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Summary 

This report describes the algorithms used for processing ballistic radar data at the Norwegian 
Defence Research Establishment (FFI). A ballistic radar measures the velocity history of 
projectiles. This is used to determine the drag coefficient (CD) of the projectile, which in turn is 
used in ballistic trajectory simulations. 

The given radar data is primarily radial velocity data. These data are first smoothed and parallax 
corrected. A tangential velocity history is then calculated by assuming a ballistic trajectory, given 
an elevation, wind and possibly secondary aerodynamic forces. 

Given the tangential velocity history, together with meteorological information, a drag coefficient 
(CD) is determined. After smoothing, this results in a CD versus Mach number curve. 

The obtained CD function is checked by comparing a simulated radial velocity history with the 
corresponding measured one. 

The report also describes a method used at FFI to determine the ballistics of ricochets from 
radar measurements and a method for processing spin measurements. 

The algorithms are implemented in an in-house code called Weibelwin (programmed in C#). 
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Sammendrag 

Denne rapporten dokumenterer algoritmene som brukes for behandling av ballistiske radardata 
ved Forsvarets forskningsinstitutt (FFI). En ballistisk radar måler hastigheten på prosjektiler. 
Dette brukes til å bestemme dragkoeffisienten (CD) til prosjektilet, som igjen brukes i ballistiske 
banesimuleringer. 

De gitte radardataene er i første rekke radiell hastighet. Disse glattes og parallakse-korrigeres. 
Tangentiell hastighet beregnes deretter ved å anta en ballistisk bane, gitt elevasjon, vind og 
eventuelle sekundære aerodynamiske koeffisienter. 

Gitt den tangentielle hastigheten og meteorologiske data bestemmes dragkoeffisienten (CD). 
Etter glatting resulterer dette i en kurve over CD som funksjon av machtall.  

Den beregnede CD-funksjonen kontrolleres ved å sammenlikne simulert radiell hastighet med 
tilsvarende målte data. 

Rapporten beskriver også en metode brukt ved FFI for å bestemme ballistikken til rikosjetter ut 
fra radarmålinger samt en metode for å prosessere spinnmålinger. 

Algoritmene er implementert i en intern kode kalt Weibelwin programmert i C#. 
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Symbol list 

 

0X


 Position of the muzzle exit 

( )X t


 Position of the projectile at time t 

RX


 Position of the radar 
g  Acceleration of gravity 

U


 Tangential velocity vector of the projectile 

rU


 Radial velocity projectile as seen from the radar 

W


 Wind vector (in the direction of blowing) 
V


 “Aerodynamic velocity”, V U W= −
  

 
re  Unity vector in the direction from the radar to the projectile 

Ue  Unity vector along the tangential velocity vector 

Ve  Unity vector along the aerodynamic velocity vector 

Me , Le  Unity vectors along the Magnus force and lift force, respectively 

θ  Trajectory tangent angle with the horizontal plane 
ϕ  Angle between the horizontal and the radial velocity vector 
φ  Latitude (positive on northern hemisphere) 

α  Angle between the horizontal plane and the aerodynamic velocity vector V


 
Rα  Yaw of repose (average or equilibrium yaw angle) 

β  Angle between U


 and V


 
γ  Angle between the launcher and the radar as seen from the projectile 

0θ  Elevation at launch (positive up) 

0ψ  Azimuth at launch (positive to the right) 
ρ  Air density 

R  Distance between radar and projectile 
D


, M


, L


 Drag force, Magnus force and lift force vectors, respectively 
DC , magC , LaC  Coefficients of drag force, Magnus force derivative and lift force derivative 

maC  Coefficient of overturning (or “static pitch”) moment derivative 

Λ


 Coriolis specific force vector 
, ,L L Lx y z∆ ∆ ∆  Position of the launcher relative to the radar 

p , lpC , ldC  Spin rate (rad/s), Spin damping coefficient, spin driving coefficient 

m,  d, xI  Mass, diameter and axial moment of inertia of projectile 

S Reference area, usually the cross-sectional area 
2

4
dS π

=  
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1 Introduction 

A ballistic radar measures the trajectory of projectiles by measuring the Doppler velocity of the 
projectile. That is, the radial velocity component as seen from the radar. This can be used to 
calculate the true velocity history, which in turn can be used to determine the drag coefficient 
(CD).  

The Norwegian armed forces uses a ballistic radar from Weibel Scientific. It is a tracking radar, 
that is, the direction of the radar beam is following the projectile, keeping it in the main lobe 
during the whole trajectory. The tracking radar from Weibel also measures angles (elevation and 
azimuth), but these data are not used in the determining of drag coefficient, since the quality of 
the data is varying. 

This report documents the algorithms used in an in-house code used at FFI, called Weibelwin. 
The purpose of this program is to convert radar measurements into useful ballistic information, 
primarily the drag coefficient (CD). 
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2 Overview  

The main procedure in the above mentioned FFI program Weibelwin is: 

1) The input data are the radial velocity measurements versus time from launch. These 
data points have to been smoothed before further processing. This is done by a “least-
square” fitting of the radial data. 

2) The true velocity vector is calculated from the radial velocities through a point mass (or 
modified point mass) simulation, given the gravity acceleration, the assumption of 
ballistic trajectory (or “near-ballistic” trajectory) and the elevation. The wind is also 
taken into account. The result is the true (tangential) velocity vector. 

3) Given the smoothed tangential velocity history, the gravity vector and the 
assumed/measured meteorological data during test, the drag coefficient (CD) is found 
from the equations of motion. 

4) The CD curve is smoothed if needed, and plotted against e.g. Mach number. 

5) The correctness of the resulting CD curve is checked by making a simulation of the 
measured shot with the resulting CD and using the same weather conditions as in the 
test. The simulated radial velocity should not differ significantly from the measured 
ones. 
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3 Point mass simulation from measured radial 
velocities – 2D method 

What is measured by the radar is the radial velocity as seen from the radar. With the Weibel 
tracking radar, the elevation and azimuth angles are also measured, but these angles are not used 
in the present method, other than for control. 

In the 2D method, the trajectory is assumed to lie in a vertical plane, xy-plane, with the launcher 
at the origin. Sideways drift (side wind or spin drift) is ignored. 

 
Figure 3.1 Trajectory in 2D with range wind, with forces (yellow) and velocities (red). The 

launcher is at the origin. 

