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Abstract—Off-road driving can be a challenging task with
rapid changes in the driving conditions, terrain and vehicle
behavior. For off-road autonomous vehicles, it is important
to be robust to these changes, and parts of this robustness
comes from the path following controller of the vehicle. In
this paper we compare two different path following controllers
using a kinematic model of Ackermann vehicles, the Stanley
controller and a controller originally made for unicycles, but
adapted for Ackermann vehicles. The comparison is done using
an Off-road Polaris vehicle modified for autonomous driving.
Two experiments are conducted, where the first experiment is
during wintertime, driving with belts in snowy conditions, and the
second experiments is during summer time, driving with wheels
in muddy conditions. Our research vehicle can be fitted with
different payloads that affect the weight and center of gravity.
Therefore our main motivation for using kinematic controllers is
to have a simple and robust controller that handles all situations
using the same control parameters. Both controllers are used on
the same path, and the cross-track errors are compared. The
main conclusion is that the Stanley controller showed the most
robustness against variations in driving conditions and vehicle
dynamics, compared to the adapted unicycle method.

Index Terms—Autonomous vehicles, Control equipment, Me-
chanical variables control

I. INTRODUCTION

Off-road driving can be a challenging task with rapid
changes in the driving conditions, terrain and vehicle behavior.
The path can be narrow with tight turns and steep hills.
The speed varies greatly and is often very low. It takes an
experienced off-road driver to be able to read the terrain
and know how the vehicle will behave to different driver
input. For autonomous vehicles, off-road driving is a different
challenge than on-road driving. The vehicle can behave very
differently to the same input because of variations in the terrain
and traction. An off-road path following controller must be
robust to changes in the environment since it is impossible

to anticipate what the terrain will be like. Changes can also
happen along the route with appearing rain, snow, mud etc.

FFI (The Norwegian Defence Research Establishment) has
been involved in Unmanned Ground Vehicle (UGV) research
since 2015. The Research program acquired a Polaris Ranger
XP 900 EPS vehicle that was converted for autonomous
driving [1]. The Polaris is an Ackermann type vehicle with se-
lectable two-wheel drive (2WD) and four-wheel drive (4WD),
and automatic gearbox with low and high gear series. The
aim for the Polaris vehicle is to be a platform for devel-
opment of technologies for autonomous off-road driving in
both summer and winter conditions, and develop functionality
for autonomous mission execution. The vehicle is named
”Olav” (Off-road light autonomous vehicle), and is fitted with
an Inertial Navigation System (INS), a Light Detection and
Ranging sensor (LiDAR), cameras, computers and radios for
autonomous operation.

The Norwegian climate has four distinct seasons and large
parts of Norway are categorized in the subarctic climate zone
with cold winters and lots of snow. Therefore, it is important
that our autonomy functionality work in all seasons. Moreover,
since Olav can experience many different conditions in one trip
and conditions can vary significantly from day to day, we have
strived to keep our autonomy software as independent of the
current environment conditions as possible. For instance, we
do not want to model the wheel to ground friction into our path
following controller, since this can vary significantly between
different conditions. In addition, Olav can also change between
missions. Olav can be fitted with different payloads that affect
the vehicle’s weight and center of gravity, and use belts instead
of wheels (see Figure 1). Considering all this, we have tried to
make the control software for Olav as robust and if possible
model-free, to make it easier to handle all configurations and
different environmental conditions.
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(a) Winter configuration. (b) Summer configuration.

Fig. 1: Olav in winter and summer configuration.

In [2] a review of state of the art path following strate-
gies is presented. Based on our application, we are mainly
focusing on a geometric and/or kinematic controller, as no
dynamic or friction model is required using these types of
controllers. However, there are several other approaches such
as dynamic [3], [4], LQR [5] and MPC [6] controllers, that
require such models.

The Stanley controller has previously been used by [7],
where it is reported that the Stanley controller outperforms
Pure-Pursuit in most scenarios, but that the Stanley controller
is not as robust to large errors and non-smooth paths. It
also reports that a well-tuned Stanley controller will not cut
corners, but will instead overshoot turns. In [8] the Stanley
controller is compared with a sliding mode controller using
simulations, and it concludes that the Stanley controller gets
a smaller tracking error than the sliding mode controller does,
and that it has better performance in high speeds. In [9] the
difficulty of selecting control parameters is addressed. The
control parameters are optimized for different driving speed
and heading error using Particle Swarm optimization, and the
control parameters were chosen adaptively by interpolating
between the optimal parameters using Splines.

