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Summary 

Energetic materials find countless applications of relevance to the defence sector, as typical 
classes of energetic materials are propellants, explosives and fuels. To ensure safe handling of 
such materials, obtaining knowledge about their sensitivity to impact is crucial. In this report, 
quantum chemical methods are utilized to consider the problem of sensitivity from different 
angles. Such computational methods might complement – and even replace – practical experi-
ments in some cases. Included topics are determination of transition states, machine learning as 
a quantum chemistry tool, and the desensitizing effect of amino groups in nitro-containing 
explosives. For the latter, two ethene derivatives as well as their anionic counterparts are explored 
and compared. The Gaussian 09 software is employed for density functional theory (DFT) 
calculations, and the parameters of interest are the dissociation energies of different C–NO2 
cleavage reactions, bond lengths, and partial charges. The results point towards Z-1-amino-2-
nitroethene being less sensitive than nitroethene, due to increased conjugation by amino electron 
donation and perhaps increased hydrogen bonding. From the computational results related to the 
anions, detonation is expected to occur at lower temperatures in the cases where electric sparks 
may occur. The transition state geometry for nitrobenzene proposed in the literature was 
confirmed through a frequency calculation. Neural networks and SchNetPack (a deep learning 
toolbox for atomistic systems) are topics of discussion, but further work is needed in order to 
produce useful results. 
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Sammendrag 

Energetiske materialer har svært mange bruksområder med relevans for forsvarssektoren, etter-
som både drivstoff og eksplosiver faller innenfor denne kategorien. For å sikre trygg håndtering 
av slike materialer er det essensielt å vite hvor sensitive de er for ulike typer påvirkning, som for 
eksempel slag eller temperaturforandringer. I denne rapporten blir sensitivitetsproblemet sett på 
fra ulike vinkler ved hjelp av kvantekjemiske metoder, som kan komplettere og til en viss grad 
erstatte laboratorieforsøk. Viktige temaer inkluderer bestemmelse av overgangstilstander, 
maskinlæring som et kvantekjemisk verktøy, og aminogruppens dempende effekt på 
sensitiviteten til nitrobaserte eksplosiver. I sammenheng med sistnevnte ble to etenderivater, 
samt deres korresponderende anioner, undersøkt og sammenliknet. Programvaren Gaussian 09 
benyttes for tetthetsfunksjonalteoretiske beregninger på C–NO2-dissosiasjonsenergier, 
bindingslengder og partialladninger. Resultatene indikerer at Z-1-amino-2-nitroeten er mindre 
sensitiv enn nitroeten, grunnet økt grad av konjugasjon i systemet – og muligens hydrogen-
bindinger. Ut fra beregningsresultatene knyttet til anionene forventes det at detonasjon vil skje 
ved lavere temperaturer i de tilfellene der elektriske gnister kan forekomme. Geometrien til en 
overgangstilstand for nitrobenzen, identifisert i litteraturen, blir bekreftet gjennom en frekvens-
beregning. Nevrale nettverk og SchNetPack (en programpakke for å kunne anvende dyplæring 
på atomistiske systemer) blir diskutert, men videre arbeid med dette behøves for å få fram nyttige 
resultater  
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Preface 
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1 Introduction 

Energetic materials, i.e. materials with high amounts of stored chemical energy that can be 
released [1], find countless applications of relevance to the defence sector, as typical classes of 
energetic materials are propellants, explosives and fuels. To ensure the safe handling of such 
materials, it is crucial to possess knowledge about their sensitivity to different types of impact. 
There exist experimental methods, e.g. the fallhammer test [2], designed for just this purpose. 
However, due to the great advancement of computer hardware and software, as well as that of 
quantum chemical methods like density functional theory, it is now possible to obtain a wide 
range of chemical information without ever stepping foot inside a laboratory. This is useful in 
many situations, which includes but is not limited to cases where experimental results are difficult 
or dangerous to obtain and cases where one would like to explore the feasibility of a new energetic 
material before actually attempting to synthesize it. 

However widely employed, the theoretical framework of energetic materials is quite sparse, 
particularly when it comes to sensitivity. The detonation of an energetic material appears to be a 
complex, many-step process [3], depending on factors like crystal defects and local temperature. 
Discovering possible correlations between the impact sensitivity of an energetic material and its 
chemical properties, like the activation energy of a bond breaking reaction or the heat of 
detonation, is a work in progress. In 2020, Jensen et al. [4] proposed several models for the impact 
sensitivity, based on chemical properties like the bond dissociation energy (BDE) of the weakest 
molecular bond and the heat of detonation. Although some correlations were observed, more 
research is needed in order to achieve models with high predictive power for all relevant classes 
of molecules. 

It is desirable to produce energetic materials with high amounts of releasable energy that are also 
insensitive to impact, so-called Insensitive High-Energy Explosives (IHEs). Since high energy 
and low sensitivity are typically contradicting concepts, this is a challenging task in practice, and 
it is therefore of great interest to further investigate the phenomena governing the sensitivity of 
this class of materials. In this report, several ways of approaching this challenge is described and 
somewhat explored. First, the reader will be guided through the basics of quantum chemistry. For 
the remaining sections, the 2020 paper by Jensen et al. [4] serves as a starting point and inspiration 
for the topics and methods described. 

