to make specific recommendations for the training program. Therefore, we have created a set
of example parameters. In particular, we have limited ourselves to 10 (high-level) competencies,
whereas a real situation is likely to involve a higher number of competencies in a hierarchy. The
example parameters are given in chapter 6.

The cost function determines which repetition rates are considered optimal. Several aspects of
the training can be represented in the cost function, such as the monetary cost or the pilot overtime.
The cost of a full training program can be estimated using a simulation tool such as TREFF2.
However, simulating a full squadron for a year requires a significant amount of computation time,
making it infeasible to simulate all possible combinations of missions. Instead, we estimate the
cost function using an average cost per sortie for each mission. Estimating these averages will be
difficult, and the estimated cost will not be completely accurate, but as we will see this simplification
dramatically reduces the complexity of the optimization problem. We discuss the cost functions
further in section 4.2.

4.1 Baseline Problem

The aim is to determine the number of sorties a pilot should complete for each mission and each
training medium (i.e. live aircraft or simulator) in order to obtain the required competencies. We
therefore define two vectors with M variables each, Lj and Sj , representing the number of times
mission j is repeated live and in the simulator, respectively. We make the domains of each variable
finite by introducing an upper limit for the number of sorties for each mission in each medium, Q.
The number of possible states depends strongly on the upper limit Q, so we want to choose as small
a value as possible without excluding the optimal repetition rates.

A central assumption of COMFORT is that eachmission has a predetermined set of competencies
that pilots practice when they carry out the mission. For example, if a competency corresponds
to performing a task, pilots only practice that competency in missions where that task is involved.
These relations are represented as an N-by-M matrix Ai, j , where M is the number of missions and
N is the number of competencies. Ai, j is equal to 1 if competency i is practiced during mission j,
and 0 otherwise. For now, the correspondence of competencies and missions is assumed to be the
same for all sorties. Later, we will consider a case where the set of competencies practiced in a
mission can vary between sorties.

The requirements for the number of repetitions of each competency is represented as a vector Bi

FFI-RAPPORT 20/00002 17

with N numbers. The constraints representing the amount of practice needed for each competency
take the form

Bi ≤ Ai,1(L1 + S1) + Ai,2(L2 + S2) + ... + Ai,M (LM + SM). (4.1)

If we identify Lj = xj , Sj = xj+M , Bi = −bi, and Ai, j = −ai, j = −ai, j+M for i = 1,2, ...,N and
j = 1,2, ...,M , these constraints are on the form of equation 2.2 for integer programs.

As we discussed above, we will estimate the cost of carrying out a training program by using an
average cost for each sortie of a given mission. Live training requires a lot of time and resources, for
instance fuel and maintenance of the aircraft. In this version of COMFORT, we assume that the costs
of simulator training are much lower than for live training. We therefore set the cost of simulator
training equal to zero. Including a cost for simulator training requires minimal modification of the
model and source code as long as the cost is lower than for live training for all missions.

Denoting the average cost of a live sortie of mission j per pilot by Cj , the total cost O is

O = C1L1 + C2L2 + ... + CM LM . (4.2)

The simplification we made by using an average cost for each sortie ensures that the cost function
takes the form of equation 2.3, where cj = Cj and cj+M = 0 for j = 1,2, ...,M. Therefore, the
COMFORT optimization problem is an integer program, see section 2.2. Since the branch-and-cut
algorithm of section 2.2.2 is expected to be more efficient than the general-purpose methods of
section 2.1.1, we should be able to solve this problem faster than similar problems with more
complex cost functions.

Since simulator training does not entail any costs in this model, the solver will maximize the
fraction of simulator training. However, as we saw in section 1.1, not all the necessary competencies
can be obtained in simulators. Furthermore, somemissions are better suited for training in simulators,
and some are better suited for live training. In order to account for this, we include a restriction
specifying that the ratio of simulator sorties to live sorties should be smaller than a given number for
each mission. We specify the maximum simulator ratio in terms of two integers Fj and G j , giving

Sj

Lj
≤

G j

Fj
. (4.3)

If the cost of simulator training is higher than the cost of live training for the same mission, one
should consider adding a minimum ratio of simulator training as well.

The number of possible solutions in the COMFORT model is relatively large, so there are
a number of possible additional constraints that one might include. In this version, we added a
minimum number of live sorties Kj for each mission,

Lj ≥ Kj, (4.4)

in order to ensure that all missions are represented in the program.

4.2 Cost Functions

Finding a solution that satisfies the constraints of section 4.1 is relatively easy. For instance, one
could find the competency i where the required number of repetitions Bi is highest, and make a
program where Lj = Bi for all j. However, such a program is likely to involve so many sorties
that the pilots would be unable to complete it. COMFORT is useful because it allows us to find

18 FFI-RAPPORT 20/00002

repetition rates that are also optimal in some sense. But in order to get useful results, we need to
define the cost function in a reasonable way.

Ideally, we would like to find a set of average costs Cj for each live sortie of mission j that
gives a good approximation of the total cost for all possible training programs. However, in some
cases it may be useful to tweak the average costs to give better results for repetition rates similar
to the optimal ones, or add cost penalties for unwanted properties among the repetition rates (soft
constraints). In many cases, the estimated cost will not give a good estimate of the actual cost of
executing the training program, but still lead to repetition rates that are near optimal.

In order to facilitate combining multiple contributions to the cost function, we split the total
cost into Z components denoted P1, P2, ... ,PZ . Each component Pn is defined by a set of average
costs for each mission CPn

j . All the costs are assumed to be greater than or equal to zero, and we
normalize each component cost function to be equal to one for the most costly mission. We combine
these components into the total cost Cj using weighting coefficients wP1, wP2, ..., wPZ ,

Cj =
1

wP1 + wP2 + ... + wPZ

(
wP1CP1

j + wP2CP2
j + ... + wPZCPZ

j

)
. (4.5)

As long as the weighting coefficients are all positive, the total cost Cj will be between 0 and 1 for
all missions j.

4.3 Focus Competencies

For some complex missions, a large number of competencies are involved, which the pilots could
practice during that mission if they dedicate some time to it. However, practicing all the competencies
in a single sortie may take too much time or make the situation too complex for inexperienced
pilots to handle. We consider a situation where the pilots select a few competencies to focus on
during each sortie, and prioritize these competencies when they plan and carry out the mission.
Since multiple different choices of focus competencies are possible, all the sorties with the same
mission are not equivalent anymore. Therefore, the baseline COMFORT problem of section 4.1
must be reformulated to reflect the new situation.

We introduce an upper limit Dj to the number of competencies practiced in each sortie of
mission j. In principle, the number of focus competencies in a sortie could be lower than Dj , but
in our model this cannot lead to any cost reductions. Therefore, we will assume that the number
of competencies practiced in each sortie is equal to Dj . We assume that the cost function and
the constraints take the same form as in section 4.1, except the constraint of equation 4.1. This
constraint enforces the competency requirements, and must be reformulated to account for the focus
competencies. We also assume that the set of competencies that are possible to practice in each
mission is given by the matrix Ai, j , which takes the same form as in section 4.1.