Recently, there has been published some papers where the
authors combined the Stanley controller and a Pure-Pursuit
controller. In [10] a hybrid solution is presented that improves
convergence to the path, and that prevents cutting and over-
shooting in the corners. The method could be improved with
an adaptive weight between the Pure-Pursuit controller and the
Stanley controller. A weighting method for the controllers are
developed and tested in [11]. The result is a more accurate
controller than the two controllers are separately.

Kinematic path following controllers include [12], where a
path following controller using the path directly to calculate
the control outputs based on the positional error an the heading
error is presented. This is much like the Stanley controller and
the controller presented in this paper, although with a different
control equation. In [13] the presented method also takes into
account the road margins, and makes the path tracker also
consider these constraints. This is done in a two-step manner,
where the first step is to find the optimal steering curvature,
using the road model as a constraint. The second step is using
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Fig. 2: Definitions of error for rear and front wheels. Vehicle
with solid lines is the actual vehicle, while vehicle with dotted
lines is the reference vehicle.

a controller to track the circular path. It is claimed that this
solves the difficulties of tuning look ahead distance, but the
cost is a more complex method.

In this paper, we compare two path following controllers to
select the one that has best performance for our application.
The first controller is based on [14] and is originally made for
unicycles, but modified in this paper for Ackermann vehicles.
The second controller is the Stanley controller [15], used by
the Stanford team to win the DARPA Grand Challenge in
2005 [16]. The same software and tuning parameters for the
vehicle were used in the experiments to find out how robust
the software is to changing conditions, and to compare how
the two different controllers perform in two very different
conditions.

II. MODEL

This section describes two different control methods for
path following that have been tested on Olav. The first control
method is based on [14], and has a feed forward component.
This controller uses the reference vehicle speed and steering
angle as a nominal setpoint, and uses the difference between
the actual and reference vehicle as errors in the feedback
component of the controller. The second controller is based
on the Stanley controller used by the Stanford team that won
the DARPA Grand Challenge in 2005 [16].

A. Vehicle model

The path following is done by steering towards a reference
vehicle that is placed on the trajectory. Throughout this paper,
we will be using three frames for defining the position and
orientation of the reference and current vehicle positions, and
errors used in the controllers. The fixed world frame is denoted
with a superscript W and is defined as a Cartesian East,
North, Up (ENU) system. Then there are two frames fixed
to the reference vehicle, both Cartesian Front, Left, UP (FLU)
systems, where the first frame Rf has its origin at the ground
between the front wheels and the second frame Rr has its
origin at the ground between the rear wheels.

The errors between Olav and the reference vehicle, i.e.
lateral error ye, longitudinal error xe, heading error θe and
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steering error γe, showed in Figure 2. The first control method
in this paper is based on a rear wheel model, i.e. all the errors
are computed from the reference vehicle’s rear axle, i.e. in
the Rr frame. The rear wheel model is shown in Figure 2a.
The second controller is based on a front wheel controller,
i.e. all the errors are computed from reference vehicle’s front
axle, i.e. in the Rf frame. The front wheel model is shown in
Figure 2b.

The reference vehicle’s position is moved along the trajec-
tory in front of Olav’s position. When it is slippery and the
vehicle is understeering, as when it is winter, we want to start
turning before the vehicle is in the corner. This can be done in
two ways; use feed forward on the steering angle, or pushing
the reference vehicle further ahead along the trajectory from
Olav.

B. Trajectory representation and generation

1) Representation: The trajectory is represented as a dis-
crete set of positions, heading and nominal control inputs. The
kinematic model of the vehicle is used to calculate positions
and headings at every point on the trajectory. We use the rear
axle as the basis for the kinematic model, and the model is
given by

ẋ = v cos θ (1a)
ẏ = v sin θ (1b)

θ̇ =
v

L
tan γ (1c)

where x and y are the vehicle’s position in the world frame,
θ is the vehicle’s orientation in the world frame, v is the
vehicle’s speed measured in vehicle’s body frame and γ is
the vehicle’s steering angle control input. L is the distance
between the vehicle’s front and rear axle. Each point in of the
trajectory is defined by the vector qi = [xi yi θi vi γi si]

T ,
where xi, yi and θi are the state vector of the kinematic model,
vi and γi are the nominal control inputs, and si is for how
long this trajectory point should be used before using the next
trajectory point. We assume that the nominal control input v
and γ are constant in the time frame defined by si.