2 Quantum Chemistry 

Although Newton’s laws of motion have contributed greatly to science since they were first 
formulated in 1687 [5], it soon became clear that they did not tell the whole story of gravity. 
While the laws describe the physics of our macroscopic day-to-day activities with great accuracy, 
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they cease to be useful when we wish to describe microscopic systems such as molecules, atoms 
and elementary particles. At the atomic scale, nature is not deterministic, and classical notions 
like trajectories and velocities are no longer meaningful [6]. For a while, this was a mystery to 
physicists, and great efforts were made to build a theory, which could fill this void. This led to 
the birth of quantum mechanics, a theory that has proved to be astonishingly accurate and to hold 
high predictive power. The terms quantum mechanics, quantum physics and quantum theory are 
used interchangeably within the field, while quantum chemistry refers to molecular quantum 
mechanics. In the latter, the quantum mechanical framework is applied to problems that are 
chemical in nature, such as bonding in molecules, chemical reactions, formation enthalpies, and 
so on. 

Quantum theory is, in contrast to classical physics, probabilistic in nature. Classical concepts like 
trajectories and velocities are discarded in favor of the more fundamental quantum state Ѱ. The 
quantum state is a mathematical concept from which all observable information about a molecular 
system can be derived. This includes but is not restricted to its energy, charge distribution, dipole 
moment, vibrational frequencies and response to external electric or magnetic fields. Its evolution 
in time is described by the time-dependent Schrödinger equation, 

 ’    (2.1) 

where Ĥ is the energy operator (which for historical reasons is termed the Hamiltonian), ħ is the 
reduced Planck’s constant, and i is the imaginary unit i2 = −1. Knowing that all observable infor-
mation about any system can be derived from Ψ, it is perhaps not surprising that the entire field 
of quantum chemistry is devoted to finding ever more accurate solutions to the Schrödinger 
equation [6]. 

As for any fundamental physical theory, quantum mechanics must rely on postulates. In fact, we 
have already stated two of them: The first says that any system is completely specified by its 
quantum state Ψ, while another postulate states that Ψ’s evolution in time is described by the 
Schrödinger equation. A third postulate of quantum mechanics is the one-to-one correspondence 
of observable quantities A and linear operators Â. An example of this is the Hamiltonian Ĥ of the 
Schrödinger equation, which is the operator corresponding to the energy observable. By 
inspection of Equation 2.1, we note that the evolution in time of Ψ is uniquely determined by Ĥ. 

Mathematically, quantum states are elements in a finite or infinite dimensional complex vector 
space H equipped with a Hermitian inner product, which we denote as < u | v > for u, v ∈ H.1 
Usually, the inner product is given by  

 

which allows for the understanding of ||Ѱ||2 = < Ѱ | Ѱ > as a probability density for square-
integrable states Ψ. Since any particle must, at any point in time, be somewhere in space, 
                                                           
1 We require further that H must be a complete Hilbert space, meaning that (a) there exists a countable topologically 
dense subset of H and (b) every Cauchy sequence in H converges in H. 
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integration of the probability density function for the particle’s position over all space must yield 
unity. In fact, if a particle finds itself in the state Ψ(x, t), a measurement of its position at time t 
will yield the value x with a probability density of |Ψ(x, t)|2. The Born rule of quantum theory [7] 
then tells us that 

 
Now imagine an electron in some quantum state. After some time, a scientist makes a measure-
ment of the electron’s position, and the result of the measurement is the position vector x∗. 
Astonishingly, if the scientist repeats the measurement process for this system (after first finding 
x∗) one, two, or even a hundred times, the result of every measurement on this system will yield 
x∗. The probabilistic nature of the quantum state has simply vanished, and the Schrödinger 
equation no longer holds. This puzzling, and to this day poorly understood, phenomenon is known 
as the collapse of the wave function2. Prior to the measurement, the electron could be found 
anywhere in its available space with some probability, and that after the measurement, this is no 
longer true. Unfortunately, we have no mathematical description of what happens in the moment 
that the measurement is made and the wave function collapse occurs. This goes to show that even 
though quantum theory is powerful in its ability to predict various phenomena, there are still 
missing pieces in our understanding of the quantum universe. 

The mass of the proton is 1836 times larger than the mass of the electron [8]. As a result, the 
electrons move much faster than the atomic core they surround. The velocity difference is indeed 
so large that in the viewpoint of electrons, the nuclei are fixed. This is the basis for the Born-
Oppenheimer [8] approximation, where it is assumed that the state of the electrons can be 
determined at fixed nuclear coordinates. When the time dependency of the quantum state is solely 
provided through a phase factor, which is the case for time independent Hamiltonians [9], the 
Born-Oppenheimer approximation reduces the Schrödinger equation to the eigenvalue equation 
 

Ĥψn(r) = Enψ(r),    (2.2) 

where r denotes the collection of electron coordinates, and ψn only differs from Ψn by omitting 
the phase factor. To highlight the fact that the wave function ψn depends parametrically on the 
nuclear coordinates R, we may write Equation 2.2 as Ĥψn(r; R) = En(R)ψ(r; R). This dependence 
clarifies [6] the term potential energy surface (PES) given to the electronic energies En(R). Let us 
take the hydrogen molecule, H2, as an example. The geometry of this diatomic molecule can be 
described by a single quantity: the bond length R. By calculating the energy of the molecule at 
different values of R, one may plot the energy versus R in a one-dimensional graph, so in this 
case the PES is one-dimensional. For larger molecules, there are several geometric parameters, 
giving the PES higher dimension which makes it harder to visualize. However, the PES is often 
thought about as a landscape, with its associated hills and valleys [10]. The geometries at which 
a molecule is stable corresponds to the minima of its PES, and are called equilibrium geometries. 

                                                           
2 Several equivalent formulations exist for quantum mechanics. First came Heisenberg’s formulation, in which 
vectors represent quantum states and operators are represented by matrices. Later came Schrödinger’s version, where 
the quantum states are represented as mathematical functions called wave functions. 
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In geometry optimization processes, such minima are located through minimization of the energy 
with respect to the nuclear coordinates. 

