
webSAF
- front-end architecture and design

Madeleine Josephine Selvig Hallén 
Kristian Selvaag

20/00354FFI-RAPPORT





FFI-RAPPORT 20/00354 1 

webSAF 
– front-end architecture and design

Madeleine Josephine Selvig Hallén 
Kristian Selvaag 

Norwegian Defence Research Establishment  (FFI) 10 February 2020 



2 FFI-RAPPORT 20/00354 

Keywords 
Modellering og simulering 
Grafisk brukergrensesnitt 
Webteknologi 
Simuleringsverktøy 
Stridssimuleringer 
Datagenererte styrker 

FFI report 
20/00354 

Project number 
1508 

Electronic ISBN 
978-82-464-3138-3

Approvers 
Dan Helge Bentsen, Research Manager 
Halvor Ajer, Director of Research 

The document is electronically approved and therefore has no handwritten signature.        

Copyright 

© Norwegian Defence Research Establishment (FFI). The publication may be freely cited 
where the source is acknowledged. 



 

 

    

 

FFI-RAPPORT 20/00354 3  
 

Summary 

webSAF is an easy-to-use, web-based tool for simulation-supported, two-sided wargaming. It 
consists of a server that communicates with a graphical user interface (GUI) in the browser 
using WebSocket. It currently has functionality for controlling indirect fire entities, maneuver 
entities and air defence entities. webSAF is designed to be independent of the simulation tools 
in use, and can be used to control entities in a federation of different simulation tools.  

The web-based user interface (UI) is written in TypeScript, a superset of JavaScript, and is 
based on a selection of web technologies, the most important being React, Redux and 
OpenLayers. This report describes the technologies, decisions that were made and experiences 
related to development of the GUI.  



4 FFI-RAPPORT 20/00354 

Sammendrag 

webSAF er et brukervennlig, web-basert verktøy for simuleringsstøttede, tosidige krigsspill. Det 
består av en server som kommuniserer med et grafisk brukergrensesnitt i nettleseren ved hjelp 
av WebSocket, og har foreløpig funksjonalitet for å kontrollere indirekte ild-entiteter, 
manøverentiteter og luftvernentiteter. webSAF er designet for å være uavhengig av hvilke 
simuleringsverktøy som benyttes, og kan brukes til å kontrollere entiteter i en føderasjon av 
ulike simuleringsverktøy. 

Det web-baserte brukergrensesnittet er skrevet i TypeScript, et supersett av JavaScript, og er 
basert på en rekke ulike webteknologier hvor de viktigste er React, Redux og OpenLayers. 
Denne rapporten beskriver teknologiene, beslutninger som er tatt underveis og erfaringene 
knyttet til utvikling av brukergrensesnittet. 



 

 

    

 

FFI-RAPPORT 20/00354 5  
 

Contents 

Summary 3 

Sammendrag 4 

1 Introduction 7 

2 Game design 7 

3 User interface 9 

4 Design principles 10 

5 Technology stack 11 
5.1 Package manager 11 
5.2 Build system 12 
5.3 Choice of user interface library 12 
5.4 React 13 

5.4.1 React components 14 
5.4.2 State 15 
5.4.3 Lifecycle methods 17 

5.5 JSX 17 
5.6 Compiling and type checking 18 
5.7 Map Library 19 
5.8 Symbols and icons 21 
5.9 Client-server communication 21 

6 Software architecture 22 
6.1 Event system 22 
6.2 The reactive approach 23 

7 Discussion 27 

8 Further work 29 

9 Conclusion 29 



  

    

 

 6 FFI-RAPPORT 20/00354 
 

References 30 

Abbreviations 33 

 

 
 
  



 

 

    

 

FFI-RAPPORT 20/00354 7  
 

1 Introduction 

webSAF is an easy-to-use, web-based tool for simulation-supported, two-sided wargaming. It 
consists of a server that communicates with a graphical user interface (GUI) in the browser 
using WebSocket [1]. It currently has functionality for controlling indirect fire entities, 
maneuver entities and air defence entities. webSAF is in principle independent of the simulation 
tools in use, and can be used to control entities in a federation of different simulation tools. At 
FFI we have mainly used webSAF with Virtual Battlespace (VBS), but air defence units are 
simulated in VR-Forces. 

The webSAF GUI is based on a handful of different web technologies such as React, Redux, 
OpenLayers and more. React was launched in 2013, and was still in its infancy when the 
webSAF project started in 2016. Its popularity has grown greatly, and it was both the most 
loved and most wanted web framework in Stack Overflow’s annual survey for 2019 [2]. 
OpenLayers was at version 3 in 2016 and still lacking some features. Development of 
OpenLayers has progressed together with webSAF, and new features have been implemented 
continuously. 

This report describes the technologies used in the webSAF user interface (UI) and how they 
were used. In addition, we try to give some insight to some of our experiences using these 
technologies. For more information about webSAF, see “webSAF – An easy-to-use, web-based 
graphical user interface for controlling semi-automated forces” [3]. 

2 Game design 

The webSAF application is inspired by strategy games. Interacting with webSAF is much like 
using Google maps or any other sliding maps application. A map fills the entire background, 
with unit symbols and other graphics overlaid on top of it. The player selects a unit by left 
clicking it either in the map or in the Order of Battle (OOB), and right clicks in the map or on 
the unit in order to make that unit perform actions such as Move, Assault or Mount. Some 
actions require more clicks to perform, like selecting areas to defend or setting target type and 
effect when requesting fire support. Notifications appear in the top right corner when something 
of significance occurs, for example when units encounter enemy forces. The unit symbol 
changes depending on the operational status of the unit. Not operational and Annihilated units 
are indicated by a yellow and red bar, respectively. Because webSAF contains quite a bit of 
functionality, this report will not go into detail on how to actually use webSAF. However, a user 
guide is available that explains the gameplay, and is updated along with changes to webSAF. In 
addition, the FFI-report “webSAF – An easy-to-use, web-based graphical user interface for 



8 FFI-RAPPORT 20/00354 

controlling semi-aumtomated forces” [3] addresses all aspects of webSAF, not only the front-
end. 

The game design has undergone continuous improvement in order to make webSAF better and 
more user friendly. Figure 2.1 shows webSAF at the time of writing. 

Figure 2.1 webSAF at the time of writing. An infantry squad is selected. 

In the original design, the player could select several units simultaneously, and any order they 
were given would go to the subset of selected units that were able to perform this order. The 
multi-unit selection design was inspired by real-time-strategy games, where most units are 
limited to either “move” or “attack”. During the course of development, the list of possible 
orders grew, and most of them had several parameters that needed to be set, making them much 
more complex than simple “move” or “attack” orders. At the same time, predicting which units 
would be doing what after an order was given to an arbitrary selection of units was not always 
easy for the player. The design was therefore changed to single unit selection. The list of 
available orders is determined from the type of unit selected, and the execution is predictable: if 
a command is given to the selected unit, then that unit as a whole will execute the command. 
Graphics in the map indicate what command the unit is currently performing.  