Based on the assumption we can solve the differential
equation for θ̇, as it has a constant value on the right side.
This yields

θ(s) = θi +
(vi
L

tan γi

)
s = θi + kθs s ∈ [0, si〉 (2)

We can now insert this into the two other differential equations

ẋ = vi cos (θi + kθs) (3a)
ẏ = vi sin (θi + kθs) (3b)

Expanding cos and sin in order to separate the constant and

time varying parts and integrating the equations yields

x(s) = xi + vi

(
cθi
kθ

sin kθs+
sθi
kθ

cos kθs−
sθi
kθ

)
(4a)

y(s) = yi + vi

(
sθi
kθ

sin kθs−
cθi
kθ

cos kθs+
cθi
kθ

)
(4b)

where s ∈ [0, si〉, cos θi is denoted cθi and sin θi is denoted
sθi . When the assumptions are met, the solution above is an
exact solution to the continuous kinematic model.

The index i of the trajectory point qi is increased by one
when the s exceeds si. Then also s has to be set to zero. The
relationship between the current time t and s at index i is

s(t, i) = t−
i−1∑
j=0

sj (5)

2) Generating a trajectory: A trajectory can be generated
by using a motion planner algorithm or measured positions,
heading and steering angle. In a real world scenario, a motion
planner algorithm will be preferred. But in this case, we
want a benchmark track and we want to record the trajectory
in advance and reuse the exact same trajectory many times.
Therefore, to make the trajectory more realistic, a trajectory
is generated from the measured trajectory.

The measured trajectory is recorded with an INS. For our
application, this typically results in a track with a distance
between each position of less than 1 cm. Since the position
measurements are influenced by noise, the track is resampled.
This results in fewer positions with a larger distance between
each position. To generate a trajectory, the positions is con-
verted from global positions, i.e. latitude and longitude, into
local positions in a flat earth plane. After the positions are
converted, the track is resampled into I + 1 samples, with
one sample for each meter. The heading in each point of the
track is the tangent of the track, and the steering angle is the
heading rate, i.e. the angular velocity. Both is computed from
the positions. The vehicle’s speed is computed as a cosine
function of steering angle. When driving straight forward, the
speed is at maximum, and when driving in steep corners, the
speed is at minimum. The reference vehicle’s heading, steering
angle and velocity is computed by:

θi =


arctan2(yi+1 − yi−1, xi+1 − xi−1), 0 < i < I

arctan2(yi − yi−1, xi − xi−1), i = I

arctan2(yi+1 − yi, xi+1 − xi), i = 0

(6a)

γi =

{
arctan2

(
L(θi+1 − θi), yi+1−yi

xi+1−xi

)
, 0 ≤ i < I

0, i = I
(6b)

vi =


1
2

(
cos
(
π γi
γmax

)
+ 1
)

· (vmax,straight + vmax,corner)

+vmax,corner, 0 ≤ i < I

0, i = I

(6c)
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where x is a position in east direction and y is a posi-
tion in north direction. L is the axle distance, vmax,straight
is the maximum speed when driving straight forward and
vmax,corner is the speed when the steering wheel is at maxi-
mum position.

C. Low-level controller

The speed of the vehicle is controlled with the throttle
as the control signal in a PI controller. The desired speed
is the input/setpoint to the controller; the current speed is
the feedback. We also add an element from a feed forward
controller taking the pitch and speed of the vehicle into
consideration [17]. The feed forward element improves the
vehicle ability to maintain its speed in the terrain, removing
jerky or oscillating speed variations.

Steering is controlled using a PID controller with feedback
from a position/rotation sensor on the steering column and de-
sired steering wheel angle as setpoint. The steering controller
gets the setpoint from the path following controller. Figure 3
shows a block diagram of the controllers involved in speed
and steering control of the vehicle.

D. Morin controller

Our first controller is based on a controller found in [14]
where the controller tracks a reference vehicle with the same
kinematics. Since our vehicle does not control the steering
rate, but rather the steering angle directly, we use a simplified
bicycle model for trajectory control, and modify this to be able
to use the linearized unicycle control scheme given in Chapter
34.4.2 in [14].

The kinematic model for our system is given in (1) where v
is the commanded velocity and γ is the commanded steering
angle, both sent as input to the low-level controller. The state
variables [x y θ]T are the position and heading of the vehicle,
and L is the distance between the front and back axels. The
model is simplified by linearizing tan(γ) around zero, which
yields γ. As the steering angle range is small (0.5 rad) this
yields only a minimal error. The new kinematic model for the
heading is

θ̇ =
v

L
γ (7)

Using γ̃ = v
Lγ yields the same model as a unicycle.