Equation 2.2 is known as the time independent Schrödinger equation, and is solved for a fixed set 
of nuclear coordinates R. The wave functions ψn correspond to the states available to the system 
defined by the Hamiltonian Ĥ having fixed energy En. 

In quantum chemistry, we are concerned with the properties of molecules, chemical bonds and 
reactions. Since a molecule consists of several atoms, which again contain several quantum 
particles like protons and electrons, the wave function of a molecule describes a many-body 
system. As it turns out, increasing the number of electrons of our system make calculations 
drastically more complex. Many-body quantum theory is anything but trivial, and a great number 
of simplifications are needed in order to find an approximation of the wave function, from which 
molecular properties may be determined. 

Electrons are in principle indistinguishable. This means that for a system containing two electrons, 
there is no difference between (a) electron 1 in ψ1, electron 2 in ψ2 and (b) electron 1 in ψ2, 
electron 2 in ψ1. Consequently, the two systems have the same probability of detection, such that 
|ψ(r1,r2)|2 = |ψ(r2,r1)|2, where r1 and r2 represent the coordinates of electrons 1 and 2, respectively, 
and the first and second position of the parameters refer to ψ1 and ψ2, respectively. This concept 
expands to systems of larger number of electrons – any permutation of electrons will yield the 
same probability of detection – and we say that the probability of detection is invariant under 
permutation of particles. 

It is well known that electrons obey the Pauli principle, which dictates that at any moment in time, 
two electrons of equal spin cannot occupy the same spatial state. In fact, all half-spin particles, 
known as fermions, possess this quality, while integer-spin particles, bosons, do not. The fact that 
two electrons cannot occupy the same state at the same time, such that they in some sense avoid 
each other, is termed Pauli repulsion. It is, however, important to note that this is purely a quantum 
effect and it has nothing to do with Coulombic repulsion. As a consequence of the Pauli principle, 
the wave function of an electronic system must change sign when two electrons are swapped. In 
other words, the total wave function of any electronic system must be antisymmetric. 

To a large extent, modern quantum chemistry owes its success to the impressive accuracy of 
Hartree-Fock theory. In this framework, the antisymmetry of the electronic wave function is 
achieved using a so-called Slater determinant: 
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where the atomic orbitals χμ are known functions that are normalized but not necessarily 
orthogonal. The expansion coefficients cμi are determined according to the variational principle. 
The variational theorem tells us that for any approximate wave function ψtrial the expectation value 
for its energy satisfies 

      (2.6)  
where ξ is the energy spectrum of the true wave function ψ, i.e. it is the set of energy eigenvalues 
satisfying Equation 2.2 for some molecular geometry. The denominator of Equation 2.6 is a 
normalization factor, which equals unity in the case of a normalized trial function. In Equation 
2.6 the terms “inf” and “sup” refers to the minimum and maximum value of the eigenvalue set, 
respectively. The most important implication of the variational theorem is that, when we are 
concerned with finding the energy of a system’s ground state, our computational results are upper 
bounds of the true energy. In other words, we have a way of comparing different ground state trial 
wave function: Whichever gives the lowest energy is the best choice. 

Minimization under the constraints that both the total wave function ψ and the molecular orbitals 
φ should be normalized yields a set of implicit equations which must be solved iteratively. The 
solution is termed the Hartree-Fock wave function and is the lowest energy Slater determinant we 
can possibly construct with our choice of basis. 

Beginning with a set of M spinorbitals φi, where i = 1, 2, ..., N, ..., M, we may construct all possible 
N-electron Slater determinants of the form of Equation 2.3. The span of these determinants forms 
a subspace of H called the Fock space. Over the years, several wave function methods have 
descended from the Hartree-Fock theory. In these methods, approximations of the Schrödinger 
equation are solved by expanding the wave function ψ in terms of certain subsets of the Fock 
space. Examples of this can be found in the impressively accurate, but expensive, hierarchy of 
coupled cluster theories [11, 12]. 

A great deal of the ab initio methods of quantum chemistry are so-called post-Hartree-Fock 
methods. These are methods in which the Hartree-Fock wave function is calculated, followed by 
a series of steps to improve the solution by adding the effects of electron correlation. Electron 
correlation was defined by Löwdin in 1959 [13], somewhat arbitrarily, as “what is not covered by 
Hartree-Fock”, such that 

Ecorr = E – EHF      (2.7) 
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where Ecorr is the electron correlation energy, E is the true energy and EHF is the Hartree-Fock 
energy. We may note that Ecorr is a negative quantity, since EHF > E according to the variational 
principle. Hartree-Fock theory is what we call a mean field theory, meaning that any one electron 
only interacts with the mean electrostatic field provided by the other electrons. In reality, each 
pair of electrons interact and instantaneously adjust to each other, meaning that their motion is 
correlated. As previously mentioned, a Slater determinant contains what we may refer to as Pauli 
repulsion, exchange correlation or Fermi correlation (a dear child has many names) that describe 
the correlation of electrons of the same spin that is preventing them from occupying the same 
spatial orbital. This type of interaction is therefore, by Löwdin’s definition, not electron 
correlation. Now, electrons of any spin will repel each other due to the fact that they all have the 
same charge, via the Coulomb repulsion. Since the Hartree-Fock method does not take this into 
account, the Hartree-Fock wave function reflects a situation where the electrons are – on  average 
– too close to each other. This in turns lead to energies that are too high (ref. the variational 
principle). Thus, the aim of post-Hartree-Fock methods is to lower EHF by accounting for electron 
correlation in various ways. An example of such a method is perturbation theory. 