In early webSAF versions, only one command could be issued to a unit at a time, and the player 
had to wait for the unit to finish that command before giving it a new order. But as development 
continued, it was clear that it would be a big advantage for the player to be able to queue orders. 



 

 

    

 

FFI-RAPPORT 20/00354 9  
 

Thus, the order queue was implemented. During the course of further development, additional 
improvements were made, such as highlighting the corresponding order graphics in the map, 
making it easy to delete orders in the queue. 

The status summary for the selected unit is another example of the iteration-driven design 
approach. The original idea was to right click a unit, and request “unit information”. This was 
cumbersome and required several clicks to request along with a round-trip to the server to 
receive, so the idea was dropped in favor of the status summary: whenever a unit is selected, its 
status summary is displayed in the bottom right corner, with information about child units in the 
bottom left corner. However, the method of right clicking a unit and requesting information 
from the server is used when requesting logistics information. 

3 User interface 

While some toolkits for creating cross-platform desktop GUIs offer some viable options, such as 
Qt [4] and GTK+ [5], browsers have grown powerful and web-based applications have one 
major advantage: the ease of distribution. In particular, no installing of software is required; an 
advantage that is important in a high-security network environment typical to military research 
where installing new software can be problematic. The application web page can instead be 
served on the organization’s intranet, making it accessible via a regular browser. 

webSAF is not FFI’s first attempt at creating a map-based web-GUI: Simulation Supported 
Wargaming for Analysis of Plans (SWAP) is a demonstrator system that aims to show how 
simulation can enhance the military decision making process [6]. The focus of that project was 
on fuel consumption, routes and timing in the planning of force movement. The technology used 
in SWAP is similar to that of webSAF; the front end is web-based with a map as the central 
element. webSAF owes some of its design decisions to the experiences of the SWAP team. 
However, SWAP is considerably different from webSAF, meaning that building on SWAP 
would have been inefficient. Controlling forces on both red and blue side, for example, is not 
considered in the design of SWAP. 

 



  

    

 

 10 FFI-RAPPORT 20/00354 
 

4 Design principles 

The GUI design philosophy for webSAF is based on balancing the following aspects, roughly 
prioritized in descending order: 

1. Time efficient user interaction. The user should be able to do a lot, fast. 

2. Familiar user interaction. The system should be easy to use. 

3. Ease of implementation. The work needs to be completed within time and budget 
constraints. 

4. Ease of maintenance and extension. The project is anticipated to expand in the future. 
The software architecture therefore needs to be amenable to changes and extensions.  

5. Aesthetics. Visual style should not hinder adoption by users. 

One of the main drivers behind this work was to save operator time during constructive 
simulation, in order to reduce the number of operators required. The GUI was therefore 
designed to help the operator reach his or her goals with the least amount of manual effort. 
Operator efficiency takes precedence over other design aspects.  

Familiarity was the driving aspect for other design decisions. The “sliding maps” way of 
panning and zooming in and out in the map view, for example, is very similar to widely used 
online map services. The right-click context menu is also a way of minimizing UI clutter, while 
still keeping useful interactions just a click away. The context menu is complemented by a few 
static menus, mainly the order of battle and the notifications. The user has the option to hide 
these, and when not hidden, they are kept to the sides as to not clutter the map. Apart from the 
thin bars at the top and bottom of the screen, the map fills the entire GUI area. Menus and 
available interactions appear on-screen when an action fires, for instance the logistics menu 
upon requesting logistics information. The disadvantage for a new user is that it is not 
immediately obvious what interactions are available. On the other hand, it can be overwhelming 
to see all the available options simultaneously.  

Another aspect that might discourage new users is poor aesthetics. However, aesthetics is rarely 
prioritized in internal software projects, and slow adoption of new software and routines is a 
persistent problem across organizations [7]. Thus, the visual design of the GUI was given some 
consideration. Perceived performance is closely linked to aesthetics: Slow user interfaces can 
fatigue users. Performance tuning has not yet been given significant development time, but it 
was considered during software architecture design and when selecting external software 
libraries. 



FFI-RAPPORT 20/00354 11 

5 Technology stack 

The webSAF project started in late 2016. This is important to keep in mind because web 
technologies evolve and change so fast. Back in 2016, the biggest challenge for the project was 
considered to be the data flow from the web-GUI to the underlying simulation engine, Virtual 
BattleSpace (VBS) [8], and back to the GUI. For this reason, a quick prototype was made using 
pure JavaScript and HTML together with OpenLayers 3 [9] and WebSocket [1]. After 
successfully establishing communication between the web-GUI prototype and VBS, work began 
on designing the front-end so that it would achieve the envisioned features while adhering to the 
design principles. 

Experience from developing the prototype made it apparent that better tools were needed to 
create an application of the envisioned scale: code splitting and dependency management, for 
example, was not solved gracefully on the prototype web platform.  Because scripts are included 
in the HTML document sequentially using the script tag, each script adds functions or variables 
to the global namespace. If one script depends on a function or variable from another script, the 
developer has to make sure to include them in the correct order. A possible disaster scenario is if 
a script redefines a variable declared by another, creating errors that are hard to debug. 

There was also the problem of browser support for standardized JavaScript (ECMAScript [10]). 
The ECMAScript standardization process has resulted in quality-of-life improvements to the 
JavaScript language, like lambda-syntax and a module system, but web browser support has 
been lagging behind. In 2016, the latest edition of the language with consistent support across 
browsers was ECMAScript 5th edition (ES5) [11]. To avoid having to write browser specific 
code, web developers resort to polyfills, libraries that implement the quality-of-life 
improvements that ES5 lacks, or compilers that compile newer JavaScript to ES5 (these 
compilers are also known as transpilers). There are many web development challenges to 
overcome, but there are even more solutions to choose between. The most important tools used 
in webSAF are presented in this chapter. 

5.1 Package manager 

webSAF uses Node.js [12] and Node Package Manager (npm) [13]. Node.js is a cross-platform 
JavaScript runtime built on Chrome’s V8 JavaScript Engine for executing outside the browser 
(i.e. as a traditional scripting language).  It is designed to build scalable applications, and 
through npm, it provides access to a massive registry of JavaScript code packages. Npm makes 
development easier because hundreds of thousands pieces of code is shared within the 
community. Developers can thereby avoid rewriting basic components, libraries or frameworks. 
Each piece of code may in turn depend on other pieces of code, and these dependencies are 
managed by package managers. Examples of packages used in webSAF include Moment, 
Redux, MilSymbol and many, many more. 



  

    

 

 12 FFI-RAPPORT 20/00354 
 

5.2 Build system 

A typical website project setup using npm consists of script source files in a language that 
compiles to ES5, along with resource files such as cascading style sheets (CSS), images and an 
index.html file. A build process is required, in which all files (JavaScript files, image files and 
other assets) are compiled and bundled into one huge file that actually gets served to visitors of 
the website.  