The reference vehicle has the same kinematics, denoted by
a subscript r. The error dynamics are derived in [14] using
the reference vehicle frame, and are found to be

ẋe = γ̃rye + v cos(θe)− vr (8)
ẏe = −γ̃rxe + v sin(θe) (9)

θ̇e = γ̃ − γ̃r (10)

where subscript e denotes errors. xe represents how far
the vehicle is behind the reference vehicle, ye represents
the off track error and θe represents the heading error (i.e.
θ−θr). Using the following change of coordinates and control
variables

z1 = xe (11)
z2 = ye (12)
z3 = tan(θe) (13)
w1 = v cos(θe)− vr (14)

w2 =
γ̃ − γ̃r

cos2(θe)
(15)

yields the system

ż1 = γrz2 + w1 (16)
ż2 = −γrz1 + vrz3 + w1z3 (17)
ż3 = w2 (18)

In [14] the following non-linear controller is proposed and
shown to give a globally asymptotically stable system

w1 = −k1 |vr| (z1 + z2z3) (19)
w2 = −k2vrz2 − k3 |vr| z3 (20)

Linearizing this system yields a more intuitive controller
that is easier to tune. This is done in [14] and yields the
controller

w1 = −k1 |vr| z1 (21)
w2 = −k2vrz2 − k3 |vr| z3 (22)

This controller locally asymptotically stabilizes the origin
of the system. The controller is designed so that tuning the
controller with vr = 1 and γr = 0 gives good results for all
other velocities.

In the unicycle case the control variables can be approxi-
mates to w1 ≈ v − vr and w2 ≈ γ̃ − γ̃r near the origin. In
our bicycle case the relationship is not so straight forward.
Expanding w2 yields

w2 =
vγ − vrγr
L cos2(θe)

(23)

Around the origin cos2(θe) will be one. In our application it
is not important for the vehicle to keep up with the reference
vehicle, we rather set the reference vehicle on the trajectory
so that xe ≈ 0. When doing so we can set k1 = 0 and this
implies that v = vr. Inserting this into the above equation
yields

w2 =
vr
L

(γ − γr) = kγ(γ − γr) (24)

We now have almost the same relation as in the unicycle
case. Inserting the controller w2 into the above equation and
rearranging to find γ yields

γ = γr −
k2
kγ
vrye −

k3
kγ
|vr| tan(θe) (25)

γ = γr − kyvrye − kθ |vr| tan(θe) (26)
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Fig. 3: Complete block diagram for the Morin et. al. controller

Embedding kγ into the control gains yields the same
equation as in the unicycle case. In this controller, γ is non-
clamped steering angle setpoint, γr is the feed forward steering
component computed by the trajectory generator. ye is the
cross-track error and θe is the heading error. ky and kθ are
gains, where ky is the cross-track gain and kθ is the heading
error gain. To prevent that the vehicle is driving faster than
allowed or turn the steering wheels more than it can, the
steering angle and speed setpoints are clamped by:

uv =


v, 0 < v < uv,max

uv,max, v ≥ uv,max
0, v ≤ 0

(27a)

uγ =


γ, |γ| < uγ,max

uγ,max, γ ≥ uγ,max
−uγ,max, γ ≤ uγ,max

(27b)

The complete block diagram for this controller, including
the low-level controllers is shown in Figure 3.

E. Stanley controller

The Stanley controller is based on [15]. In this case we
use the same velocity controller as for the modified Morin
controller, i.e. use the reference vehicle’s velocity directly as
the control output (v = vr where vr is computed by (6c)).
The steering controller is given by:

γ = (θe − θss) + arctan

(
kyye

vm + kv0

)
+ kω (ωm − ωr)

+ kγ (γm(i− 1)− γm(i)) (28)

The Stanley controller is a front wheel controller. This
results is that the cross-track error is computed between the
vehicle’s front axle and the reference vehicle’s front axle,
as shown in Figure 2b. The vehicle’s heading and reference
vehicle’s heading is the same for both a rear wheel model and
a front wheel error.