 

3.1 Parallax correction 

In this 2D method, we assume that the measured radial velocity is “parallax corrected”, that is, 
corrected to the radial velocity as seen from the muzzle (“launcher”). This is done by (3.1): 

cos

measured
corrected r
r

UU
γ

=      (3.1) 

rU


U


ϕ θ

V


X

α

β

Y

M


g

W

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Here, γ  is the angle launcher – projectile – radar. With reference to Figure 3.2, this angle can be 
found by 

( )
sin L L U Ur r e e

R
γ

− ⋅
=
   

 ,   (3.2) 

where Lr


 is the vector from the radar to the (muzzle of) launcher, Ue  is a unit vector along line 
of fire, R is the distance to the projectile from the radar. 

 
Figure 3.2 Setup for calculating parallax correction 

In coordinates where the y-axis is the vertical, and the line of fire is given as elevation 0θ  and 
azimuth 0ψ , we have 

0 0

0

0 0

cos cos
sin

cos sin
Ue

θ ψ
θ

θ ψ

 
 =  
  



  and  
L

L L

L

x
r y

z

∆ 
 = ∆ 
 ∆ 



   , (3.3) 

giving 

( ) ( ) ( )2 2 2
0 0 0 0 0

0 0 0 0 0

cos cos sin cos sin
sin

where cos cos sin cos sin

L L L

L L L

x k y k z k
R

k x y z

θ ψ θ θ ψ
γ

θ ψ θ θ ψ

∆ − + ∆ − + ∆ −
=

= ∆ + ∆ + ∆

 (3.4) 

Launcher

Radar
Ue

L L Rr X X= −
 



γ
R

( )L L U Ur r e e− ⋅
   
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If the x-axis is along the line of fire ( 0 0ψ = ), as it usually is, this is reduced to (after some 
calculations): 

( ) ( )2 2
0 0sin cos

sin L L Lx y z
R

θ θ
γ

∆ −∆ + ∆
= . (3.5) 

Further simplifications, if the weapon is not elevated ( 0 0θ = ): 

( ) ( )2 2

sin L Ly z
R

γ
∆ + ∆

= . (3.6) 

The simplified situation is shown in Figure 3.3  

 
Figure 3.3 Setup for calculating parallax correction in case of horizontal firing and x-axis in 

line of fire 

The distance (“slant range”) R to the projectile from the radar is either measured directly, or 
integrated by the radar software. Otherwise, it can be integrated from the measured radial 
velocities. The accuracy of slant range is not crucial for the purpose of parallax correction. 

 

Launcher

Radar
Ls∆

γ
R

( ) ( )2 2y z∆ + ∆
Lx∆

Ue
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3.2 Equations of motion 

The equations of motion are, with reference to Figure 3.1: 

( )
( )

cos
sin

, arctan
cos

, , , , ,....

r

X U
Y U

U YU
X

f U W

θ

θ

ϕ
ϕ θ

θ θ ϕ ϕ

 =


=
   = =   −  

 =











 (3.7) 

with initial conditions 

0

(0) (0) 0
(0) (0)

X Y
θ ϕ θ

= =
 = =

 (3.8) 

The main input data is the measured parallax corrected radial velocity rU . 

The challenge in the case of non-zero wind is the determination of the rate of change of 
elevation θ , since the drag force is not parallel with the velocity vector. The Magnus force is 
also not longer perpendicular to the velocity vector.  

Derivation of formulas (3.9) and (3.10), valid with range wind (including vertical wind) in 2D, 
is shown in Appendix A.1. 

( )( ) ( ) ( )

( )( )

cos tan sin
cos

cos sin tan

rUM g U

U

β θ ϕ ϕ θ β
ϕ θ

θ
β β ϕ θ

 
− + + + − − =

+ −





  
(3.9) 

where M  is the specific Magnus force (force per unit mass) (optional), and β  and ϕ  are 
given by 

( )
2 2

sin

sin cos

y x x yU W U W
UV

U X Y
X Y

β

θ θ
ϕ

−
=


− = +



. (3.10) 
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In the case of no range wind ( 0β = ), the expression (3.9) is reduced to 

( )cosM g
U

θ
θ

−
=     (no wind) , (3.11) 

which can also be deduced directly from Figure 3.4. 

 
Figure 3.4 Trajectory in 2D without wind 

 

 

  

rU


U


ϕ θ

X

Y

M


cosg θ
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4 Point mass simulation from measured radial 
velocities - 3D method 

The most general method for integrating the measured radial velocities into tangential velocity 
and trajectory, shown below, admits both radar data measured from an off-centered radar and 
also side wind and spin drift (lift due to yaw of repose). 

The radial velocity rU  is measured. Given is the initial elevation 0θ  and azimuth 0ψ . Also 

given is the position of the radar RX


 from a chosen origin. In the following, a coordinate-free 

approach is used to calculate the true trajectory U


 from the measured rU , wind vector W


, 

(specific) lift-force L


 and (specific) Magnus force M


. 

 

 
Figure 4.1 3D trajectory (blue) with forces (yellow) and position and velocity vectors (red). 

These vectors need not be co-planar. 

 

RX X−
 

Launcher

Ue

re

Ve

V


U
W



g
L


M


D


Λ

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4.1 Equations of motion 

In this setting, the equations of motion are, considering Figure 4.1: 

( )

,

, , , , , , , , ,...

U

r R
r

U r R

U U r r

X Ue

U X XU e
e e X X

e F e e U U g W L M


=

 − = = ⋅ −


= Λ







 



 

 

 

  

 


, (4.1) 

with initial conditions 

0

0 0

0

0 0

(0)
cos cos

(0) sin
cos sin

U

X X

e
θ ψ

θ
θ ψ

 =

  
  =  
   

 



 . (4.2) 

The last equation assumes that the y-axis is the vertical axis. 

As in the 2D case, the challenge is the rate of change of the velocity direction, 
0

1

2

U

u
e u

u

 
 =  
  











.  

This vector has to be found by solving the linear system of equation (4.3), e.g. by LU-
factorization. The derivation is shown in Appendix A.2. 

