

E

FFI-NOTAT Eksternnotat 20/02876

Running norBMS over virtual radios

 Authors
Tore Jørgen Berg
Prosjektnummer 1558
November 23th, 2020

Approvers
Åshild G Solheim, Research Manager
Jan Erik Voldhaug, Director of Research
The document is electronically approved and therefore has no handwritten signature.

Keywords
Radiokommunikasjon, mobilkommunikasjon, IKT

Summary
The Norwegian Army is dependent on radios for command and control on the tactical operating field. A radio
network emulator that assists in training of the personnel and in testing new computer applications before
deployment, may increase the efficiency and the reliability on the operating field.
Using the Extendable Mobile Ad-hoc Emulator (EMANE) open source framework, we developed a virtual
radio network that is able to serve IP traffic from real applications in real-time. The virtual radio implemented
is a typical military long-range narrowband radio.
The network emulator, implemented on a Linux server with a large number of processors, simulates up to 99
radio nodes and provides a standard IP interface to external terminals. This document outlines the software
architecture and the services provided by the emulator.

o

 2 Eksternnotat 20/02876

Contents

1 Introduction 3

2 Software Architecture 5

2.1 VLAN tagging and internal routing 7

3 The run-time system 10

4 The WRAP server 12

5 GPS service 14

5.1 E-server internals 16

6 E-server monitors 18

6.1 Radio link debugging 21

7 Learning to Drive 21

7.1 Step 1 Make run-time directory 22

7.2 Step 2 Start the emulator 23

7.3 Step 3 Start the GPS service 24

7.4 Step 4 Start the WRAP server 24

7.5 Step 5 Status checks 24

7.6 Step 6 Terminate 25

8 Discussion and Conclusion 26

Acronyms 27

References 28

Eksternnotat 20/02876 3

1 Introduction

The Norwegian Army must use radio networks for command and control on the operating field.
A radio network emulator is a tool that can be used to test command and control applications
before deployment. This tool may also assist in training of the personnel.

Figure 1.1 illustrates two headquarters and a convoy attached to a shared tactical network. If we
are able to build a realistic digital copy of the tactical network, operating personnel can be
trained in simulators.

A Battle Management System (BMS) is an important computer application in the tactical area.
norBMS is a BMS in use by the Norwegian Army. norBMS may communicate over a broad
range of IP bearers. To achieve sufficient radio coverage in the Norwegian terrain, a
narrowband VHF radio must often be used1. A network radio emulator should therefore
implement a VHF radio which is able to serve norBMS terminals.

In FFI project “Kampnær IKT” a feasibility study was initiated to uncover the strength and
weakness to mix physical terminal equipment and virtual solutions. Project “Kampnær IKT”
included cloud based services as well as solutions on dedicated local servers. One task in this
project was to gain experience with virtual radio network to get answers to the questions:

1. Is it possible to provide realistic IP throughput/delay performance of a narrowband

tactical radio? The IP clients shall experience performance close to the real world

performance.

2. How shall we adapt the radio link connectivity in real-time according to user mobility?

3. How shall we provide a GPS service to external terminals?

The scope of this document is the virtual radio network – its external interfaces and the software
architecture.

1 Military tactical radios working in the Very High Frequency (VHF) range (30 to 88 MHz) provide a IP throughput
capacity below 1200 bytes/s.

 4 Eksternnotat 20/02876

Tactical
Network

(VHF‐radio, UHF‐radio, …) LAN segment

Tale B

X 3

HQ 1

HQ 2

COY A

Field Unit ID:
(call sign, URN, IP‐address)

Fig A

norBMSnorBMS

Digital copy
of the
tactical
network

Radio pathloss [dB]
Waypoints

WRAP: pathloss from (map coordinates, radio data)

Fig B

Digital copy of the
tactical
network

HQ 1

HQ 2

norBMS norBMS

Figure 1.1 Use case example: training of operating personnel by means of a digital copy
(figure B) of the tactical network in figure A.

