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Abstract—Operation of high-resolution, broadband anti-
submarine warfare (ASW) sonars in littoral waters is challenging,
since the presence of sea mounts, underwater ridges and other
topographic features causes increased false alarm rates. Two
important contributors to the raised false alarm rates are the
signal-processing induced phenomenon called false alarm rate
inflation (FARI) and the presence of sonar clutter, also referred
to as non–Rayleigh distributed matched filter (MF) envelope
in literature. Conventional constant false alarm rate (CFAR)
algorithms fail to achieve a constant false alarm rate in all ranges
and bearing in the presence of such effects.

Given sufficient information on the bathymetry and the bottom
properties, the occurence of FARI may be estimated through the
use of an acoustic model. This allows for more accurate estimates
of the false alarm rate. Through measurements the scatterer
statistics for a given sonar in a given area may be estimated.
Combining a FARI predicting scheme with knowledge of the
scatterer statistics allows the estimation of the probability of
false alarm in the presence of both FARI and sonar clutter.

Here we propose a new detection scheme that employs this
approach in order to estimate a range– and bearing–dependent
threshold that can be applied on normalized sonar data in order
to achieve a constant false alarm rate even in the presence of
FARI and clutter. The performance of the method is assessed
through the use of receiver operating characteristic curves and
is shown to outperform conventional CFAR algorithms, such as
the cell averaging (CA), greater of (GO), and ordered statistics
(OS) CFAR processors. The method is tested on both recorded
and synthetic data. The robustness of the method is tested using
synthetic data by introducing errors in the topography, sound
speed, and scatterer statistics when estimating the probability
of false alarm. The performance of the method decreases when
introducing these errors, but it still outperforms the conventional
CFAR processors.

I. INTRODUCTION

SEA trials in littoral environments have shown that high–
resolution active sonars generate particularly many false

alarms in presence of terrain features, such as seamounts
and underwater ridges, and man-made objects, such as ship
wrecks and pipelines [10, 31, 32, 21]. Possible causes for high
false alarm rates include false alarm rate inflation (FARI) [33,
21] and non–Rayleigh reverberation [10, 2]. False alarm rate
inflation is induced by a non–stationary reverberation power
level in the normalizer windows. Non–Rayleigh reverberation,
also called clutter, appears when the sonar resolution is so

high that the sonar footprint is too small for the central limit
theorem to apply to the scatterer statistics [29].

A signal processing chain for a specific sonar system is
tuned in order to limit the amounts of false alarms to a
manageable level for a human sonar operator. In recent years
there has been an increasing interest in using unmanned
heterogeneous sensors, for instance autonomous unmanned
vehicles (AUV), in anti–submarine warfare (ASW) operations
[24, 6, 14]. AUVs rely on acoustic communication links in
order to relay their contacts to the decision makers. However,
the underwater communication bit rates are far too low to
support the transmission of all contacts, particularly in the
littorals where high false alarm rates are expected. Other
unmanned platforms, such as unmanned surface vehicles or
sonobuoys, may be equipped with radio links that allow
for streaming of raw data to a human operator, but as the
number of sensors per human operator increases, there will
be an increased need for signal processing or classification
techniques that reduces the number of false alarms further.

In the past decades, a steady rate of research has been
published on reducing false alarm rates without reducing the
probability of detecting a present target. Improvements in any
stage of the signal processing chain that increases the signal–
to–noise ratio is a means of reducing the false alarm rate as this
allows for a higher detection threshold without reducing the
probability of detecting the desired target. However, here we
shall focus on the higher level processing steps; normalization,
detection, and classification.

Alternative normalization algorithms, also called constant
false alarm rate (CFAR) processors, have been proposed to
deal with signal processing induced phenomena such as false
alarm rate inflation and target masking [33]. The conventional
cell averaging (CA) CFAR algorithm is known to exhibit
degradation in areas with non–stationary reverberation [37].
Other processors such as the Greatest of (GO) CFAR and the
Ordered statistics (OS) CFAR algorithms have been proposed
in order to deal with this challenge [15]. More recently,
the likelihood ratio test was proposed used for dealing with
radar clutter [5], which is the equivalent of non–Rayleigh
reverberation.

The problem of false alarms may also be dealt with at
other levels of processing. In [3] the authors suggest using
a modified version of the Page test for detecting a target. This
method exploits information from the entire time spread of the
target echo instead of just the strongest peak. Time reversal
[25] is another method that deals with the time spreading of
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the echo by exploiting accurate knowledge of the environment
and an acoustic model in order to focus all energy received
from a single target. Clustering techniques have also been
used in order to reduce the amount of false alarms by simply
collecting threshold crossings in the proximity of each other
in a single cluster [7]. Track–before–detect schemes have also
shown promise, particularly for targets with low signal–to–
noise ratios [11]. These schemes skip the detection step and
feed the tracker with sensor data directly.