The controller consist of mainly two terms, one that ensures
the correct heading in corners, i.e. zero heading error θe, and
one that prevents cross-track error, i.e. zero cross-track error

ye. To ensure a smooth and stable transition from a large cross-
track error, the cross-track error is placed inside an arctan
function. The result is that the steering angle from a large
cross-track error newer will exceed ±π rad. The cross-track
error is scaled with the vehicle’s measured speed vm and a
gain ky . To prevent numerical instability when the speed is
low, a constant kv0 is added to the vehicle’s speed.

In addition to compensating for heading error, i.e. θe, the
controller also compensating for extra heading caused by
oversteering in a corner, θss. The steady state heading is
computed by using the sums of forces and moments on the
tires.

When the speed increases, the damping effect from the tires
in corners diminishes. This causes the vehicle to oversteer. To
prevent this, the term kω (ωr − ωm) is added, where ωr is the
reference vehicle’s yaw rate, ωm is the measured yaw rate and
kω is a gain. The final term compensates for time delay in the
steering servo. The term kγ (γm(i)− γm(i− 1)), where γm(i)
is the measured steering angle at discrete time i, γm(i − 1)
is the previous measured steering angle at discrete time i− 1
and kγ is a gain.

We have done some small modifications to the controller in
(28). Our maximum velocity is 6 m/s. Most of the terms in
(28) are to mitigate high speed dynamics. Therefore, θss and
kω are set to zero. To have the possibility to lower the impact
of heading error, we have added a gain, kθ, to the heading
error, θe. Our steering controller becomes

γ = kθθe + arctan

(
kyye

vm + kv0

)
+ kγ (γm(i− 1)− γm(i)) .

(29)
where the steering setpoint is clamped by (27).

When it is slippery conditions, the vehicle will understeer
because it starts to turn the steering wheel too late. The head-
ing error and cross-track error will become large. If the corner
is steep, the steering angle will usually be maximum and the
vehicle will not be able to manage the corner. The solution
to this is to start turning before the vehicle is in the corner.
With the Morin, this is done by having the reference vehicle’s
steering angle as a feed forward. The Stanley controller does
not use steering angle at all. One approach is therefor to push
the reference vehicle further in front of the vehicle. When the
vehicle is driving fast, the vehicle has to start turning earlier
than when the vehicle is driving slowly. This can be done by
pushing the reference vehicle forward by

xe = ktvr, (30)

where kt is the time delay from when we want to turn the
vehicle when it actually starts to turn.

III. EXPERIMENTS

To compare the two controllers, a trajectory is created
by driving the track manually first. The recording was done
during winter conditions and Olav was equipped with belts,
see Figure 4a. The trajectory is shown in Figure 5 and is
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approximately 700 m long. The trajectory was recorded with
an INS using a Honeywell HG9900 Inertial Measurement Unit
(IMU) and a Trimble SPS855 GNSS receiver. The INS system
NavLab [18] gives a trajectory with a position accuracy of less
than 0.3 m and a heading accuracy of less than 0.01◦ using
the descibed sensors. The vehicle’s velocity and steering angle
is also recorded. The trajectory was recorded in wintertime.
Since this trajectory is based on real measurements, we have
the opportunity to use the modified Morin controller with
real steering and velocity as feed forward. But in a real
autonomous system, the trajectory would be generated with
a motion planner algorithm. The trajectory is generated by
resampling the positions, and computing the heading, steering
angle and velocity based on (6).

To compare the two methods, we have done three ex-
periments in winter conditions and repeated the same three
experiments in summer conditions (with the same tuning
parameters):

1) Modified Morin with measured trajectory as input
2) Modified Morin with resampled trajectory and generated

heading, steering angle and velocity
3) Stanley with resampled trajectory and generated heading

and velocity

In the first experiment, we use the modified Morin controller
with real world measured positions and feed forward values.
This gives the controller an unfair advantage, since in real
world applications; the trajectory and feed forward values
would be generated. Therefore, in the second experiment,
we use the same controller with resampled trajectory and
generated values for steering for the feed forward control. The
third experiment uses the Stanley controller with resampled
trajectory and generated values for heading and velocity. The
three controllers were tested 5 times each in both winter and
summer conditions.

During the winter experiment, the path along the trajectory
was covered in about 25 cm of fresh snow with some
tracks from other military vehicles, see Figure 4a. Every run
with Olav created a track in the snow and the vehicle was
sometimes caught in tracks from other vehicles or previous
runs. In winter conditions, we ran Olav with belts in 4WD
with differential locks on both front and rear differential. This
causes a lot of understeering since all the belts are forced to
have the same speed. In summer conditions, the path was quite
muddy after a lot of rain, see Figure 4b. We ran Olav in 2WD
without differential lock to reduce understeer.