There are multiple ways in which this version of the COMFORT problem can be formulated as
a COP. In order to better illustrate the use of the different solvers in OR-Tools, we will describe
two such variants. This will also allow us to show that reformulating an optimization problem can
greatly reduce the required computation time without loss of generality.

4.3.1 Individual Sorties

Since the sorties for the same mission are not equivalent, the variables Lj and Sj are not sufficient
to describe what the pilots practice for the focus-competency version of the problem. One possible

FFI-RAPPORT 20/00002 19

way to represent the new rates is to make a list of K sorties and a set of variables describing each
sortie. A benefit of this representation is that the solver does not have to consider solutions involving
more than K sorties, whereas for the baseline formulation of the problem there are solutions with
up to 2 · M · Q sorties. For each competency i and each sortie k, we introduce a Boolean variable
Ui,k which is equal to 1 if competency i is a focus competency in sortie k and 0 otherwise.

For each sortie k, we introduce a variable Wk representing which mission is carried out in
which medium, which takes a value between 0 and 2M. Here, Wk = j if mission j is carried out
live during sortie k, and Wk = j + M if mission j is carried out in a simulator. In order to allow the
solver to determine the optimal value of the total number of sorties, we define Wk = 0 to represent
that sortie k is not used for training. The variables Lj and Sj , which we defined in section 4.1, are
determined from Wk by counting the occurrences of Wk = j and Wk = j + M .

In order to specify which competencies can be practiced during each mission, we define an
(N)-by-(2M + 1)-matrix A′i, j such that A′i, j = Ai, j and A′i, j+M = Ai, j for j = 1,2, ...,M. For each
competency i and sortie k, we add a constraint

A′i,Wk
≥ Ui,k, (4.6)

ensuring that Ui,k can only be equal to 1 if competency i can be practiced during sortie k. Since our
competencies must be obtained by carrying out missions, we set A′

i,0 = 0 for all i. Similarly, we
define a (2M + 1)-vector D′j so that D′j = Dj , D′j+M = Dj , and D′0 = 0 for j = 1,2, ...,M . We add a
constraint

D′Wk
= U1,k +U2,k + ... +UN ,k (4.7)

for each sortie k, specifying that the number of competencies practiced in sortie k is equal to the
upper limit for the corresponding mission.

The competency requirements of equation 4.1 now take the simple form

Bi ≤ Ui,1 +Ui,2 + ... +Ui,K . (4.8)

Since we have determined the values of Lj and Sj , the remaining constraints take the same form as
in section 4.1. Similarly, the cost function O is on the form of equation 4.2.

The order in which the missions are carried out is not important in our model, so the individual-
sortie approach will give a lot of different states which are all equivalent. This symmetry greatly
increases the size of the search space that the solver has to go through in order to determine which
state is optimal. In order to avoid going through many equivalent parts of the search space in a
symmetric model, one can add symmetry-breaking constraints that reduce the redundancy [41].
One should ensure that for all states that are excluded by the symmetry-breaking constraints, at least
one equivalent state is allowed. For example, we might insist that mission j − 1 cannot appear in the
list of sorties after mission j for all j = 2,3, ...,M , ensuring that the missions appear in order. For
every possible list of sorties, there is an equivalent ordered list that satisfies the symmetry-breaking
constraints, which can be found by reordering the sorties. Symmetry-breaking constraints will not
necessarily reduce the search time to find the first solution to satisfy all constraints, since the number
of such feasible solutions is reduced. However, the symmetry-breaking constraints should reduce
the search time required to go through all possible solutions.

4.3.2 Combinations of Competencies

For each mission j, there is a finite number (Yj) of possible combinations of competencies in a single
sortie. As an alternative approach to the focus-competency optimization problem, we consider each

20 FFI-RAPPORT 20/00002

of these combinations as a separate mission. This gives an optimization problem which is similar to
the baseline problem, but where the effective number of missions is M̃ = Y1 + Y2 + ... + YM . An
advantage of this approach is that the set of possible combinations of competencies is built into the
problem before we call the solver. By contrast, for the individual-sortie optimization problem, the
solver has to work out the allowed combinations again each time it assigns a new mission to a sortie.

In the combinations-of-competencies variant of the optimization problem, the variables specify
only the number of repetitions of each combination, and not the order in which they are executed.
Therefore, each set of equivalent states from the individual-sortie variant is represented by a single
state, so the search space is reduced drastically. Reformulating the model to avoid the symmetry
in this way can be beneficial compared to adding symmetry-breaking constraints, since enforcing
the constraints requires computation time in itself. However, the search space now includes states
with up to 2 · M̃ · Q̃ sorties, where Q̃ is the maximum number of sorties per medium for each
combination, which is typically larger than the length of the list of sorties.

Beforewe solve themain problem,we determine the set of possible combinations of competencies
in a sortie for each mission. This problem can be defined as a simple CSP, and solved using OR-Tools.
The number of possible combinations for mission j is given by

Yj =

(
Hj

Dj

)
=

Hj!
Dj! (Hj − Dj)!

, (4.9)

where Hj = A1, j + A2, j + ... + AN , j is the number of competencies that are possible to practice
in mission j. The combinations of competencies are represented by Ai, j ,k , where k = 1,2, ...,Yj

indexes the possible combinations for mission j. Here, Ai, j ,k equals 1 if competency i is part of
combination k of mission j, and 0 otherwise.

The main variables in this variant of the optimization problem are Lj ,k and Sj ,k , representing the
number of live- and simulator sorties of combination k of mission j, respectively. The requirements
for the amount of practice for each competency now take the form

Bi ≤
∑
j ,k

Ai, j ,k(Lj ,k + Sj ,k) (4.10)

= Ai,1,1(L1,1 + S1,1) + ... + Ai,1,Y1(L1,Y1 + S1,Y1)

+ ...

+ Ai,N ,1(LN ,1 + SN ,1) + ... + Ai,N ,YN (LN ,YN + SN ,YN),

where
∑

represents a sum.
The variables Lj and Sj are defined as before, and are related to the new variables via the

constraints
Lj = Lj ,1 + Lj ,2 + ... + Lj ,Yj , and Sj = Sj ,1 + Sj ,2 + ... + Sj ,Yj . (4.11)

We use the expressions of equation 4.4 and 4.3 for the remaining constraints, and equation 4.2 for
the cost function.

4.4 Parameters and Return Values

Before we move onto the implementation, we summarize what information is needed to define a
COMFORT optimization problem and its optimal solution. We start with the baseline problem, and
then discuss the differences with the focus-competency problem. The required parameters of the
baseline problem are

FFI-RAPPORT 20/00002 21

• Whether each competency is practiced in each mission (Ai, j)
• Value of each component cost for each mission (CPn

j)
• Weights for each component cost (wPn)
• Required number of repetitions of each competency (Bi)
• Maximum allowed ratio of simulator training for each mission (Fj and G j)
• Minimum number of live repetitions of each mission (Kj)

In practice, the maximum number of repetitions Q must be specified in order to run the program,
but as long as Q is large enough it will not affect the optimal solution.

