
Discrete Fourier Transform with Neural Networks
Jabran Akhtar

Norwegian Defence Research Establishment (FFI)
Box 25, 2027 Kjeller, Norway

Email: jabran.akhtar@ffi.no

Abstract—The discrete Fourier transform is an important
computational tool to retrieve the frequency distribution of a
sampled signal. Recent years have also witnessed considerable
research activity in neural networks as a mean to solve various
signal processing problems. Despite this, it has been an open
issue whether a neural network can be trained to return the
discrete Fourier transform of its inputs. This paper presents
a training methodology for neural networks with non-linear
activation functions to replicate and approximate the discrete
Fourier transform.

Index Terms—Neural networks, machine learning, Fourier
transform, spectral estimation

I. INTRODUCTION

The discrete Fourier transform (DFT) is a well-known tech-
nique used to determine the frequency distribution of a finite
equally-spaced sampled signal. The DFT has an important role
in many wireless applications and transforming a signal or
image to frequency domain is often a necessary step for further
processing and information extraction [1], [2].

The last couple of years have seen great interest in research
and development of neural networks. Deep neural networks
have been extensively employed for classification purposes
and they have also shown great adaptability to other type
of problems [3], [4]. Nevertheless, training an artificial fully-
connected neural network to yield a complete discrete Fourier
transform has been seen as an intricate task and no clear learn-
ing strategy has been proposed. Since the DFT is the output of
linear combinations of the inputs, the general understanding
has been that a type of neural network with a single layer
and linear activation functions can be made to perform this
operation [5], [6], [7]. The research activity on this topic has
been limited, though it has recently been shown [8] that a
convolutional neural network with linear activation functions
can be trained to return the magnitude of the DFT. Many neural
networks do employ non-linear activation functions and, from
a machine learning point of view, it has therefore remained
an open problem if such an artificial neural network can be
trained to converge to the DFT.

In this paper, we propose a supervised learning technique
on how a fully-connected neural network can be set up to
return the full DFT employing a sigmoid activation function.
The short contribution aims to present an easy implementable
learning approach to accomplish this. The input data to a
neural network is often normalized to avoid scaling issues and
speed up the training process. It is our understanding that the
standard data normalization approaches such as min-max or

z-score have been inadequate for the DFT process as they
tend to shrink a signal’s dynamic range. We rather make use
of maximum absolute normalization which directly leads to
the DFT by training on e.g. noisy signals. This also works to
demonstrate that the established normalization techniques may
not always be most favorable for certain types of problems,
particularly those involving transformations.

That a neural network may be able to discover the DFT
by itself opens up for several opportunities. For a start, it
would allow the computation of the DFT to be carried out via
alternative methods employing a traditional sigmoid activation
function. Even though a network of a given size may model
the DFT exactly, an interesting aspect is the ability to use
a smaller network to approximate the full transformation in a
novel way. A gradual decline can save computational resources
while the essential information needed for further processing
may still remain intact [9]. More importantly, a small neural
network appropriately designed to be able to construct the
DFT on its own, can form part of a bigger deep learning
system structure where it itself determines how, where and
what type of frequency transformation should occur [10],
[11], [12]. Another preeminent application of the technique
is in situations when the input data is in time domain and a
type of transformed output is expected at the other end. As
an example, in [13] gapped slow-time radar data is passed
into a trained neural network and the network reconstructs
a sparse Doppler profile based on basis pursuit denoising;
a process which partly depends on frequency transformation
capability. Another application is suggested in [14] where
a neural network is trained for super-resolution output in
frequency domain.

II. SIGNAL MODEL

In this section we start by describing the basic signal model
which is used as the reference point for network training. We
assume a complex signal s[n], n = 0, 1, ..., N − 1 where N
discrete time domain samples are available. K realizations of
s[n] are available, denoted by sl[n] where l = 0, 1, ...,K − 1,
which are used for the training process. The signals may,
optionally, be multiplied element-wise by an arbitrary chosen
window function h[n]; h ∈ RN and such tapering is
often employed in various applications to reduce a signal’s
amplitude at the beginning and end of the sequence to mitigate
spectral leakage. The tapering aspect can thus be incorporated

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/VTC2021-Fall52928.2021.9625247

in the same process, if desired. For each realization of sl[n],
we form a particular normalized version of it, defined as

ŝl[n] =
1

gl
(sl[n] � h[n]) (1)

where

gl = max
n

(
|<(sl[n])|, |=(sl[n])|

)
, (2)

i.e. the maximum absolute value of either the real or imaginary
parts of sl[n]. In absolute terms, the largest value of ŝl[n]
will thus be equal to one, while the lowest figure remains
undefined. In the above � designates element-wise multipli-
cation and it is assumed that maxt(h[n]) = 1 and gl > 0. It
turns out that this normalization plays a fundamental role for
successful training and operation of the neural network. Other
normalization techniques can instead compress the range of
the data and hence do not lead to successful outcomes. A
discrete Fourier transform is next carried out on the signals:

d̂l[k] =
N−1∑
n=0

ŝl[n]e
−jkn 2π

N , k = 0, 1, ..., N − 1. (3)

Due to the linear properties of the DFT, the resulting trans-
formed data d̂l[k] can be re-scaled by gl to attain the absolute
values of the recovered solution,

dl[k] = gl d̂l[k], (4)

though this aspect is retained outside the neural network and
the training procedure.