The Morin controller had the following parameters in both
experiments: kx = 0, ky = 0.035 and kθ = 0.2. By setting
kx = 0, the vehicle will only drive as fast as the reference
vehicle.

The Stanley controller had the following parameters: kθ =
0.5, ky = 1.0, kv0 = 2.0, kγ = 1.0 and kt = 0.4 s. By setting
kt to 0.4 s, the reference vehicle will be 2 m ahead of Olav
when driving at maximum speed at 5 m/s, and 0.8 m ahead
when of Olav when driving in corners at 2 m/s.

(a) Winter conditions. (b) Summer conditions.

Fig. 4: The track in winter and summer conditions.

A. About the vehicle

The experiment vehicle, Olav, is a Polaris Ranger 900
EPS with automatic transmission, electronic fuel injection
and electric power steering that has been modified for au-
tonomous driving. The vehicle has been fitted with an indus-
trial Programmable Logic Controller (PLC) from WAGO to
read sensor data and generate control signals. The PLC is
connected to a computer that runs the low-level controllers
and the path following controllers. During the experiments, the
computer was running Linux 16.04 and the software was using
ROS Kinetic1. In autonomous mode, the speed is controlled
by sending a generated throttle signal to the electronic fuel
injection system. The steering angle is controlled by creating
a fake torque sensor signal to the electric power steering. Gear
change is done by a linear actuator moving the gear lever, and
brakes are applied using a linear actuator pulling the brake
pedal using a cable. All actuators are controlled through the
PLC. The vehicle can either be operated as a normal vehicle by
a driver, or by flicking a switch, be controlled by the controller
computer through the PLC and actuators.

The low-level controllers for velocity and steering are
implemented using the ROS control toolbox’s2 propor-
tional–integral–derivative (PID) controller. Positive values
from the PID controller result in a throttle effort and negative
values a brake effort. The throttle effort is zero when braking,
and the brake effort is zero when throttle is applied. The
parameters for the PID velocity controller is P = 35, I = 4
and D = 0. In addition, we have a clamping in the integration
term when it reaches 40. Throttle effort goes from 0 to 100
while the brake effort is from 0 to 80. The throttle effort is
converted to a voltage sent to the ECU by a digital-to-analog
converter (DAC) in the PLC and the brake effort is converted
to a pulling force for the linear actuator. The vehicle’s steering
angle is controlled by generating a fake torque signal to the
electrical power steering. The steering angle is measured with
a potentiometer on the steering column. The value from the
potentiometer is converted in the PLC by a 16-bit analog-to-
digital converter (ADC). The values from the PLC for max left,
center and max right steering angles were decided empirically.
The parameters for the PID steering controller are P = 156,
I = 520 and D = 11.7. In addition, we have a clamping in

1https://wiki.ros.org/kinetic
2https://wiki.ros.org/control toolbox
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Fig. 5: The trajectory we want to follow. The trajectory is
divided into two interesting parts, a sharp bend in red and a
straight path in blue.

the integration term when it reaches 1000. The value from the
steering PID goes from -3000 to 3000 and is converted to the
fake torque signal to the electronic power steering by a DAC
in the PLC. Both controllers run at 50 Hz.

IV. RESULTS

The path following can be divided into two parts, the first
is how well the vehicle follows a trajectory in sharp bends,
and the second is how well the vehicle follows a straight
path. In the following results, we are only concentrating on
those parts. The sharp bend is marked in red and a straight
path is marked in blue in Figure 5. Each controller has been
tested five rounds of the trajectory in both winter and summer
conditions. We need to compute the actual cross-track error
from the same position on the vehicle so the two controllers
can be compared. In the following comparison, all cross-track
errors are computed from the center of the rear axle and to the
nearest position on the trajectory as in Figure 2a. The cross-
track error is computed with use of n-vectors3 [19] since the
INS gives us a global position in latitude and longitude and
the trajectory is measured in latitude and longitude.

A. Trajectory tracking in a sharp bend

Figure 6 shows the cross-track error at the sharp bend. Each
of the three controllers have been tested five times in both
winter conditions (to the left) and summer conditions (to the
right). As the Figure shows, the modified Morin controller
with real measurements as feed forward has the smallest cross-
track error in the wintertime. However, the same controller
has much larger errors in summer conditions. This is because
the controller uses feed forward from real measurements and
the trajectory was recorded in winter conditions where the
vehicle understeered in every corner. Another observation is

3https://www.navlab.net/nvector/#example 10
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Fig. 6: Cross-track error at the sharp bend in both winter (to the
left) and summer (to the right) conditions. The x-axis shows
the distance along the trajectory.

that the modified Morin controller and the Stanley controller
with resampled trajectory have almost the same cross-track
error.