The solution of the optimization problem is specified in terms of the number repetitions of
each mission live (Lj) and in the simulator (Sj). We emphasize that we do not determine a full
pilot schedule, only the number of repetitions of missions that a pilot should carry out. This greatly
reduces the complexity of the optimization problem and the amount of input parameters required.

All the parameters that were required for the baseline problem are also required for the focus-
competency problem. Additionally, we have to specify the maximum number of competencies
practiced in a single sortie for each mission (Dj). As with Q, the parameters K from the individual-
sortie problem and Q̃ from the combination-of-competency problem will not affect the optimal
solution as long as they are large enough. We describe the solution of the focus-competency
optimization problem in terms of the number of repetitions of each combination of competencies
for each mission live (Lj ,k) and in the simulator (Sj ,k). These results are sufficient to derive the
number of repetitions for each mission (Lj and Sj), but not vice versa.

22 FFI-RAPPORT 20/00002

5 Implementation
COMFORT ismainly implemented in Java. However, a number of Python scripts that generate figures
using the package matplotlib are included. For each combination of a variant of the optimization
problem and a solver from OR-Tools, we implemented a class containing a static method named
optimize. The optimize-method specifies the optimization problem to the solver, calls the solver,
and reads out the results. We refer to these classes as variant implementations of the COMFORT
model. Additionally, COMFORT includes a number of common classes containing code that is
used by all the variant implementations. In this section, we give an overview of the functionality of
the common classes.

In the following sections, we give an outline of the COMFORT variant implementations that
are relevant to our discussion. Two additional variant implementations called SAT2 and IP2 are
provided in COMFORT, but not documented here. SAT2 uses the SAT solver from OR-Tools,
whereas IP2 uses the IP solver CBC. Both SAT2 and IP2 implement an individual-sortie variant of
the optimization problem, see section 4.3.1.

COMFORT contains three executable classes: Solve, Basis, and Barcharts, which contain static
main-methods. The Solve-class solves a problem and prints the results to a terminal, the Basis-class
generates a set of figures based on the input parameters, and the Barcharts-class solves a problem
and generates figures representing the results. Some of the parameters that are most likely to be
modified by the user are specified in the Solve- and Barcharts- classes. This includes the maximum
number of repetitions Q or Q̃, the cost-function weights wS , wR, and wO, and a number V used to
convert the floating-point cost into integers. We obtain an integer cost function by multiplying all
costs by a large number V and rounding down to the nearest integer.

The remaining input parameters are provided by classes that implement the Data-interface. The
Data-interface specifies that these classes must contain a set of methods that provide the input
parameters listed in section 4.4. A class named ExampleData that implements the Data-interface is
included in COMFORT. The parameter values provided by the ExampleData-class are presented
in section 6.1. The Results-class stores the output data from the solvers in the form of arrays of
integers and floating-point numbers. This class contains three different constructors, which are
used to translate solutions from the three variants of the COMFORT optimization problem into a
common form. COMFORT also includes a Print-class, which contains a static function that prints
the repetition rates to the terminal in a human-readable form. The Plotting-class contains four static
functions used to write data to .txt-files and call Python scripts.

The control flow for the Solve-class is illustrated in figure 5.1. The diagram for theBarcharts-class
is similar, but includes additional calls to the Plotting-class. The control flow for the Basis-class is
simple: it calls the constructor of the ExampleData-class and some methods from the Plotting-class.
Note that the Solve- and Barcharts- classes can use any implementation of the Data-interface,
whereas the Basis-class requires an instance of the ExampleData-class.

5.1 CP1 – Constraint Solver

The CP1 variant implementation solves the baseline problem using the constraint solver, see
sections 3.1 and 4.1. We call the constraint solver using the constraintsolver-package from OR-Tools.
The Solver-class is instantiated first. Most of the calls we make to OR-Tools are methods of the
Solver-object. We represent the variables Lj , Sj , and Tj using IntVar-objects.

The optimize-function takes a Data-object as an argument. Since the constraint solver requires

FFI-RAPPORT 20/00002 23

<<class>>

Solve

Data:in

<<
<<class>>

Variant Implementation

new()

optimize(in)

return(res)

Results:res

main()

new()

<<
<<class>>

Print

PrintResults(res,in)

return()

return()

Figure 5.1 Sequence diagram for the main-function of the Solve-class. The grey and orange
rectangles are classes and objects, respectively. The blue arrows and bars illustrate
static methods and constructors. The class Variant Implementation can be either
CP1, CP2, IP1, IP3, or SAT1.

integer parameters, the cost scale V should be a large integer. The rescaled costs Cj are read out
from the Data-object in integer form. Next, we generate an OptimizeVar-object, specifying that we
want to minimize the product of Cj and Lj , see equation 4.2.

The Solver-object has a wide range of methods for implementing constraints. Each of these
methods returns a Constraint-object, which has to be passed back to the solver using the addCon-
straint-method. We add constraints corresponding to equation 4.1, 4.3, and 4.4. Additionally, we
add constraints specifying that the total variable Tj is equal to the sum of Lj and Sj .

Next, we use the Solver-object to create a SolutionCollector-object and aDecisionBuilder-object.
The SolutionCollector is used to store the results found by the solver, and theDecisionBuilder assigns
values to the variables Lj and Sj during the search. We specify that L1 and S1 should be assigned
first, then L2 and S2, and so on. The DecisionBuilder is also instructed to try the possible values for
each variable in ascending order. We call the constraint solver using the newSearch-method, and find
new solutions iteratively using the nextSolution-method. We keep calling the nextSolution-method
until it finds the optimal solution or a user-defined time limit has elapsed. Finally, the values for Lj

and Sj representing the best solution found are read out and used to create a Results-object.

5.2 SAT1 – SAT Solver

The SAT1 variant implementation solves the same variant of the COMFORT problem as CP1, in an
almost completely analogous way. However, we use the SAT solver provided in the SAT-package
from OR-Tools instead of the constraint solver. In most cases, the classes and methods provided
by the SAT-package behave analogously to those in the constraintsolver-package. One minor
difference is that two classes, CPModel and CpSolver, share the role of the Solver-class from the

24 FFI-RAPPORT 20/00002

constraintsolver-package. Also, Constraint-objects are applied by default without the need to call
a method like addConstraint. As for the constraint solver, the classes representing variables and
constraints in the SAT-package are named IntVar and Constraint. This may cause name conflicts if
both packages are used in the same method.

As we discussed in section 3.2, the SAT solver does not require us to specify the behavior of the
search algorithm, so there is no equivalent of the DecisionBuilder-class. We solve the optimization
problem with the solve-method of the CpSolver-object, which searches until the optimal solution is
found. When an optimal solution is determined, it is retrieved via the CpSolver-object. We use the
resulting values of Lj and Sj to create a Results-object as for the constraint solver.

5.3 IP1 – IP Solver

As we saw in section 4.1, the baseline COMFORT optimization problem can be written as an
Integer Program (IP). The IP1 variant implementation solves it using the linearsolver-package of
OR-Tools, analogously to CP1 and SAT1. In integer programs, each constraint corresponds to a
linear combination of variables, and the same goes for the cost function. In the linearsolver-package,
the variables, constraints, and cost functions are represented by MPVariable-, MPConstraint-, and
MPObjective-objects, respectively. The MPSolver-class takes the role of the Solver-class of the
constraintsolver-package. We specify that we want to use the CBC solver when we instantiate the
MPSolver-class, see section 3.3.

