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Abstract—Detecting small targets, such as an Unmanned Aerial
Vehicle (UAV) in high clutter and non-homogeneous environments
is challenging for a radar system. Traditional Constant False
Alarm Rate (CFAR) detectors have suboptimal performance in
many scenarios. In this paper, we attempt a new approach to
radar detection, based on machine learning, to increase the PD

while retaining a low PFA. We propose two approaches, using
a Convolutional Neural Network (CNN) on the range-Doppler
images and stacking multiple range-Doppler images as layers,
called the Temporal CNN detector. The models are trained and
tested solely on measured radar data by using the estimated
position and velocity from a collaborative target UAV. It is shown
that training a model based solely on measured data is achievable
and performance metrics calculated from the testing data shows
that both models outperform the Cell-Averaging Constant False
Alarm Rate (CA-CFAR) by having higher PD with the same PFA

The current test results indicate that the temporal CNN is able
to increase the detection distance close to 30%, while retaining
the same PFA as the CA-CFAR.

Index Terms—Radar, detection, UAV, deep learning, CNN,
CFAR, non-homogeneous

I. INTRODUCTION

In this paper we attempt a new approach to radar detection
based on machine learning, aiming at decreasing the PFA

when detecting small targets in high clutter environments,
trained exclusively on measured radar data. Detection is
the task of investigating the received signal and deciding
whether there is a target present or if the signal contains only
interference and noise. There is in essence two hypotheses
in the detection scenario. H0, the null hypothesis, states that
there is no target present, only interference and noise. H1

states that the signal is a combination of a target response,
interference and noise. The decision made by the detection
algorithm is not always correct, and some detections might
contain just interference and noise, this is known as a false
alarm. Detection algorithms are usually designed according
to the Neyman-Pearson criterion. This essentially fixes the
false alarm rate, PFA, and then maximises the probability
of detection, PD, for a given Signal to Noise Ratio (SNR)
[1]. Setting a hard threshold requires detailed knowledge
of the radar system, the operation environment and the
observed target. All of these variables might change during
radar operation, altering the PFA or PD. To alleviate
this, floating-level detectors, called CFAR detectors, were
developed. CFAR detectors analyse the signal from cell

to cell and use a number of adjacent cells to estimate
the interference level. This estimate is then used to adjust
the threshold for detection to meet the desired PFA on
average. As an example, the CA-CFAR calculates the
threshold based on the average interference power of the
adjacent cells and has close to optimal performance in
homogeneous interference environments. If a target or clutter
appears in the measurement, the interference measurement
will be skewed and can lead to excessive false alarms or
target masking. This is widely known and several CFAR
algorithms have been suggested to mitigate these effects
such as the Ordered Statistic-CFAR (OS-CFAR) and the
Greatest Of-CFAR (GO-CFAR). Ghandi and Kassam [2]
presents a good analysis of several different CFAR detectors
and their performance in non-homogeneous environments.
They conclude that no CFAR algorithm performs well in
all combinations of homogeneous and non-homogeneous
background noise and suggest that an adaptive approach may
be the best solution if the operational environments change.

Several approaches for target detection using machine
learning approaches have been attempted. One attempt at an
adaptive detector is presented by Qi and Hu [3], where they
utilize a Neural Network to assess whether the background
contains a clutter transition, multiple targets or homogeneous
noise and then use the CFAR most appropriate for the
estimated environment. Other researchers have attempted
to use an Artificial Neural Network (ANN) as a detector
[4] [5] [6] [7]. Amoozegar and Sundareshan [8] show that
an ANN can achieve a higher PD with the same PFA,
particularly when the window size is small. Kück [9] proved
that an ANN can function as a universal detector in mixed
non-Gaussian environments. Cheikh and Faozi [10] show
that an ANN-CFAR performed better than CA-CFAR in
K-Distributed clutter. Recently, Akhtar and Olsen [11]
presented an approach to train an ANN with a CA-CFAR
and correcting the mistakes of the CA-CFAR, yielding a
decreased PFA. Building on the work of Akhtar and Olsen,
Carreto et. al. [12] presents the Smart-CFAR. Where they
prove that an ANN can mimic a CA-CFAR, but also improve
on CA-CFAR in specific scenarios, such as clutter edges.
Common for all of these efforts is that they are based on
simulated data and use conventional ANNs.
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In this paper, we propose a new machine learning approach
for target detection in radar, based solely on measured radar
data. By solely using measured radar data, we remove any
assumptions on both target and background that would be
introduced by simulated data thereby enabling the machine
learning algorithm to model the target and noise more
accurately. This could in turn help reduce the PFA so that
the system in effect can achieve a longer detection range
with the same PFA. This paper starts by explaining how
the data collection and generation is achieved in Section II
before continuing with an explanation of the machine learning
detectors in Section III. The experimental results and analysis
are presented in Section IV. These results are discussed in
Section V before the conclusion of the paper i Section VI.