0 0 0 1 0 2 1 2 0 1 2 0 0

0 1 2 0 1 1 1 2 1 0 2 1 1

0 2 1 0 1 2 0 1 2 2 2 2 2

cos cos
cos cos
cos cos

r u r v u r v u u f
r v u r u r v u u f
r v u r v u r u u f

β β γ β γ
β γ β β γ
β γ β γ β

− + − + + − − +     
     − − + − + − + + =     
     − + + − − + − +     







 (4.3) 

where 

0

1

2

U

u
e u

u

 
 =  
  



,   
0

1

2

R
r

R

r
X Xe r
X Xr

 
− = =  −  

 



  ,   
0

1

2

U
V

U

v
Ue We v
Ue Wv

 
− = =  −  











,  

cos U r
r

Ue e
U

γ = ⋅ =
 

 

(4.4) 

and 
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0 0 0 1 2 2 1

1 1 1 2 0 0 2

2 2 2 0 1 1 0

u v u v u v
u v u v u v
u v u v u v

β
β β

β

−       
       = = × = −       
       −       



, (4.5) 

The right hand side is given by 

( )( )`
cos cosr r

V M L
U U Uf g e Le M e

R U U
ϕ γβ

  −
= − + + Λ × + −  

  

  

   

, (4.6) 

where 

V y
L

V y

e e
e

e e
×

=
×

 



 

,    M L Ve e e= ×
  

,    RR X X= −
 

. (4.7) 

4.2 Calculation of aerodynamic forces 

If one wish to take into account the lateral forces (Magnus force and lift), coefficients for these 
have to be known, that is magC  and LaC , and also spin damping coefficient lpC  and overturning 

moment coefficient maC , at different Mach numbers. The simplest model for lift and Magnus 
force is the Modified Point Mass Model (MPM) as described in e.g. NATO STANAG 4355 or 
McCoy [1].  

In MPM, both lift and Magnus force depend on the spin p. This has to be numerically integrated 
throughout the trajectory. The equation of spin rate is 

2 3
21

2
1

4 8lp lp
x x

d pd dp V C V C p
I V I

π πρ ρ
 

= = ⋅ 
 


. (4.8) 

The yaw of repose Rα  is given by 

3 3

8 cossin x
R

ma

I g p
d V C

θα
πρ

⋅
= . (4.9) 
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The lift and Magnus force are then given by 

2
2

3 3
2

sin
8

sin sin
8 8

La R

mag R mag R

dL V C
m
d p dM V C V C p
m V m

π ρ α

π πρ α ρ α

=

= = . 
(4.10) 

It should be noted that the air density ρ  cancels out in the above equation (due to presence of  
ρ  in Rα ), and does not need to be evaluated for this purpose.  

The coefficients depend on the Mach number, and therefore the speed of sound, which in turn 
requires the air temperature. 

4.3 Calculation of Coriolis acceleration and gravity vector 

The Coriolis acceleration is given by 

( ) ( )2 2 UU UeΛ = ×Ω = ×Ω
   



, (4.11) 

where U


 is the projectile velocity and Ω


 is the rotation velocity vector of the earth. The latter 
is given by the latitude φ  and the firing direction from north Az , in a coordinate system with x-

axis along the line of fire and y-axis is the vertical axis at launch as: 
 

( )

( )

5

cos cos
sin , 7.29 10 rad/s

cos sin

Az

Az

φ
φ

φ

−

 
 Ω = Ω Ω = ⋅ 
  



. (4.12) 

The gravity vector is, taking the curvature of the earth into account, to first order, 

0

0

0

1 2

x

E

y

E

z

E

Xg
R

X
g g

R
Xg
R

 − 
 
  

= − −  
  

 
 −
  

 ,       66.356766 10 mER = ⋅ , (4.13) 

where the ground value of g is given by (h = altitude above sea level): 

( )( )2 6 -1
0 9.80665 m/s 1 0.0026373 cos 2 3.086 10 mg hφ −= ⋅ − ⋅ − ⋅ . (4.14) 
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4.4 Algorithm for 3D mass point simulation 

The formulas above can be put together in the following algorithm. 

The goal is to find the velocity vector, in particular the absolute value U which can be related to 
the measured radial velocity, but also the direction, given by elevation θ  and azimuth ψ . Also 
needed is the position at all times. 

Given a smoothed radial velocity history ( )rU t  as seen from the radar (or a parallax corrected 

radial velocity as seen from the launcher, by setting [ ]0,0,0 T
RX =


). 

Step 1: Calculate initial values of Ue  and re  by 

0 0

0

0 0

cos cos
(0) sin

cos sin
Ue

θ ψ
ψ

θ ψ

 
 =  
  



 (4.15) 

(0)(0)
(0)

R
r

R

X Xe
X X

−
=

−

 



   ,     if (0) 0RX X− ≈
 

, set (0) (0)r Ue e=
 

. (4.16) 

Step 2: Calculate tangential velocity U  and rate of change of radial velocity rU : 

r

U r

UU
e e

=
⋅

 

 (4.17) 

( ) ( )r r
r

U t t U tU
t

+ ∆ −
≈

∆
  (4.18) 

R
r

X Xe
R
−

=
 



 ,   where RR X X= −
 

 
(4.19) 

Step 3 (optional): Calculate the aerodynamic forces (lift L and Magnus force M) according to 
section 4.2. Start with updating the spin rate p from (4.8) and calculate the yaw of repose from 
(4.9). 

Step 4: With the given wind vector W


calculate Ue  by (4.3) to (4.7).  
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Step 5: Update Ue  from previous value based on Ue : 

( ) ( )U U Ue t t e t e t+ ∆ = + ⋅∆
  

     (4.20) 

Step 5: The position is updated by 

( ) ( ) ( )X t t X t U t t+ ∆ = + ∆
  

.    (4.21) 

Repeat from Step 2 until termination. 

The elevation and azimuth angles are given from 

( )
( )
1

2 0

arcsin

arctan2 ,

u

u u

θ

ψ

=


=
            where 

0

1

2

U

u
e u

u

 
 =  
  



 . (4.22) 
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5 Smoothing of radial velocity data 

The measured radial velocity is usually very dispersed, and a smoothed version is needed. The 
data should be parallax corrected in advance.  

5.1 Methods 

The measured flight time is divided into uniform intervals, with a chosen time step, e.g. 
0.01t∆ =  s, The time interval will be used in the mass point simulation described in section 3 

or 4, and therefore must be small enough for accuracy, but not too small for numerical errors. 

The measured data points are transformed to a new dataset by a least square (LS) fitting: 

( ) ( ), ,1 1
, ,rawN Nraw smoothed

i r i j r ji j
t U t U

= =
→  (5.1) 

At each time it , a given number of measurement points (typically 20 – 50) on each side of it  is 
chosen for the LS-fitting (symmetric fitting). At the next time 1it + , new points are chosen and a 
new fitting is made. The smoothed velocity at time it  is then given by the determined linear or 
quadratic fitting formula.  

Near the two ends, we have two options: 1) reduce the number of fitting points or 2) use an 
asymmetric fitting. The first option is tried first until a reasonable minimum number is reached, 
typically 10 – 20. Even closer to the muzzle or end of trajectory, asymmetric number of fitting 
points is used. 