For an ASW sonar an automatic classifier tries to determine
whether a given detection originates from a submarine or
not. Techniques involving image processing [35, 13, 27] and
feature extraction [16, 32, 30, 7, 38, 17, 18, 20, 22, 36] have
been reported in literature. Recently, implementations of deep
neural network for automatic image and speech recognition
[19, 26] have also inspired work within target classification
for active, ASW sonars [8].

Several of these algorithms also employ information on the
environment and an acoustic model to either improve detection
[25] or classification [21]. Kim et al [25] employed an acoustic
model to predict the multipath behaviour of a target echo and
then focus this energy into a single sample through a time–
reversal technique. This demonstrates how acoustic modelling
may be integrated into sonar processing in order to increase the
detection performance of a system. Hjelmervik [21] proposed
a method for predicting the probability of false alarm due
to FARI. An acoustic model and a high-resolution bottom
model were employed in order to estimate the probability that
a given contact is a false alarm due to FARI. The resulting
probability could then be used as a classification feature.
However, the proposed method assumes Rayleigh-distributed
matched filter output. When using high–resolution sonars in
littoral environments the Rayleigh assumption does not always
hold [10, 29, 34].

Here we improve and extend the method in [21]. First the
method is generalized to include any known non-Rayleigh
distribution of the matched filter envelope when estimating the
probability of false alarm. Secondly, inspired by how Kim et al
[25] incorporates acoustic modelling in the detection process,
the method is integrated into the detection step by determining
a threshold that achieves a constant false alarm rate even in
the presence of FARI and non–Rayleigh reverberation.

The performance of the method is studied using synthetic
sonar data in an environment prone to both FARI and non–
Rayleigh reverberation. The acoustic raytrace model Lybin
[12] is used to estimate both reverberation and target echoes.
The performance is compared to conventional methods for
dealing with FARI, such as the GO and OS CFAR processors.
The comparison is made using receiver operating characteristic
(ROC) curves.

Finally, the proposed method is demonstrated on a recorded
sonar data set collected in the Norwegian Trench during the
New Array Technology 3 (NAT3) programme in 2002. NAT3
was a joint collaboration between TNO, Thales Underwater
Systems, the Norwegian Defence Research Establishment, and
the Dutch, French, and Norwegian navies.

II. THEORY

The conventional method for determining sonar detections
of targets embedded in noise and reverberation is by beam-
forming, matched filtering, normalizing, and finally threshold-
ing the hydrophone output of the sonar. The processing results
in a set of threshold crossings, henceforth called echoes. A few
of the echoes may be actual target detections, while most of
the echoes are false alarms.

Assuming a Rayleigh–distributed and stationary matched
filter envelope, the probability of false alarm, PFA, when using
an ideal normalizer depends on the selected threshold in the
detection step [33]:

PFA = exp(−h), (1)

where h is the applied detection threshold. This follows from
the matched filter power being exponentially distributed when
the envelope is Rayleigh–distributed. Usually, the detection
threshold is selected based on a desired probability of false
alarm, thus,

h = − lnPFA. (2)

A commonly used normalizing algorithm is the CA CFAR
normalizer [33]. The normalizer output, s, is given by:

s =
Λ

µΛ
, (3)

where Λ is the matched filter power output at the analyzed
sample. µΛ is the background estimate for the analyzed sam-
ple, which, for a CA CFAR normalizer is the average power
in the normalizer windows, see Fig. 1. For stationary and
Rayleigh–distributed matched filter envelopes, the probability
of false alarm when using a CA CFAR normalizer approaches
that of the perfect normalizer for increasing window sizes [33].

With the above assumptions of Rayleighness and station-
arity a sonar may be designed to generate a limited and
controlled amount of false alarms. However, in the presence
of non–stationary reverberation, (1) does not hold as the
background estimate from the normalizer windows may not
be representative for the analyzed sample [21]. In Fig. 1 an
example of non–stationary reverberation is given. Observe
that the peak in the reverberation output at the analyzed
sample far exceeds the reverberation levels in the normalizer
windows. Even in the absence of a target this reverberation
peak results in a threshold crossing with a high estimated
signal–to–reverberation and noise ratio, and thus a false alarm.
This phenomenon is called false alarm rate inflation (FARI)
[33]. A more general expression for the probability of false
alarm, that takes into account FARI, is:

PFA = Pr {s > h} . (4)

The expected reverberation may be modelled using a con-
ventional acoustic model. However, to assess the false alarm
rate, the full distribution must also be taken into account.
Some high fidelity models are capable of modelling both the
expected value of the reverberation power as well as the higher
order moments, or even the full distribution [28]. However,
here we follow a simpler approach where we let the acoustic
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Fig. 1: Illustration of non–stationary reverberation and the
location of guard bands (GB) and normalizer windows (NW),
as well as the analyzed sample (dashed grey line).

model estimate the expected reverberation power, and then
include the desired distribution:

Λ[i, j] = λ[i, j]D[i, j], (5)

where λ[i, j] is the modelled expected reverberation power for
the ith beam and jth time sample. D[i, j] is a random variable.
If the matched filter envelope is Rayleigh–distributed, then
D[i, j] is exponentially distributed:

fD[i,j]

(
D[i, j]

)
=

{
exp

(
−D[i, j]

)
, D[i, j] ≥ 0

0, D[i, j] < 0
(6)

Note that, by time, we here mean the delay from transmission
untill reception on the receiver. Note that this is directly
proportional to range, as the range, r, may be derived from
time, t:

r = ĉt, (7)

where ĉ is the assumed horizontal speed of sound through the
acoustic channel. We assume that the acoustic channel is not
frequency selective. For some wide band cases, this may not
apply and must then be taken into account in the modelling.

High resolution active sonars have wide bandwidths and
narrow beam widths. For some bottom patches only a limited
amount of significant scatterers then falls within the sonar
footprint, whose area depends on the resolution of the sonar,
and therefore its bandwidth and beam width. If the number
of scatterers becomes so low that the central limit theorem
does not hold, then the matched filter components are no
longer Gaussian and it follows that the matched filter envelope
is no longer Rayleigh distributed [29]. Here we would like
to generalize so that the probability of false alarm may be
estimated for any distribution. Inserting (3) and (5) into (4)
yields:

PFA[i, j] = Pr

{
λ[i, j]D[i, j]

µΛ[i, j]
> h

}
. (8)

Literature generally refers to distributions for the matched
filter envelope rather than the matched filter power. Bringing
(8) down from power level to envelope level and isolating the
random variable on the left side give:

PFA[i, j] = Pr

{√
D[i, j] >

√
µΛ[i, j]h√
λ[i, j]

}
. (9)

For a known distribution of
√
D[i, j], PFA[i, j] may easily

be estimated numerically. For some distributions, such as
the Rayleigh distribution, the expression may be determined
analytically [21]. Since we here generalize the method to
apply for any envelope statistics, we estimate this probability
numerically. Two different distributions are used; the Rayleigh
distribution, gR(x) and the K–distribution, gK(x) [28]. The
latter distribution has been shown to more accurately model
the tail for Non–Rayleigh matched filter envelope data [29,
1, 28]. Other distributions, such as the Weibull and Log–
normal distributions, have also been shown to model Non–
Rayleigh behaviour well [9], but here we limit the analysis to
the Rayleigh and K–distributions. The distributions are given
by:

gR(x) =
x

σ2
exp

(
−x2

2σ2

)
(10)

gK(x) =
4√
αΓ(ν)

(
x√
α

)ν
Kν−1

(
2x√
α

)
, (11)

where x is the normalized matched filter envelope. σ is the
scale parameter of the Rayleigh distribution. ν and α are the
shape and scale parameters of the K–distribution, respectively.
The cumulative density functions (CDF) are given by:

GR(x) =

∫ x

0

gR(x′)dx′ (12)

GK(x) =

∫ x

0

gK(x′)dx′. (13)

For a given distribution, threshold, modelled reverberation
power, and modelled background estimate the false alarm rate
may be estimated [4]:

PFA[i, j] = 1−G(

√
µΛ[i, j]h√
λ[i, j]

), (14)

where G is a CDF, for instance one of the CDFs shown above.
From (14) the threshold, h, to be applied on sample [i, j]

in order to achieve a specific false alarm rate may be deter-
mined. However, this assumes a perfect spatial synchronization
of modelled reverberation and recorded sonar data. Due to
the limited sonar aperture and time resolution of the sonar
recorded echoes will have an uncertainty in both time and
bearing. Errors in the assumed sound speed and sonar position
and heading increase the uncertainty further. Also, if the full,
range dependent sound speed profile and topography is not
fully known, then spatial errors in the estimated reverberation
must also be expected.