II. DATA COLLECTION

To generate data for training and testing, a series of UAV
flights were conducted at two separate locations, one for
training and one for testing.

A. Radar system

The radar system used for the trials is an X-band Ubiquitous
Frequency-Modulated Continuous Wave (FMCW) radar with
digital beamforming. A ubiquitous radar system transmits a
broad beam and the receive beams are generated in signal
processing. Using a ubiquitous system for these measurements
is very beneficial as all the data are available for post-
processing. Raw data was recorded during the measurement
trials, enabling the generation of training and test data after
the trial. The radar system has a horizontal array, so it is not
able to separate targets or clutter in elevation. During the trials,
the system was configured with a 30 MHz bandwidth at 9.2
GHz center frequency and a Pulse Repetition Frequency (PRF)
of 2.5 kHz. For each location, the position and heading of the
radar system were accurately measured.

B. UAV flights

During the trials, the UAV was flown at several velocities
and ranges from the radar to generate a diverse data set for
both training and testing. The flights for the test data sets
were chosen so that they included non-homogeneous clutter
such as clutter ridges. The UAV was also flown beyond the
maximum detection range of the system, using conventional
CA-CFAR, to be able to have test data for an increase in
detection range. The position of the UAV was logged using
its internal navigation system at a rate of 10 Hz. The data
was collected at remote locations to minimize the presence of
other targets of interest within the surveillance area.

C. Generating data set

To generate the data set for training and testing, the raw
radar data is matched filtered, Doppler processed and beam-
formed. Using the position and heading of the radar and
the navigation data from the UAV, the beam containing the
UAV is selected and the rest of the beams are discarded to
remove any risk of side lobes from the target and minimize

the risk of interfering targets. The range and radial speed of the
UAV relative to the radar is estimated and the range-Doppler
image is labelled based on this position estimate. As previously
mentioned the UAV flights contain diverse clutter conditions.
The training data set is comprised of 13369 range-Doppler
images where each pixel is evaluated. The test data set contains
3425 range-Doppler images collected at a different time and
location from the training data set.

III. MACHINE LEARNING DETECTORS

This section introduces the two machine learning ap-
proaches proposed in this paper, the CNN-CFAR and the
temporal CNN-CFAR. The former uses a patch similar to
that of the CA-CFAR on one range-Doppler image. The latter
utilizes patches from three concurrent range-Doppler images
by stacking them over each other.

A. CNN-CFAR
The previous attempts on machine learning detectors in

radar has been based on fully-connected conventional ANNs.
Using a CNN we take advantage of the spatial relations of
the range-Doppler image, by assuming that features shifted
in range or Doppler can be processed in a similar fashion.
Since CNNs reuse weights for different spatial locations they
dramatically reduce the need for training data. For efficiency
and practical purposes we employ a simple fully-convolutional
architecture similar to the segmentation setup described in
[13]. The CNN-CFAR takes one range-Doppler image as input
as shown in Figure 3 with the CUT in the middle. The guard
cells used for the CA-CFAR in Figure 2 are not necessary for
the CNN-CFAR. With a fully-convolutional network our setup
works for arbitrary sized input. Our target output is a grid of
the same size as the input image, where cells corresponding
to UAV positions and velocities are labelled 1 and all other
cells are labelled 0. The network is trained by minimizing a
weighted channel-wise softmax cross-entropy loss. We restrict
the theoretical field-of-view of the network, meaning the
number of input cells that contribute to each output value,
by using a small network with small convolutional kernels.
This means that input patch for each output value is similar
to that of our CA-CFAR.