Eksternnotat 20/02876 5

2 Software Architecture

The Extendable Mobile Ad-hoc Emulator (EMANE) is an open source framework2. This

framework provides software functions to build wireless network emulators that are able to

serve real-time traffic from physical terminals or virtual terminals. Narrow Band Waveform

(NBWF) for VHF/UHF radios is a NATO standard, references [1, 2, 3]. We have implemented

a simplified NBWF radio as a software module in the EMANE framework using radio

parameters from [5]. This software “product” is referred to as eNBWF and is a collection of

Python modules and C++ programs, see Figure 2.1. We have checked the eNBWF model

accuracy by means of a steady-state simulator developed in an earlier project [6]3 and conclude

that the error is sufficiently low compared to the uncertainty in the radio link pathloss estimates.

External IP terminals are connected to a dedicated LAN segment, numbered as interface 4 in

Figure 2.2. The EMANE server (E-server) provides an Ethernet port that gives access to the

virtual radios. This port uses 802.1Q tagging (VLAN tagging). The pair (IP address, VLAN ID)

identifies each radio interface. See section 2.1 for further details.

An important component in the emulator is WRAP4 – a computer application which calculates

radio link pathloss in real-time based on maps, radio models and radio data. The emulator

receives synthetic waypoints from external equipment attached to the management LAN.

WRAP calculates the radio link pathloss matrix and sends the matrix to the E-server. Reference

[4] outlines the processes involved. The E-server also receives the waypoints and forwards these

waypoints to the internal GPS simulators which emit GPS NMEA5 messages to the terminals as

described in chapter 5.

The E-server provides a service to override the WRAP pathloss matrix. This service facilitates

tests with network jamming, or tests with well-defined static network topologies.

To test how computer applications tolerate a congested network is important. The run-time

system has a service for implementing synthetic traffic generators6 that may run without or in

addition to the incoming external traffic.

The design of the E-server is based on link level relaying of the IP traffic between the external

terminals and the virtual radios. If a terminal does not support tagging, a managed switch must

2 https://github.com/adjacentlink/emane/wiki. eNBWF is based on version 1.2.1.
3 This report is available online at https://www.ffi.no/en.
4 WRAP is a commercial product, see https://wrap.se.
5 https://www.gpsinformation.org.
6 This service is implemented by using the open source generator MGEN, https://wrap.nrl.navy.mil.

 6 Eksternnotat 20/02876

be used to insert the correct tag. The benefit is a simple network layer setup – just set the IP

address and the default gateway on the external terminals in the same manner as when

connecting to a physical IP radio. Section 2.1 explains how the E-server executes internal

routing.

Besides EMANE, this project uses many other open source frameworks and applications:

Django, PySide2, Eclipse, MGEN and Qt. eNBWF uses only one software application with a

license cost, WRAP .

The EMANE server uses three LAN segments, referred to as green, blue and red. Their purpose

is as follows:

The green segment: This segment is dedicated for management traffic (WRAP traffic, NTP

traffic and other processes used to control and monitor the emulator).

The blue segment: This segment is dedicated to input/output of real-time traffic between the

emulator and the external terminals.

The red segment: This segment is dedicated to EMANE internal real-time traffic and cannot be

accessed externally. The “radio RF waves” between the virtual radios are sent on this segment.

If the emulator needs more processing power, more E-servers can be attached to this segment.

Linux Ubuntu 18 LTS

EMANE
VHF
radio

run‐time system

= eNBWF

Figure 2.1 The green colour specifies the software implemented by eNBWF. The “VHF radio”
is a C++ module within the EMANE core that runs in real-time. The “run-time
system” is the Python modules designed to create the data structures, interfaces
and processes required. All the eNBWF processes run in the Ubuntu user space.

Eksternnotat 20/02876 7

Management

EMANE

norBMSWrap

Wrap emulator

synthetic IP trafficsynthetic pathloss

real‐time IP traffic

pathloss
1

2 3

4

synthetic
terminal
mobility

GPS
NMEA

5

Figure 2.2 Overview. Radio link pathloss (1) is calculated on a dedicated PC and sent to the
virtual radios over the management LAN. Pathloss values may also be set
manually (2) which may be useful to simulate network jamming. External terminals
are attached to a dedicated LAN segment (4). It is possible to simulate heavy traffic
load scenarios by sending additional synthetic traffic (3).

