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ABSTRACT

Different types of imaging sensors are frequently employed for detection, tracking and classification (DTC) of
naval vessels. A number of countermeasure techniques are currently employed against such sensors, and with the
advent of ever more sensitive imaging sensors and sophisticated image analysis software, the question becomes
what to do in order to render DTC as hard as possible. In recent years, progress in deep learning, has resulted in
algorithms for image analysis that often rival human beings in performance. One approach to fool such strategies
is the use of adversarial camouflage (AC). Here, the appearance of the vessel we wish to protect is structured
in such a way that it confuses the software analyzing the images of the vessel. In our previous work, we added
patches of AC to images of frigates. The paches were placed on the hull and/or superstructure of the vessels. The
results showed that these patches were highly effective, tricking a previously trained discriminator into classifying
the frigates as civilian. In this work we study the robustness and generality of such patches. The patches have
been degraded in various ways, and the resulting images fed to the discriminator. As expected, the more the
patches are degraded, the harder it becomes to fool the discriminator. Furthermore, we have trained new patch
generators, designed to create patches that will withstand such degradations. Our initial results indicate that
the robustness of AC patches may be increased by adding degrading filters in the training of the patch generator.
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1. INTRODUCTION

Different types of imaging systems are frequently employed for detection, tracking or classification of naval vessels.
Such systems may include one or more imaging sensors combined with one or more image processing platforms
running the required algorithms. A number of countermeasure techniques are currently employed against such
imaging systems. Depending on the observation spectrum employed by the sensor system they can be:

� Signature reduction aimed at simply reducing the signal from the vessel.

� Camouflage in the form of shape or colour changing approaches that aim at modifying the appearance of
the vessel.

� Flares/decoys that generate smoke screens or generate artificial targets.

� Active countermeasures such as laser illumination aimed at blinding or confusing the sensors.

With the advent of ever more sensitive and sophisticated imaging sensors combined with steadily improving
processing platforms running more and more advanced algorithms, it becomes increasingly difficult to avoid
detection, tracking and classification. In recent years, progress in neural networks and machine learning, often
described as deep learning, has led to a performance leap for image analysis algorithms, empowering image
analysis algorithms that outperform previous algorithms to a substantial degree. Knowing that the vessels’
visual and infrared signatures cannot be reduced to zero, and assuming that flares and decoys cannot mask
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a vessel for more than a short period of time, the question becomes what to do in order to render detection,
tracking or classification as hard as possible.

One approach that we will explore in this work is that of using adversarial camouflage (AC). Under this paradigm,
the appearance of the vessel we wish to protect is structured in such a way that it confuses the software analyzing
the images of the vessel.

Recent works in the domain of deep learning have shown that deep learning based algorithms for image analysis
can be sensitive to surprisingly small changes in the images they analyze. Such techniques, typically described
as adversarial techniques, have shown a considerable potential for fooling neural networks in a number of recent
works.

In a previous work,1 we have shown that a careful structuring of the visual appearance in grayscale images of a
naval vessel can confuse deep learning based vessel classification algorithms to a substantial degree. In particular,
we showed how even relatively small patches of very specific visual patterns, displayed on parts of a naval vessel,
will render classification of that vessel much harder for a deep learning based vessel classifier.

In this work we look into how robust these patches actually are. How much can the resolution change and still
confuse the classification net? How much can the contrast be reduced? What about image noise (including
clutter)? The azimuth angle? In this paper such questions will be addressed.

In Section 2 we will give a short and very brief historical introduction to military vessel camouflage. We also
provide an overview of the existing body of work related to techniques aimed at confusing neural networks, so
called adversarial techniques. In Section 3 we will describe our neural network based approach to generating
adversarial patterns for application to military vessels. We will also detail the robustness tests. In Section 4 we
present and discuss the results we have obtained and in Section 5 we conclude.

2. RELATED WORKS

2.1 Naval vessel camouflage

In times of warfare, misleading the enemy, also called military deception, is of the essence. ’Deception’ can be
defined as the act of causing someone to accept as true or valid what is false or invalid.2 Camouflage is regarded
as a means to this end. At sea, camouflage can be divided into two categories:3–5

� Concealment or signature reduction – measures taken to blend in with the background.