Figure 7 shows a box plot of the five attempts concatenated
into one time series for each controller. The blue boxes
indicate the 25th and 75th percentiles, and the red central mark
indicates the median. The whisker indicate the minimum and
maximum cross-track error. The Figure shows that modified
Morin with original trajectory has the smallest error in winter
conditions, but it has the largest errors in summer time. The
modified Morin with resampled trajectory and Stanley have
almost the same performance.

To compare the controllers, the mean of root-mean-square-
error (RMSD) and mean of standard deviation (STD) over
all attempt is computed. The mean of RMSD tells the mean
cross-track error for each controller. The mean of STD tells
the deviations of the attempts, and therefore the repeatability
of the controllers. The mean RMSD is computed by

mean(RMSD) =
1

I

I∑
i=0

RMSD(i) (31)

where i ∈ [0, N−1] is a position at the trajectory. The RMSD
at a single position at the trajectory is computed by

RMSD(i) =

√√√√ 1

K

K∑
k=1

y2e(k, i) (32)

where there are k is attempts (K = 5) and ye(k, i) is the
cross-track error at position i at attempt k. The mean STD is
computed by

Dette er en postprint-versjon/This is a postprint version.  
DOI til publisert versjon/DOI to published version: 10.1109/ICMRE51691.2021.9384830 

https://www.navlab.net/nvector/#example_10


Ctrl 1 Ctrl 2 Ctrl 3
-4

-3

-2

-1

0

1

2
C

ro
ss

 T
ra

ck
 E

rr
or

 [m
]

Winter Conditions

Ctrl 1 Ctrl 2 Ctrl 3
-4

-3

-2

-1

0

1

2

C
ro

ss
 T

ra
ck

 E
rr

or
 [m

]

Summer Conditions

Fig. 7: Box plot of the cross-track error at the sharp bend in
both winter (to the left) and summer (to the right) conditions.
Ctrl 1 is the modified Morin controller with original trajectory.
Ctrl 2 is the modified Morin controller with resampled and
generated trajectory. Ctrl 3 is the Stanley controller with
resampled trajectory.

mean(STD) =
1

I

I∑
i=0

STD(i) (33)

where i ∈ [0, N − 1] is a position at the trajectory. The STD
at a single position at the trajectory is computed by

STD(i) =

√√√√ 1

K − 1

K∑
k=1

(ye(k, i)− ȳe(i))2 (34)

where ye(k, i) is the cross-track error at position i and attempt
k and ȳe(i) is the mean of cross-track error to attempts in the
same position.

Table I shows mean RMSD and mean STD for the three
controllers at the sharp bend in both winter and summer
conditions. As the table shows, the Morin controller with
original trajectory has the lowest mean RMSD and mean STD
during winter conditions. This is not a surprise, since the
controller has a advantage of using the actual measurements
as feed forward in the controller. On the other side, the same
controller has the largest mean RMSD during summer time.

B. Trajectory tracking at a straight path

Figure 8 shows the cross-track error at the straight path.
Each of the three controllers have been tested five times in
both winter conditions and summer conditions.

Figure 9 shows a box plot of the five attempts concatenated
into one time series for each controller. The blue boxes
indicate the 25th and 75th percentiles, and the red central mark

TABLE I: Summary of the sharp bend in both winter and
summer conditions. Both Morin controllers are the modified
ones. The columns mRMSD show the mean RMSD from (31)
and the columns mSTD show the mean RMSD from (33)

Winter Summer
Controller mRMSD mSTD mRMSD mSTD
Morin
Original 0.171 m 0.012 m 0.183 m 0.011 m

Morin
Resampled 0.205 m 0.017 m 0.170 m 0.043 m

Stanley
Resampled 0.180 m 0.014 m 0.109 m 0.007 m
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Fig. 8: Cross-track error at the straight path in both winter
(to the left) and summer (to the right) conditions. The x-axis
shows the distance along the trajectory.

indicates the median. The whisker indicate the minimum and
maximum cross-track error.

Table II shows mean RMSD and mean STD for the three
controllers at the straight path in both winter and summer
conditions.