2.1 VLAN tagging and internal routing

This section explains how the external IP traffic flows inside the EMANE server. The example
used is two norBMS terminals attached to two radios. Figure 2.3 shows the IP addresses and the
VLAN IDs used for this case. eNBWF demands a static binding7 between the IP addresses and
the VLAN IDs.

IP packets arrive over the blue LAN segment shown in Figure 2.2, which is the physical
Ethernet device named enp0s25 in Figure 2.4. Inside the host, each VLAN is connected to a
container over a Linux bridge. A virtual radio is uniquely identified by a VLAN ID and the
external IP address is only visible inside the container where the radio exists. Radio Rn is
connected to IP client Tn via the virtual Ethernet device eth3. All the radios use the same device
name but these devices have different IP addresses.

7 The parameters cannot change in run-time but must be specified at the time when the top level data structure is
created.

 8 Eksternnotat 20/02876

RF waves
carried by IP packets
10.99.0.0/24

VLAN ID: 11 VLAN ID: 12

10.10.10.1/24

10.99.0.1

EMANE
controller

10.99.0.2

10.99.0.100

eNBWF
radio 1

norBMS T1

eNBWF
radio 2

norBMS T2
IP: 10.10.10.10/24
GW: : 10.10.10.1/24

IP: 10.10.20.10/24
GW: : 10.10.20.1/24

10.10.20.1/24

real‐time
emulator

Figure 2.3 A two-node network serving two norBMS terminals.

EMANE serverT1 10.10.10.10

LXC 1

IP 10.10.10.10/24
GW 10.10.10.1

IP 10.10.20.10/24
GW 10.10.20.1

vlan ID = 11

T2 10.10.20.10

vlan ID = 12

dev:
enp0s25

dev:
enp0s25.11

bridge:
vlan11br

dev:
veth1.3

R1

dev:
eth3

layer L2

layer L3 10.99.0.100 10.10.10.1

LXC 2

R2

dev:
eth3

10.10.20.1

dev:
veth2.3

network card:
enp0s25

Figure 2.4 Layer 2 routing to the virtual Ethernet device eth3 inside the Linux Containers
(LXCs).

The external traffic may now flow in/out of the containers and the next step is to connect to the
radios. EMANE uses a Linux tunnel for packet transport between the user environment and the
radio. The virtual device named emane0 in Figure 2.5 is created for this purpose and this device

Eksternnotat 20/02876 9

must be assigned a static IP address before run-time. eNBWF uses the default addresses inserted
by the EMANE framework. The routing table in LXC n contains the IP addresses that can be
reached by all the remote emane0 devices in the network. The ARP cache in LXC n holds the
pair (IP address, Ethernet address) for all the emane0 devices that exist in the radio network.

Example: Incoming packet on LXC1::eth3 with destination 10.10.20.10. LXC1 route lookup:
10.10.20.10  via 10.100.0.2 dev emane0. LXC1 ARP lookup: 10.100.0.2 HW
02:02:00:00:00:02. Then the packet is sent down on emane0 and radio R1 inserts NEM IDs
(source, destination) = (1, 2).

The radios are attached to the on-the-air (OTA) channel via the virtual device eth1. Every
packet that arrives on emane0 is sent down as a multicast packet on eth1. There is a fixed one-
to-one relationship between the tuple (emane0 IP address, eth1 IP address, eth3 IP address and
NEM ID) specified in the main data structure. All the radios receive all packets and each radio
must decide what to do with an incoming packet based on the NEM ID8 and the signal-to-noise
ratio.

radio 1
nem id 1

10.99.0.100

LXC 1

eth1
10.99.0.1

emane0
10.100.0.1

real‐time IP traffic
VLAN trunk

radio 2
nem id 2

LXC 2

eth1
10.99.0.2

emane0
10.100.0.2

eth3
10.10.20.1

eth3
10.10.10.1

EMANE
server

RF channel
IP multicast

emane
controller

OTA

Figure 2.5 EMANE internal routing. Note the static binding eth1-emane0-eth3-nemid.