� Disruptive type – artifices designed to deceive enemy sensor systems, rendering identification or targeting
more difficult by making the size, range, speed, heading or class difficult to determine.

The value of camouflage as a means to thwart visual detection is eminently illustrated by the evolution of different
species through natural selection. An overview of camouflage inspired from a zoological perspective can be found
in Cuthill (2019).6

From a military perspective, different types of camouflage are cost-effective means of increasing survivability and
combat persistence and have been used by armed forces all over the world throughout history.3 Military naval
vessels are hard to camouflage successfully. This is so both because of the sheer size of these agents, but also
due to the variations in the warfare theaters where they operate – with light conditions, sea states and weather
types ever changing.

In the naval warfare theater this has been a well known problem for a long time. During the First World War the
British realized that the monochrome gray paint typically applied to their naval vessels would not effectively hide
them from German submarines. In an attempt to remedy this situation, the Royal Navy introduced so-called
dazzle camouflage, consisting of stripes, geometric patterns and eye-catching colours in different combinations.
Experiments had shown that vessels with such designs were more difficult to classify as to type, speed, distance
and bearing - both with the naked eye and through the optical distance gauges of German warships. Figure 1
shows an example of such dazzle camouflage.
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Figure 1: An example of dazzle camouflage. HMS Argus painted with dazzle camouflage in 1918. Photograph
from wikipedia.org.7

Experiments with variants of dazzle camouflage were carried out also during the Second World War, see for
instance López (2019).8 The history of dazzle camouflage is described in more detail in USNI News.4

An interesting aspect with dazzle camouflage was that it did not necessarily aim at making the vessel harder to
detect, but rather to make it harder for an observer to obtain good bearing, speed and distance estimates. As
such it bears a certain resemblance to the type of camouflage we develop in the work reported here.

2.2 Neural networks

Recent developments have shown the value of different types of neural networks for a number of complex ap-
plications in image processing, see for instance Goodfellow (2016).9 In particular, variants of the so called
Convolutional Neural Networks (CNNs) have revolutionized the performance of automatic systems for object
classification based on images. Today, performance of such systems is often on par with or even better than
human performance (ibid). An interesting recent development in research related to neural networks is the
introduction of adversarial attacks aimed to thwart the performance of a neural network.10–16

Recent work shows that small – undetectable to a human observer – changes in an image can be enough to fool
a neural network discriminator, causing it to misclassify an image in a very dramatic fashion.10–12,16,17 A recent
study also produces images that are unrecognizable to human beings, but are classified as specific objects by
state-of-the-art neural networks, with very high confidence.18 This weakness in neural networks is shown to be
due to the linear features of the neural networks.12

A further development of adversarial attacks is the concept of adversarial patches14 and physical world at-
tacks13,19 on neural networks. It is shown that small patches with very specific patterns can make an image
processing neural network misdetect or misclassify an object in the image. Such patches may fool the neural
network even if they cover a relatively small part of the image, and regardless of whether or not they cover any
of the features of the original object. For further reading about generative adversarial networks, see Goodfellow
et al (2014b).20

In our previous work we used a generative adversarial network to create a certain pattern for the adversarial
camouflage. Our approach consisted in developing specific patches that can be applied to naval vessels in order
to make classification networks misclassify them. The question was whether it was possible to alter a military
vessel (with paint for instance), in a way that would fool a neural network discriminator into misclassifying it
as civilian. We demonstrated that it was possible, but we did not investigate the robustness of the patches. In
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this work we demonstrate the impact that various changes in conditions – including resolution, contrast and
orientation – have on the performance.

3. METHOD

In this section we will briefly describe our previous work1 before we describe the robustness tests. During our
work with the tests we developed a method to increase the robustness of the adversarial camouflage. This method
is also presented here.