Let [θ, t] be the coordinates (bearing, time) relative to the
receiver of a false alarm measured on the receiver and let
[β[i], τ [j]] be the coordinates of a single modelled sample.
If the false alarm in [θ, t] occurs due to a threshold crossing
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event predicted by the model in [β[i], τ [j]], then the bearing
and time errors for this realisation is given by:

∆θ = β[i]− θ (15)
∆t = τ [j]− t. (16)

The errors are here considered as random variables and
approximated as Gaussian distributed with standard deviations
of σθ and σt, respectively. The probability of measuring a false
alarm in [θ, t] due to a threshold crossing event predicted by
the model in the model cell with a centre position at [β[i], τ [j]],
is given by:

Fij(θ, t) = PFA[i, j]

∫ θ+ ∆Θ
2

θ−∆Θ
2

∫ t+ ∆T
2

t−∆T
2

f(θ′, t′) dt′ dθ′, (17)

where f(θ′, t′) is a two dimensional Gaussian function with
standard deviations in θ and t given by the two localization
error parameters, σθ and σt, discussed above. ∆Θ and ∆T are
the sizes of the model cells for angle and time, respectively.
PFA[i, j] applies for the entire model cell and may therefore
be considered a constant when integrating over the model cell.
The probability of measuring a false alarm in [θ, t], ρFA(θ, t),
due to a threshold crossing event predicted in any model cell
may then be estimated as follows:

ρFA(θ, t) = 1−
M∏
i=1

N∏
j=1

(1− Fij(θ, t)) , (18)

where M and N are the total amount of modelled samples
and beams, respectively.

For a given threshold, h, ρFA(θ, t) approximates the false
alarm rate in a known environment when using a sonar
where the expected errors in time and bearing are given by
σt and σθ. The latter parameters are not easily determined
analytically as they depend on a wide variety of uncertainties
both connected to the accuracy of the model, the sonar, and
the environmental knowledge, but they may be estimated from
data. An optimization approach where the quantities are varied
untill ρFA(θ, t) matches the false alarm rate estimated from
recorded data could be carried out. However, this requires
accurate modelling of the reverberation peak levels, which
requires detailed knowledge of the bottom characteristics, such
as sediment density, sound speed, and attenuation. Instead the
optimization may maximise the estimated probability of a false
alarm in areas with high densities of measured false alarms,
and minimize it in areas with low densities of measured false
alarms. The optimization employs a genetic search algorithm
to estimate both σt and σθ that maximizes the estimated
probability of false alarm for all areas with high densities of
measured false alarms following the steps of [22].

In conventional sonar processing, the detection step con-
sists of finding all samples that crosses a set threshold, h.
Assuming Rayleigh–distributed matched filter output and an
ideal normalizer, then a desired probability of false alarm may
be achieved by selecting an appropriate threshold, h, see (2).
However, in the Non–Rayleigh case and in areas prone to FARI
the achieved false alarm rate may differ strongly from the
desired rate. This mismatch may be alleviated by inputting a
desired probability of false alarm into (18), and then estimating

a time and bearing dependent threshold, h(θ, t), that satisfies
these equations:

ρFA = 1−
M∏
i=1

N∏
j=1

(1− Fij(θ, r)) (19)

Fij(θ, t) = PFA[i, j]

∫ θ+ ∆Θ
2

θ−∆Θ
2

∫ t+ ∆T
2

t−∆T
2

f(θ′, t′) dt′ dθ′(20)

PFA[i, j] = 1−GK(

√
µΛ[i, j]h(θ, t)√

λ[i, j]
). (21)

GK is the CDF for the K-distribution. Note that the distribu-
tion parameters are also time and bearing dependent.

A. Sonar data synthesis

In order to assess method performance in a controlled
environment, sonar data has been synthesized. The synthetic
environment contains nine targets in variable locations and
moving along different paths, see Fig. 2. The acoustic model
Lybin [12] was employed to estimate both reverberation and
target echo strength and structure at matched filter envelope
level.

Given (5), the output of the matched filter may be repre-
sented by: √

Λ[i, j] =
√
λ[i, j]

√
D[i, j], (22)

where λ[i, j] is the expected matched filter power and corre-
sponds to the reverberation and noise output of the acoustic
model. The reverberation output is upsampled to match the
sampling frequency of the sonar.

√
D[i, j] may be modelled

as a random process. Here a K-distribution is used. The
target echo is modelled using an eigenray model and the
TAP target strength model [23] is used to estimate the echo
structure and strength. The resulting echo is added to the
synthesized matched filter data at the appropriate samples.
Rayleigh distributed noise equivalent to sea state 2 is added
to all samples.