8 IP addresses are not available in the C++ radio modules and each radio is addressed by an integer.

 10 Eksternnotat 20/02876

3 The run-time system

The run-time system is the software designed to start eNBWF, monitor eNBWF during run-

time and stop eNBWF. The run-time system is implemented from scratch and is written in

Python 3, a script based program language supporting type checking9.

To run an experiment, you must conduct a number of steps in sequence:

 Specify the input data (e.g., network size and the services to use)

 Start the emulator

 Start the monitors

 Stop the emulator

A short description of each step is given in the next paragraphs.

Specify the input data

You specify a digital copy of the target tactical radio network in this step. This is done by

changing the parameters in the data structure in Figure 3.1. The directory named templates

contains the files that specify the experiment. This should be regarded as a read-only directory

the first time you run an experiment. Later you can modify the files to fit your needs.

The directory named testname in the figure is assigned a name selected by you (e.g.

myFirstNovemberTest). This directory contains all the files that the containers/processes use at

run-time. The template directory is never modified by any eNBWF processes. A good practice

is to save the testname directory together with the emulation output data to know exactly what

you have emulated. Further information is given in section 7.1.

Start the emulator

An experiment is conducted by running a number of scripts in sequence. Some scripts are

designed to be executed in a container (wrapperFOO.py), others on the server

(FOOmanager.py), see Figure 3.2. To provide a friendly user interface, all scripts can be

executed from a main Python module named blab, see section 7.2.

The eNBWF start-up process is complex and involves a large data structure and many computer
processes. The data structure specifies how many virtual radios to create and the start-up

9 https://www.python.org.

Eksternnotat 20/02876 11

process makes one LXC10 instance for each radio. When the LXC is up and running, the start-up
process starts the EMANE process in the container.

Start the monitors
Many processes and interfaces are involved and finding the cause of an error may be difficult.
Monitors are tools that perform sanity checks and raise alarms upon errors. They also assist in
debugging. Chapter 6 presents the monitors implemented.

Stop the emulator
It is important to do a graceful shutdown of all the running processes. If not, one or more run-
time files may block new start attempts. The eNBWF stop scripts terminate all processes and
delete all run-time files in the correct order. Further information is given in section 7.6.

read only

created by scripts
at run‐time

Figure 3.1 The eNBWF top level data structure which is specified in the Python file
nbwfconstants.py.

10 Linux container, see http://linuxcontainers.org/lxc.

 12 Eksternnotat 20/02876

UBUNTU KERNEL

@eController

10.99.0.100/24

Container

wrapperFOO.py

FOOmanager.py

cmd

response

Command line client for LXC
lxc‐attach

FOO = emane, mgen, lxc,...

Figure 3.2 The Python module FOOmanager, which runs on the host, starts a complementary
module wrapperFOO in one or more containers.

4 The WRAP server

Pathloss matrixes may be sent to the virtual radios from external equipment attached to the
management segment in Figure 4.1. A server named “WRAP server” listens for incoming data
on a dedicated port. This server is a part of the eNBWF run-time system and runs as a standard
Linux daemon in the user space. When the server receives a pathloss matrix, it splits the matrix
and then uses an EMANE service to set the pathloss tables implemented in the virtual radios
addressed by the matrix.

Eksternnotat 20/02876 13

management LAN

Ubuntu

virtual
radio Rn

LXC n

WRAP
server

TCP
port 5000

192.168.10.1
192.168.10.9

10.99.0.n

pathloss dB
(n x n)‐matrix

pathloss dB
(n‐1)‐vector

infor

one‐way information flow

Figure 4.1 The WRAP PC sends the radio link pathloss matrix to the WRAP server which
listens on port 5000 on the management LAN. Internally the WRAP server and the
virtual radios communicate over a bridge painted in red colour.

The following script starts the WRAP server:

Hint: Use wrapserver –h to get information about the options.

The pathloss matrix signalling format is specified in the Python class lxcGps::GpsSignalCsv.