When creating anMPConstraint-object, we specify an upper and a lower boundary value. Then,
we specify coefficients for each MPVariable in the linear combination, one at a time. The cost
coefficients for the IP solver are specified as floating-point numbers, and we set the cost scale V
equal to 1. Like the SAT solver, the CBC solver requires no user input regarding how the search
should be carried out. We call the solver using the solve-method of the MPSolver-object, which
searches for solutions until the optimal solution is found or an optional time limit has elapsed. The
optimal solution is read out using methods associated with the MPVariable-objects themselves, and
used to create a Results-object in the same way as before.

5.4 CP2 – Individual Sorties

The CP2 variant implementation solves the individual-sortie variant of the optimization problem
using the constraintsolver-package from OR-Tools. The set of classes and methods used is the same
as for the CP1 variant implementation of section 5.1, but the set of variables and constraints that we
implement is different.

We start by defining IntVar-objects to represent the variables Wk , Ui,k , Lj , Sj , and Tj described
in section 4.3.1. Using the makeDistribute-method, we add constraints ensuring that Lj and Sj

are equal to the number of occurrences of j and j + M among the variables Wk . Next, we create
IntVar-objects representing A′i,Wk

and D′Wk
using the makeElement-method. These are used to

implement the constraints of equation 4.6 and 4.7. The remaining constraints and the cost function
are implemented in the same way as in section 5.1.

We create a DecisionBuilder-object, and specify that it should assign values to the variables
Wk and Ui,k for one sortie (k) at a time. For each sortie k, the DecisionBuilder assigns a value to
Wk first, then U1,k , U2,k , and so on. The solver tries possible values for each variable in ascending
order. A SolutionCollector-object is created, and instructed to store the values of Wk and Ui,k for
the best solutions found. We call the constraint solver and search for solutions one at a time as in

FFI-RAPPORT 20/00002 25

section 5.1. Finally, we read out the values of Wk and Ui,k from the SolutionCollector, and pass
them to the Results-object.

5.5 IP3 – Combinations of Competencies

Finally, we include an implementation of the combinations-of-competencies variant of the optimiza-
tion problem. The IP3 variant implementation uses the constraint solver to determine the relevant
combinations and the linearsolver-package to solve the main optimization problem. We use the
constraint solver to find the combinations of competencies because the SolutionCollector-class
provides a convenient way to read out all solutions of a CSP. For each mission, we define a
CSP representing the possible combinations of competencies. We create separate Solver-, IntVar-,
DecisionBuilder-, and SolutionCollector-objects for each CSP. Then, we solve each CSP using the
solve-method, and read out all the solutions to an integer array.

We introduce a new index l which indexes the combinations of competencies for all missions.
The total number of combinations is M̃ = Y1 + Y2 + ... + YN . For combination k of mission j,

l = Y1 + Y2 + ... + Yj−1 + k . (5.1)

The combinations of competencies are represented by an N-by-M̃ integer array Ãi,l = Ai, j ,k . See
section 4.3.2 for the definition of Ai, j ,k .

Next, we createMPVariable-objects representing Ll = Lj ,k and Sl = Sj ,k , and set boundaries of
0 and Q̃ for each variable. We create an MPObjective-object which is to be minimized, and set the
coefficient of each live-training variable Ll equal to the corresponding cost Cj . For the competency
requirements, we create anMPConstraint-object for each competency i with a lower boundary of
Bi . For each competency i and combination l, we set the coefficients of both variables Ll and Sl in
constraint i equal to Ãi,l.

The constraints of equation 4.3 and 4.4 refer to the number of sorties per mission rather than
per combination of competencies. Here, we create one MPConstraint-object for each mission j,
and set equal coefficients for all combinations l from mission j. We call the CBC solver using the
solve-method of the MPSolver-object as in section 5.3. We then read out the values of Lj ,k and Sj ,k

for the optimal solution and pass them to the Results-object.

26 FFI-RAPPORT 20/00002

6 Example Parameters and Results
In order to compare the different solvers from OR-Tools and the different variants of the optimization
problem, we have created a set of example parameters for which we calculate optimal repetition
rates. In COMFORT, the example data is contained in the ExampleData-class. The ExampleData-
class implements the Data-interface and contains all the input values listed in section 4.4 for the
focus-competency problem.

As we noted in chapter 4, our example case is not intended to represent a real situation, and
we therefore label the missions with characters A to Y and the competencies as C1 to C9. The
example parameters are given in section 6.1. We present solutions of the basis problem and the
focus-competency problem for the example parameters in sections 6.2 and 6.3. Finally, in section 6.4,
we specify the computation time used by each variant implementation for the example parameters.

6.1 Parameters

C1 C2 C3 C4 C5 C6 C7 C8 C9
Competency

0

20

40

60

N
um

be
r o

f R
ep

et
iti

on
s

(a) Required Practice for Competencies

ABCDEFGH I JKLMNOPQRSTUVWXY
Mission

0

2

4

6

8

C
om

pe
te

nc
ie

s

C1
C2
C3
C4
C5
C6
C7
C8
C9

(b) Competencies Practiced in Missions

Figure 6.1 Required number of times Bi that each pilot must practice each competency (a),
and the set of competencies that are possible to practice in each mission (b). The
competencies are identified by colors. The maximum number of competencies that
can be practiced in each sortie in the focus-competency version of the problem is
indicated with black lines in (b).

The required amount of practice for each competency Bi is the central constraint that ensures
that the pilots get sufficient training. We illustrate this constraint in figure 6.1 (a). Figure 6.1 (b)
shows which missions can be used to practice to each competency, which is given by the matrix
Ai, j . Missions T, U, and V are the most complex missions, and involve more competencies than the
others. Competency C1 is a basic competency that the pilots can practice in most of the missions,
whereas competency C3 is associated with the complex missions T, U, and V. The minimum number
of live sorties Kj is equal to 1 for all missions j.

For the cost function, we include three components CS
j , CR

j , and CO
j representing common costs

associated with every sortie, additional costs associated with red-air, and additional organizational
costs for complex missions. We normalize each of these component cost functions so that the cost
of the most expensive mission is always equal to one. The sortie cost CS

j corresponds to the costs
that are common to all missions, and is therefore simply equal to one for every mission.

FFI-RAPPORT 20/00002 27

In the current training regime [16, 42], taking part in a live training mission as opposing air
forces (red-air) does not count towards all of the frequency requirements. Analogously, we expect
that the learning outcome for the red-air pilots in F-35 will be limited, and therefore add an additional
cost to missions where the fraction of pilots taking part as red-air is high. For simplicity, we assume
that the number of pilots taking part in each mission is the same for all sorties, see figure 6.2. For
this example data, we simply define the red-air cost to be proportional to the number of pilots on the
red side divided by the number of pilots on the blue side. The normalized red-air cost coefficients
are shown in figure 6.3 (a).