Although many of the ab initio methods can provide extremely accurate results for small systems, 
they can quickly become infeasible when the system size in-creases. It should be mentioned that 
the progress of computer science and the methods themselves have improved the situation a whole 
lot. However, it is definitely still relevant for systems above a certain size. Optimally, one would 
like to combine great accuracy with low computational cost. This was probably the greatest 
motivation for the construction of density functional theory (DFT) where the complicated many-
electron wave function is substituted by the much simpler electron density ρ(r). It was truly a 
remarkable discovery that the wave function is, in a certain sense, redundant - it tells you more 
than you need to know. Although attempts to use the electron density instead of the wave function 
for obtaining molecular information date all the way back to the works of Thomas and Fermi in 
1927 [14], DFT as we know it today was born in 1964 by the efforts of Hohenberg and Kohn 
[13]. The first and second Hohenberg-Kohn theorems state that 

1. the electron density ρ(r) uniquely determines the Hamiltonian and thus all properties of the 
system. 

2. the variational theorem also holds for functionals of the electron density. In other words, the 
functional that delivers the ground state energy of the system, delivers the lowest energy if and 
only if the input density is the true ground state density, ρ0 [13]. 

The term functional refers to a function that takes another function as its input and returns a scalar 
as its output. In the context of DFT, the input function is always some electron density ρ(r). The 
pursuit of the unknown - but undoubtedly existent, according to the first Hohenberg-Kohn 
theorem - functional relationship E = E[ρ(r)] is the main objective in DFT. Everything we could 
possibly wish to know about our system may be derived from this relation, analogous to the 
Schrödinger equation in wave function theory. 

To a first approximation, we can write E = E[ρ(r)] as the sum 
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  E[ρ(r)] = T[ρ(r)] + 𝑉𝑉e−n[ρ(r)] + 𝑉𝑉e−e[ρ(r)],    (2.8) 

where T is the kinetic energy of hypothetical non-interacting electrons, 𝑉𝑉e−n is the average 
interaction of the electrons and the nuclei, and 𝑉𝑉e−e is the average interaction of electrons with 
other electrons. All of these terms are obtained without difficulty, and it seems that whatever is 
not covered by Equation 2.8 must be small. Note that, due to the fact that the only electron-
electron interaction present in Equation 2.8 is the average interaction 𝑉𝑉e−e, it is fair to assume that 
electron correlation effects are missing. In fact, in contrast to the Hartree-Fock theory, the 
antisymmetry of the electronic quantum state is not readily taken care of in the first approximation 
above, meaning that the exchange energy is also missing. Consequently, the remaining part of 
E[ρ(r)] has been termed the exchange-correlation functional and is denoted Exc[ρ(r)]. 

It turns out that while proving the existence of the exact exchange-correlation functional is a 
relatively easy task, finding its form is not. In fact, with no agreed upon or systematic procedure 
to identify this functional, a great number of approximations have been proposed. Their accuracies 
are often quite dependent on the class of molecules on which they are employed. It is worth 
mentioning that, since the functionals of Equation 2.8 are easily obtained, they are not too 
interesting to us, and it is therefore customary to simply refer to the approximative exchange-
correlation functionals as functionals. For simplicity, the term functional will be used exclusively 
in this way in the remainder of this report. 

Most functionals are so-called local density approximations (LDAs) or generalized gradient 
approximations (GGAs) [15], where 

 
(2.9) 

. 

In addition, there are hybrid functionals, which are linear combinations of other functionals. These 
hybrids are constructed by mixing in a fraction of exact HartreeFock exchange with conventional 
DFT exchange-correlation functionals [16]. A popular example is the B3LYP [17,18] functional, 
which combines Hartree-Fock exchange with an LDA and two GGAs [19]. 

In order to employ the electron density ρ(r) for calculations, we must determine its form. This is 
typically achieved through the approach of Kohn and Sham [20], who wrote ρ(r) as 

𝜌𝜌𝐾𝐾𝐾𝐾(𝐫𝐫) =  �|𝜑𝜑𝑖𝑖(𝐫𝐫)|2
𝑖𝑖

 ,                                                     (2.10) 

i.e. as the density of a single Slater determinant. From this, the ground state energy is minimized 
by varying the spinorbitals 𝜑𝜑i (r). The resulting equations are termed the Kohn-Sham equations, 
and are solved iteratively for the electron density [10,21]. 
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Recalling the discussion on the Born-Oppenheimer approximation, the reader has probably noted 
that we have yet to discuss the part of the wave function describing the nuclei. Mathematically, 
the decoupling of electronic motion from that of the nuclei is understood in terms of the product-
form wave function ψ(r,R) = ψnuc(R)ψel(r,R). At any temperature above absolute zero, the nuclei 
takes on three different types of motion as they vibrate, rotate and translate in three-dimensional 
space. To a first approximation, these modes of motion are taken to be independent. This results 
in a further decoupling, such that 

 ψnuc(R) = ψtrans(Rcm)ψrot(α,β,γ)ψvib(Q1,...,Q3N−6), (2.11) 

where Rcm is the coordinate of the center of mass, α, β and γ are the angles describing the 
molecule’s orientation, and Q1,...,Q3N−6 are so-called normal mode coordinates. Note that 
variation of a single normal mode corresponds to a vibration of the entire molecule. In quantum 
chemical frequency calculations the frequency of the normal modes are determined, as well as 
their intensities. A truly remarkable quantum effect is that, even at zero temperature, molecules 
vibrate. The energy corresponding to this motion is termed the zero point energy. 