Several build systems (or task runners) were available in 2016: Grunt [14], Gulp [15], Webpack 
[16], Browserify [17] among others. The choice fell on Webpack because it seemed easy to set 
up. It was quite new, but there were plenty of tutorials, and several project templates were using 
Webpack already. Webpack also provides a development server that continuously serves the 
latest version of the web page at all times; whenever changes are made to the source code (i.e. 
whenever you save your changes), the development server triggers a page refresh in the web 
browser.  

5.3 Choice of user interface library 

The main purpose of JavaScript on a web page is to interact with the Document Object Model 
(DOM), the tree structure that represents the visual layout of a web page. The standard DOM-
API is not to everyone’s liking, and so a number of libraries and so-called “web frameworks” 
have emerged. Examples include jQuery [18], Angular [19], React [20], Vue [21] and many 
others. These libraries promise familiar design patters, ease of development and/or performance 
improvements. Three user interface libraries were considered for webSAF: Angular, Vue and 
React.  

Angular is a platform and framework for building client applications in HTML and 
TypeScript [22]. It is open source under the MIT license and maintained by Google, and in late 
2016, version 2 had just arrived. An Angular application is made up of modules, components 
and services. Modules provide a context for a collection of components, while components 
correspond to views, the things you actually see in the browser. Components depend on services 
to provide application logic that is not directly related to the view. A component typically 
consists of an HTML template, a CSS style sheet and a TypeScript file that specifies component 
lifecycle methods and component metadata. The HTML template is extended with directives 
and binding markup. Directives are special script-like labels that provide simple logic. A 
directive can be invoked in the template either as a tag, an attribute, in a comment or by passing 
it to the class-attribute. The ng-repeat directive, for example, repeats a tag once for each item in 
a collection. Binding is a mechanism that keep the changes in a component’s variables and the 
UI in synch. 

React on the other hand, is focused purely on the view part of a web-application. It is described 
by its developers as a JavaScript library for building user interfaces [23]. React is maintained 
by Facebook. React is all about components, which are roughly analogous to Angular-
components, with one major difference: the HTML template and component logic are mixed in 



 

 

    

 

FFI-RAPPORT 20/00354 13  
 

one JSX (JavaScript XML) file, or TSX file when TypeScript is used. This may sound like a 
violation of the principle of separation of concerns, but on the other hand, most HTML 
templates contain logical directives (in HTML), which could be much more elegantly handled 
by a proper scripting language. In JSX syntax, React element tags can be used mostly like other 
variables in JavaScript.  

Vue, like Angular, uses HTML templates with logical directives, but is less verbose in the setup 
of components. It is marketed as a progressive framework for building user interfaces, meaning 
that it is easy to adopt incrementally into an existing web application [24]. Vue also boasts 
impressive optimizations and low memory footprint, and in general looked like a good 
alternative. The only downside back in 2016 was limited support for TypeScript. TypeScript 
support has improved since then, with official type declarations and the release of Vue version 
2.5 in October 2017 [25].  

Table 5.1 shows a comparison between the different interface libraries. 

 Angular React Vue 
Scope Full MVC framework. 

Rendering, state, 
routing, controllers, 
models etc. 

Rendering and state. Rendering and state. 

Templates HTML templates with 
script-like directives. 

JavaScript extended with 
HTML-like tags. 

HTML templates with 
script-like attributes. 

Data binding Two-way. One-way (down). 
Uses callbacks for 
propagating input. 

Two-way. 

TypeScript 
integration 

Native. Good via typing/TSX. Somewhat lacking (in 
2016). 

Table 5.1 Comparison of user interface libraries Angular, React and Vue. 

Between Vue’s limited TypeScript support at the beginning of the project, and a stylistic 
preference for React’s HTML-in-JavaScript approach, React was chosen as the tool for creating 
the user interface. Because React was chosen as user interface library, the next section 
establishes some terms and concepts from the React library. 

5.4 React 

React is a JavaScript library for building user interfaces [20]. From its launch in 2013 it has 
grown immensely in popularity. It is used by large apps such as Facebook, Netflix and 
Instagram. According to Stack Overflow’s Developer Survey for 2019, React was both the most 
loved and the most wanted web framework by developers. The Developer Survey is the largest 
and most comprehensive survey of coders from around the world with nearly 90 000 developers 
answering the 20-minute survey in 2019. This year React also passed Angular for the first time 
when asked which framework web developers actually use [2]. The following sections provide a 



  

    

 

 14 FFI-RAPPORT 20/00354 
 

review of React and important terms related to it. However, to ease the reader’s burden, Table 
5.2 lists a set of commonly used terms related to React. 

Term Description 
Component A class that inherits the react component base class or a pure rendering 

function that maps an arbitrary props argument to a react node. It can 
also be a function that uses Hooks. 

Props A component’s props are parameters that is passed to it in the parent’s 
render function or method. 

State A component’s state is data that can change, independently of the parent 
component, through the setState method, or using Hooks. 

React component 
base class 

A class that is built into React. It contains lifecycle methods, utility 
methods like setState, and requires derived classes to implement the 
render function. In TypeScript it takes the types of props and state as 
type parameters. 

Class component A class that inherits the react component base class 
Functional 
component 

A function that maps an arbitrary props argument to a react node. 
Functional components can also use Hooks to access React state and use 
lifecycle features. 

Event callback A function that is passed as props to a JSX element. It is typically bound 
as an HTML event listener, and calls the setState method in the callback 
function body. 

React node Any data type that can be converted to HTML: A JSX element, a string 
or a number or null. 

JSX element An inline XML tag that represents an HTML element or a React 
component. 

React hooks Functions that “hook into” React state and lifecycle features from 
function components. 

Table 5.2 Commonly used terms related to React. 

5.4.1 React components 

A React app is made up of a hierarchy of React components. The hierarchy is not an inheritance 
hierarchy, nor is it an aggregation or composition hierarchy from object oriented design theory, 
but rather a rendering-hierarchy. Component A is the “parent” of component B if component A 
renders component B. React components are created either by writing a class that inherits the 
react component base class, or through a pure1 rendering function that maps an arbitrary props 
argument to a react node [26]. Simple react components can be seen in Figure 5.1. 

 

                                                           
1 A pure function is a function that, for the same input, always produces the same output. In addition, a pure function 
cannot produce side-effects such as mutating a variable outside its scope (including the input variable), or performing 
input or output actions. 



 

 

    

 

FFI-RAPPORT 20/00354 15  
 

    

Figure 5.1 Left: React class component. Right: React functional component. 

Props (short for properties) are parameters that are needed to render a component, and is 
analogous to attributes of normal HTML tags. In the example in Figure 5.1, none of the 
components are actually using props, as both only return some HTML. Note also that while a 
constructor is not required in a React class component, the render method is. The render method 
and other lifecycle methods are described more thoroughly in section 5.4.3. 