In order to design the patches, we use a neural network generator together with a neural network discriminator.
Put together, this gives a generative adversarial network. A carefully designed patch from the generator can,
when added to a limited smooth area on the hull and/or superstructure of a military vessel, fool a discriminator
into misclassifying it as civilian. In the following, we will refer to such a patch of generated pattern as a patch
of adversarial camouflage (AC).

3.1 Data

In order to train the networks involved in our experiments we need large numbers of images of maritime vessels,
both civilian and military. One source for such images is the excellent web site shipspotting.com, which is a
web site for shipspotters from all over the world. As a user one can upload ship images along with the location
of the shot, the name and type of the vessel, etc. There are millions of images available and a large fraction of
the images show military vessels, and the range of vessels is enormous.

We have downloaded a large number of images from shipspotting.com in the form of RGB images. These show
vessels from all aspect angles as well as in all kinds of operating scenarios: in ports, in harbors, close to land, at
sea, etc.

Prior to being fed to the neural networks, all images are rescaled to 800 rows by 1000 columns and converted to
grayscale.

3.2 Discriminator

We have trained a convolutional neural network to function as the discriminator. The task of the discriminator is
to analyze an input grayscale image of a maritime vessel and determine whether the vessel is civilian or military.
The network is implemented in Keras.21 It comprises five convolutional layers and two fully connected (dense)
layers. The output of the last layer is a two-dimensional vector containing the probabilities that the vessel
belongs to one of the two classes civilian or military.

The discriminator network was trained on a total of 120.000 images: 80.000 images of civilian vessels and 40.000
images of military vessels. For both classes, civilian and military, a total of 5 % of the images were reserved for
validation at the end of each training epoch. At the end of training, the performance on the validation set is
95.5 % correct.

3.3 Generator

In order to train the generator, we select a total of 500 images of frigates (vessels clearly belonging to the class
military). In each of these images we manually designated an area within which the generator may modify the
images. Images of six frigates and the designated masks are shown in figure 2. Notice that the masks are slightly
blurred (prior to use the borders of the masks are blurred by a Gaussian filter with parameter σ = 5.0). Also,
notice that the masks have their opacity set to 70 %. Both these steps are taken in order to simulate a situation
where the adversarial pattern is actually painted onto the vessel.

The aim of the generator is to produce a pattern that, when mixed into the frigate image within the area
designated by the mask, will fool the discriminator into misclassifying the image of the frigate as a civilian
vessel. Details of this process are given in,1 where the discriminator was tricked into misclassifying images of
military frigates (with embedded adversarial patches) as civilian ships.
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Figure 2: Images of six frigates with designated mask areas. All original photographs from shipspotting.com.
Photographers (in reading order): D173457Q Brian, Marcel and Ruud Coster, Marcus-S, Tomasello Letterio,
Pedro Amaral and Ulf Kornfeld.

3.4 Initial results

Our initial results are presented in.1 These results indicate that such camouflage can be highly effective, as all
of the six example frigate images were classified as civilian with a 100 % certainty, as shown in figure 3. Of the
500 images of frigates that were used to train the generator, 465 (93 %) were classified as civilian.
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Figure 3: Images of six frigates with original patches inserted. All of the frigates are classified as civilian with
100 % certainty. All original photographs from shipspotting.com. Photographers (in reading order): D173457Q
Brian, Marcel and Ruud Coster, Marcus-S, Tomasello Letterio, Pedro Amaral and Ulf Kornfeld.

It must be emphasized that our adversarial attack on the discriminator neural network is a so called white-box
attack. In a white-box attack the attacker has some form of access to the parameters of the network that is to be
fooled. In our case, the discriminator that is fooled by the adversarial camouflage is the same as the discriminator
that is used for the training of the generator.

3.5 Robustness

Our aim in this article is to determine the robustness of the generated adversarial patches. How well will they
perform when the ship is spotted at a distance or at a different angle? What if the image becomes degraded by
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noise, clutter or low visibility? Would smaller patches yield the same result? In order to test this, we have carried
out a number of experiments. The outputs from the generator have been degraded in various ways described
below, and the following results from the discriminator monitored.