3 Determination of Transition States 

In the context of chemistry, a transition state corresponds to a local or global maximum of the 
PES, which connects two equilibrium structures through a reaction path. Such states or structures 
are highly unstable. In other words, one would not find a molecule in one of its transition states 
for an extended period of time. Rather, the molecule would follow the reaction path, along one 
direction or the other, until it stabilizes at one of the two equilibrium structures that the transition 
state connects. 

Transition states and activation energies are two closely connected concepts. The activation 
energy Ea of a chemical reaction is defined as the difference between the transition state energy 
and the energy of the reactant(s), 

 Ea = E(Transition state) − E(Reactants), (3.1) 

and therefore represents the energy barrier the reactants must overcome to form the products. 
This transition includes the breaking of at least one molecular bond, and sometimes also the 
creation of new molecular bonds. Transition states must not be confused with intermediates, 
which are stable states corresponding to local minima on the potential energy surface. 

Since transition states correspond to stationary points on the potential energy surface, such states 
can be located by the use of the optimization feature in Gaussian [22]. Since transition states are 
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characterized by exactly one imaginary frequency, a frequency job on the optimized geometry 
provides a simple way to confirm that the optimization has indeed converged to a transition state. 

It is important to note that even in the case of a successful transition state optimization, one needs 
to make sure that the calculation has converged to the desired transition state, i.e. that which 
connects the reactants and products of interest. One might begin the investigation by examining 
the normal mode corresponding to the imaginary frequency, and from this determine whether or 
not the motion tends to deform the transition structure as expected. If this is too hard to tell for 
certain (which is often the case), one can dig deeper into the problem by running an intrinsic 
reaction coordinate (IRC) calculation. Such a calculation starts at the saddle point and proceeds 
by following the reaction path in both directions, optimizing the geometry of the system at each 
point along the path [22]. Even though the IRC calculation usually will not proceed all the way 
to the reactant and product states, one can usually tell what kind of structure the system tends to 
in both ends, and from this determine whether or not the obtained transition structure was the 
desired one. 

No matter how straightforward it might sound, finding a desired transition structure directly by 
specifying a reasonable guess for its geometry can be challenging in many cases. In the 
following, an example of such a case will be discussed. 

Initially, the intention of my work was to locate as many transition states as the time frame would 
allow for the bond breaking processes described by Jensen et al. [4]. The main objective of this 
task was to obtain the activation energies for the C–NO2 homolytic cleavage reaction for the 
molecules and investigate whether this would improve the correlations described in [4]. 
However, this proved to be a challenging task. Even after some good hours of struggling to find 
a good enough starting geometry, the molecule would simply bounce back to an equilibrium 
structure. Solace was found in the 2019 paper by Nikolaeva et al. [23]. By performing a great 
amount of DFT calculations on nitrobenzene, they discovered that at the B3LYP level of theory 
using the 6-31G(d,p) basis set, a minimum of the electronic energy with respect to the C–NO2 

bond length could simply not be found. They were, however, able to locate the transition state 
of the C–NO2 homolytic cleavage reaction by a method utilizing the Gibbs energy. 

To confirm the findings of Nikolaeva et al. [23], a frequency calculation was performed for their 
reported molecular geometry of the transition state. The calculation was performed using B3LYP 
with the 6-311G(d,p) basis set, and exactly one imaginary frequency was found, showing that 
the proposed structure indeed corresponds to a transition state. Due to the short time frame and 
the complexity of the problem, a decision was made to let the transition state search related to 
the Jensen et al. paper [4] rest for a while, in favor of other projects. 



  

    

 

 16 FFI-RAPPORT 22/02332 
 

4 Amino Group Desensitization of Nitro Based 
Explosives 

4.1 Introduction 

In the field of explosives, it is desired to create substances of high energy density that is 
simultaneously insensitive to various types of impact. Such materials are termed insensitive high 
explosives (IHEs). 

Since there is usually a contradiction between increasing energy densities and reducing 
sensitivity, creating new IHEs is in practice a challenging task. The computational results of Cao 
et al. [24] indicate that amino groups are conditionally advantageous to IHEs in the sense that 
the presence of amino groups can lower the sensitivity of certain types of nitro based explosives, 
while for other types it offers no improvement. In particular, amino groups were found to be 
advantageous in nitroaromatic explosives, as well as for conjugated systems like nitro derivatives 
of ethene and ethyne. However, for unconjugated systems, they found no improvement on 
detonation performance or sensitivity by the introduction of amino groups. In fact, some of the 
molecules turned out to be less stable after the amino enrichment. 

Due to the importance of safety and control in the context of high-energy explosives and the 
resulting strong desire to create new IHEs, it is of great interest to investigate the phenomenon 
of amino group desensitization in conjugated systems. In this section, two nitro derivatives of 
ethene will be explored and compared. The goal is not to produce high quality predictions of 
molecular properties, but rather to get a better qualitative understanding of the amino group’s 
desensitizing effect in nitro explosives. 

4.2 Theory and Methods 

The Gaussian 09 software [25] is employed for DFT calculations. The chosen ethene derivatives 
are 1-amino-2-nitroethene (compound 1) and nitroethene (compound 2) as shown by their 
structural formulas in Figure 4.1. 

 
Figure 4.1 The chosen molecules for the exploration of amino group desensitization in nitro  
   explosives. Compound 1: Z-1-amino-2-nitroethene. Compound 2: nitroethene. 