5.4.2 State 

React components have a state object where property values that belong to the component are 
stored [27]. A state object can change independently of parent components.  Every time the state 
object changes, the component re-renders. The state object is initialized in the constructor using 
this.state as can be seen in Figure 5.2. State is changed through the setState method. This 
method is inherited from the react component base class and takes either a new state, or a 
function that maps the old state to the new, as argument, and merges the old state with the new. 
The handleClick method in Figure 5.2 is a custom method that handles clicking the button: each 
time the button is clicked, the state is changed, triggering a re-rendering of the component.  

In TypeScript, the react component base class takes the types of props and state as type 
parameters. The type system, paired with a good editor, will show errors and diagnostics within 
the editor if the wrong types of props are passed to the component, or the setState method is 
called with the wrong argument. 



  

    

 

 16 FFI-RAPPORT 20/00354 
 

 

Figure 5.2 An example of a React component for a simple counter. 

In February 2019, the React team released version 16.8.0. New to this version was the 
introduction of Hooks [28]. Hooks make it possible to use state and other React features without 
having to write classes [29]. Because React classes are quite verbose, and also not optimal for 
compilers, Hooks are a great addition. Figure 5.3 shows the same counter component as in 
Figure 5.2, but using the useState hook. 

 

Figure 5.3 Same component as in Figure 5.2, but using hooks instead. 

Hooks are currently not widely used in webSAF because it is quite new, but some components 
do utilize Hooks. This works very well and it is certainly something to use more in the future. 



 

 

    

 

FFI-RAPPORT 20/00354 17  
 

5.4.3 Lifecycle methods 

The render method is the only required method in a React class component. It is a description of 
what you want to see on the screen [27]. It outputs a React element, whether it is a string, 
number, JSX or anything that can be converted to HTML. This means that a component can be 
rendered by another component by returning it as JSX from the render method, where the 
attributes of the JSX tag are the props of the rendered component. The render method should be 
pure, meaning that it does not modify component state and returns the same result each time it is 
invoked. 

The render method is a lifecycle method. Lifecycle methods can be overridden to run code at a 
particular time during the lifecycle of a component. When a component is mounted, that is, 
when it is rendered for the first time, some important lifecycle methods are: 

• constructor() 
• render() 
• componentDidMount() 

The componentDidMount method is a good place to use for example the setInterval window 
method. Because setInterval will continue calling a function or evaluate an expression with a 
given time interval until clearInterval is called, it is important to remember to perform any clean 
up tasks as well. The componentWillUnmount method is the only lifecycle method called right 
before the component is removed from the DOM, and is a good place to perform such clean up 
tasks.  

As previously stated, a component re-renders when changes are made to its state or props. 
Important lifecycle methods during re-render is: 

• render() 
• componentDidUpdate() 

There are more lifecycle methods, but these are rarely used. 

 

5.5 JSX 

JSX is a syntax extension to JavaScript [31] and is used extensively throughout webSAF. JSX 
produces React elements. It is basically just “syntactic sugar” for the 
React.createElement(component, props, …children) function. Because JSX compiles to a React 
function, the React library must be in scope when using JSX. The function or class you are 
calling using the JSX tag must of course also be in scope. Let us assume that we use the 
CounterFunc component from Figure 5.3 inside another React component. This is as easy as 
including a <CounterFunc /> tag as can be seen from Figure 5.4. If our counter component had 



  

    

 

 18 FFI-RAPPORT 20/00354 
 

needed any props, those would be passed down to the CounterFunc component as parameters. It 
is important to note that a component have to start with a capital letter in order to use it in JSX. 

 

Figure 5.4 Using JSX in React is very easy. 

JSX elements and JavaScript can be nested within each other. Opening a tag switches the 
parsing context to “HTML mode”, while opening curly braces within the “HTML mode” 
switches the context back to JavaScript. 

5.6 Compiling and type checking 

Programming languages that compile to ES5 are abundant. An obvious choice was to use the 
newest ECMAScript standard together with a transpiler, but there were several options that 
offered even more convenience: TypeScript [32] and Flow [33], backed by tech-companies 
Microsoft and Facebook respectively. TypeScript is a typed superset of JavaScript, while Flow 
is a static typechecker for JavaScript. While TypeScript provides its own compiler, Flow does 
not. Hence, a separate compiler would be required as well when using Flow. Ultimately, the 
choice fell on TypeScript.  

Figure 5.5 shows the Counter component from Figure 5.2 written in TypeScript. Even though it 
is more verbose, the type checking provides useful aid when debugging. Notice how we have 
added a prop, so we can set our own start value for the counter. If no start value is provided, the 
Counter component will have a default start value of 0. 



 

 

    

 

FFI-RAPPORT 20/00354 19  
 

 

Figure 5.5 The Counter component from Figure 5.2 written in TypeScript.  

Experiences using TypeScript have been good in general, but some parts of React does not work 
that well with TypeScript . The code sometimes requires some additional adjustments such as 
typecasting that otherwise would be unnecessary as seen in Figure 5.6 [34].  

 

Figure 5.6 Example of additional casting required by TypeScript. 

5.7 Map Library 

Two map libraries were considered at the beginning of the webSAF project: OpenLayers [35] 
and Leaflet [36]. The main difference being that OpenLayers focuses on a rich set of features 
out of the box, while Leaflet is smaller and adopts a plugin architecture. The map functionality 
envisioned for webSAF included the ability to draw and modify shapes, render icons, aggregate 



  

    

 

 20 FFI-RAPPORT 20/00354 
 

icons as well as render several map overlays. Implementing these features would have been 
possible using either of the two libraries, but OpenLayers was chosen because of its all-in-one 
philosophy. Minimizing the number of external plugins is convenient and potentially safer when 
developing in a closed network environment.  

However, working with OpenLayers has been challenging at times. Version 5.0.0, released in 
June 2018, contained a completely reworked library, now under a new npm package name (ol 
instead of openlayers). This meant that in order to keep up with newer versions, the old 
openlayers package had to be uninstalled, and the new ol module installed. Additionaly, quite a 
lot of code had to be rewritten because of the changes. The new library has a better developer 
experience, but it took some time to get everything up-to-date.  

There has also been issues with some functionality changes in OpenLayers. At one point, the 
support for mousedown, mouseup and mousemove events was lost in OpenLayers [37]. This led 
to the UI losing some functionality without any information as to why. After some debugging, 
the issue was fixed in the UI by using pointer events, but as of September 2019, OpenLayers 
still did not support the aforementioned events. Updating OpenLayers to a newer version with 
breaking changes almost always produces errors. Fixing errors can be frustrating because 
OpenLayers provide very little feedback, if any, as to what is wrong. Sometimes it might be as 
little as setting a flag to “true” that had to be set to “false” in the previous version for the map 
area to render properly. Sometimes we have gone into the OpenLayers source code and written 
our own error handlers in order to figure out where something is breaking. 