B. Normalization and detection

Both the synthetic and the measured matched filter output
are run through a normalizer and a detection algorithm.
Three different normalizers are used; CA, OS, and GO CFAR
normalizers [15]. The normalized output is given by:

s[i, j] =
u[i, j]

n[i, j]
, (23)

where s[i, j] is the normalizer output of the j’th time sample
in the i’th beam. u[i, j] is the matched filter power level in the
corresponding sample. n[i, j] is the estimate of the background
level for the same sample. The difference between the three
normalizers is how they estimate the background level. CA
CFAR estimates the background level as the average of all
samples in the normalizer windows, see Fig. 1. GO CFAR
estimates the average of each normalizer window separately,
and employs the window with the highest average level as
the background estimate. Finally, the OS CFAR uses the

Dette er en postprint-versjon/This is a postprint version.  
DOI til publisert versjon/DOI to published version: 10.1109/JOE.2019.2936642 



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 5

Fig. 2: Path of the research vessel in the Norwegian Trench
during the CEX02 experiment is shown in blue. The same path
was used in the synthetic data for the sonar vessel. The red
paths indicate the movements of the simulated submarines in
the synthetic data set. The end point of all paths are indicated
by squares. The purple dashed line to the West shows the
position of a pipeline that serves as a target of oppurtunity.

median value of the two normalizer windows as its background
estimate.

Following normalization a threshold is applied to the data in
order to determine the echoes. The threshold is varied in order
to estimate receiver operating characteristic (ROC) curves for
each approach. Five different schemes are employed as listed
in Tab. I. For the GO CFAR and OS CFAR normalizers a
conventional threshold constant for all bearings and ranges
is used, while for the CA CFAR normalizer both a constant
threshold and a bearing– and range–dependent threshold es-
timated by solving (21) are used. The bearing– and range–
dependent threshold is estimated using both a correct distri-
bution for the matched filter envelope (K–distribution with
the true parameters) and an erroneous distribution (Rayleigh
distribution). (21) is solved for a large number of different ρFA
in order to estimate an ROC curve. In addition to ROC curves,
the estimated false alarm rate is plotted against the desired
probability of false alarms. For the conventional methods the
desired probability of false alarms is given by (1).

III. RESULTS

A. Synthetic data

Data were synthesized in order to compare the performance
of the proposed method to conventional methods. The advan-
tage of using synthetic data is that it gives us complete control

of the environment and errors in the environment. This allows
assessment of how the proposed method responds to different
sources of error. Three sources of error are examined:

1) errors in the sound speed profile used in the acoustic
model.

2) errors in the topography used in the acoustic model, both
due to low quality measurements and lower resolution
measurements.

3) errors in the distribution used when determining the
threshold in (21). This is covered by the cases where
a Rayleigh distribution is used, see FARI in Tab. I.

The synthetic data were generated using a 50 m resolution
topographic model and the sound speed profile measured
during the CEX02 experiment during the NAT3 trial in 2002.
The sound speed profile is shown in Fig. 3. A K–distribution
with α = 0.5 and µ = 1 was used to model the statistics
of the matched filter envelope. Fig. 2 shows the target and
sonar vessel positions. Nine targets following different paths
and at different depths (60 m, 80 m, and 100 m depth) were
simulated. The modelled sonar was placed at 90 m depth
and transmitted a two seconds long hyperbolic frequency
modulated pulse with a bandwidth of 800 Hz eighty times
over two hours. The resulting MF data were processed using
all schemes in Tab. I. The normalizer windows were 500 ms
wide, while the guard bands were 250 ms wide.

The top part of Fig. 4 shows the ROC curves and the esti-
mated false alarm rate versus the desired probability of false
alarm for the error–free environment. The three conventional
methods (CA, GO, and OS) using a constant threshold all
result in a false alarm rate several magnitudes higher than what
is desired. When using a bearing– and range–dependent thresh-
old, but not taking into account the Non–Rayleigh behaviour
of the reverberation (FARI), the observed false alarm rate
improves by almost a magnitude. Assuming perfect knowledge
of both the environment and the Non–Rayleigh behaviour of
the reverberation (FARI NR), the desired false alarm rate is
achieved. The detection performance of each method may be
compared through the use of ROC curves, see Fig. 4. The
methods that employ a variable threshold clearly outperform
the three conventional methods for false alarm rates below
10−3.