Working with ethene derivatives, as opposed to nitroaromatics, keeps the computational cost low. 
Additionally, due to the molecules’ similarity to the IHE 1,1-diamino-2,2-dinitroethene, also 
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known as FOX-7 [26] or DADNE [27], ethene derivatives are in themselves interesting in the 
context of IHEs. Nevertheless, the cis forms of the molecules were chosen to maximize the 
similarity to nitroaromatics. A small basis set, namely the correlation-consistent polarized basis 
set cc-pVDZ [28], was used for all calculations. As was DFT, with the Minnesota [29] global 
hybrid exchange-correlation functional M06-2X [30]. This functional contains 54 % Hartree-
Fock exchange, and has been found to perform better [31–34] than the popular B3LYP functional 
for a range of organic molecules and reactions, as well as to yield results of similar accuracy to 
higher level methods in certain cases [35]. 

The sensitivity of each compound is assessed based on molecular stability. The properties of 
interest are the bond dissociation energies BDEs and bond lengths of the assumed weakest bond. 
This choice of sensitivity parameters is somewhat inspired by the work of Cao et al. [24]. 
Additionally, Zhang et al. [36] have showed a correlation between nitro group charges and impact 
sensitivities, and because of this, the partial atomic charges of the nitro groups will also be 
considered. The methodology of Zhang et al will be followed, such that the nitro group net charge 
QNO2 will be calculated as 

    QNO2 = QN + QO1 + QO2     (4.1) 

where Qi is the Mulliken charge of atom i. Additionally, a full natural bond orbital [37] (NBO) 
analysis will be performed to obtain the atomic charges since this method is known to be less 
basis set dependent than the Mulliken population analysis [38]. 

NBO analysis stresses the role intermolecular orbital interaction. The analysis is carried out by 
considering all possible interactions between filled donor and empty acceptor NBOs, and then 
estimating their energetic importance by second-order perturbation theory [39]. The interaction 
energy E(2) is calculated for each donor NBO i and acceptor NBO j as 

     ,    (4.2) 

where qi is the orbital occupancy, i and j are diagonal elements of the Fock matrix, and Fi,j is an 
off-diagonal element of the Fock matrix. The NBOs are classified as either core (Cor), valence 
(Val) or Rydberg (Ry) orbitals, and specified as either bonding (BD), antibonding (BD*) or lone 
pair (LP). 

According to the trigger linkage hypothesis, the first step in the initiation of an energetic molecule 
is a bond cleavage [4]. For covalent nitro-containing compounds the X–NO2 bond is usually the 
weakest bond in the molecule [3,36], and this particular bond will therefore be at the center of 
attention in this section. 

Figures 4.2, 4.3 and 4.4 show the different bond breaking processes that will be considered. 
Compounds 3 and 4 are the anionic radical versions of compounds 1 and 2, respectively, and are 
included due to the interesting findings by Pruitt and Goebbert [40]. Through spectroscopic 
measurements, they showed that the dissociation energies associated with nitrite removal from 
some anionic nitroaromatics were lower than those associated with the homolytic cleavage of the 
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C–NO2 bond of the corresponding neutral molecules. Note that the term bond dissociation energy 
by definition refers to the homolytic cleavage reaction, and that the energies associated with the 
other bond breaking processes will go under the term dissociation energies (Ds). The role of 
anions in decomposition reactions is assumed to be limited to special cases, such as in electric 
detonation, but it is still an interesting and perhaps less explored object of investigation. 

 
Figure 4.2 Homolytic cleavage of the C–NO2 bond of compounds 1 and 2. 

 
Figure 4.3 Heterolytic cleavage of the C–NO2 bond of compounds 1 and 2. 

 
Figure 4.4 Removal of nitrite from compounds 3 and 4. 
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The BDEs will be calculated according to the method in [22]. For the reaction AB → A + B, the 
BDE is thus given by 

    BDE = E(A) + E(B) − E(AB),    (4.3) 

where E(i) is the ground state electronic energy of compound i at a given temperature, including 
the zero point energy and thermal corrections. The dissociation energies for the heterolytic 
cleavage reactions and the anionic nitrite removals will be determined in the same way. 

4.3 Results and Discussion 

4.3.1 Homolytic Cleavage of the C–NO2 Bond 

As can be observed in Table 4.1, the C-NO2 BDE is found to be around 55 kJ mol-1 larger for 
compound 1 than for compound 2 at both 0 and 298.15 K. This indicates a higher stability, and 
thus a lower sensitivity, for compound 1. We may also observe that the BDE of the homolytic 
cleavage reaction decreases slightly as the temperature increases from 0 to 298.15 K. 

Table 4.1 The C-NO2 BDEs for Z-1-amino-2-nitroethene and nitroethene, calculated with Gaussian  
  09 using the M06-2X functional and the cc-pVDZ basis set at T = 298.15 K. 

Compound 
BDE(C–NO2) [kJ mol−1] 

T = 0 K T = 298.15 K 

1 361.830657 356.663673 

2 306.017778 301.916747 
 

4.3.2 Heterolytic Cleavage of the C–NO2 Bond 

It is clear from Table 4.2 that the calculated dissociation energies for the heterolytic cleavage 
are significantly higher than the BDEs for the homolytic cleavage discussed above. 
Additionally, the dissociation energy associated with compound 2 is found to be significantly 
higher than that associated with compound 1. In other words, it requires more energy to break 
the C–NO2 bond of nitroethene heterolytically than to break the corresponding bond in Z-1-
amino-2-nitroethene in this manner. We may also note that as the temperature increases, so do 
the dissociation energies. 
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Table 4.2 The C-NO2 heterolytic dissociation energies for Z-1-amino-2-nitroethene and  
  nitroethene, calculated with Gaussian 09 using the M06-2X functional and the cc-pVDZ  
  basis set at T = 298.15 K. 
 