$ sudo ./python –m nbwf.wrapserver start

--topdir /home/tore/project/norBMS/testNorBms/emane/netN2

--testname march11

 14 Eksternnotat 20/02876

5 GPS service

norBMS requires GPS information for time synchronisation and for blue force tracking. For this
reason the virtual radios provide a GPS service that emits GPS NMEA messages to the
terminals, see Figure 5.1. The message rate is 1 packet/s to each terminal but this is not a
problem since these messages are sent on the blue LAN segment only, and not on the radio
channel.

norBMS Tn virtual radio Rn

EMANE radio

virtual GPS
(GPS simulator)

blue LAN

Figure 5.1 The terminals attached to the blue LAN segment may subscribe to the GPS service.
A GPS simulator sends 1 packets/s and inserts the E-server’s wall clock. The result
is an accurate time synchronisation between the norBMS applications.

The GPS simulators may receive waypoints from external sources. In Figure 5.2, the GPS
simulators get input from virtual generated forces. The eNBWF software also supports functions
to set the geographic positions manually, or from GPX files.

norBMS Tn

Tale B

X 3

Virtual Reality/HLA
GPS NMEA based messages
UDP 10.10.x.y : 4042
Rate: 1 pkps

GPS CSV messages
Pathloss CSV messages

TCP
192.168.10.1 : 5001

WRAP‐
gateway

Figure 5.2 Example: A virtual reality generates flows of synthetic GPS signals.

Eksternnotat 20/02876 15

eNBWF is designed to forward GPS information transparently from the WRAP PC to the
norBMS terminals as shown in Figure 5.3. The Python module named lxcGps forwards the
attributes in Figure 5.4 but inserts time stamps from the E-server’s wall clock. The NMEA
message rate is fixed at 1 packet/s regardless of the output rate from the WRAP PC. This
guarantees that all norBMS applications have common date and time.

norBMS Tn

real‐time IP traffic management

WrapServer

listen
port 5000

TCP
CSV messages

LxcGps

listen
port 6000

UDP
NMEA messages

UDP
NMEA messages

listen
port 4041

192.168.10.1
10.10.x.y

one‐way GPS flow

Figure 5.3 GPS message flow. The WRAP server, a process inside the E-server, converts the
GPS CSV messages to NMEA format and inserts the GPS time stamp from its wall
clock.

 16 Eksternnotat 20/02876

Figure 5.4 The GPS CSV message format between the WRAP PC and the E-server.

5.1 E-server internals

Figure 5.5 illustrates the internal components for handling GPS information. The Python

module named lxcGps emits GPS signals to the norBMS terminals. lxcGps receives GPS signals

from the WrapServer over the red LAN segment. The emulator must have functions to start and

stop the lxcGps processes. The module lxcGpsManager performs these tasks by activating

functions provided by WrapperGps. Since the lxcGps processes run inside the containers, the

information exchange flows via the Linux system call lxc-attach.

The Python module lxcgpsmanager, which can run inside an EMANE console only, implements

test sequences that can be used to generate periodic GPS CSV messages to the lxcGps module

serving the norBMS terminals. The example below is useful for debugging the GPS flow from

radio R1 to a norBMS T1.

Eksternnotat 20/02876 17

norBMS T1

VLAN trunk

WrapServer

lxcGps

LA
N
 s
eg
m
en

t
1
0
.9
9
.0
.n

norBMS T2

LXC1/R1

EMANE‐server

WrapperGps

lxcGpsManager

Linux
OS calls

UDP

lxcGps

LXC2/R2

WrapperGps

UDP

incoming
GPS
signals

outgoing
GPS
signals

WrapEmulator

I1 I2

I3I2I1

Figure 5.5 E-server internals. The GPS information paths are painted in red. The control
paths are painted in black.

Step 1: To check that the GPS simulator runs inside radio R1

Do as follows on the EMANE server:

If the GPS is running in radio R1, take the next step.

Step 2: Generate a test sequence from R1 to T1

The options {--ip, --port} refer to parameters on the target norBMS terminal. The terminal sign

on the norBMS map moves periodically between Oslo and Bergen staying 5s (--wait) in each

position. Use –h to see all options.