In order to assess the robustness of the method for an
erroneous sound speed profile, the modelling used to estimate
the bearing– and range–dependent threshold was estimated
using a different sound speed profile, see Fig. 3. Both sound
speed profiles were measured in September in the same region
(Norwegian Trench) and are therefore similarly shaped. This
simulates the case where a sound speed profile measured
at a different location is used in the acoustic modelling
necessary to employ the proposed method. The resulting ROC
curves and false alarm rates are shown in Fig. 4. For an
estimated false alarm rate of 10−5, the estimated detection
rate falls from approximately 50% to approximately 40% when
applying the variable threshold. The remaining three methods
remain unchanged as expected, but are included as a reference.
When using a variable threshold and taking into account the
Non–Rayleigh behaviour the desired false alarm rate is still
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Tag Normalizer Threshold MF envelope
CA Cell averaging Constant for all bearings and ranges Not relevant
GO Greater of Constant for all bearings and ranges Not relevant
OS Ordered statistics Constant for all bearings and ranges Not relevant

FARI Cell averaging Bearing– and range–dependent threshold Rayleigh
FARI NR Cell averaging Bearing– and range–dependent threshold Non–Rayleigh

TABLE I: Overview of detection schemes employed.

Fig. 3: The sound speed measured during the CEX02 ex-
periment (true) was used when synthesizing the data. The
second sound speed profile (false) was used in the modelling
to estimate ρFA when determining the bearing– and range–
dependent threshold for the case with the erroneous sound
speed profile.

achieved, even though the detection performance is slightly
degraded.

When applying zero–mean Gaussian noise with a standard
deviation of 5 m to the topography used in the modelling
when estimating the threshold, the detection performance falls
from 50% to approximately 40%. This simulates the case
were low quality topographic data is used in the acoustic
modelling necessary to employ the proposed method. The
observed degradation is similar to the degradation observed
for an erroneous sound speed profile. If Non–Rayleighness
is handled, then the desired false alarm rate is still achieved.
Similarly, the case where only a low resolution topography
data set is available is simulated by degrading the resolution
of the topographic model from 50 m resolution to 250 m
resolution. The degradation in the results are similar to what

was observed for the low quality topographic data.

B. Recorded data

The NAT3 program carried out a large number of exper-
iments on active, low-frequency towed array sonar systems
in sea trials in 2001 and 2002. One of the experiments,
the Clutter Experiment 2 (CEX02), was carried out in the
Norwegian Trench in September 2002. The sea was calm
during the experiment. The experiment was designed to assess
the performance of low frequency towed arrays close to the
coast line.

FFIs research vessel, H U Sverdrup II, towed both a receiver
array and a source. The receiver array consisted of equally
spaced triplet hydrophones. A towed body, the TNO Socrates
source, transmitted a two seconds long hyperbolic frequency
modulated pulse with 800 Hz bandwidth every 90 s. The
received hydrophone time series were processed up to echo
level, using a conventional line array and cardioid beamformer,
and matched filter, before using all five normalization and
detection approaches described in Tab. I. A guard band of
250 ms and a normalizer window of 500 ms were used, see
Fig. 1.

Fig. 2 shows the path of HU Sverdrup II. Easterly bearings
(towards the shore) are characterized by an, on average, up-
sloping and rocky bottom with the occasional presence of sea
mounts. Such an environment typically results in highly vari-
able and strong reverberation levels [21]. Westerly directions,
on the other hand, are characterized by a fairly constant and
flat bottom (approximately 300 m deep), resulting in low and
slowly varying reverberation levels and therefore fewer false
alarms. The sound speed profile measured at the start of the
experiment is shown in Fig. 3.

The upper part of Fig. 5 shows measured matched filtered
data after normalization (CA CFAR), along with the corre-
sponding bottom profiles for two different processed beams.
The strong peaks observed in the beam pointing towards the
shore originate from bathymetric features such as seamounts
and ridges close to the coast. Such peaks typically result in
both false alarm rate inflation and target masking [33]. Due to
the calm weather during the experiment, the measured rever-
beration is assumed to be mainly due to bottom interaction.

The normalized matched filter data may be used to estimate
the scale and shape parameters for both the K–distribution
and the Rayleigh distribution. Fig. 6 shows the measured
normalized matched filter envelope distributions for a one
second interval, 15 seconds into each of the two beams in
Fig. 5. The measurements in each interval are fitted with both
the Rayleigh and K-distribution following an exhaustive search
scheme using a maximum likelihood estimator following the
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Fig. 4: Left: ROC curves based on synthetic data for all targets and all transmissions. Right: Comparison of measured false
alarm rate to the desired probability of false alarm. The results comprise all four scenarios, from top to bottom: No errors,
error in water column sound speed, error in the bottom depths, and low resolution bottom.
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Fig. 5: Left: Beam pointing towards the West. Right: Beam pointing towards the East. a): Bottom profile along the beam. b):
Normalized matched filter output using a CA CFAR normalizer with a normalizer window of 500 ms and guard band of 250
ms. c): Probability of false alarm before smoothing, PFA, see (14), along the beam both when applying a Rayleigh distribution
(grey) and a K–distribution (black). d): The estimated shape, ν (black), and scale, α (grey), parameters along the beam for the
K–distribution.