An example of a LS-fitting at time 35.00 seconds is shown in Figure 5.1. 
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Figure 5.1 Example of a quadratic LS-fitting to the inverse velocity with ±20 points around 
the center time (in this case 35 seconds) 

 

5.1.1 Method 1:  “Inverse linear“ 

If a constant drag coefficient CD is assumed, the flat trajectory solution of velocity [2] is  

0

0

( )
1

UU t
kU t

=
+

, (5.2) 

where k is a constant proportional to CD. The inverse velocity is a linear function of time: 

0

1 1
( )

k t
U t U

= + . (5.3) 

Therefore, linear regression on the data set ( )1

1
,

N

i i i
t U −

=
should result in a good fit.  

5.1.2 Method 2:  “Inverse quadratic“ 

Method 2 is a variation of Method 1. Even the inverse velocity data set often has some 
curvature. Therefore, a quadratic least square fitting is preferred, that is, fitting a quadratic 
function 1 2

0 1 2V a a t a t− = + +  to the inverse velocity data set. This is generally the preferred 
method. 
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5.1.3 Method 3:  “Power law” 

In the derivation of method 1 and 2, a constant CD was assumed. In some special cases, e.g. 
plastic ammunition with very high deceleration, it gives quite inaccurate and varying results for 
the muzzle velocity and initial drag coefficient, since the drag coefficient has changed a lot 
during the time from launch to the first measure point (due to varying Mach number). In this 
case, a more advanced formula for the velocity versus time function is appropriate. In the 
supersonic region, the drag function can be well modelled by  

DC kU α−= , (5.4) 

where k is proportional to CD. The “flat trajectory solution” (curvature ignored) with this 
assumption is given by (ref [2]): 

( )( )
1

1 1
0

0

( ) 1 , 1

( ) , 1kt

U t U kt

U t U e

α αα α

α

− −

−


 = − − ≠

 = =

 (5.5) 

The value 1
2α =  gives the d’Antonio’s formula (ref [2]), and should be used as a primary value, 

while 0α =  gives the constant CD solution (5.3). 

For a given 1α ≠  a linear LS-fit can be made on the data set ( )1

1
,

N

i i i
t U α−

=
, while for α  near 

zero, the set ( ) 1
, ln N

i i i
t U

=
 should be used.  

It is also possible to vary the exponent α  to find the fitting with the least root mean square 
error, but it does not always give consistent results. 

Figure 5.2 and Figure 5.3 show the effect of the three methods on a plastic ammunition where 
the projectile has retarded to Mach 3.1 at the first measure point. In this case, the “power 
method” with 0.5α =  seems to get most reasonable result, and also has low dispersion in 
predicted muzzle velocity. Figure 5.4 shows a typical radial velocity profile with the 
extrapolation back to time of launch. All methods give similar extrapolations. 
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Figure 5.2 Example: 12.7 mm Plastic ammunition with the “inverse linear” method (left) and 

the “inverse quadratic” method (right). Each colored curve represents a projectile. 

  
Figure 5.3 Example: 12.7 mm Plastic ammunition with the “power method” with 0.5α =  

(left) and 0.8α =  (right). Each colored curve represents a projectile. 

 

First measure point First measure point 

First measure point 
First measure point 
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Figure 5.4 Example: 12.7 mm Plastic ammunition. Radial velocity vs time for one round. 

 

5.2 Extrapolating back to muzzle 

The smoothing methods in section 5.1 gives a smooth radial velocity history which traces back 
to the muzzle ( 0t = ). This also gives the muzzle velocity 0U . It is often necessary to smoothen 
the smoothed radial velocity further due to bad parallax correction and bad data near the muzzle. 

The red points in Figure 5.4 are the smoothed radial velocity history. These points are generated 
by least square fittings on a symmetric interval around each red point as described in section 
5.1. However, near the muzzle, an asymmetric fitting has to be used, which gives less accurate 
results. The smoothed points where an asymmetric fitting has been used, are ignored and 
replaced by points determined by an asymmetric quadratic or inverse quadratic LS-fitting of a 
number N of (smoothed) points. N could be in the range of 5 - 20. 

Figure 5.5 shows the radial velocity fitting (red points on green line) and the resulting CD vs 
Mach curve when not adjusting the first points. Figure 5.6 shows the same round with 
adjustments. 
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Figure 5.5 Radial velocity vs time (left) and resulting CD vs Mach number (right) when NOT 

adjusted near the muzzle 

 
Figure 5.6 Radial velocity vs time (left) and resulting CD vs Mach number (right) after 

adjustment near the muzzle with 20 fitting points 

 

 

5.3 Number of smoothing points 

The choice of number of smoothing points in the LS-fitting is a trade-off of getting a smooth 
function and not capture sharp changes in velocity. Particularly, the drag coefficient varies 
greatly in the transonic region. In order to get a sharp drag coefficient profile, it is necessary to 
limit the number of smoothing points. 

In order to find the exact location of the “sound barrier” (the steep drag rise around Mach 1), the 
smoothed radial velocity profile is examined to find the area in the transonic region with highest 
curvature. This is done by taking a 7-point quadratic LS-fit according to the formula 

1 2
0 1 2U a a t a t− = + +  at each time point in the transonic region. The time with the largest 
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curvature (largest 2a ) is chosen for the “center of sound barrier”. In the example in Figure 5.7 

this center is at Mach 0.95.  

 
Figure 5.7 The transonic region of the CD vs Mach number curve centered at Mach 0.95 

The number of smoothing points is given at some chosen Mach numbers. An example of Mach 
regions and number of points on each side of each fitting interval is given in Table 5.1. The 
numbers in each region are determined by linear interpolation. 

Mach Zone # points 
0.5 Low subsonic 100 
0.8 High subsonic 20 
0.9 Low transonic 20 
0.95 Mid transonic 5 
1.00 High transonic 20 

Table 5.1 An example of number of smoothing points for the radial velocity in different Mach 
regions. The number of points is for each side of a given time point. 

5.4 Further refinements 

The smoothing of the measured radial velocities is done in three steps: First a run with constant 
numbers of smoothing points, then a run with the variable numbers of points according to 
section 5.2, and finally a LS-fit on the smoothed velocity data set. The effect of the last step is 
shown in Figure 5.8. The left figure is before the final smoothing. 