Finally, missions involving a large number of pilots and aircraft are typically harder to incorporate
in a schedule than smaller ones. Also, the chance of unplanned absence among the pilots or technical
issues with a plane increases the more pilots and planes are involved. The organizational component
cost function is meant to reflect such reductions in training efficiency associated with complex
missions. In the example data, the organizational cost is proportional to the total number of pilots
taking part in each sortie, see figure 6.3 (b). As expected, the complex missions T, U, and V are the
most expensive ones to organize.

We combine the components costs into a total cost Cj using three weighting coefficients
wS = 1.0, wR = 0.5, and wO = 0.5,

Cj =
1

wS + wR + wO

(
wSCS

j + wRCR
j + wOCO

j

)
. (6.1)

As we discussed in section 4.2, a good choice of cost function is crucial in order to obtain useful
results. In real situations, the component costs and the weighting coefficients should be chosen with
care. Since sorties in the simulator do not incur any costs in our model, missions where a high
percentage of the sorties can be carried out in the simulator are cheaper to organize overall. The
maximum allowed ratio of simulator to live training G j/Fj is shown in figure 6.2. Missions where

A B C D E F G H I J K L M N O P Q R S T U V W X Y
Mission

0

2

4

6

8

N
um

be
r o

f P
ilo

ts

Number of Pilots / Max Simulator Ratio
Ratio
Blue Side
Red Side

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

R
at

io
 G

j/F
j

Figure 6.2 Number of pilots on the blue side (blue) and red side (red) in each mission. These
values are not part of the COMFORT optimization problem, but are used to
estimate the red-air and organizational component cost functions. The maximum
allowed ratio of simulator sorties to live sorties G j/Fj is superimposed as black
dots. For the example parameters, the ratio G j/Fj is never larger than 1, but this
is not a requirement of the model.

28 FFI-RAPPORT 20/00002

ABCDEFGH I J KLMNOPQRSTUVWXY
Mission

0.0

0.2

0.4

0.6

0.8

1.0

 C
os

t C
R j

(a) Red-Air Cost

ABCDEFGH I J KLMNOPQRSTUVWXY
Mission

0.0

0.2

0.4

0.6

0.8

1.0

 C
os

t C
O j

(b) Organizational Cost

Figure 6.3 Red-air (a) and organizational (b) component cost functions CR
j and CO

j , normal-
ized to the range 0 to 1. The red-air cost is indicated by the red bars, and the blue
bars show the organizational cost.

the red-air and organizational costs are low and the simulator ratio G j/Fj is high—such as missions
H, R, and S—give the lowest total cost per sortie.

6.2 Baseline Problem

For the baseline problem, both the SAT1- and IP1 variant implementations return optimal solutions
within a short time. The solutions returned by SAT1 and IP1 may differ slightly because there may
be multiple optimal solutions with the same cost, and because the cost coefficients are converted to
integers in SAT1. In this section, we illustrate the optimal repetition rates returned by the IP solver
in the form of bar charts.

The repetition rates are represented by the numbers of live- and simulator sorties Lj and Sj for
each mission, see figure 6.4. In total, this solution consists of 47 live sorties and 33 simulator sorties.
A large fraction of the training is made up of a few missions (H, R, S, and Y). These missions have
relatively low costs and high allowed ratios of simulator training, see figures 6.3 and 6.2.

We also want to illustrate that the repetition rates of figure 6.4 actually satisfy the requirements
for the amount of practice for each competency. In figure 6.5, we illustrate these requirements and
show how the learning outcomes from the missions add up to fulfill them. As one would expect, the
optimal repetition rates give the pilots very little excess experience. Note that the contribution from
mission j to a competency i is either equal to the total number of sorties Tj or equal to 0, for all
competencies i. Therefore, the bars in figure 6.4 that have the same color all have the same height.

FFI-RAPPORT 20/00002 29

A B C D E F G H I J K L M N O P Q R S T U V W X Y
Mission

0

2

4

6

8

10

12

14

16

N
um

be
r o

f S
or

tie
s

Mission Repetition Rates
Minimum
Live
Simulator

Figure 6.4 Repetition rates for the baseline problem. The number of sorties for each mission
live Lj and in the simulator Sj is shown in blue and orange, respectively. The
minimum number of live sorties for each mission Kj is indicated with the red
dotted lines.

6.3 Focus-Competency Problem

When we include the limit for the number of competencies practiced in each sortie, the number of
possible states to consider increases drastically. Nevertheless, we are able to find optimal repetition
rates using the IP3-implementation of section 4.3.2. In this section, we illustrate one such solution
in the form of bar charts similar to those of section 6.2.

We use the same parameters as for the baseline problem, see section 6.1, but we add the
requirement that no more than 3 competencies are practiced in any of the sorties. Compared
to the baseline optimization problem, the number of competencies practiced in each sortie is
reduced for most missions. Therefore, the required number of sorties is significantly higher in
the focus-competency optimization problem. The optimal repetition rates give a total of 58 live
sorties and 44 sorties in the simulator. In order to reduce the search space and make the training
program as varied as possible, we set the maximum number of repetitions Q̃ for each combination
of competencies to 7. This is the smallest value of Q̃ that we can use without increasing the total
cost of the training program.

For the combination-of-competencies optimization problem, each set of repetition rates is
specified by the numbers of live- and simulator sorties for each combination Lj ,k and Sj ,k . The
same training programs occur in the individual-sortie optimization problem, but it is represented
in another way. The optimal repetition rates are illustrated in figure 6.6. Note that for all missions
except R and S, no more that two combinations of competencies are actually carried out, even
though there are at least 4 possible combinations for most missions. As for the baseline problem,
the four missions H, R, S, and Y make up a significant portion of the training program.

Figure 6.7 demonstrates that the pilots get the required amount of practice for each competency.
As for the baseline problem (see figure 6.5) the pilots get very little excess experience beyond the

30 FFI-RAPPORT 20/00002

C1 C2 C3 C4 C5 C6 C7 C8 C9 Missions
Competencies

0

10

20

30

40

50

60

70

R
ep

et
iti

on
s

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Repetitions of Competencies

Figure 6.5 Number of times the pilots practice each competency for the repetition rates
of figure 6.4, illustrated with colored bars. The figure demonstrates that these
repetition rates fulfill the requirements for the number of repetitions for each
competency Bi in the baseline optimization problem. The competency requirements
Bi are indicated by the red dotted lines. The colors of the bars indicate which
mission gave rise to each contribution.

requirements. Each bar represents a combination of a competency i and a mission j, and the height
of the bar is the sum of the number of sorties Tj ,k for all combinations k that contain competency i.