steps of [34]. Note that such measurements should be made in
the absence of any strong targets to skew the measurements.
Thus, for real operations, the parameters of the distribution
used should be estimated from controlled, historical trials,
rather than data during the actual operation. Observe the
Rayleigh–like behaviour of the measured data in the beam
pointing away from the coast (West) and the strong non–
Rayleigh behaviour of the one pointing towards the coast
(East). The heavy–tailed distribution of the measurements
towards the shore is indicative of a high false alarm rate and
the tail is also well–represented by the K–distribution.

The fitting of the distribution parameters is made for each
one second interval in all beams. The resulting distributions
are then used to describe the random variable D[i, j] in (9).
Fig. 5 shows the predicted probability of false alarm, PFA,
for the above–mentioned two beams using both the Rayleigh
distribution and the K–distribution when modelling the en-
velope statistics. The selected threshold, h (4), is here given
by 10 log10 h = 12 dB. In absence of FARI and assuming
Rayleigh distributed matched filter envelope, then, according
to [33], the false alarm rate should be slightly higher than
10−7. For the Rayleigh–case, due to both target masking and
FARI, the false alarm rate differs from the theoretical value.
The K–distributed case often results in even higher false alarm

rates than observed for the Rayleigh–case due to the heavier
tailed distribution.

The estimated shape and scale parameters for the K–
distribution are shown in Fig. 5. For high shape parameters,
ν >> 0, the K–distribution is approximately equal to the
Rayleigh distribution, as is the case for the distributions shown
in Fig. 6 for the beam pointing to the West. Thus, for high
values of ν the estimated probability of false alarm using the
K–distribution and the Rayleigh distribution are approximately
the same. For instance, observe in Fig. 5 that for the first 10
km ν is high and PFA is approximately the same when using
both distributions. An exception is at 8 km East due to a local
decrease in ν. On the other hand, the predicted probability of
false alarm is significantly higher when the shape parameter
is low. Observe also that areas with low shape parameters
coincide well with areas with reverberation peaks, that is areas
already prone to raised false alarm rates due to FARI. This
underlines the importance of taking into account both the
occurence of FARI as well as the statistics of the matched
filter envelope when estimating the probability of false alarm.
For this environment, either one alone underestimates the
false alarm rate. Note that the presence of reverberation
peaks may also bias the estimate of the parameters for the
K–distribution. Ideally, a larger and independent sonar data
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Fig. 6: Normalized matched filter envelope data for beams
pointing East (left) and West (right) in a one second wide
window 15 seconds (11 km) after transmission. The envelope
data are plotted together with the Rayleigh (bottom) and K–
distribution (top) fitted to the envelope data.

set measured using the same or an equivalent sonar should
have been used to map the parameters of the K–distribution.
By accumulating data from many different runs, scattering
statistics for smaller bottom patches may be estimated. The
resulting high resolution map would be less prone to biases
due to non–stationary reverberation since each resolution cell
would apply for a smaller area.

Figure 7 shows the predicted probability of false alarm
plotted in polar coordinates, ρFA(θ, r) for a single transmis-
sion of the sonar using both the Rayleigh distributed and K–
distributed statistics. ρFA(θ, r) is generally higher when using
the K–distributed statistics, and particularly in areas with high
densities of measured echoes.

Figure 8 shows echoes as a function of bearing and range
for a single transmission for three different detection schemes;
CA, FARI, and FARI NR, see Tab. I. Observe that the
estimated bearing– and range–dependent threshold is high for
bearings close to 80◦ and ranges beyond 10 km. At these
bearings and ranges the terrain is strongly upsloping and the
soft upper sediments becomes thinner for increasing ranges
and gives away to naked rock where the ascent is steepest.
An example of such a bottom profile is given in Fig. 5 a)
right column. When using CA CFAR and a constant threshold
a large number of false alarms are generated in this region.
These echoes are the main cause for the failure of conventional
methods to achieve the desired false alarm rate. The proposed
methods, FARI and FARI NR, both exhibit far lower false
alarm rates in this region and therefore achieve false alarm
rates significantly closer to the desired probability of false
alarm. FARI NR outperforms FARI in terms of false alarm
rate by taking into account the Non–Rayleigh characteristics
of the steep upslopes and rocky terrain in this region.