0.5 0.8 0.9 0.95 1.00 Mach

CD
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Figure 5.8 The smoothed data before (left) and after the final smoothing (right)  
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6 Extracting CD 

After the (modified) point mass simulation from the radial velocities (section 3 or 4), smooth 
histories of tangential velocity, velocity direction and position are obtained. The drag coefficient 
(CD) is then calculated by “inverse point mass simulation” by solving (6.1) for DC : 

The point mass equation with wind is 

2DU C VV g
m
ρ

= − +
 



  ,    V U W= −
  

, (6.1) 

where ρ = air density, m = projectile mass, W


= wind, g = gravity acceleration vector. 

From the smooth trajectory we have the data sets { }
1

N

i i i i
U U e

=
=



  and { }
1

N

i i
X

=



. From the current 

atmosphere model appropriate for the radar test, air density, the wind vector and gravity at time 
it  is obtained: 

( )i iYρ ρ=   ,      ( )i iW W X=
  

 ,   ( )i ig g X=


 

 (6.2) 

Equation (6.1) can be written as 

DU C b g= − +






 . (6.3) 

where  
2

b VV
m
ρ

=




 is known at each time step. 

A discrete version of (6.3) is  

,i D i i iU C b g= − +






  (6.4) 

where iU


  denotes a discretized version of U


 at time it . 

After taking dot product with i

i i

b
b b⋅



  ,  the ,D iC  can be found: 

( ),
i

D i i i
i i

bC g U
b b

= − ⋅
⋅









   , 0, , 1i N= −  (6.5) 
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The challenge is to find a good discretization of iU


 . Symmetric 3-point formulas do the trick. 
At the ends, asymmetric 3-point formulas must be used. 

( )
( )
( )

1
1 22

1
1 12

1
2 12

3 4 , 0

, 0 1

4 3 , 1

i i it

i i it

i i it

U U U i

U U U i N

U U U i N

+ +∆

− +∆

− −∆

 − + − =

= − + < < −


− + = −

  

  



  

 (6.6) 

It is also possible to use a 5-point formula, but it does not seem to be more accurate: 

( )
( )
( )

( )

1
1 2 3 412

1
1 1 2 312

1
2 1 1 212

1
3 2 1 112

1
4 312

25 48 36 16 3 , 0

3 10 18 6 , 1

8 8 , 1 2

6 18 10 3 , 2

3 16 36

i i i i it

i i i i it

i i i i it

i i i i it

i it

U U U U U i

U U U U U i

U U U U U i N

U U U U U i N

U U

+ + + +∆

− + + +∆

− − + +∆

− − − +∆

− −∆

− + − + − =

− − + − + =

= − + − < < −

− + − + + = −

− +

    

    

    



    

  ( )2 148 25 , 1i i iU U U i N− −










 − + = −

 

 (6.7) 

 

6.1 Smoothing of CD 

If necessary, the CD vs time history may be smoothed by “least square” (LS) fittings. The 
number of fitting points should vary with Mach number. The subsonic region often requires 
more points in order to smoothen out CD variations. Dynamic instability in the subsonic region 
often leads to artificial (non-physical) sinusoidal variations. These variations could be 
dampened out by LS smoothing. 

LS smoothing is done by a quadratic fitting of the set { }, 1
,

N
i D i i

t C
=

with the number of fitting 

points around it  possible varying with Mach number. Usually, there is the greatest need for 
smoothing in the subsonic region. 
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7 Ricochet calculations 

7.1 Setup 

In ricochet measurements, the trajectory is divided into two parts: 1: From launcher to target, 
and 2: From target to ricochet. Of interest is the incoming velocity, the exit velocity, angle of 
departure in azimuth and elevation, and drag coefficient. 

In ricochet measurements, the target plate (where the ricochet occurs) takes the position as the 
“Launcher”, see Figure 7.1. The radar has to be placed well behind the launcher in order to keep 
the ricochets in the radar beam for as long time as possible. The 3D method from section 4 has 
to be used, now with the target plate as the “Launcher”. 

 
 

 
Figure 7.1 Ricochet setup. The new “Launcher” is the target plate 

7.2 Ricochet departure angles 

The 3D method assumed that the elevation and azimuth angles are known. That is not the case 
for ricochets, and we have to rely on the measured elevation and azimuth angles as seen from 
the radar. The outgoing elevation and azimuth angles (as seen from the target) could be 
calculated if the radial velocity and the rate of change of the measured elevation and azimuth 
angles are known.  

However, the angular radar data from ricochets are usually quite noisy. A better method is to 
simulate the elevation and azimuth as seen from the radar, given a guess of the ricochet 
elevation and azimuth.  

With this guessed ricochet direction, the radar centered 3D method of section 4 is applied. From 
the resulting positions, the elevation Rθ  and azimuth Rψ of the ricochet as seen from the radar 
are calculated: 

Weapon

Radar

Target plate = «Launcher»

L L Rr X X= −
 


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2 2

( )( ) arctan
( ) ( )

( )( ) arctan
( )

R
R

R R

R
R

R

Y tt
X t Z t

Z tt
X t

θ

ψ

  
  =

  + 
  

=  
 

 (7.1) 

Here 
( ) ( )
( ) ( )
( ) ( )

R L

R L

R L

X t X t X
Y t Y t Y
Z t Z t Z

∆     
     = + ∆     
     ∆     

 is the position of the ricochet as seen from the radar,  

( )
( )
( )

X t
Y t
Z t

 
 
 
  

 is the position of the ricochet as seen from the target plate and 
L

L

L

X
Y
Z

∆ 
 ∆ 
 ∆ 

 is the position 

of the “Launcher” (target plate) relative to the radar. 

An example fitting of this kind is shown in Figure 7.2. The green curve is the elevation and 
azimuth of the ricochet as calculated by (7.1), while the blue points are the measured values. 

If the elevation/azimuth guess does not fit, a new guess is made, and a re-calculation is done. 

  

Figure 7.2 Fitting of the measured elevation (left) and azimuth (right) data 
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7.3  Ricochet velocities 

The time of hit at the target plate is automatically detected by searching for a time where the 
radial velocity has a sudden change. In Figure 7.3 the measure points before impact are shown 
in orange, while the ricochet is shown in blue. The orange points are not used other than to 
determine the impact velocity. The time of impact is defined as time zero. 

