A containerised approach to labelled C&C traffic
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Abstract. A challenge for data-driven methods for intrusion detection
is the availability of high quality and realistic data, with ground truth
at suitable level of granularity to train machine learning models. Here,
we explore a container-based approach for simulating and labelling C&C
traffic of real malware through a proof-of-concept implementation.

1 Introduction & motivation

Data-driven methods for intrusion detection rely on high quality and realistic
data in which to infer their detection models from. A SOC or CERT will typically
have access to large quantities of log or network data which could be utilised
for unsupervised or self-supervised learning. However, evaluation of such models
is challenging without an evaluation set with ground truth, while supervised
methods require that all data points used for learning are labelled.

One way to achieve such labels is active learning, where a security analyst is
in-the-loop during learning. Another option is to label existing data, e.g. from
historic incidents or labelling data points from scratch. Due to the shear size of
the data, and skills required to do so, manual labelling from scratch is not feasible
and would instead require automated labelling techniques, such as Snorkel [6],
which provides lower quality weak labels. In this paper, we focus on a third
approach, which is to simulate benign and adversarial behaviour, and use the
knowledge from setting up the simulation to label the data. We limit the work to
network-based intrusion detection systems (NIDS), and detection of command
and control (C&C) beaconing traffic — a detection problem where NIDS are
known to be applicable [4].

An important property of applied machine learning is the ability to gener-
alise beyond the training data, and a known problem for NIDS is that good
results on training sets often does not generalise well to an operational setting.
Existing tools for C&C, often developed for penetration testing, are often used in
real malware [7]. We therefore utilise such existing C&C tools in our simulation.
In addition to provide realistic traffic, it means that even if a machine learn-
ing model does not generalise well beyond the tools used for simulation, it may
still be valuable operationally as the tool may be used in real malware. There
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are several such tools: Simuland® focuses on Microsoft Defence products, with
a mapping to the Mitre ATT&CK Framework®; Cobalt Strike” provides a num-
ber of red team activities, from generating phishing emails to browser pivoting;
Metasploit® supports the full attack scenario, from scanning for vulnerabilities
to collecting credentials and generating a final report of the attack; PoshC2°
focuses on post-exploitation and lateral movements with encrypted C&C traf-
fic and features extensive logging of every action and response; Covenant'© is a
NET C&C framework; Sliver!! is a C&C red teaming tool; Atomic Red Team'?
is a library of simple detection tests mapped to the MITRE ATT&CK frame-
work; and Merlin'? is a popular post-exploitation C&C Tool.

None of these tools provide ground truth and a second challenge is correct
labelling captured data with suitable granularity. One common approach, used
e.g. by Garcia et al [3], is to label all data from malware infected machines as
‘malicious’ and everything else as either ‘benign’ or ‘background’. This will entail
that some benign data is erroneous labelled as malicious. A different approach is
taken by Landauer et al [5], which combines knowledge of attack time with do-
main knowledge of the attack steps to label post-simulation — a similar approach
is also taken by Buchanan et al [1]. Their approach does not target NIDS, and
in addition, the labelling quality will depend on the domain knowledge and how
it is implemented in the labelling process.

In our work, we instead build on the DetGen-tool by Clausen et al [2], where
we can achieve finer grain control of the labelling compared with Garcia et al
without the need for encoding domain expertise of each attack steps. Here, we
encapsulate the malware in a container and label at the container-level, thus
separating traffic arising from the malware from traffic arising from other pro-
cesses in a machine. We extend [2] by encapsulating the Merlin C&C simulation
tool in the container. Note that whilst Cobalt Strike was the most common tool
used in malware in Recorded Future’s 2021 report [7], it requires a licence. We
therefore use Merlin, which is also a popular tool for simulating C&C.

2 An experiment using DetGen[Merlin] with Ghost

The Merlin C&C-framework has two main components: a server and a client. The
server is configured to listen for HTTP-connections from the client, and sends
C&C-commands to the client over this connection. The client software runs post-
exploitation on a system you wish to control and will repeatedly connect to the
server with a certain interval, also called a heartbeat. To avoid detection, the
interval can be skewed to vary the interval.

The DetGen framework is built around Docker-Compose'#. Each component
in DetGen runs in a container, with a separate associated container to capture
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the network traffic using tcpdump. This separation into container is then utilised
when labelling traffic. In the experiment, the Merlin client and server ran in
separate containers, with their associated ”tcpdump-containers” connected di-
rectly to the network interface of the Merlin containers In addition, the DetGen
framework adds congestion and other small errors to make the simulation more
realistic. This is illustrated in figure 1 (top-left).
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Fig. 1. Experimental setup of Merlin with DetGen, and GHOSTS

The setup is sufficient to train a ”signature-model” which can recognise C&C-
traffic. However, if our aim is to use supervised learning to train a classifier, we
also need benign traffic. To achieve this, we used a framework called General
Hosts (GHOSTS) [8] to simulate benign traffic. We configured GHOSTS to visit
a list of domains known to be benign and record the traffic (using Wireshark),
meaning, as with Merlin, we are capturing HTTP-traffic. Due to technical rea-
sons and time constraints, we did not integrate GHOSTS into the DetGen frame-
work, and instead captured GHOSTS traffic separately in a Windows virtual ma-
chine. This is sufficient for our proof-of-concept but will need to be integrated
in the future. GHOSTS was then used to to connect to live domains with real
world congestion applied. Figure 1 shows the full experimental setup for Merlin
and GHOSTS. After running the simulation we changed the IP address of the
Merlin Client to be the same as the GHOSTS Client. We then used Suricata'®
to convert the data sets to Netflow before combining them and importing them
to Splunk'® for visualisation. Up to this point, the C&C and Merlin traffic were
in separate files, which we exploited when labelling during import into Splunk.

Splunk can then be used to train classification models, which can further be
applied to real data. Here, we only visualise the traffic to illustrate how the labels
can separate the traffic, as shown in figure 2. The plot shows both the number of
bytes transmitted from the Merlin Client to the Merlin Server and benign traffic
generated by GHOSTS (in logarithmic scale). It is easy to see the heartbeat in
the graph from the Merlin Client. Note that there is some discrepancies initially

!5 https://suricata.io/ 16 https://www.splunk.com/
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Fig. 2. #bytes of Merlin C&C traffic compared to traffic from GHOSTS in Splunk.

in the heartbeat due to some issues during setup, while a sudden dip in GHOSTS
is likely caused by a need for user input to a CAPTCHA or similar.

3 Discussion and further work

We have shown that C&C tools used in practice can be simulated and labelled
in a way that it can be separated from benign traffic in a SIEM with a fine
grain of atomicity, which can further be utilised to train machine learning mod-
els for NIDS. Whilst the scientific contribution presented here may be limited,
we believe our approach is promising for applying underlying research in an op-
erational setting. This will require that the simulations are ran over longer time
periods, using different C&C tools, different configuration and different archi-
tectures. This is also the case for the simulated benign traffic, where GHOSTS
need to be integrated into the DetGen framework.
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