Another issue with OpenLayers is that the documentation is somewhat lacking. For instance, we 
wanted a function that offsets a position on the map in a given amount of meters in a given 
direction. This functionality exists in OpenLayers, but it is not mentioned in their 
documentation (in October 2019). However, it was in the source code. 

A fourth issue with OpenLayers is performance optimization. If the framerate drops, it can be 
hard to figure out why. One layer was dropping the framerate drastically, and it only contained a 
polygon with four edges. Why this simple geometry caused this large drop in frame rate is 
unknown, but the issue was fixed by making lines instead of a polygon. 

Because the UI has been seeing a drop in performance due to OpenLayers styling, some tips for 
improving performance are [38][39]: 

• Cache entire icon styles in order to reuse them. Then use different style set methods 
such as setText, setFill, setStroke etc. 

• Use layer style functions whenever possible instead of storing the style on the feature, 
because feature styles consume quite a bit of memory. 

  



 

 

    

 

FFI-RAPPORT 20/00354 21  
 

• If a layer is causing performance issues, and a lot of features are added using the 
addFeature method, try creating an empty array of features, and push the features to it. 
Then use the setSource method and build a new source that renders all the features as 
seen in Figure 5.7. 

 

Figure 5.7 Here, layer is an OpenLayers vector layer, and VectorSource is an OpenLayers 
vector source. allFeatures is an array of OpenLayers features. 

 

5.8 Symbols and icons 

The Milsymbol library was used for rendering military map icons [40]. It enables the creation of 
SVG (Scalable Vector Graphics) symbols from MIL-STD-2525C [41] and MIL-STD-2525D-
codes. The Milsymbol library makes the interchange between the different codes very easy as it 
handles both. The first consists of letters while the second of numbers. This means that the GUI 
has to do some checks when rendering the different symbols for Not operational and 
Annihilated units, but Milsymbol handles the rest. Other graphics were created using Adobe 
Illustrator, such as icons for ruler, compass, map etc. 

5.9 Client-server communication 

The web client sends updates to, and receives updates from, the simulation server. Updates must 
be frequent, so that the operator has a real-time picture of what happens on the battlefield. Many 
of the updates are also server driven, i.e. simulation updates that need to be sent from the server 
to the client even though there is no operator input. The standard Representational State 
Transfer (REST) architecture for accessing web resources was not suitable for the frequent and 
push-driven updates needed for webSAF [42]. WebSocket, on the other hand, is better with high 
loads and is bi-directional. WebSocket is a communication protocol that provides an interface to 
create a two-way TCP (Transmission Control Protocol) connection between the web client and 
simulation server [43]. This connection was easy to set up and fast enough to send data with 
high frequency. 

 



  

    

 

 22 FFI-RAPPORT 20/00354 
 

6 Software architecture 

The front-end architecture was to a large degree inspired by the libraries employed: UI-
applications are not something new and plenty architectures have been proposed and deployed 
over the years. In this case, with a specific platform (the web), and a handful of libraries to 
choose from, it was only natural to adopt an architecture that suited the available tools.  

6.1 Event system 

The overall GUI system can be divided roughly into three areas of responsibility: the menus, the 
map, and synchronizing state by communicating with the server. Each of these areas is tightly 
coupled to the respective libraries chosen to cover them: React, OpenLayers and WebSocket. 
React is rooted in the functional paradigm, while OpenLayers, and WebSockets expose a typical 
object-oriented API. The initial architecture was inspired by the object-oriented approach, and 
was based around an event system as seen in Figure 6.1. If a menu needed to know when a 
shape was edited in the map, the map would be responsible for broadcasting a ShapeUpdate 
event, and the menu would subscribe to that event with a callback function to handle the 
ShapeUpdate event. In this way, the different modules; menus, map and WebSocket client all 
knew about the event system, but they did not know about each other. 

 

Figure 6.1 Event system architecture for WebSAF. React components communicate with the 
server via a WebSockets client through the event system. 

The event system was easy to integrate and worked well for a while, but shortcomings soon 
became evident. Events in themselves represent changes in the application. Menus and maps, 
however, do not render changes, they render state; the data that is the result of changes 
accumulated over time. The map and the menu each had to keep track of its own state. 
Whenever a change occurred, an event had to be explicitly broadcasted. If the state of the map 
was changed, and an event is not broadcasted, the state of the menu would be out of sync with 
the state of the map, and vice versa: if something changed in the menu, and the map was 



 

 

    

 

FFI-RAPPORT 20/00354 23  
 

updated, state would again be out of sync. This means that for every interaction that is added to 
a menu (or to the map), the programmer has to remember to explicitly broadcast events, or 
things will go wrong. Combine this burden with the fact that a lot of the state is actually shared 
between the map and menu components (the order of battle for example), and the merits of an 
event-driven approach look weak. 

6.2 The reactive approach 

Reactive UI programming [44], the paradigm that underpins React, offers a compelling 
alternative to the event architecture outlined in the previous section. There is no authoritative 
definition of reactive programming, but the spirit of it is roughly that the UI is a function of the 
state. Whenever the state changes, that function is re-evaluated. Interaction with the UI produces 
events, or triggers callbacks, which in turn change the state and causes the UI to update. The 
challenge in this kind of architecture is to connect subsections of the state to subsections of the 
UI, so that everything does not have to be recalculated every time something changes in the 
state. React solves this by only making state changes possible through a component’s setState 
method discussed in section 5.4.2. The state lives inside each component. If two components 
need to share state, the state is typically contained inside a component higher up in the 
hierarchy2, and then it is passed as props to the subcomponents as Figure 6.2 shows. Input is 
handled by callbacks that are defined in the same component as the state they modify. These 
callbacks are then passed to subcomponents through props, where they are called. The concept 
is often referred to as Flux. It is an architectural pattern for controlling and managing the state of 
an application. 

                                                           
2 In React, hierarchy refers to data flow, not an object oriented inheritance-hierarchy. If a component A returns a 
component B from its render function, then component A is higher up in the hierarchy than component B. 



  

    

 

 24 FFI-RAPPORT 20/00354 
 

 

Figure 6.2 Architecture of a React application. The ovals represent React-components, and 
the arrows represent the relationship between them. The solid arrows (black) 
represent the “renders” relationship. The downwards-pointing dashed lines (blue) 
represent the passage of props. The upwards-pointing dashed lines (red) indicate 
that the component calls the callback functions it is passed through props. 

A large part of the state in webSAF is shared between the menus and the map. This means that 
this state must live high up in the component hierarchy, and be passed down to subcomponents. 
Let us call this global state. Threading the state through component props in this way can be 
cumbersome and verbose. However, the Redux library provides a way to connect components 
directly to the global state, independently of component hierarchy as illustrated in Figure 6.3 
[45].   



 

 

    

 

FFI-RAPPORT 20/00354 25  
 

 

Figure 6.3  Architecture of a Redux application. The ovals represent React-components that 
have been connected to the store. The solid arrows (black) represent the “renders” 
relationship. The downwards-pointing dashed lines (blue) represent the mapping 
from state to component props. The upwards-pointing dashed lines (red) indicate 
that the component dispatches actions to the store. 