The images used in these tests are the same as the training set for the generator: 500 images where a mask has
been hand drawn on the side of the ship, to insert the generated patches.

To illustrate the differences between the various degradations, we use one image of a frigate as an example.
However, the tests have been applied to all 500 training images. The original output from the generator for the
example image is shown in figure 4. Given that the patch fills a relatively small part of the image, we zoom in
on the patch area to make the illustrations more readable. A zoomed-in image of the original output is shown
in figure 5.

When testing the robustness, we have only made changes for the patches, i.e. the rest of the images remained
unchanged. The reason is simply that we want to study the effects that various degradations have on the
efficiency of the patches.

Figure 4: The original generator has created a patch for this image. Original photograph from shipspotting.

com. Photographer: Frank Schlünsen

We have carried out the following degradation experiments. Examples of the various filters are shown in figure
6.

� Reduced resolution (a)

� Reduced contrast (b)

� Change in azimuth angle (c)

� Noise (d)

� Clutter (e)

� Erosion (f)
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Figure 5: Zoomed in on the output from the original generator. Original photograph from shipspotting.com.
Photographer: Frank Schlünsen

The aim of the reduced resolution is to simulate the patch at a longer distance. A longer distance means a smaller
image, but as a fixed image size is needed as input to the neural net, an upsampling must be done. Thus, the
procedure is first to reduce the image size, and then expand it. For both cases, a bicubic interpolation is applied.
Finally, additive noise is included, so that the image noise in the modified patch is the same as the noise in the
original patch.

Sometimes the visibility is poor. Thus, we want to investigate the robustness for such situations. The intensity
value for a pixel in a patch with reduced contrast is calculated as

prc = βporg + (1 − β)µ̂+N (1)

where p org and p rc is the intensity for a pixel in the original patch and in the patch with reduced intensity
respectively, µ̂ is mean intensity in the patch, 0 ≤ β ≤ 1, and N is Gaussian noise. The noise is added so that
image noise remains the same after the contrast has been reduced.

Another interesting situation occurs when there is a change in azimuth angle. How much can the azimuth change
before the patch fails to fool the neural network? An α degree change in azimuth angle corresponds to resize the
patch in the abscissa with a factor cosα. Figure 6 shows the result of simulating a change of 50◦. The width of
the patch is reduced and the pattern is squeezed, so as to mimic a 50 degree turn of the vessel.

We have added noise with standard deviation σ = 20, 30, 40, 50, 60, 70, 80 LSB. Since we’re having 8 bit images,
this means that the standard deviation is in the interval 8 % − 31 % of the maximum intensity.

Clutter means in our context noise spots somewhat larger than pixel-to-pixel independent noise. These spots
are multiplied (or added) to the patch. The following procedure generates clutter which qualitatively is found
to look reasonable.

1. Generate a noise image consisting of Gaussian noise.

2. Reduce the image size with a factor 8.

3. Increase the image size with a factor 8 (bicubical interpolation used in these steps).

4. Multiply this clutter image with the patch image.

5. Clip the product so the intensities are in the interval [0, 1].
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(a) Reduced resolution: Resolution reduction factor 1.75. (b) Reduced contrast: Contrast reduction factor 1.75.

(c) Azimuth angle: Mimicking a 50 degree turn of the vessel. (d) Noise: Noise level 80.

(e) Clutter: Clutter level 90. (f) Erosion: Height and width reduced by 50 percent.

Figure 6: Degradation of the output from the original generator. Original photograph from shipspotting.com.
Photographer: Frank Schlünsen

Erosion is not exactly a degradation which can occur, but it is of interest to study change in performance as a
function of the reduction of the patch size. We have determined the performance for 5, 10, 20, 25, 35, and 50
percent reduction. These reduction numbers refer to the width of the patch. The height is reduced equivalently
during erosion.

3.6 Improved robustness

The patches we have generated so far, are outputs from the original generator only. A given patch is adapted
to a particular image – a particular image of a particular vessel at a particular distance and orientation. An
interesting question is whether the robustness towards various degradations can be increased.