B. Model description

Fig. 1: Overview of network architecture for 1 image CNN.
Red boxes indicate size of convolutional kernels, yellow boxes
show the resulting output data of a layer. Numbers indicate the
number of convolutional kernels for each layer.
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Restricting the field-of-view keeps the model from overfit-
ting to the training data. We applied randomized value scaling
for augmentation and additionally used a small random crop
to avoid overtraining border patches. Primarily for speed and
simplicity in training, we chose to use a small and simple
network architecture. With Scaled Exponential Rectified Unit
(SELU) as activation function [14], we avoided the need for
batch normalization and made our network even simpler. Our
test architecture was a small 5-layer network with no batch-
normalization (see Figure 1). Larger networks may yield better
results, but exploring network architecture was deemed beyond
the scope of this experiment. Run-time performance was not
a concern for choosing the network architecture, as we can
easily achieve real-time performance.

Fig. 2: Illustration of the
2D CFAR with CUT,
Guard cells and noise es-
timate cells.

Fig. 3: Illustration of the
2D DNN detector patch,
guard cells are not neces-
sary.

C. Temporal CNN-CFAR

The Deep Temporal Detector proposed in this paper is
inspired by the way a trained radar operator recognizes a target
in a range-Doppler image. When observing a range-Doppler
display an operator typically tracks real targets based on their
persistence, not just their power. False detections are observed
as flickering noise, whereas targets are consistent points. This
is not possible for a CA-CFAR detector to assess, as it does
not evaluate from dwell-to-dwell. Incoherent binary detections
strategies such as the m-of-n detection criterion [1] take this
into account, but only on a binary level. Other techniques for
incoherent integration might also be utilized, but calculating a
proper threshold for incoherent detection requires assumptions
on target and noise. The Temporal CNN-CFAR attempts to
exploit the local spatio-temporal information in the detection
process by stacking three range-Doppler images on top of
each other as separate channels. This is illustrated in Figure
4, where the three layers are combined. Three images were
selected as a proof of concept, with the assumption that the
target will have moved slightly, but not extensively between
the first and last image. The idea can be expanded depending
on target assumptions and radar configuration. Comparing the
temporal CNN-CFAR with a CA-CFAR on a single range-
Doppler image is therefore not completely fair, because they
rely on different dwell times. This is a technique of stacking
layers previously used in video classification and several
approaches on how to fuse temporal information has been
investigated by Karpathy et. al. [15]. In accordance with
Karpathy [15], we found late fusion slightly better than early
fusion. We implemented the slow-fusion regime, by using 3D-

Fig. 5: UAV flight plotted over a satellite image.

convolutions with kernel size 1 in the temporal dimension
before the fusion stage.

Fig. 4: Illustration of the stacking of range-Doppler images
performed before the Temporal CNN-CFAR

IV. EXPERIMENTAL RESULTS AND ANALYSIS

After training on a number of data sets, the network is run
on the test set. The test set was recorded at a different location
and under different conditions than the training set. It can be
seen from the plot of the UAV test flight overlayed a satellite
image that the test set contains a mix of homogenous back-
ground noise and clutter transitions. The test flight outbound
and inbound from the radar at a distance of 0-1200 meters. The
data has been processed with a 200 ms Coherent Processing
Interval (CPI), which should yield an approximate detection
distance of 800 meters using conventional CA-CFAR with the
RF power setting during the trial.

A. Comparing the performance

There are no analytical terms for the PFA and PD of the
CNN detections, the metrics are therefore extracted from the
test data set using the following definitions:

PFA =
false detections

tested cells
, PD =

correct detections
targets

(1)

Both the CA-CFAR and the CNN detectors output a float
value for each tested cell. Using the test set, a large amount
of these values are tested and the metrics for PD and PFA
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are calculated. This enables us to find the thresholds for a
given PFA. These metrics are calculated for both CFAR and
CNN detectors, where all non-target cells are considered to
be clutter cells. The CNN detectors effectively works as both
detectors and clutter filter. To prevent the results from being
skewed from slow-moving tree clutter, a simple clutter filter
is applied to the CFAR output before calculating the metrics.

B. Performance analysis

Calculating the metrics for the full flight yields the Receiver
Operating Characteristic (ROC) curve plotted in Figure 6. The
curve reveals that the CNN and Temporal CNN detectors
increased PD with the same PFA as the CA-CFAR. As an
example, for a PD of 0.8 for this full test set, the CA-CFAR
would have a PFA of close to 10−1, whereas the PFA for
the Temporal CNN and the CNN is close to 10−4 and 10−2

respectively.

Fig. 6: PD vs PFA for CA-CFAR, CNN-detector and Temporal
CNN-detector.