$ sudo ./python –m nbwf.lxcgpsmanager status –lxcn 1

$ sudo ./python –m nbwf.lxcgpsmanager oslobergen –trace True –ip 10.10.10.10 –port 4041 –wait 5

 18 Eksternnotat 20/02876

6 E-server monitors

During emulation many processes and virtual Ethernet interfaces are involved. eNBWF
provides services that monitor the E-server internal processes and emit alarms when any fault is
detected. The most useful monitor is shown in Figure 6.1 – this is the 10,000-foot-view of the
eNBWF state. If one of the LED buttons turns red, an error has occurred. Depending on the
error, one or more radio services may have stopped. To locate the cause of the error, additional
Python modules provide functions to locate errors. By clicking on a button, the corresponding
component is checked immediately. An internal watch dog performs checks periodically and the
LED at the upper right shows its heart beat – if this LED stops moving the status panel has
crashed and must be restarted.

The functions of the buttons are as follows:

vlans: green colour means that all VLANs are up and running, and the E-server may handle
external IP traffic.

emane: green colour means that all the EMANE processes are up and running inside the
containers. If the lxc button becomes red, the emane button must also be red since an EMANE
process only can exist inside a container.

lxc: green colour means that all containers are up and running.

RF channel: green colour means that the on-the-air LAN segment is up and the radio waves
may propagate between the radios. However, be aware of that this does not imply that the IP
packets will be received by the receiver – the pathloss may be too high, see section 7.2.

gps: green colour means that all GPS simulators are running.

wrap server: green colour means that the wrap server is running and accepts pathloss matrices
and GPS information from the WRAP PC

wrap pc: green colour means that the wrap server has contact with the WRAP PC. The WRAP
PC shall send is-alive messages periodically. If not, the button times out and changes to red.

The status panel is implemented by means of the Python package PySide211 and is started on the
E-server as described in section 7.5. If this status panel shall be accessed from a PC attached to
the management LAN, a remote desktop solution must be used. We have tested noMachine12
successfully.

11 https://wiki.qt.io/Qt_for_Python.
12 www.nomachine.com.

Eksternnotat 20/02876 19

A standard WEB browser can also be used to check the emulator, see Figure 6.2. This WEB
server is implemented by means of Django13.

Figure 6.1 The eNBWF status panel. The buttons at the left give status information for the
component named.

13 https://www.djangoproject.com.

 20 Eksternnotat 20/02876

Figure 6.2 Status checks via WEB browser. Information text in black letters. Successful tests
in green letters while faults are printed in red.

Eksternnotat 20/02876 21

6.1 Radio link debugging

The tool that keeps the Internet going is ping. eNBWF provides a ping tool to test the radio links
between the nodes. If the {emane, lxc, RF channel}-buttons in Figure 6.1 are green and this
ping fails then the radio link pathloss is too high – the received signal is too weak. The ping test
runs inside the containers with direct access to the emane0 tunnel, see Figure 6.3. By running
the script nbwfpathloss on the E-server, the radio link from R1 to R2…Rn can be tested. Further
information is given in section 7.2.

EMANE
nem id 1

UBUNTU KERNEL 18.04

OTA bridge emanenode0
Unicast: 10.99.0.n
Multicast: 224.1.2.8

radio 10.10.10.1

eth1
10.99.0.1

10.100.0.1

EMANE
nem id 2

eth1
10.99.0.2

10.100.0.2
Linux tunnel
emane0

radio 10.10.20.1

ping 10.10.20.1

icmp request

icmp replay

Figure 6.3 An easy method to validate radio connectivity is to apply the eNBWF ping tool.

7 Learning to Drive

This chapter explains how to build the data structure and run the eNBWF radio network. The
example used below is a simple network with two radios that shall serve two norBMS terminals.

The directories referred to in this chapter are:

To drive the eNBWF emulator means to execute the sections below in sequence.

EMANE_DIR = /home/tore/git/emane (or any location on your computer)

NBWF_DIR = $EMANE_DIR/src/models/mac/nbwf

USER_DIR = $HOME/… (any location outside the EMANE_DIR tree)

 22 Eksternnotat 20/02876

7.1 Step 1 Make run-time directory

The first step is to create the top level data structure. The data files can be tailored to the user’s
need at a later stage. The eNBWF source tree is protected from the user of the emulator and a
script must be used to copy system files to the user’s working directory. Do as follows:

Now you have a copy of the eNBWF configuration files under the netN2 directory. The option
“--type” tells that traffic from external IP sources shall be served.