We have trained new generators in order to produce more robust patches. This is done by adding various
degradation filters at the output of the generators at training time. Apart from the newly introduced degradation
filters, the training network – with generator and discriminator – are equal to the training of the original generator.
The modified training network is illustrated in figure 7. The new filter is shown as a yellow block in the diagram.
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Figure 7: The original generator has been fitted with a degradation filter (yellow) on the output during training
time. The filter is not trainable.

In the training of the original generator, the test output (green) was fed directly to the discriminator. In the
current training, a filter (yellow) has been introduced between the output of the generator and the input of the
discriminator. This filter modifies (i.e. degrades) the generated image before it is presented to the discriminator.
This is done in order to force the generator to make patches that are more robust to this kind of degradation.

Due to limitations in Tensorflow, we have only been able to perform some preliminary tests. Two types of
filters have been introduced: Image resolution reduction and image noise. The image resolution is reduced by
resizing the images. That is, first they are made smaller, and then they are upscaled to the original size, using
bilinear interpolation, both using the Tensorflow Keras Resize layer. The added noise is the Tensorflow Keras
GaussianNoise layer.

4. RESULTS AND DISCUSSION

4.1 Results from testing outputs from the original generator

We first describe the results from testing the outputs from the original generator, before we started our work on
improved robustness of the generator.

Having trained the complete adversarial network, we retrieve the “patch images” from the generator for each
frigate image. These images, having the same size as the input image, are in turn modified as described in the
previous section, before they are ”ANDed” with the mask and overlaid the original image (70 % opacity used).
The mask contour was blurred with a Gaussian filter (σ = 5, window size 7× 7 pixels). The resulting images are
similar to the regular outputs from the generator, except that the patch has been modified. These patch-modified
images are fed to the discriminator, and the number of vessels classified as civilian ships is determined. The
results from the experiments with degrading the patches are shown in figure 8.

The results from reduced resolution clearly show that even small changes reduce the patches’ ability to fool the
discriminator. A reduction of 1.1 gives that 10 % of the patches don’t fool the discriminator. A reduction of 1.5
gives that half of the patches do not fool it, and if we have a reduction factor of 2, almost no patches fool the
discriminator.

The results from the experiments with contrast reduction are pretty similar to what we observed for reduced
resolution. With only small changes in contrast, many of the patches will not fool the discriminator.
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Figure 8: Images produced by the original generator have been degraded using various filters. The results from
the discriminator are plotted here. On the x axes: Image degradation factors. On the y axes: Number of frigates
classified as civilian.

From the figure is looks like the patches are less sensitive to changes in azimuth angles than for changes in
resolution or contrast. However, one must remember that from a side view, a 25◦ − 30◦ change in azimuth is
hardly visible from a low elevation angle, but it will result in a 28 %−35 % reduction in number of patches being
able to fool the discriminator.

The results from the noise experiments show that noise levels of 20 − 30 LSB – i.e. a standard deviation of
around 10 % of maximum intensity – has little impact on the results, even though this may be characterized as
relatively high noise. Moreover, by increasing the noise levels to as much as 80 LSB – corresponding to 31 % of
maximum intensity – we still see that the vast majority of the patches fool the discriminator.

The results from the clutter experiments show that the patches are resistant to clutter. The reason could be the
same as for the noise, both the clutter as well as the noise are symmetrical.

The erosion experiments are also presented in figure 8. As long as 10 % or less of the width of the patch is
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eroded, it seems that most of the patches are able to fool the discriminator. If 25 % or more of the patch width
is eroded, less than 75 % of the patches will fool the discriminator.

4.2 Improving robustness of the generator

We have trained new generators, this time with degradation filters between the generator output and the discrim-
inator input as shown in figure 7. These generators are trained in order to be more robust against degradation of
the output images. These generators might be expected to produce patches that are more robust to degradation
of the generated patches at test time. The resulting generators do indeed generate patches that are slightly
different from the original generator. An example is shown in figure 9. The image shows the output from the
original generator, the output from a generator trained with a resolution reduction filter on the output and the
output from a generator trained with a noise filter of the output.