Instead of passing state down as props to subcomponents, there is a central store for the global 
state. The React-Redux library is implemented in such a way that only UI components that are 
affected by the new state get updated. Using this binding library, each component specifies 
which parts of the global state they need to read through a mapStateToProps function [46]. Note 
that mapStateToProps has to be a function that returns an object. An example of this is seen in 
Figure 6.4. This example is from the Logistics component in webSAF, and listens to a part of 
the global state called “ammo”. 

 

Figure 6.4 Example of the mapStateToProps function. 

Input is sent directly to the central state store through a mapDispatchToProps function. Rather 
than using callbacks, input is handled by dispatching actions. The dispatcher passes actions to a 
reducer, a pure function that simply takes the action and previous state as input, and produces 
the next state as output. Figure 6.5 shows the mapDistpatchToProps function for the webSAF 
Logistics component. This particular component dispatches two actions: one that closes the 



  

    

 

 26 FFI-RAPPORT 20/00354 
 

Logistics menu, and one that deletes ammo information from the state. These functions call a 
reducer that returns a new global state.  

 

Figure 6.5 Example of mapDistpatchToProps. 

The connect function is the final piece in a React-Redux component and is illustrated in Figure 
6.6 by the connect function for the Logistics component in webSAF. This function connects a 
React component to the Redux store. It does not modify the component class that was passed to 
it, but returns a new, connected component class that wraps the component it was passed. Note 
that while mapStateToProps and mapDispatchToProps can be renamed however you wish, 
sticking with this naming convention ensures clarity and consistency.  

 

Figure 6.6 Example of the connect-function. 

The system architecture of webSAF using Redux is shown in Figure 6.7.  

 

Figure 6.7 System architecture for webSAF using Redux 

Redux menu components are defined by a render function: a pure function that maps props to 
React elements. Props could be anything, but is typically just an object containing the data that 
is relevant for displaying in the GUI component. The props are recalculated from the 
mapStateToProps function each time the state updates. Why is this function needed? Why could 
not just the component take the state as input directly? One way in which Redux determines 



 

 

    

 

FFI-RAPPORT 20/00354 27  
 

what parts of the UI needs to update, is by computing a component’s props and compare these 
with the props computed for the previous state. If the props have changed, then the render 
function is re-evaluated with the new props. If the props have not changed since the last render, 
then there is no point in re-evaluating the rendering function: the input has not changed, which 
means the output has not changed either. We can make this assertion because the render 
function is pure. 

There is no React-Redux equivalent for OpenLayers. The connection between the state store and 
the map is managed in a more manual way through events. The Redux store has the option of 
subscribing to state updates. Whenever the state has changed, the subscribed callback function 
is invoked with the new state as argument. This is how the map state is kept in sync with the 
overall state. The callback function itself checks which parts of the state has been updated and 
only updates the map as needed. 

React and Redux work smoothly together, but it does require quite a lot of boilerplate3 code. 
The new React-Redux version 7.1.0 released in June 2019 provides its own set of hooks, with 
methods like useSelector and useDispatch [47]. The useSelector function takes the place of 
mapStateToProps, allowing us to hook directly into the Redux store, or our global state. It takes 
the entire store as argument, and returns whatever part of the store we want to access, so we can 
save it as a variable in the component. The useDispatch hook will return a function that we can 
use to dispatch actions to the Redux store. These new methods are so far, in October 2019, rarely 
used in webSAF, but the reduction in boilerplate code makes it worth using in future 
components. 

7 Discussion 

The iteration driven test and development cycle has been fruitful for improving the features of 
webSAF. The test cycles also revealed inevitable bugs, which were for the most part fixed as 
soon as they were uncovered. The two causes of bugs that stood out in the beginning were 
corrupt or outdated state (typically in the map) and server-client communication mismatch. 
Straight-out crashes have been very rare, and the symptoms of the aforementioned bugs were 
usually that the GUI was displaying something unexpected, or displaying nothing where 
something was expected. TypeScript’s type checking and the Redux architecture can take a lot 
of the credit for this relatively crash free development experience. Type checking eliminates the 
“type mismatch” category of bugs. Although TypeScript has fulfilled its purpose, Flow might 
have been a better choice when working with React because of how well the two work together. 
Because Flow is developed by the same people as React, it has advanced built-in support for 

                                                           
3 Boilerplate code are sections of code that have to be included in many places with little to no alteration. Boilerplate 
is often used about verbose programming languages because developers must write a lot of code to do smaller jobs. 



  

    

 

 28 FFI-RAPPORT 20/00354 
 

React. However, support for React in TypeScript is improving continually. Simultaneously, 
Redux goes a long way in mitigating state synchronization bugs by containing the state in a 
central store and automatically updating anything that depends on it. The aim of webSAF, 
however, was not to explore development methodologies, so there is no opportunity for 
comparison and it might have gone just as smoothly with other tools. 

The libraries chosen have, for the most part, delivered what they promise. React is quite easy to 
learn. However, it is certainly an advantage to learn the basics of JavaScript before taking on 
React. The component approach helps organize the code and make code bits reusable. React is 
very much a library, and this can be both an advantage and a disadvantage, depending on your 
preferences. On one hand, although React has a lot of features, it does not provide everything 
needed for building an application. This means that if you want a framework that includes 
everything, React is not the way to go. On the other hand, because React is a library, you can 
choose which technologies you want to use, and easily include React in any project.  

React has worked well as a UI library, but one downside to React is the one-way data flow – 
you can only pass props down to child components, but not up to parent components [30]. This 
can result in slightly verbose and cumbersome passing of callbacks through the hierarchy, from 
the parent component that contains the state, to the child component that receives the event that 
causes the state to update. However, state management using Redux solves this issue, even 
though the Redux approach is quite verbose as well. However, the new React and Redux Hooks 
might cut down boilerplate code substantially.  

Integrating Redux in webSAF has been useful as it introduces structure and discipline into an 
application by forcing updates to go through the reducer function. On the other hand, when a 
new action is needed, there is a lot of code that needs to be edited in different places: the action 
needs to be defined and a sub-reducer function is needed to process it. That sub-reducer function 
needs to be connected to the main reducer, and the action needs to be dispatched from 
somewhere, typically a React component. If the action affects some new part of the state, then 
the state declaration has to be updated as well, and given a default value. This would not have 
been so bad if all state-synchronization bugs could be preemptively eliminated. But the fact that 
the application had already been in development for some time when Redux was introduced, 
meant that it was not trivial to recast all application interactions as Redux actions. The result is 
that the application state resides for the most part in the Redux store, but some is still 
maintained in some React components, and in the map. The benefits of Redux could possibly 
have been achieved with a more disciplined state management strategy using React only, by 
hoisting shared state into parent components, instead of relying on a global event system. There 
would, however, have been plenty of callback functions that needed to be passed through-out 
the component hierarchy. All in all, Redux has made state management easy. 