 

Figure 7.3 Radial velocities before (orange) and after (blue) ricochet where the time axis is 
translated such that the ricochet occurs at t=0 s 

7.4 Extrapolation  

In most cases, the ricochet disappears from the radar beam shortly after ricochet. Therefore, an 
extrapolation is often necessary to determine ricochet ranges. This is done by a point mass 
simulation. The CD value used in this simulation could be a frozen value from the last measured 
points. Instead, we are using a constant “form factor” f determined from the last measured 
points:  

,

,

( )
( )

D ricochet end

D projectile end

C M
f

C M
= , (7.2) 

where , ( )D ricochet endC M  is a LS-fitting of the last measured CD values at the last Mach number 

endM , and , ( )D projectile endC M  is the CD of the (undeformed) projectile (given).  
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The CD values used thereafter, are simply the CD of the projectile scaled up: 

, ,( ) ( )D ricochet D projectileC M f C M= ⋅  (7.3) 

In this way, a reasonable CD vs Mach function is used throughout the whole trajectory, even if 
only a few seconds (or tens of seconds) is actually measured. 

An extrapolation is also used in non-ricochet cases if one wants to follow e.g. an artillery 
grenade all the way to the ground. In these cases, only the last seconds need to be extrapolated, 
and the CD is simply frozen to an average of the last CD values. 

8 Spin measurements 

It is sometimes possible to extract spin rate information from the radar data. This can happen if 
the projectile has some asymmetries which generates amplitude modulation of signal received. 
It can be made deliberately by making a “spin slot” on the projectile base, se examples in Figure 
8.1, or accidentally by some other asymmetries. The principle is that there will be destructive 
interference when the spin slot is oriented in parallel with the polarization direction of the radar 
beam, which gives a varying amplitude of the reflected signal as the projectile rotates. 

 

Figure 8.1 Two examples of spin slot behind a projectile, seen from the side. The depth should 
be ¼ wave length of the radar beam.  

The amplitude modulated signal gives rise to a twin track on each side of the main track in the 
Doppler intensity plot from the radar software (“Wintrack” from Weibel Scientific), see Figure 
8.2. The distance of the twin track from the main track is proportional to the spin rate. 

4
λ

4
λ
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Figure 8.2 Doppler intensity plot showing the projectile track in the middle with a pair of twin 

tracks on each side. 

 

The equation for the spin rate is 

21
2x ld lp

pdI p V Sd C C
V

ρ  = +  
  ,  (8.1) 

where 
2

4
dS π

= is the reference area. ldC  is the spin driving moment which for axisymmetric 

projectiles is zero. With constant aerodynamic coefficients ( DC  and lpC ) this equation is 

solvable if time derivative is replaced by distance derivative ( d dV
dt ds

= ). 

It can be shown (Appendix A.3) that in this case (s is arc length): 

( )( )
0 0( ) ( ) p DD K K sK sp s V e eδ δη η η − −−= + −  (8.2) 

where 
2D D

SK C
m
ρ

= , 
2 ld

x

SdK C
Iδ

ρ
= , 

p D

K
K K

δ
δη =

−
, ( )

2

2p lp
x

SdK C
I

ρ
= −   

and 0
0

0

(0)
(0)

p p
V V

η = = . 
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In the ordinary case with spin stabilized projectiles, the spin driving moment is zero, and 
equation (8.2) is reduced to 

0( ) pK sp s p e−=  ,   where 0 (0)p p= . (8.3) 

Taking logarithms: 

0ln ( ) ln pp s p K s= −  ,   where 0 (0)p p= . (8.4) 

That means that, at any given time ct , a data set { } 1
, ln N

i c i i
s s p

=
−  around that time should be 

well fitted by a linear least square fitting with coefficients a and b: 

( )( ) cy s a s s b= − + . (8.5) 

Then the spin value and spin damping coefficient at time ct  are simply 

 

( )

2

2( ) x
lp c

b
c

IC t a
Sd

p t e
ρ

 =

 =

 (8.6) 

 
The air density ρ  is taken as the average value in the interval. 

An example of such a fitting for one instant is shown in Figure 8.3, while Figure 8.4 shows the 
whole fitted spin history. In this example, a new fitting is made every 0.5 seconds (green 
points). 
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Figure 8.3 Example of one linear fitting of ln(p) vs arc length. Blue points are measure points, 

red line is the linear fitting. 

 
Figure 8.4 Spin data points (blue) together with fitting (green) 

If both spin damping and spin driving coefficients are to be extracted (e.g. fin-stabilized 
projectiles), the best method is probably to fit those coefficients manually using simulation with 
guessed coefficients.  
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9 Conclusions 

Methods and algorithms for analysis of ballistic radar data have been developed and 
implemented in an in-house code at FFI called “Weibelwin”. The main purpose of these 
algorithms is to extract drag coefficients, but other useful information can also be extracted, like 
vertical trajectory, elevation and azimuth, side drift, hit points. Methods for handling ricochet 
measurements and spin measurements have also been developed. 
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A Derivation of formulas 

A.1 Derivation of rate of change of velocity direction in 2D 

The following derivation is to establish expression (3.9). 

 
Figure A.1 Trajectory in 2D with range wind. Forces in yellow and velocities in red. The 

launcher is at the origin. 

With reference to Figure A.1, the angle β  between the true velocity vector U


and the 

aerodynamic velocity vector V


 (assuming 2D plane) is given by 

( ) ( )( ) ( )
sin y x x yz z z

U U WU V U W U W U W
UV UV UV UV

β
× −× − × −

= = = =

  

   

. (A.1) 

Let α θ β= +  be the angle between the horizontal line and the aerodynamic velocity vector.  

rU


U


ϕ θ

V


X

α

β

Y

M


g

W


γ
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Let ϕ  be the angle between the horizontal line and the direction of sight from the launcher to 
the object: 

( )
2 2 2 2

sin cos
arctan

U X YY YX XY
X X Y X Y

θ θ
ϕ ϕ

−− = ⇒ = =  + + 

 

  (A.2) 

The overall change in the velocity vector (acceleration) is equal to the specific forces (forces per 
unit mass) according to Newton’s second law: 

U D Mg= + +


  



, (A.3) 

where D


 is the (specific) drag force (which is along the aerodynamic velocity vector), M


 is 
the (specific) Magnus force (which is perpendicular to the aerodynamic velocity vector), and 
g  is the gravity acceleration vector. 