We have trained several new generators this way, with varying degrees of resolution reduction and noise levels
on the output.

(a) Original generator. (b) Generator trained with resolution reduction filter f 1.67.

(c) Generator trained with added noise filter f30.

Figure 9: Image from original generator (top left), image from a new generator trained with a resolution reduction
filter between generator and discriminator (top right) and image from a new generator trained with added noise
between generator and discriminator (bottom). Original photograph from shipspotting.com. Photographer:
Frank Schlünsen

The new generators perform equally well on the six test images as the original generator. I.e. all six frigates are
classified as civilian with 100 % certainty. The tests described in this section are performed on the 500 training
images, as described above.

The output images from the resolution reduction trained generators have been tested against the previously
described resolution degradation filters. The result is shown in figure 10. The blue line shows the performance of
the original generator when the patch is degraded by the various resolution reduction filters. The plot shows that
the generators trained with resolution reduction filters perform better than the original generator, in addition
to being more robust against resolution reduction at test time. Resolution reduction with a factor 2 introduces
an artefact which we have removed by using filters with factor 1.995 and 2.005 instead. Early plots showed high
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spikes at factor 2, which are believed to be due to filter artefacts, and thus not relevant to our study. A similar
effect might also cause the poor results of the f 2.0 generator training filter.

The output images from the noise trained generators are tested against the noise filters. The results are shown
in figure 11. It is clear that the generators that are trained to withstand noise perform better when exposed to
noise at test time.

We clearly see that the patches can be made more robust against small changes in various kind of degradations.
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Figure 10: Comparing resolution-trained generators. Several generators have been trained, with varying resolu-
tion reduction filters between the generator output and the discriminator input. The plots show the robustness
of these generators against resolution reduction.
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Figure 11: Comparing noise-trained generators. Several generators have been trained, with varying added noise
between the generator output and the discriminator input. The plots show the robustness of these generators
against added noise at test time.
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So far, we have only been able to perform a few initial tests. But based on these tests, it’s reasonable to be
optimistic. We hope to report more results in near future.

5. CONCLUSIONS

In the work reported here we have investigated the use of generative neural networks in order to produce
adversarial camouflage that will make discriminative neural networks trained to distinguish between civilian
and military vessels fail. Specifically, we have investigated whether images of frigates, modified with patches of
adversarial camouflage, will be misclassified as civilian vessels.

In this paper we have studied how robust such patches are against changes in features like resolution, contrast,
noise, clutter, azimuth, and erosion. Results so far indicate that the patches are sensitive to many of these
features. This means that small changes in e.g. resolution will have a large impact on the ability to fool the
discriminator. The patches seem to be more robust against added noise or clutter than to degradations of
contrast or resolution. An early understanding of this phenomenon is that both the clutter as well as the noise
are symmetrical. We also observe that the black and white levels of the patches are intact for the noise and
clutter images, while the reduced resolution and contrast patches have more gray level pixels, making them less
prominent. Further work may be done to explore the robustness of the generator.

We have started work in order to find out whether a patch can be made more robust. A filter added between the
generator and discriminator is applied. Initial results indicate that an increase in performance can be achieved
by adding degradation filters between the generator and the discriminator at training time.

It should be pointed out that our work is a very early step in the assessment of AC as a tool for camouflage
of military vessels. Our current results are based on a white-box attack, with only one military vessel class in
the training set for the generator. A number of experiments must still be carried out in order to determine how
general a tool AC actually is, and how suited it is for black-box attacks.
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[19] Thys, S., Van Ranst, W., and Goedemé, T., “Fooling automated surveillance cameras: adversarial patches
to attack person detection,” arXiv e-prints , arXiv:1904.08653 (Apr 2019).

[20] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y., “Generative adversarial nets,” in [Advances in Neural Information Processing Systems 27 ], Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., eds., 2672–2680, Curran Associates,
Inc. (2014).

[21] https://keras.io/.

Proc. of SPIE Vol. 11394  113940W-14
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