6.4 Computation Time

The main objective of this work is to explore the available methods for solving the COMFORT
optimization problem. The different solvers in OR-Tools and the two variants of the focus-competency
optimization problem represent the different methods that we compare. In the comparison, we focus
on the computation time used by the solver and the total cost of the resulting training programs.
Given enough time, all the implementations would return an optimal solution. However, since we
are able to find solutions relatively quickly, we limit the computation time to a minute and compare

FFI-RAPPORT 20/00002 31

A B C D E F G H I J K L M N O P Q R S T U V W X Y
Mission

0

5

10

15

20

 S
or

tie
s

Repetition Rates
C1
C2
C3
C4
C5
C6
C7
C8
C9
Sim
Live

Figure 6.6 Optimal repetition rates for the focus-competency optimization problem. The
black outlines represent the number of live sorties Lj for each mission j, and the
gray outlines indicate the number of simulator sorties Sj . These outlines can be
compared to the repetition rates for the baseline problem in figure 6.4. Within the
outlines, there are colored bars representing the competencies, C1 to C9, that
were practiced in each sortie.

the best solutions found in that time frame.

Implementation Computation Time Status Cost

IP1 0.246 s Optimal 32.378
SAT1 1.721 s Optimal 32.362
CP1 56 s Feasible 38.946

Table 6.1 Comparison of the three variant implementations of the baseline optimization
problem. The table contains the computation time used to solve the example
problem of section 6.1, status returned by the solver, and total cost of the best
solutions found. The IP1- and SAT1- variant implementations return optimal
solutions, whereas for CP1 we list the best solution found within a minute of
computation time.

When comparing the solvers, we focus on the baseline problem, since the implementations CP1,
SAT1, and IP1 are very analogous. The computation times used to solve the example problem and

32 FFI-RAPPORT 20/00002

C1 C2 C3 C4 C5 C6 C7 C8 C9 Missions
Competencies

0

10

20

30

40

50

60

70

R
ep

et
iti

on
s

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Repetitions of Competencies

Figure 6.7 Number of times the pilots practice each competency for the repetition rates of
figure 6.6, for the focus-competency optimization problem, illustrated with colored
bars. The figure demonstrates that the repetition rates fulfill the requirements for
the number of repetitions for each competency Bi, which are indicated by the
red dotted lines. The colors of the bars indicate which mission gave rise to each
contribution.

the total costs of the solutions are summarized in table 6.1. The upper bound Q for the variables
Lj and Sj was equal to 10 in all cases. Both the SAT solver and the CBC IP solver return optimal
solutions relatively quickly. However, the more specialized IP solver algorithm is faster by a factor
of around 7. The total costs returned by the SAT- and CBC solvers differ slightly due to rounding
errors caused by converting the costs into integers for the SAT solver. This conversion is performed
by multiplying with V = 1000 and rounding down, see section 5.1.

The best repetition rates found by the CP1 variant implementation are shown in figure 6.8.
These rates are very different from the optimal rates of figure 6.4. The constraint solver has only
added additional sorties beyond the minimum requirement Kj for the last half of the missions. This
indicates that only a very small fraction of the possible states have been evaluated, even after almost
a minute of computation time. Therefore, the computation time required to ensure that the optimal

FFI-RAPPORT 20/00002 33

A B C D E F G H I J K L M N O P Q R S T U V W X Y
Mission

0

2

4

6

8

10

12

14

N
um

be
r o

f S
or

tie
s

Training Program
Minimum
Live
Simulator

Figure 6.8 Non-optimal training program for the baseline version of the optimization problem,
calculated with the CP-solver. The number of sorties for each mission live Lj

and in the simulator Sj is shown in blue and orange, respectively. The minimum
number of live sorties Kj for each mission is indicated with the red dotted lines.

repetition rates are found may be several orders of magnitude longer than one minute. The constraint
solver has also been unable to maximize the ratio of simulator sorties to live sorties. This indicates
that the configuration of the DecisionBuilder in the CP1 variant implementation is inefficient.

For the focus-competency optimization problem, the IP3 variant implementation quickly returns
an optimal solution. The computation time used by the IP3 variant implementation and the total
cost of the optimal solution is given in table 6.2. IP3 solves the focus-competency problem even
faster than IP1 solves the baseline problem, although these results are not directly comparable. For
IP3, we did not include the computation time needed to find the combinations of competencies, and
the upper bound for each variable Q̃ was equal to 7, whereas Q = 10 for IP1.

Implementation Computation Time Status Cost

IP3 0.132 s Optimal 38.813
CP2 ≥ 60 s No Solution Found -

Table 6.2 Comparison of the CP2- and IP3 variant implementations of the focus-competency
optimization problem, for the example problem of section 6.1. The table contains
the computation time used, the status of the solver, and the total cost of the best
solutions found. IP3 returns an optimal solution, whereas the CP2 does not find
any feasible solutions.

By contrast, the CP2 variant implementation is unable to find a feasible solution, even if we
allow the solver to run for several minutes. Both the variant of the optimization problem and the
algorithm of the solver differs between CP2 and IP3. Therefore, these results are not well suited

34 FFI-RAPPORT 20/00002

to compare either the two optimization problems or the two solvers. However, it is clear that IP3
represents an effective approach to the focus-competency optimization problem.

FFI-RAPPORT 20/00002 35

7 Discussion
Competency-based training is an approachwhere training is planned according to a set of competency
requirements. COmpetency-Mission Frequency Optimizer for Readiness Training (COMFORT)
determines optimal mission repetition rates for a simplified competency-based training regime.
Competency-based training has been adopted in a wide-range of fields, and may bring about big
changes to the field of pilot training. However, such a large transition will take several years, and
many aspects of the final training regime are still undetermined. Therefore, we focus on the available
methods for the optimization, rather than a specific case. COMFORT exemplifies how constraint
programming may be applied for planning purposes. COMFORT does not involve simulations or
detailed planning of the training process, but may be useful for planning or scheduling purposes.

The optimization of the repetition rates is formulated as a constrained optimization problem
(COP). We define three different variants of the COP, implement solution algorithms for all three
variants, and discuss the differences in complexity between the variants. In order to demonstrate
COMFORT, we define a set of example parameters that we use together with all three variants of the
COP. We also consider three different algorithms for solving COPs: two general algorithms and one
which is specialized to integer programs (IPs). We compare the computation time required to solve
the example problem for all three variants of the COP and for all three COP solution algorithms.

7.1 Solution Algorithms

The software package OR-Tools developed by Google [33] provides implementations of all three
COP solution algorithms that we consider. The three implementations are referred to as the constraint
solver, the SAT solver, and the CBC solver, see chapter 3. In addition to the computation time, we
compare the available functionality of the three solvers.

The constraint solver is a general-purpose CSP solver, and contains the most extensive
functionality. For instance, none of the other solvers provide an equivalent to the makeDistribute-
method used in section 5.4. However, for our implementations of COMFORT it is too slow to be
practical, see section 6.4. We note that there are many possible ways that one could optimize the
search and simplify the problem, but we have not spent much time on such optimizations. In our
estimation, spending our time optimizing the other implementations is likely to yield better results.

The SAT solver is intended to replace the constraint solver in OR-Tools as a general-purpose
CSP solver [33]. The developers claim that it is faster than the constraint solver for most practical
cases [33], and our implementation is indeed faster with the constraint solver by multiple orders of
magnitude, see section 6.4. For the baseline COMFORT problem, it finds an optimal solution in less
than 2 seconds. Clearly, the SAT solver can provide great performance improvements compared to
the constraint solver, but we cannot conclude from our single example that this will hold for other
cases.