OpenLayers version 3 was still in development at the time of the project start and was lacking 
some features, like animating the view. But the OpenLayers development has gone quickly in 
parallel with webSAF, and features have been integrated along with OpenLayers updates. Some 
issues still remain though. The performance issues in the UI have mainly been related to styling 
in OpenLayers. Suggestions on how to increase performance when styling features are outlined 



 

 

    

 

FFI-RAPPORT 20/00354 29  
 

in section 5.7. However, because of many issues related to OpenLayers, it might be preferable 
to try Leaflet in future map applications if it is sufficient for the project. If you on the other hand 
are developing a complicated Geographic Information System (GIS) application, OpenLayers is 
more suited. 

8 Further work 

webSAF is under continuous development. The need for new functionality is seen frequently, 
and features are added gradually. There is also the need for improvements in webSAF. Because 
of the continuous development of the webSAF UI, the code base is somewhat messy. As 
previously mentioned, webSAF started out with an event system, and as the complexity grew, 
Redux was implemented. This means that some parts of webSAF still rely on the event system, 
while other parts depend on Redux. It would be beneficial to have only one system for state 
management. While the flux architecture is fairly straightforward when working with React 
components, it gets more complicated when working with other JavaScript libraries such as 
OpenLayers. There are some guides online that outline different ways of using OpenLayers 
together with React and the flux application architecture [48], but it is uncertain how much this 
would improve the system. Cleaning up the code base will require a lot of work, and it might 
not be worth the time spent. 

9 Conclusion 

webSAF is an easy-to-use, web-based tool for simulation-supported, two-sided wargaming. 
webSAF consists of a server that communicates with a graphical user interface (GUI) in the 
browser. The technologies used in the webSAF GUI has delivered as promised for the most 
part. Experiences using React together with Redux have been very good. It makes state 
management easy, but does require a bit of boilerplate code. Writing the code in TypeScript has 
reduced errors during development and made crashes a minimal concern. The biggest 
development issues have been related to OpenLayers. Future map application projects should 
therefore consider Leaflet unless it is a very complex GIS application and the full extent of 
OpenLayers is required.  

webSAF is still a work in progress, and improvements and new features are added continuously.   



  

    

 

 30 FFI-RAPPORT 20/00354 
 

References 

[1] WebSocket, https://www.websocket.org/, accessed October 2019. 

[2] Stack Overflow, Developer Survey Results 2019, 
https://insights.stackoverflow.com/survey/2019, accessed November 2019. 

[3] Evensen, Per-Idar et al., webSAF– An easy-to-use, web-based graphical user interface for 
controlling semi-automated forces, Norwegian Defence Research Establishment report 
19/01622, 2019. 

[4] The Qt Company, https://www.qt.io/, accessed October 2019. 

[5] The GTK+ Project, https://www.gtk.org/, accessed October 2019. 

[6] S. Bruvoll et al., Simulation-supported Wargaming for Analysis of Plans (SWAP), 
Norwegian Defence Research Establishment 16/00524, 2016. 

[7] B.H. Hall & B. Khan, Adoption of New Technology, National Bureau of Economic 
Research, Cambridge, Massachusetts, 2003. 

[8] Bohemia Interactive Simulations, VBS3, https://bisimulations.com/products/virtual-
battlespace, accessed October 2019. 

[9] Openlayers 3, https://openlayers.org/en/v3.20.1/doc/, accessed October 2019. 

[10] ECMA International, https://www.ecma-international.org/, accessed July 2018. 

[11] ECMAScript compatibility table, https://kangax.github.io/compat-table/es5/, accessed 
July 2018. 

[12] Node.js, https://nodejs.org/en/, accessed October 2019. 

[13] Npm, Inc., https://www.npmjs.com/, accessed October 2019. 

[14] Grunt, The JavaScript Task Runner, https://gruntjs.com/, accessed July, 2018. 

[15] Gulp, https://gulpjs.com/, accessed July, 2018. 

[16] Webpack, https://webpack.js.org/, accessed July, 2018. 

[17] Browserify, http://browserify.org/, accessed July, 2018. 

[18] jQuery, https://jquery.com/, accessed July 2018. 

https://www.websocket.org/
https://insights.stackoverflow.com/survey/2019
https://www.qt.io/
https://www.gtk.org/
https://bisimulations.com/products/virtual-battlespace
https://bisimulations.com/products/virtual-battlespace
https://openlayers.org/en/v3.20.1/doc/
https://www.ecma-international.org/
https://kangax.github.io/compat-table/es5/
https://nodejs.org/en/
https://www.npmjs.com/
https://gruntjs.com/
https://gulpjs.com/
https://webpack.js.org/
http://browserify.org/
https://jquery.com/


 

 

    

 

FFI-RAPPORT 20/00354 31  
 

[19] Angular, https://angular.io/, accessed July 2018. 

[20] React, https://reactjs.org/, accessed October 2019. 

[21] Vue.js, https://vuejs.org/, accessed July 2018. 

[22] Angular, Architecture Overview, https://angular.io/guide/architecture, accessed October 
2019. 

[23] React, Getting Started, https://reactjs.org/docs/getting-started.html, accessed October 
2019. 

[24] Vue.js, Introduction, https://vuejs.org/v2/guide/, accessed October 2019. 

[25] Vue.js, TypeScript support, https://vuejs.org/v2/guide/typescript.html, accessed July, 
2018. 

[26] React, Components and Props, https://reactjs.org/docs/components-and-props.html, 
accessed October 2019. 

[27] React, State and Lifecycle, https://reactjs.org/docs/state-and-lifecycle.html, accessed 
October 2019. 

[28] Github React, V 16.8.0, https://github.com/facebook/react/releases/tag/v16.8.0, accessed 
October 2019. 

[29] React, Introducing Hooks, https://reactjs.org/docs/hooks-intro.html, accessed October 
2019. 

[30] Chahal, Sakshi (May 26th 2019), “Passing Data Between React Components – Parent, 
Children, Siblings”, https://towardsdatascience.com/passing-data-between-react-
components-parent-children-siblings-a64f89e24ecf, accessed October 2019. 

[31] React, Introducing JSX, https://reactjs.org/docs/introducing-jsx.html, accessed October 
2019. 

[32] TypeScript, https://www.typescriptlang.org/, accessed October 2019. 

[33] Flow, https://flow.org/en/, accessed October 2019. 

[34] Wan, Benny, “Comparing Flow with TypeScript”, https://medium.com/the-web-
tub/comparing-flow-with-typescript-6a8ff7fd4cbb, accessed October 2019. 