The testdir/templates directory contains all the configuration files, and these files can be
modified by the user. For example, the internal IP addresses must match the external IP
addresses.

When the user’s template files are ready, they must transformed into a run-time directory
structure by the script below:

The directory named april29 contains a complete run-time file structure and each container
works on a dedicated data area exe/nN as shown below:

The directory lxin contains the configuration files for the containers while the lxclog directory
holds the LXC log files. If a file size in the lxclog directory is greater than zero, an error has
occurred.

The file exe/n1/emane/emane.log contains the most important radio data for radio R1.

$ cd $USER_DIR

$./python –m nwbf.testdirectory make –type blab –src $NBWF_DIR –testdir netN2 –n 2

$./python –m nbwf.managetestdata make –topdir $USER_DIR –testname april29 –n 2

Eksternnotat 20/02876 23

7.2 Step 2 Start the emulator

This step starts the emulator with the input data specified in step 1:

Best practise is to start emulation with excellent radio conditions and test that all the radios are
up. Here the pathloss is set to 10 dB (option –pathlossdb) which gives excellent radio conditions
regardless of the transmitter power settings. Here comes a ping test:

The ping test goes from 1 {1, 2} and therefore the local interface in radio 1 is also tested. You
can change the pathloss setting as follows:

A new ping test gives:

The connection to radio R2 is down since 999 dB will take down any radio link.

$ sudo ./python –m nbwf.blab start –topdir $USER_DIR –testname april29 –pathlossdb 10 –n 2

$ sudo ./python –m nbwf.nbwfpathloss setall –pathlossdb 999 –n 2

 24 Eksternnotat 20/02876

7.3 Step 3 Start the GPS service

The GPS service is implemented by one or more GPS simulators. This step is necessary only if
the GPS service is required. To start a GPS simulator in the radios 1..2 use:

7.4 Step 4 Start the WRAP server

The WRAP server is needed when:

1) Pathloss and/or waypoints shall be received from external sources.

2) The WRAP emulator shall run inside the E-server.

If case 2) is the choice (--dryrun) then use:

The WRAP server listens on the E-server loopback on port 5000. Internally the WRAP server
talks to the radios on port 6000. The WRAP emulator simulates the WRAP PC and you can use
it to send synthetic waypoints to the WRAP server. For example:

Or you can set the pathloss:

Hint: Both the wrapemulator and the wrapserver have many options. Try the “-h” option.

7.5 Step 5 Status checks

This is an optional step. A fast method to do a sanity check is to use the following script:

$ sudo ./python –m nbwf.lxcgpsmanager start –n 2

$ sudo ./python –m nwbf.wrapserver start –topdir $USER_DIR –testname april29

 –dryrun True

$ sudo ./python –m nbwf.wrapemulator gps –n 2 –waypoint oslobergen –dryrun True

$ sudo ./python –m nbwf.wrapemulator pathloss –db 10 –n 2 –dryrun True

Eksternnotat 20/02876 25

In this case the GPS simulators do not run but the other processes are running. The status panel
in Figure 6.1 is started as follows:

The third option is to monitor the emulator from a browser running on an external IP terminal,
see Figure 6.2. Then the WEB server must be started as follows:

7.6 Step 6 Terminate

The eNBWF processes must be terminated in the correct order. If not, system files that should
be deleted will block new start attempts. Use the following to terminate:

If new start attempts fail due to existing system files, try “blab stop” twice. If this script does not
solve the problem, the files must be deleted manually.

$ sudo ./python –m nbwf.blab status –topdir $USER_DIR –testname april29

$ sudo ./python –m nbwf.statuspanel start –topdir $USER_DIR –testname april29

$ sudo ./python –m nbwf.webserver start –topdir $USER_DIR –testname april29

$ sudo ./python –m nbwf.blab stop –topdir $USER_DIR –testname april29

 26 Eksternnotat 20/02876

8 Discussion and Conclusion

EMANE is an open source framework for building virtual radio networks. eNBWF is our
implementation of a military tactical radio as an EMANE plug-in module (Figure 2.1). eNBWF
was developed as a part of a proof-of-concept that aimed to study what can be achieved with
virtual networks and cloud based solutions. Other reports will discuss the benefits of virtual
solutions. The scope of this document is the eNBWF services and software.

eNBWF is a minimum viable product14, which means that only the services required serving the

norBMS application are implemented. The norBMS clients can be attached directly to the

eNBWF radios – only the usual norBMS set-up procedure must be followed.