Compound 
D(C–NO2) [kJ mol−1] 

T = 0 K T = 298.15 K 

1 779.374424 782.073438 

2 994.8570855 999.769396 

4.3.3 Removal of Nitrite from the Anionic Compounds 

Table 4.3 shows the calculated dissociation energies associated with the removal of nitrite from 
the anionic compounds 3 and 4. The results indicate that for this bond breaking process, as for the 
homolytic cleavage reaction, compound 1 appears to be the most stable. The dissociation energies 
are found to be smaller than for both of the previously discussed reactions. Consequently, under 
conditions at which the anionic compounds 3 and 4 may be created, e.g. the occurrence of an 
electric spark, one would expect the material to detonate at lower temperatures. 

Table 4.3 The C-NO2 dissociation energies for Z-1-amino-2-nitroethene anion and nitroethene  
  anion, calculated with Gaussian 09 using the M06-2X functional and the cc-pVDZ basis  
  set at T = 298.15 K. 

Compound 
D(C–NO2) [kJ mol−1] 

T = 0 K T = 298.15 K 

3 221.274514 223.655843 

4 213.096082 216.4645985 

4.3.4 Bond Lengths 

Table 4.4 displays the calculated length of the C–NO2 bond for the compounds 1, 2, 3 and 4 in 
their optimized geometries. For the neutral compounds, we observe that compound 1 has the 
shortest C–NO2 bond length. Given the hypothesis that the C–NO2 bond is the weakest bond in 
each molecule, this indicates that compound 1 is more stable than compound 2. In other words, 
the calculated bond lengths are in agreement with the BDE results. 
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Table 4.4 The C-NO2 bond lengths of compounds 1, 2, 3 and 4, calculated with Gaussian 09 using  
  the M06-2X functional and the cc-pVDZ basis set. 

Compound C–NO2 bond length [Å] 

1 1.42196 

2 1.47080 

3 1.37699 

4 1.37702 

 
For the anionic compounds, we observe the same trend, although the difference in bond lengths 
of compounds 3 and 4 is an order of magnitude smaller than that of compounds 1 and 2. We also 
note that the bond lengths of the anions are shorter than those of their neutral counterparts. 

4.3.5 Partial Atomic Charges 

Using the Gaussian 09 software, a Mulliken population analysis as well as a full NBO population 
analysis was performed on compounds 1 and 2. Tables 4.5 and 4.6 show the calculated Mulliken 
and NBO atomic charges, respectively. Both the atomic charges and net charge of the nitro groups 
are shown. Despite the procedural differences of the two methods, they seem to agree upon the 
net charge of the nitro groups of compounds 1 and 2. The nitro groups are electron withdrawing 
and are therefore expected to constitute a negatively charged part of each of the compounds. 
Furthermore, the nitro group of compound 1 is found to have a more negative net charge than that 
of compound 2. Zhang et al. found that the larger the value of −QNO2, the less sensitivity the 
compound [36]. Compound 1 should therefore be the less sensitive of the two, coinciding with 
the interpretation of the dissociation energy results above. 

Table 4.5 The Mulliken charges of the nitro group atoms and the total net charge of the nitro group  
  for the compounds Z-1-amino-2-nitroethene and nitroethene. All quantities are given in  
  atomic units. 

Compound 𝑄𝑄𝑁𝑁𝑀𝑀 𝑄𝑄𝑂𝑂1
𝑀𝑀  𝑄𝑄𝑂𝑂2

𝑀𝑀  𝑄𝑄𝑁𝑁𝑁𝑁2
𝑀𝑀  

1 0.244 -0.342 -0.276 -0.378 

2 0.234 -0.263 -0.254 -0.283 
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Table 4.6 The NBO charges of the nitro group atoms and the total net charge of the nitro group for  
  the compounds Z-1-amino-2-nitroethene and nitroethene. All quantities are given in  
  atomic units. 

Compound 𝑄𝑄𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑄𝑄𝑂𝑂1
𝑁𝑁𝑁𝑁𝑁𝑁 𝑄𝑄𝑂𝑂2

𝑁𝑁𝑁𝑁𝑁𝑁 𝑄𝑄𝑁𝑁𝑁𝑁2
𝑁𝑁𝑁𝑁𝑁𝑁 

1 0.517 -0.487 -0.404 -0.374 

2 0.500 -0.409 -0.377 -0.286 

 
In addition to providing partial atomic charges, the NBO can provide some understanding of how 
well the Lewis structure of a molecule coincides with the true structure. The term “true” in this 
sense refers to the approximate electronic structure found by the quantum chemical method one 
has chosen to employ. As explained above, the NBO procedure is based on localized orbitals, but 
through second order perturbation theory, interactions between the different orbitals are 
accounted for. Thus, the adjustments to the total energy are provided in form of E(2) values. The 
larger the E(2) values, the greater the delocalization of electrons, and thus the greater is also the 
stabilizing effect. 

Table 4.7 shows the largest E(2) values for compounds 1 and 2 found by NBO analysis. The table 
is set up so that the interactions present in both compounds are found in the same row, so that 
half-filled rows indicate that the interaction is only present in one of the compounds. The 
interaction that is only present in compound 1 is the delocalizaton of electrons from the lone pair 
on the amino group’s nitrogen atom to the antibonding orbital of the carbon-carbon double bond. 
The E(2) value associated with this interaction is large. In fact, it is so large that it more than makes 
up for the energy difference of the strongest interaction between the two molecules, such that 
when we look at the sums of E(2) values for the two molecules, the largest is that of compound 1. 
Beside the two first rows of the table, the interaction energies do not differ by significant amounts 
in the two molecules. 
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Table 4.7 Results of the second order perturbation calculation performed in the NBO analysis. LP: 
lone pair orbital, BD: bonding orbital, BD*: antibonding orbital. Each row corresponds 
to a particular interaction, such that the half-filled row signifies an interaction only 
present in compound 1. N1 is the nitro group nitrogen and N2 is the amino group 
nitrogen. The energies are given in the unit kJ mol−1. 