If we set the desired PFA to be 10−3, we can analyse
how the PD changes with respect to range. Figure 7 shows a
histogram of the PD at different ranges. Firstly, it is interesting
to notice that the performance of the detectors is similar below
450 meters. The second thing to notice is the drastic effect
of the two land-patches the UAV passed at 500-750 meters
in range on all the detectors, but particularly the CA-CFAR.
The clutter ridges are likely the cause of lowered PD at
approximately 480, 550 and 650 meters. The two CNN de-
tectors increase the PD approximately 0.25-0.35 in the clutter
transitions. The highest clutter ridge improvement is seen in
the area from 550-650 meters, which is directly between the
two islands. In this section, the PD of the CA-CFAR shows
clear signs of masking with a PD of close to 0.5, whereas the
CNN detectors maintain a PD close to 0.9.

Fig. 7: Histogram of the PD of several detectors as a function
of range. PFA set to 10−3

The last interesting section is the range beyond 700 meters.
From the flight path in Figure 5, we can observe that this
area is mostly homogeneous, although both the transmit and
receive beam are broad and will include a significant amount of
clutter. The ROC for the ranges beyond 700 meters is plotted
in Figure 8. This ROC confirms the findings in the previous
histogram, the CNN detectors have significantly increased
performance compared to the CA-CFAR in the low SNR
scenario. These results indicate that the background in this
area is not homogenous, given the poor performance of the
CA-CFAR. Further analysis are needed to find the reason for
this inhomogeneity and whether it is caused by external or
internal noise.

Fig. 8: PD vs PFA for CA-CFAR, CNN-detector and Temporal
CNN-detector for ranges beyond 700 meters.

Throughout the last section, the CNN detectors show dras-
tically increased PD. As an example, the PD using CA-
CFAR at 1000 meters is approximately 0.15, whereas the
corresponding PD using the Temporal CNN detector is 0.9.
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This improvement results in a significant increase in detection
distance. The CA-CFAR has a PD of 0.8 at about 770 meters,
whereas the Temporal CNN detector retains the same PD

to about 1080 meters, which is close to a 40% increase.
According to the m-of-n detection criterion [1], in this case the
2-of-3 criterion, we would expect a maximum of 0.1 increase
in PD for the same PFA. For ranges beyond 800 meters, the
Temporal CNN has a 0.1-0.3 increase in PD compared to the
CNN detector, which is above the expected 0.1 increase of the
2-of-3 criterion [1].

V. DISCUSSION

Both the CNN detectors outperform the CA-CFAR, with an
increased PD while retaining a low PFA in both homogeneous
and non-homogeneous environments. The CNN detectors can
increase the detection range around 30% under these condi-
tions while retaining the same PFA. Investigations into the
nature and distribution of the background noise under the test
conditions remain. The accuracy in the position and velocity
estimates of the UAV can lead to wrongly-labelled data that
can inhibit the model learning. Training larger and more
advanced CNN architectures, gave little to no improvement,
perhaps due the noise in the data. We, therefore, believe
that CNN detectors can perform even better with better data
generation. More data and higher data diversity can also
increase the performance, hopefully in the areas of clutter
ridges where the CNN detectors show a good performance
increase, but still have room for improvement. More ways of
augmenting the data might also increase the diversity of the
data, by adding more combinations of target and noise. The
test and training data sets were collected at separate locations
with different conditions, this indicates that the model is able
to generalize.

VI. CONCLUSION

In this paper, we attempted a new machine learning ap-
proach to target detection in range-Doppler images. The goal
was to decrease the PFA for small targets in high clutter
environments. This would, in turn, increase the PD for the
same PFA and in effect increase the detection distance of the
system. The CNN detectors were trained solely on measured
data, labelled by using position and velocity estimates from
a UAV. The first approach was the CNN detector, which
proved to have similar performance to the CA-CFAR in the
high SNR scenarios while outperforming the CA-CFAR when
the SNR is low or the target is in a non-homogeneous noise
environment. At most, the CNN improves the PD close to
0.4 compared to the CA-CFAR. The second approach was
the temporal CNN detector, which uses 3 consecutive range-
Doppler images as channels to include temporal information.
This gives an approximate 0.1-0.3 increase PD compared to
the CNN detector. The current test results indicate that the
temporal CNN can increase the detection distance of close to
30%, while retaining the same PFA as the CA-CFAR. Further
work will address the position estimates of the UAV to improve

the accuracy of the training and test data. More data will also
be collected in environments of higher diversity.
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