EMANE gave us the opportunity to implement an emulator in a shorter time and we ended up
with an emulator that provides realistic IP throughput/delay performance of a narrow band
tactical radio. The model accuracy has been validated against a steady-state simulator [5, 6].
The accuracy is sufficiently low for testing IP based application.

The radio pathloss strongly affects the radio link quality as the users move in the terrain. To

model this effect we used a pathloss prediction tool (WRAP) that takes real maps and waypoints

as input, calculates the pathloss in real-time and forwards the pathloss values to the digital copy

in Figure 1.1. We tested this concept by using computer-generated forces15 that generated

waypoints on interface 5 in Figure 2.2. This test was limited to five mobile users.

The norBMS application needs information from GPS. Many military VHF radios have an
internal GPS and we applied the same architecture to the virtual radios as explained in chapter
5. The GPS simulators received the waypoints from the external source but inserted the time tag
from the EMANE server’s internal wall clock. By this approach, we achieved precise time
synchronisation between the external applications.

EMANE has sufficient quality to serve as a framework for further development of the eNBWF.
The company Adjacentlink maintains EMANE actively, bug fixes are released regularly, and
new radio models are developed. We have performed stability tests lasting up to three weeks
without observing any problems – no memory leaks nor crashes. A network as large as 99
radios has been successfully tested with the use of synthetic IP traffic (interface 3 in Figure
2.2)16.

14 More development is needed before we can use the term prototype.
15 https://www.mak.com/products/simulate/vr-forces
16 Without mobile nodes.

Eksternnotat 20/02876 27

Acronyms

ARP Address resolution protocol
BMS Battle management systems
CSV Comma separated value
dBm Decibel with reference to one milliwatt
EMANE Extendable Mobile Ad-hoc Emulator
eNBWF EMANE based implementation of NBWF
E-server EMANE server
GPS Global positioning system
GPX GPS exchange format
HQ Head quarter
ICMP Internet control message protocol
ID Identifier
IP Internet protocol
kbps Kilo bit per second
LAN Local area network
LED Light emitting diode
LXC Linux container
MGEN IP traffic generator from www.navy.mil
NBWF Narrow band waveform
NEM Network emulator module
NEM ID NEM identifier (virtual radio identifier)
NMEA National marine electronics association
PC Personal computer
pkps Packets/s
RSSI Received signal strength indicator
TCP Transmission control protocol
TG Traffic generator
UDP User datagram protocol
UTC Coordinated universal time
VLAN Virtual LAN
VLAN ID VLAN identifier
WRAP Name of a commercial product

 28 Eksternnotat 20/02876

References

[1] NATO standard AComP-5630, NARROWBAND WAVEFORM FOR VHF/UHF

RADIOS - HEAD SPECIFICATION, Edition A Version 1, December 2016

[2] NATO standard AComP-5631, NARROWBAND WAVEFORM FOR VHF/UHF

RADIOS - PHYSICAL LAYER AND PROPAGATION MODELS, Edition A

Version 1, December 2016

[3] NATO standard AComP-5631, NARROWBAND WAVEFORM FOR VHF/UHF

RADIOS – LINK LAYER, Edition A Version 1, December 2016

[4] Andre Douzette, «Simulering av propagasjonstap mellom mobile noder», FFI

internnotat, 2. juli 2020, (in Norwegian).

[5] Bjørnar Libæk and Bjørn Solberg, A simulator model of the NATO Narrowband

Waveform physical layer, FFI-notat 2011/00533, Norwegian Defence Research

Establishment (FFI), 19. October 2011.

[6] Tore J Berg, NATO Narrowband Waveform (NBWF) - Performance Analysis of

Complex Networks, FFI-rapport 2015/00402, Norwegian Defence Research

Establishment (FFI), March 2015. Available online at www.ffi.no.

Eksternnotat 20/02876 29