[35] OpenLayers, https://openlayers.org/, accessed October 2019. 

https://angular.io/
https://reactjs.org/
https://vuejs.org/
https://angular.io/guide/architecture
https://reactjs.org/docs/getting-started.html
https://vuejs.org/v2/guide/
https://vuejs.org/v2/guide/typescript.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/state-and-lifecycle.html
https://github.com/facebook/react/releases/tag/v16.8.0
https://reactjs.org/docs/hooks-intro.html
https://towardsdatascience.com/passing-data-between-react-components-parent-children-siblings-a64f89e24ecf
https://towardsdatascience.com/passing-data-between-react-components-parent-children-siblings-a64f89e24ecf
https://reactjs.org/docs/introducing-jsx.html
https://www.typescriptlang.org/
https://flow.org/en/
https://medium.com/the-web-tub/comparing-flow-with-typescript-6a8ff7fd4cbb
https://medium.com/the-web-tub/comparing-flow-with-typescript-6a8ff7fd4cbb
https://openlayers.org/


  

    

 

 32 FFI-RAPPORT 20/00354 
 

[36] Leaflet, https://leafletjs.com/, accessed October 2019. 

[37] Mousedown, mouseup, mousemove events are missing in latest version (May 24th 2018), 
https://github.com/openlayers/openlayers/issues/8219, accessed October 2019.  

[38] Github, “Performance dropping steeply by raising number of styled features”, 
https://github.com/openlayers/openlayers/issues/8392, accessed October 2019. 

[39] Github, “Efficiently rendering hundreds of unique vector map features”, 
https://github.com/openlayers/openlayers/issues/8514, accessed October 2019. 

[40] Spatial Illusions, Milsymbol, https://www.spatialillusions.com/milsymbol/index.html, 
accessed October 2019. 

[41] Department of Defense, MIL-STD-2525C Common Warfigthing Symbology, 2008. 

[42] Fielding, Roy, "Chapter 5: Representational State Transfer (REST)". Architectural Styles 
and the Design of Network-based Software Architectures (Ph.D.). University of 
California, Irvine, 2000. 

[43] The WebSocket Protocol, https://tools.ietf.org/html/rfc6455, accessed October 2019. 

[44] Patel, Keval (December 12th 2016), “What is Reactive Programming”, 
https://medium.com/@kevalpatel2106/what-is-reactive-programming-da37c1611382, 
accessed October 2019. 

[45] Redux, https://redux.js.org/, accessed October 2019. 

[46] React Redux, https://react-redux.js.org/, accessed October 2019. 

[47] Gonzáles, Max (July 25th 2019), “Clean Up Redux Code With React-Redux Hooks”, 
https://medium.com/swlh/clean-up-redux-code-with-react-redux-hooks-71587cfcf87a, 
accessed October 2019. 

[48] Callsen, Taylor (May 13th 2017), “Using OpenLayers with React”, 
https://taylor.callsen.me/using-reactflux-with-openlayers-3-and-other-third-party-
libraries/, accessed October 2019. 

https://leafletjs.com/
https://github.com/openlayers/openlayers/issues/8219
https://github.com/openlayers/openlayers/issues/8392
https://github.com/openlayers/openlayers/issues/8514
https://www.spatialillusions.com/milsymbol/index.html
https://tools.ietf.org/html/rfc6455
https://medium.com/@kevalpatel2106/what-is-reactive-programming-da37c1611382
https://redux.js.org/
https://react-redux.js.org/
https://medium.com/swlh/clean-up-redux-code-with-react-redux-hooks-71587cfcf87a
https://taylor.callsen.me/using-reactflux-with-openlayers-3-and-other-third-party-libraries/
https://taylor.callsen.me/using-reactflux-with-openlayers-3-and-other-third-party-libraries/


 

 

    

 

FFI-RAPPORT 20/00354 33  
 

Abbreviations 

CSS Cascading style sheets 
DOM Document Object Model 
ES5 ECMAScript 5 
GIS Geographic Information System 
GUI Graphical User Interface 
HTML HyperText Markup Language 
JSX JavaScript XML 
MGRS Military Grid Reference System 
npm Node Package Manager 
OOB Order of Battle 
REST Representational State Transfer 
SAF Semi-Automated Forces 
SVG Scalable Vector Graphics 
SWAP Simulation Supported Wargaming for Analysis of Plans 
TCP Transmission Control Protocol 
UI User Interface 
VBS Virtual Battlespace 
XML Extensible Markup Language 
  
 



About FFI
The Norwegian Defence Research Establishment (FFI)  
was founded 11th of April 1946. It is organised as an  
administrative agency subordinate to the Ministry of  
Defence.

FFI’s mission
FFI is the prime institution responsible for defence  
related research in Norway. Its principal mission is to  
carry out research and development to meet the require-
ments of the Armed Forces. FFI has the role of chief  
adviser to the political and military leadership. In  
particular, the institute shall focus on aspects of the  
development in science and technology that can  
influence our security policy or defence planning.

FFI’s vision
FFI turns knowledge and ideas into an efficient defence.

FFI’s characteristics
Creative, daring, broad-minded and responsible. 

Om FFI
Forsvarets forskningsinstitutt ble etablert 11. april 1946.  
Instituttet er organisert som et forvaltningsorgan med  
særskilte fullmakter underlagt Forsvarsdepartementet. 

FFIs formål
Forsvarets forskningsinstitutt er Forsvarets sentrale  
forskningsinstitusjon og har som formål å drive forskning  
og utvikling for Forsvarets behov. Videre er FFI rådgiver  
overfor Forsvarets strategiske ledelse. Spesielt skal  
instituttet følge opp trekk ved vitenskapelig og  
militærteknisk utvikling som kan påvirke forutsetningene  
for sikkerhetspolitikken eller forsvarsplanleggingen.

FFIs visjon
FFI gjør kunnskap og ideer til et effektivt forsvar.

FFIs verdier
Skapende, drivende, vidsynt og ansvarlig.

FFI’s organisationFFI’s organisation



Forsvarets forskningsinstitutt
Postboks 25 
2027 Kjeller

Besøksadresse:
Instituttveien 20
2007 Kjeller

Telefon: 63 80 70 00
Telefaks: 63 80 71 15
Epost: ffi@ffi.no 

Norwegian Defence Research Establishment (FFI)
P.O. Box 25
NO-2027 Kjeller 

Office address:
Instituttveien 20 
N-2007 Kjeller 

Telephone: +47 63 80 70 00 
Telefax: +47 63 80 71 15 
Email: ffi@ffi.no


	Summary
	Sammendrag
	Contents
	1 Introduction
	2 Game design
	3 User interface
	4 Design principles
	5 Technology stack
	5.1 Package manager
	5.2 Build system
	5.3 Choice of user interface library
	5.4 React
	5.4.1 React components
	5.4.2 State
	5.4.3 Lifecycle methods

	5.5 JSX
	5.6 Compiling and type checking
	5.7 Map Library
	5.8 Symbols and icons
	5.9 Client-server communication

	6 Software architecture
	6.1 Event system
	6.2 The reactive approach

	7 Discussion
	8 Further work
	9 Conclusion
	References
	Abbreviations
	Blank Page