Finally, we showed that the COMFORT problem can be formulated as an integer program, for
which there exists specialized solvers that can be much faster than general-purpose CSP solvers.
We implemented COMFORT using the IP solver class of OR-Tools, and solved the problem using
the open-source solver CBC [36]. As expected, this implementation turned out to be several times
faster than the SAT solver for the baseline COMFORT problem, and it enabled us to solve the more
complex focus-competency optimization problem quickly. There are also alternative IP solvers
that claim to be even faster than CBC [39]. Since the IP solvers are very efficient, it is useful to
determine if a CSP has this form, or if it can be converted to this form in a simple way.

36 FFI-RAPPORT 20/00002

7.2 Complexity

The number of variables in a COP and the sizes of their domains can affect the computation time
needed to solve the COP strongly. Therefore, we use these two properties as a measure of the
complexity of a COP. However, the dependency can vary between different COPs and different
solution algorithms. For example, the domain size does not necessarily affect the Branch-and-Bound
algorithm at all since it focuses on the constraints, see section 2.2.2. By contrast, for the constraint
solver, the computation time often scales linearly with the domain size of a variable.

The three different variants of the COMFORT constraint optimization problem have different
sets of variables, and therefore different complexities. We focus on the baseline optimization
problem and the combinations-of-competencies variant of the focus-competency problem, since
these are the two COPs that we were able so solve so far.

For the baseline problem, the number of variables is simply given by the number of missions.
However, for the combination-of-competencies COP, the number of variables is given by the
total number of possible combinations of competencies. The number of such combinations (Yj) is
determined by the number of competencies that are possible to practice in a mission (Hj) and the
number of competencies that can be practiced in a single sortie (Dj). In many cases, the number of
possible combinations (Yj) will increase drastically if we add one additional possible competency to
the mission (Hj increases by 1), see equation 4.9.

The domain sizes are given by the maximum number of repetitions for each mission (Q) or
combination of competencies (Q̃). In order to reduce complexity, we want to choose the lowest
possible values of these upper limits. However, the allowed number of repetitions must be high
enough that all the competency requirements can be satisfied. In order to find optimal repetition
rates, we should also allow for extra repetitions of the most cost-effective missions and combinations.
The required number of repetitions of a competency typically reflects a frequency requirement.
Therefore, we can reduce the domain sizes by reducing the length of each planning period.

7.3 Improvements

There are many possible changes to the COMFORT model and implementation that could allow
us to solve the example problem faster. However, such optimizations will not necessarily work for
other problems. For example, in the current version, the number of repetitions of a mission live
and in the simulator are represented by two separate variables (Lj and Sj). For missions where the
maximum allowed ratio of simulator and live training is a simple one such as 1 to 1, 1 to 0, or 0
to 1, one can replace the two variables (Lj and Sj) with a single one. If we are unable to solve an
optimization problem, we can also modify the problem to reduce complexity, although this may
change the end results. For example, for missions where the number of possible combinations of
competencies is high, we can remove one of the allowed competencies. In that case, one should try
to remove competencies that are easy to practice in other missions. More drastically, we can split a
long period of training into shorter ones with smaller sets of missions. This can give a reduction in
both the number of variables and the size of each domain.

The COMFORT model can be extended in several ways in order to better reflect an actual
training regime. For instance, complexity factors representing operating conditions that affect
the pilots may be taken into account. As a first approach to include complexity factors, one can
create additional missions where the same tasks are carried out under different conditions and add
additional competencies related to mastering the new operating conditions. Additionally, one may

FFI-RAPPORT 20/00002 37

want to create different training programs for groups of pilots in the same squadron with different
levels of experience and qualifications. Then, the COMFORT model should be extended in order to
ensure that the resulting training programs are compatible.

7.4 Conclusion

As we discussed in the introduction, efficient pilot training is important for the RNoAF, and
competency-based training is a possible approach to improve efficiency. COMFORT demonstrates
how COP solution algorithms can be used for planning or scheduling purposes in competency-based
training regimes.We focus on the availablemethods and algorithms, rather than the details of the COP
solutions. We found that the new SAT solver from OR-Tools can provide great performance benefits
compared to the constraint solver, although we only looked at a single COP in the comparison. We
also showed that specialized solvers for integer programs can be even more efficient, and discussed
how IPs differ from general COPs.

38 FFI-RAPPORT 20/00002

References
[1] M. Hafsten, “Implikasjoner av innføringen av et nettverksbasert simulatoranlegg i kamp-

flyvåpenet,” Master’s thesis, The Norwegian Defence University College, 2016, (BE-
GRENSET).

[2] Forsvarsdepartementet, “Konseptuell løsning for prosjekt 7600 Fremtidig kampflykapasitet,”
2006.

[3] Forsvarsdepartementet, “Nye kampfly til forsvaret,” 2008.

[4] Forsvarsdepartementet, “Et forsvar til vern om Norges sikkerhet, interesser og verdier,” 2008.

[5] G. Skogsrud and O. M. Mevassvik, “Simulation of a combat training program for Norwegian
pilots,” in RTO meeting proceedings of the NATO Modeling and Simulation Group, Bern,
Switzerland, Oct. 2011.

[6] G. Skogsrud andO.M.Mevassvik, “TREFF -modellbeskrivelse,” Forsvarets forskningsinstitutt,
FFI-rapport 2012/01240 (Begrenset), 2012.

[7] G. Skogsrud, “TREFF - implementering og brukerveiledning,” Forsvarets forskningsinstitutt,
FFI-rapport 2012/01237 (Unntatt offentlighet), 2012.

[8] G. K. Svendsen and O. M. Mevassvik, “Konsekvenser av værkansellering for trening av F-35
flygere,” Forsvarets forskningsinstitutt, FFI-notat 2014/00474 (Begrenset), 2014.

[9] O. M. Mevassvik et al., “Innspill til valg av simulator for F-35,” Forsvarets forskningsinstitutt,
FFI-rapport 2013/00934 (Begrenset), 2013.

[10] G. K. Svendsen and O. M. Mevassvik, “Periodisering av årsplan for F-35 trening,” Forsvarets
forskningsinstitutt, FFI-rapport 2015/00449 (Begrenset), 2015.

[11] G. K. Svendsen et al., “Optimized pilot training for combat aircraft,” in Interservice/Industry
Training, Simulation and Education Conference (I/ITSEC) 2017, no. 17199, Orlando, FL, Dec.
2017.

[12] G. K. Svendsen and O. M. Mevassvik, “Føringsbasert optimering for videreutvikling av
TREFF,” Forsvarets forskningsinstitutt, FFI-rapport 2014/00473 (Begrenset), 2014.

[13] I. U. Haugstuen and G. K. Svendsen, “Sentrale faktorer for trening med F-35,” Forsvarets
forskningsinstitutt, FFI-rapport 17/16681 (Begrenset), 2017.

[14] Forsvarsdepartementet, “F-35 konsept for simulatorer og tekniske trenere,” 2013, (Unntatt
offentlighet).