To the West of the sonar vessel a pipeline is frequently
detected using all detection schemes, see Fig. 2 for the location

Fig. 7: Estimated probability of false alarm after taking into
account the localisation errors (18) as a function of bearing and
range for both the Rayleigh–case (bottom) and K–distributed
case (top) for the first transmission. Echoes using CA CFAR
normalization with a constant threshold of 12 dB for this
particular transmission are included as well (black dots). Note
that only beams pointing towards the coast are included.

of the pipeline. Fig. 9 shows the ROC curve for all five
methods listed in Tab. I. The target is located in a flat region
where the threshold estimated by the proposed methods is
approximately the same as the one used by the conventional
methods, see Fig. 8. The performance of the different schemes
in detecting this target is approximately equal, but the total
number of false alarms generated vary strongly. Surprisingly,
the FARI NR method has slightly lower detection performance
than FARI. This is attributed to a contamination of the
estimates of the parameters for the K–distribution at the target
location. The source of the contamination is the target itself
as its echoes influence the tail of the resolution and thereby
makes the distribution less Rayleigh. It is a subtle difference,
but sufficient to result in an observed performance difference
between the two methods. This underlines the importance of
using a separate and independent data set free of targets in
order to estimate the scattering statistics. Unfortunately, for
this analysis no such data set is available, but through extended
operation of a sonar system in an area sufficient statistics may
be accumulated over time to generate accurate maps of the
scattering statistics.

IV. CONCLUSION

A method for predicting the false alarm rate both in the pres-
ence of non-Rayleigh reverberation and reverberation peaks
generating false alarm rate inflation has been demonstrated.
The method employs an acoustic model fed with highly
detailed bottom profiles in order to estimate reverberation.
For a given threshold in the detection scheme used, a range–
and bearing–dependent probability of false alarm may then
be estimated using any known distribution to describe the
matched filter envelope statistics. The proposed method may
then be used to estimate a bearing– and range dependent
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Fig. 8: Top: Processed echoes for a single transmission using
CA CFAR normalization and a constant threshold of 12
dB. Bottom and center: The bearing– and range–dependent
thresholds estimated by the proposed method for both the
Rayleigh case (center) and the Non–Rayleigh case (bottom)
overlayed with the resulting echoes. In both cases a bearing–
and range–dependent threshold corresponding to a desired
false alarm rate of 10−5.5 is used. The red circle shows the
location of a detected pipeline to the West of the sonar vessel.
See Fig. 2 for the location of the pipeline.

Fig. 9: Top: ROC curves for all methods in Tab. I based
on all transmissions in the recorded data set for a pipeline
target. Bottom: Comparison of measured false alarm rate and
desired probability of false alarm for all five methods using
the recorded data set.
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threshold that results in a bearing– and range–independent
probability of false alarm.

The method was first applied on a synthetic data set. The
synthetic data set was generated using an acoustic model input
with high–resolution topographic data, a realistic sound speed
profile, and by using non–Rayleigh scattering characteristics.
Target echoes were also synthesized by using an eigenray
approach combined with a simple target strength model.

Five different detection schemes were employed. Three
conventional normalizers (CA CFAR, OS CFAR, and GO
CFAR) were combined with a constant threshold and com-
pared to two schemes combining a CA CFAR normalizer with
a range– and bearing–dependent threshold. The first of the
two schemes employed a Rayleigh distributed matched filter
envelope, while the second employed a K–distribution (non–
Rayleigh distribution). The latter matched the distribution
used to generate the synthetic data. The schemes using the
variable threshold outperformed the conventional schemes
in terms of false alarm reduction. The robustness of the
proposed method was tested by introducing realistic errors
in both the sound speed profile and the topography used in
the acoustic modelling necessary to obtain the range– and
bearing–dependent threshold. Even with the induced errors
the proposed schemes outperformed the conventional methods,
although with reduced performance compared to the error–
free environment. The best performance was observed when
correctly accounting for the Non–Rayleighness.

The five detection schemes were also applied on a recorded
data set collected in the Norwegian Trench. For the scheme
that accounts for the non–Rayleigh matched filter envelope,
the parameters of the K–distribution were determined di-
rectly from the data set by exhaustive search using a maxi-
mum likelihood estimator. For operative use of the proposed
method the parameters of the K–distribution should be priorly
known through historic measurements. The schemes employ-
ing range– and bearing–dependent thresholds outperform the
conventional schemes also when applied on recorded data.
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