Define unity vectors De  along the drag direction, Me  perpendicular to the drag direction, and re  
along the radial direction from launcher to projectile: 

cos
sin

sin
cos

cos
sin

D

M

r

e

e

e

α
α

α
α

ϕ
ϕ

  
=  
 

 −  =  
 

   =    







 (A.4) 

The velocity vector and its derivative is in component form: 

cos
sin

cos sin
sin cos

U U

U U U

θ
θ

θ θ
θ

θ θ

 
=  

 
⇓

−   
= +   

   









 (A.5) 

The drag is unknown, and can be eliminated by considering the normal component to the 
velocity vector: 

M M M M M MU e g e D e M e g e M e⋅ = ⋅ + ⋅ + ⋅ = ⋅ + ⋅
   

       

  (A.6) 
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Written out: 

cos sin sin 0 sin
sin cos cos cos

U U M
g

θ θ α α
θ

θ θ α α
 −  − −         

+ ⋅ = ⋅ +          −          
  (A.7) 

or 

( ) ( )sin cos cos sin sin sin cos cos cosU U g Mα θ α θ θ θ α θ α α− − + + = − +  (A.8) 

That is, 

( ) ( )sin cos cosU U M gα θ θ α θ α− − + − = − . (A.9) 

Or, since α θ β− =  

sin cos cosU U M gβ θ β α− + = − . (A.10) 

We also need to express U  from rU . From Figure A.1: 

( )

( ) ( )( )

( )( )
( )

cos

cos sin

sin
cos

r

r

r

U U

U U U

U U
U

ϕ θ

ϕ θ ϕ θ ϕ θ

ϕ θ ϕ θ

ϕ θ

= −

⇓

= − − − −

⇓

+ − −
=

−

 









 
(A.11) 

Inserted into (A.10): 

( )( )
( )

sin
sin cos cos

cos
rU U

U M g α
θϕ θ

θ
ϕ

β β
ϕ θ

 + − −
 − + = −
 − 





  (A.12) 

Solving for θ  we arrive at the conclusion: 

( )( ) ( ) ( )

( )( )

cos tan sin
cos

cos sin tan

rUM g U

U

β θ ϕ ϕ θ β
ϕ θ

θ
β β ϕ θ

 
− + + + − − =

+ −





  
(A.13) 

where α  is replaced by α β θ= + .  
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A.2 Derivation of rate of change of velocity direction in 3D 

This section develops the formulas for Ùe , the rate of change of velocity direction. 

 

Figure A.2 Trajectory in 3D and the relevant vectors 

With reference to Figure A.2, let L


 be the specific lift force (that is, lift force per unit mass) and 
M


 be the specific Magnus force. The lift force is horizontal to the right and perpendicular to the 
aerodynamic velocity vector V



. The Magnus force is in the vertical plane and perpendicular to 
V


 and L


. These forces are assumed known from their given aerodynamic coefficients. In 
addition, in the case of artillery, the Coriolis acceleration Λ



 may be taken into account. 

The (modified) mass point model with drag D


, wind vector W


, gravity vector g , the lift force 

L , Magnus force M  and Coriolis acceleration Λ


 can be expressed by 
 

V L M VU De g Le Me De F= − + + + + Λ = − +
  

    

 , (A.14) 

where  V U W= −
  

,   V
Ve
V

=




  , y
ge

g
−

=


  

L MF g Le Me= + + + Λ
 

  

 (A.15) 

V y
L

V y

e e
e

e e
×

=
×

 



 

 ,  M L Ve e e= ×
  

 (A.16) 

RX X−
 

Launcher

Ue

re

Ve

V


U
W



g
L


M


D


Λ

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Here, a varying gravity vector may be used (in case of long range artillery). The formulas for 
the gravity vector and Coriolis vector are shown in section 4.3 (page 19). 

To cancel out the unknown drag function (which is ultimately to be found), take cross products 
of  (A.14) with Ve  which is parallel to the drag vector: 

( )` ` `V V V M LU e F e g e Le Me× = × = + Λ × + −
  

     

 . (A.17) 

Geometry gives 

( )

( ) ( )

( )

( ) ( )
cos

r U r

r U r U r U r

r
r U r U r

r U r U r
r U r U r

r

U U e e

U U e e U e e e e

UU U U e e e e
U

U U e e e eUU U U e e e e
U γ

= ⋅

⇓

= ⋅ + ⋅ + ⋅

= + ⋅ + ⋅

− ⋅ + ⋅
 = − ⋅ + ⋅ = 

 

     

 
 



   

 
 



   

 


   

 
 

 
(A.18) 

where cos U r
r

Ue e
U

γ = ⋅ =
 

  

Equation (A.17) together with (A.18) gives: 

( )

( ) ( )

( )
( ) ( )

` ` ` `

` ` ` ` `

` ` ` ` `cos

U U V V

U V U V V

r U r U r
U V U V V

U e U e e F e

U e e U e e F e

U U e e e e
e e U e e F e

γ

+ × = ×

× + × = ×

− ⋅ + ⋅
× + × = ×



   








    






   

 




    



 
(A.19) 

The unknown entity to be solved for is Ue : 

( ) ( ) ( )` `cos , , , , , , ,r V rU U U re e f e e U U Me g Le Wβ γ− ⋅ + × =
 

 

 










  (A.20) 

where ( )` `U Ve eβ = ×


 

, cos U re eγ = ⋅
   and 
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   ( ) ( )`
cosr

U r V
Uf e e F e
U U

γβ
  

= ⋅ − + ×  
  

  

  

  (A.21) 

To be able to solve for Ue , equation (A.20) has to be put into coordinate form. 

Define coordinates 

  
0

1

2

U

u
e u

u

 
 =  
  



  , 
0

1

2

U

u
e u

u

 
 =  
  











,   
0

1

2

r

r
e r

r

 
 =  
  



,    
0

1

2

V

v
e v

v

 
 =  
  



,  
0 0 0

1 1 1

2 2 2

u v
u v
u v

β
β
β

     
     = ×     
          

 and 
0

1

2

(...)
f

f f
f

 
 =  
  



 

Then, (A.20) becomes 

( ) ( )
( ) ( )
( ) ( )

0 0 1 1 2 2 0 1 2 2 1 0

0 0 1 1 2 2 1 2 0 0 2 1

0 0 1 1 2 2 2 0 1 1 0 2

cos
cos
cos

u r u r u r u v u v f
u r u r u r u v u v f
u r u r u r u v u v f

β γ
β γ
β γ

− + + + −   
   − + + + − =   
   − + + + −   

    

    

    

 (A.22) 

Or in matrix form for the solution of ( )0 1 2, ,Ue u u u=


 :  

0 0 1 0 2 2 0 1 0 0

0 1 2 1 1 2 1 0 1 1

0 2 1 1 2 0 2 2 2 2

cos cos
cos cos
cos cos

r r v r v u f
r v r r v u f
r v r v r u f

β β γ β γ
β γ β β γ
β γ β γ β

− − + − −     
     − − − − + =     
     − + − − −     







 (A.23) 

Equation (A.20) or (A.23) only determines the plane in which Ùe  lies (the matrix in (A.23) has 

determinant = 0). One additional information has to be added. That is ` ` 0U Ue e⋅ =
 