[15] Luftforsvaret, “Provisions for operational classification of F-16 aircrew BFL 110-10 (F),”
2014, (RESTRICTED // REL TO NOR and USA).

[16] Luftforsvaret, “Regulations for combat ready training of F-16 aircrew RFL 110-20 (A),” 2014,
(RESTRICTED // REL TO NOR and USA).

[17] Luftforsvaret, “Grunnlag for F-35 treningsprogram for kampklare flygere,” 2011, (BE-
GRENSET).

FFI-RAPPORT 20/00002 39

[18] W. C. Rivenbark andW. S. Jacobson, “Three principles of competency-based learning:Mission,
mission, mission,” Journal of Public Affairs Education, vol. 20, no. 2, pp. 181–192, 2014.

[19] D. L. Roberson and M. C. Stafford, The Redesigned Air Force Continuum of Learning. Air
University Press, 2017.

[20] P. Crane et al., “Advancing fighter employment tactics in the Swedish and US air forces using
simulation environments,” in RTO meeting proceedings of the NATO Modeling and Simulation
Group, Neuilly-sur-Seine, France, Oct. 2006.

[21] C. M. Colegrove and W. Bennett Jr., “Competency-based training: Adapting to warfighter
needs,” Air Force Research Laboratory, AFRL-HE-AZ-TR-2006-0014, 2006.

[22] B. T. Schreiber, M. Schroeder, and W. Bennett Jr., “Distributed mission operations within-
simulator training effectiveness,” The International Journal of Aviation Psychology, vol. 21,
no. 3, pp. 254–268, 2011.

[23] W. Arthur Jr. et al., “Factors that influence skill decay and retention: A quantitative review
and analysis,” Human Performance, vol. 11, no. 1, pp. 57–101, 1998.

[24] J. van der Pal and H. Abma, “Competency-based pilot training for the RNLAF,” in International
Training and Education Conference (ITEC), Brussels, May 2009.

[25] J. van der Pal, E. Boland, andM. de Rivecourt, “Competency-based design of F-16 qualification
training,” in Proceedings of the 2009 Interservice/Industry Training, Simulation and Education
Conference (I/ITSEC-2009), 2009.

[26] E. Tsang, Foundations of constraint satisfaction. Academic Press, 1993.

[27] R. Hemmecke et al., “Nonlinear integer programming,” in 50 Years of Integer Programming
1958-2008. Springer, 2010, pp. 561–618.

[28] G. Dantzig, Linear Programming and Extensions. Princeton University Press, 2016.

[29] S. P. Bradley, A. C. Hax, and T. L. Magnanti, Applied Mathematical Programming. Addison-
Wesley, 1977.

[30] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems,” SIAM review, vol. 33, no. 1, pp. 60–100, 1991.

[31] A. M. Law, Simulation Modeling & Analysis, 4th ed. McGraw-Hill, 2007, International
Edition.

[32] Anylogic. The AnyLogic Company. [Online]. Available: http://www.anylogic.com

[33] Google OR-Tools. Google. [Online]. Available: http://code.google.com/p/or-tools/

[34] J. P. M. Silva and K. A. Sakallah, “Grasp—a new search algorithm for satisfiability,” in
Proceedings of International Conference on Computer Aided Design, 1996, pp. 220–227.

[35] R. J. Bayardo Jr. and R. Schrag, “Using CSP look-back techniques to solve real-world
SAT instances,” in Proceedings of the AAAI Conference on Artificial Intelligence, 1997, pp.
203–208.

40 FFI-RAPPORT 20/00002

http://www.anylogic.com
http://code.google.com/p/or-tools/

[36] Cbc. Coin-OR Foundation. [Online]. Available: http://projects.coin-or.com/CBC

[37] Glpk. Free Software Foundation. [Online]. Available: http://www.gnu.org/software/glpk

[38] Scip. Zuse Institute Berlin. [Online]. Available: http://scip.zib.de

[39] Gurobi. Gurobi Optimization, LLC. [Online]. Available: http://www.gurobi.com

[40] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations, R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, Eds. Springer US, 1972, pp.
85–103.

[41] I. P. Gent, K. E. Petrie, and J.-F. Puget, “Chapter 10 - symmetry in constraint programming,”
in Handbook of Constraint Programming, ser. Foundations of Artificial Intelligence, F. Rossi,
P. van Beek, and T. Walsh, Eds. Elsevier, 2006, vol. 2, pp. 329 – 376.

[42] Luftforsvaret, “Annual Training Program (ATP) for F-35 pilots, RFL 115-20 (B),” 2018,
(RESTRICTED // REL TO NOR and USA).

FFI-RAPPORT 20/00002 41

http://projects.coin-or.com/CBC
http://www.gnu.org/software/glpk
http://scip.zib.de
http://www.gurobi.com

About FFI
The Norwegian Defence Research Establishment (FFI)
was founded 11th of April 1946. It is organised as an
administrative agency subordinate to the Ministry of
Defence.

FFI’s mission
FFI is the prime institution responsible for defence
related research in Norway. Its principal mission is to
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief
adviser to the political and military leadership. In
particular, the institute shall focus on aspects of the
development in science and technology that can
influence our security policy or defence planning.

FFI’s vision
FFI turns knowledge and ideas into an efficient defence.

FFI’s characteristics
Creative, daring, broad-minded and responsible.

Om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.
Instituttet er organisert som et forvaltningsorgan med
særskilte fullmakter underlagt Forsvarsdepartementet.

FFIs formål
Forsvarets forskningsinstitutt er Forsvarets sentrale
forskningsinstitusjon og har som formål å drive forskning
og utvikling for Forsvarets behov. Videre er FFI rådgiver
overfor Forsvarets strategiske ledelse. Spesielt skal
instituttet følge opp trekk ved vitenskapelig og
militærteknisk utvikling som kan påvirke forutsetningene
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs visjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdier
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisationFFI’s organisation

Forsvarets forskningsinstitutt
Postboks 25
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller

Office address:
Instituttveien 20
N-2007 Kjeller

Telephone: +47 63 80 70 00
Telefax: +47 63 80 71 15
Email: ffi@ffi.no

	Summary
	Sammendrag
	Introduction
	Training Media
	Continuation Training
	Competency-Based Training
	Outline

	Optimization and Simulation
	Constraint Satisfaction Problems
	Basic Algorithms

	Linear Optimization
	Linear Programming
	Branch-and-Cut Algorithm

	Discrete-Event Simulations
	Pilot Scheduling as a COP

	OR-Tools
	Constraint Solver
	SAT Solver
	IP Solvers

	COMFORT
	Baseline Problem
	Cost Functions
	Focus Competencies
	Individual Sorties
	Combinations of Competencies

	Parameters and Return Values

	Implementation
	CP1 – Constraint Solver
	SAT1 – SAT Solver
	IP1 – IP Solver
	CP2 – Individual Sorties
	IP3 – Combinations of Competencies

	Example Parameters and Results
	Parameters
	Baseline Problem
	Focus-Competency Problem
	Computation Time

	Discussion
	Solution Algorithms
	Complexity
	Improvements
	Conclusion

	References