C. Whole track

Figure 10 shows the cross-track error at the whole trajectory.
Each of the three controllers have been tested five times in both
winter conditions and summer conditions.

Table III shows mean RMSD and mean STD for the three
controllers at the whole trajectory in both winter and summer
conditions.

V. DISCUSSION

From the results we can see the modified Morin controller
preforms really well on the recorded trajectory with “real”
recorded values for heading, steering angles etc. when it is
used in similar conditions as when recorded. When the same
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Fig. 9: Box plot of the cross-track error at the straight path in
both winter (to the left) and summer (to the right) conditions.
Ctrl 1 is the modified Morin controller with original trajectory.
Ctrl 2 is the modified Morin controller with resampled and
generated trajectory. Ctrl 3 is the Stanley controller with
resampled trajectory.

TABLE II: Summary of the straight path in both winter and
summer conditions. Both Morin controllers are the modified
ones. The columns mRMSD show the mean RMSD from (31)
and the columns mSTD show the mean RMSD from (33)

Winter Summer
Controller mRMSD mSTD mRMSD mSTD
Morin
Original 0.377 m 0.020 m 0.390 m 0.008 m

Morin
Resampled 0.567 m 0.018 m 0.351 m 0.025 m

Stanley
Resampled 0.453 m 0.011 m 0.274 m 0.007 m

TABLE III: Summary of the whole trajectory both winter and
summer conditions. Both Morin controllers are the modified
ones. The columns mRMSD show the mean RMSD from (31)
and the columns mSTD show the mean RMSD from (33)

Winter Summer
Controller mRMSD mStd mRMSD mStd
Morin
Original 0.273 m 0.041 m 0.273 m 0.011 m

Morin
Resampled 0.389 m 0.051 m 0.215 m 0.008 m

Stanley
Resampled 0.307 m 0.019 m 0.163 m 0.004 m

Fig. 10: Cross-track error at the whole trajectory in both winter
(to the left) and summer (to the right) conditions. The x-axis
shows the distance along the trajectory.

recorded trajectory is played back in different conditions, the
controller does not perform that well on recorded data.

In a real world scenario on an autonomous mission, it
is unlikely that the vehicle would have access to recorded
trajectory data from similar track conditions. Instead the
trajectories would be generated from some kind of motion
planning software taking sensor data, terrain data, map data etc
as inputs. The “true” steering angles that the modified Morin
controller need to track the trajectory well, will wary with the
driving conditions and the vehicle dynamics. With a vehicle
that changes its dynamics with the seasons (belts/wheels) and
mission (heavy load/ no load) and driving conditions changing
within the seasons and terrain, this becomes an impossible
challenge for the motion planner, and the modified Morin
controller performance will be very variable and unpredictable
for generated/resampled trajectories. From the results in Chap-
ter IV we can see that the modified Morin controller is
outperformed by the Stanley controller that we will discuss
next.

The Stanley controller uses another approach than the
modified Morin controller. It does not use steering angle
information from the trajectory. This results in an easier
trajectory to generate and less data in the trajectory. The results
in Chapter IV shows that the Stanley controller performs better
that the modified Morin controller on the generated/resampled
trajectory in both winter and summer conditions. For off-
road driving where the terrain and driving conditions are
guaranteed to change a lot, and with a vehicle that will
change its dynamic properties between missions, it is of great
benefit to use a path following controller that is robust to
changes in these properties. The results show that the Stanley
controller performs better that modified Morin controller with
the same trajectory data under very different conditions and
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vehicle dynamics, showing that it is more robust to changing
conditions and are more suited for off-road driving.

VI. CONCLUSION

The main goal was to find a robust path following con-
troller that performs well in in the challenging and varying
conditions. The controller has to be robust, not only to
changes in the driving conditions, but also to changes in the
vehicle dynamics. The modified Morin controller performs
well with recorded trajectory and steering inputs when used
in similar conditions as when recorded. The controller does
not perform as well with generated trajectory and steering
inputs. To generate the trajectory and steering inputs to make
the modified Morin controller perform well, will require a
high degree of knowledge about driving conditions and vehicle
dynamics which is very difficult in off-road driving and with
varying vehicle dynamics. The Stanley controller needs less
information in the trajectory data and is shown to be more
robust against variations in driving conditions and vehicle
dynamics. It performs better than modified Morin controller on
generated trajectories in both winter and summer conditions.

We have found the Stanley controller to be robust and
it works well for our vehicle, Olav, in both winter and
summer conditions with different vehicle configurations and
challenging driving conditions.
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