  (since Ùe  is 
a unity vector), written in component form: 

0 0 1 1 2 2 0u u u u u u+ + =    (A.24) 

or in matrix form: 

0 1 2 0

0 1 2 1

0 1 2 2

0
u u u u
u u u u
u u u u

   
    =   
      







 (A.25) 

which can be added to (A.23) in order to obtain a linearly independent system of equations. The 
result is: 
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0 0 1 0 2 2 0 1 0 1 2 0 0

0 1 2 1 1 2 1 0 0 1 2 1 1

0 2 1 1 2 0 2 2 0 1 2 2 2

cos cos
cos cos
cos cos

r r v r v u u u u f
r v r r v u u u u f
r v r v r u u u u f

β β γ β γ
β γ β β γ
β γ β γ β

 − − + − −        
        − − − − + + =        
        − + − − −        







 (A.26) 

which, after solution of the linear system, gives the desired 
0

1

2

U

u
e u

u

 
 =  
  











. 

The right hand side is given by 

( ) ( )

( )

`

`

cos

cos cos

r
U r V

r r
V

Uf e e F e
U U

U U U F e
d U U

γβ

ϕ γβ

  
= ⋅ − + ×  

  
  −

= − + ×  
  

  

  




 



 (A.27) 

The only unknown term now is U re e⋅ 

 . Starting with R
r

R

X Xe
X X
−

=
−

 



 
, time derivation gives  

( ) ( )
2

R R R R

r

R

dX X X X X X X X
dte

X X

 − − − − − 
 =

−

       

 





 

. (A.28) 

Let RR X X= −
 

 be the distance from radar to projectile. Then its time derivative is simply 

the measured radial velocity rU :  rR U=  which gives 

( )
2

R r U r r
r

UR X X U Ue U ee
R R

− − −
= =

  

 



 . (A.29) 

What we only need is U re e⋅ 

 : 

cosU U r U r r
U r

Ue e U e e U Ue e
R R

ϕ⋅ − ⋅ −
⋅ = =

   

 

  (A.30) 

Therefore, the right hand side becomes 
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( )( )`
cos cosr r

V M L
U U Uf g e Le Me

R U U
ϕ γβ

  −
= − + + Λ × + −  

  

  

   

 (A.31) 

 

Reduction to 2D 

It can be shown that the solution to (A.26) reduces to (A.13) in the case of 2D. In the following, 
the xy-plane is the vertical plane, and angles are defined in Figure A.1. 

2D means that 2 2 2 0 1 0v u r Lβ β= = = = = =  , 2 sinβ β= ,  

`

0
0

cos
y Ve e

α

 
 × =  
 − 

 

, and 
0
0
1

Le
 
 =  
  



 

It follows that (A.26) is reduced to  

0 1 1

0 1 0

0 2 1 0 1 2 0 1 2

cos sin 0
cos cos 0

cos cos 0 0

u u v
u u v

r v u r v u f

γ θ θ
γ θ θ

β γ β γ

 − −   
    =    
    − + + − − +    



  (A.32) 

Now, since 0

1

cos
sin

u
u

θ
θ

   
=   
  

,  (A.32) is reduced to 

1

0

0 1 1 0 2

cos sin cos sin 0
sin sin cos cos 0

sin cos cos sin cos sin 0 0

v
v

r v r v f

θ θ γ θ θ
θ θ γ θ θ

β γ θ β γ θ

 − −   
    =    
    − + + − − +    



  (A.33) 

The first two equations give 0 = 0.  

The third equation in (A.32), using that 0

1

cos
sin

r
r

ϕ
ϕ

   
=   
  

  and  0

1

cos
sin

v
v

α
α

   
=   
  

, gives 

( )( )
( ) 2

cos sin sin cos cos sin

sin sin cos cos sin cos f

ϕ β α γ θ θ θ

ϕ β α γ θ θ θ

− + + −

+ − − + =





 (A.34) 
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where ( ) ( )2
cossin sin cosrUf M g

U U
γϕ ϕ θ β α

 
= − − − − − 
 



  

Further reduction of (A.34) gives 

( )( )
( )

( ) ( )

2

2

cos sin sin cos cos sin

sin sin cos cos sin cos

cos cos sin sin

f

f

ϕ β α γ θ θ θ

ϕ β α γ θ θ θ

θ γ α θ β ϕ θ

− + + −

+ − − + =

− + − = −  









 (A.35) 

This gives, remembering that α θ β− = , and γ ϕ θ= − : 

( ) ( ) ( )

( ) ( )

cos
sin sin cos

cos cos sin sin

rU M g
U U

ϕ θ
ϕ ϕ θ β α

θ
ϕ θ β β ϕ θ

− 
− + + − 

 =
− + −





  
(A.36) 

which is essentially equal to (A.13).   

 

A.3 Derivation of the spin equation 

The equation for the spin rate is 

2

2 ld lp
x

V Sd pdp C C
I V

ρ  = +  
 , (A.37) 

where 
2

4
dS π

= is the reference area. ldC  is the spin driving moment coefficient.  

Introduce 
2D D

SK C
m
ρ

= , 
2 ld

x

SdK C
Iδ

ρ
= , 

p D

K
K K

δ
δη =

−
, ( )

2

2p lp
x

SdK C
I

ρ
= −  .  

Then equation (A.37) becomes 

2
p

pp V K K
Vδ

 = − 
 

 . (A.38) 
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Further, introduce p
V

η =  [rad/m], and replace time derivative by distance derivative (‘)

d ds d dV
dt dt ds ds

= = . We also use that 0( ) DK sV s V e−=  is the solution of velocity vs distance (in 

linear motion) with constant drag coefficient, and thereby D
dV V K V
ds

′ = = − . 

Then equation (A.38) is transformed as 

( ) ( )

( )( )

( )

2 2

2 2

D

D p

p D

dp V V V V VV V V K V
dt

pV K p V K K
V

K K K

δ

δ

η η η η η η η

η η

η η

′ ′ ′= = + = + = + −

 ′ + − = = − 
 

′ + − =











, 

(A.39) 

where η′  denotes derivative of η  with respect to distance.  

This equation has solution 

( )( )
0( ) ( ) p DK K ss eδ δη η η η − −= + − , (A.40) 

where 
p D

K
K K

δ
δη =

−
 is the “steady state” value of η , and 0

0
0

p
V

η =  is the initial value of η , 

Therefore, it is concluded that 

( )( )
0 0( ) ( ) p DD K K sK sp s V e eδ δη η η − −−= + − . (A.41) 
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