 Compound 1   Compound 2  

Donor Acceptor E(2) Donor Acceptor E(2) 

LP O1 BD* N1 - O2 731.3 LP O1 BD* N1 - O2 876.4 

LP N2 BD* C1 - C2 335.64    

BD C1-C2 BD* N1-O2 132.80 BD C1-C2 BD* N1 - O2 94.81 

LP O2 BD* N1 - O1 101.29 LP O2 BD* N1 - O1 98.16 

 

The amino group NH2 is electron donating, and this is reflected in the results discussed above. 
The delocalization brought on by the amino group increases the conjugation and promotes 
stability of compound 1, while compound 2 does not experience this stabilization. Based on the 
delocalization-conjugation-stabilization link mentioned above, one would expect compound 1 to 
be more stable than compound 2. However, one should probably tread carefully when it comes to 
drawing conclusions directly from results found through population analysis. One must recall that 
partial atomic charges cannot be measured and that all schemes made to assign such charges are 
essentially arbitrary. That said, in the literature, resonance is often used to explain stability. In 
their moderately comprehensive review of FOX-7, Trzciński and Belaada [27] stated “the 
stabilizing effect of hydrogen bonding and resonance effects cause FOX-7 to be one of the less 
sensitive explosives”. Although a thorough analysis on hydrogen bonding has not been included 
in this work, it is a fact that replacing a hydrogen atom with an amino group yields a molecule 
with both a) a larger number of hydrogen atoms, and b) hydrogen atoms that would be expected 
to have a larger positive partial charge due to differences in electro negativity. Thus, increased 
hydrogen bonding may also be a relevant stabilizing effect helping to make compound 1 more 
stable – and less sensitive – than compound 2. 

4.4 Conclusions 

Out of the compounds 1 and 2, the former was found to have the highest BDE and the shortest 
bond length for the C–NO2 bond, as well as the most negatively charged nitro group. These results 
all point toward compound 1 being the most stable - and thus least sensitive - of the two. The 
NBO results suggest that the presence of the amino group leads to increased electron de-
localization and thus a higher degree of conjugation in the system. Increased hydrogen bonding 
may be another important stabilizing effect. The calculated dissociation energies of the heterolytic 
cleavage of compounds 1 and 2 were found to be significantly higher than those of the homolytic 
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cleavage. Additionally, they seem to correlate positively with temperature, while the correlation 
is negative for the homolytic BDEs. This indicates that the hemolytic cleavage is the dominating 
reaction of the two at most temperatures. For the anionic compounds 3 and 4, the dissociation 
energies were found to be lower than for both of the aforementioned processes. Thus, one would 
expect a lower detonation temperature for the cases where an electric spark occurs. 

5 Machine Learning as a Quantum Chemistry Tool 

Machine learning (ML) is a branch of artificial intelligence (AI) in which the computers learn the 
ability to find patterns in large data sets through the use of statistical methods. Arthur Samuel, 
who popularized the term machine learning in 1959 [41], defined it as field of study that gives 
computers the ability to learn without being explicitly programmed. The usefulness of ML cannot 
be overstated, and its applications stretch over a wide range of fields, affecting both our personal 
and professional lives. 

Typically, a computer learns patterns from existing data and is then supplied with new data from 
which it makes predictions. The learning procedure is often referred to as training [42]. However 
useful ML has been since its birth in the 1950s, it was only applied to the quantum/computational 
chemistry field in the early 2010s [43–47]. The problem with scaling of quantum chemical 
methods has been a long-standing challenge. As the systems of interest grow in size and 
complexity, the computational cost increases drastically, and expensive supercomputers must 
often be employed in order to get reasonably accurate results in a reasonable amount of time. 
During the last couple of years, the possible applications of ML to molecular systems have gained 
traction. Once a predictive ML model is trained, it can make instantaneous predictions. Thus, if 
the training data set is, by some measure, good enough, the computational cost of predicting 
molecular properties could be lowered drastically. 

In 2017, Schütt et al. [48] presented a deep-trained neural network (DTNN) capable of predicting 
the molecular energies of a substantial number of organic compounds. As an example of chemical 
relevance, they reported the predicted energies of several aromatic compounds and linked this to 
the relative ring stability. The mean absolute error of the DTNN was 1.0 kcal mol-1, for both data 
sets for which the model was trained. In other words, this was a much promising result with regard 
to the challenge of reducing computational cost. Schütt et al. also showed that their DTNN could 
also provide an accurate molecular mechanics trajectory for toluene. 

Building upon the principles of the previously described DTNN, the artificial neural network 
SchNet was proposed in 2018 as an improved neural network architecture for learning 
representations for materials and molecules [49]. SchNet is a continuous-filter convolutional 
neural network. It is available for download and use through the SchNetPack Python library [50], 
and offers several trained models ready for use as well as the tools needed to train new ones. 
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Amongst other utilities, SchNet can be employed to predict the energies, dipole moments and 
polarizabilities of different molecules, to create molecular dynamics trajectories and to create 
plots of local chemical potential. 

The original plan for this section was to devote it to the discussions of local chemical potential 
isosurface plots produced using SchNetPack. Unfortunately, due to the limited time frame and 
my lack of experience within this field, producing such plots was not possible. However, I hope 
that it can serve as a great supplementary tool for the research establishment in the future. Even 
though more work is needed in order to obtain the aforementioned desired results, I believe that 
the time invested in experimentation, testing and error handling over this summer will pay off in 
terms of increased knowledge and experience. 
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