By determining the DFT over all K signal realizations, a
large training set can be established where each normalized
and tapered time domain signal ŝl[n] is mapped into a Fourier
profile d̂l[k], CN → CN . Figure 1 attempts to provide a visual
depiction of the training setup. The neural network must be

DFT

T
im

e−
dom

ain }

T
raining database d[k]

F
requency

^

s[n]^

Fig. 1: Training setup

trained to minimize the mean squared error (MSE) between
the factual and desired network output. A well-trained network
should accordingly be able to evaluate the DFT of any arbitrary
signal, as long as the input values are first normalized and re-
scaled later. We also point out that the inverse DFT can be
computed in a similar manner and hence the same training
and/or network design can be applied for that.

III. NEURAL NETWORK DESIGN

For the neural network we assume a standard fully-
connected feed forwarding structure with an input layer, an
output layer with a linear transfer function and one hidden
layer with sigmoid activation functions. The input signal and
the transformed output data is presumed to be complex valued
and we therefore split the data in two, a real and an imaginary
part. The 2N inputs to the neural networks are normalized, in
the manner as described previously, by dividing them by the
maximum absolute value of the 2N entries. A denormalization
is executed at the other end to restore the original scaling. The
2N outputs from the final layer are combined at the end to
form half as many complex digits. The neural network design
is visualized in figure 2.

ta
nh

Re

Im

Re Im

Re

Im

Denormalization

Im Im

Re

Re

Re Im

s[n]

d[k]

Normalization: 1 / Max Abs

Fig. 2: Neural network process

IV. TRAINING EXAMPLES AND RESULTS

A. Training on noisy signals

With the above training setup in mind, a set of simulated
signals and their discrete frequency representations were gen-
erated to procure an example training set. The objective being
to train a neural network to yield, or approximate, a 64-point
DFT response. For a direct DFT training we can set

sl[n] = wl[n] (5)

where wl[n] is complex white Gaussian noise signal with zero
mean and unit variance. A total of K = 10000 random noisy
signals were generated and the Blackman window was applied
before DFT. Noisy signal do not contain any predictable
structure and can therefore capture the intricate relationship
between complex time domain data and its Fourier transform.

The identical set was used to train a fully-connected feed
forwarding network with either 128, 112, 96 or 72 nodes in
the one single hidden layer, each node using the hyperbolic
tangent sigmoid transfer function. Scale conjugate gradient
algorithm was utilized for optimization and the training carried
out for up to 500000 epochs with all data in a single learning
batch. The convergence was generally quite rapid for the
smaller networks and a minima is reached, as can be seen
in figure 3, for the various sized networks. The 128 node
network continued exhibiting small improvements throughout

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/VTC2021-Fall52928.2021.9625247

0 1 2 3 4 5

Epoch 10 5

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

M
SE

NN 128x1

NN 112x1

NN 96x1

NN 72x1

Fig. 3: Training performance

the training session where at the end the MSE materializes at
6.55 ·10−9. For all practical purposes, the network output was
closely resembling the DFT for both real and imaginary values
of the training set. The MSE at training end is also given in
the second column of table I 1. Subsequently training, for an
initial demonstration, a real valued signal

s[n] = 2 cos(0.8πn+ 2) + 2, n = 1, .., 64, (6)

was constructed. The DFT of the signal’s magnitude is plotted
against the outcomes from the various neural networks in
figure 4. The relative error is defined as

ηS = ||d[k]DFT − d[k]NN ||2/||d[k]DFT ||2, (7)

where the subscript indicates if the output is from the standard
transform (DFT) or a neural network (NN) and given in the
third column of table I. The neural network with 128 nodes, i.e.
the same number of nodes as the number of inputs and output,
yields the exact outcome as of the DFT. That the number of
nodes in the hidden layer should be identical to the number
of desired output entries to provide an exact outcome has also
been observed in [5]. No further improvement is witnessed if
the number of nodes in the hidden layer is increased further.
On the other hand, the performance from the neural networks
declines progressively as the networks hidden layer contain
fewer and fewer nodes, resulting in increasingly higher noise
floor level. The peaks are nevertheless discriminated well.
Smaller networks can be viewed as providing an approxima-
tion to the DFT and may still be able to extract information
necessary for other learning constructions.

Network MSE Test signal Test image
size performance relative error, ηS relative error, ηI

128x1 6.55 · 10−9 3.35 · 10−5 4.22 · 10−5

112x1 3.75 · 10−5 0.0033 0.0040
96x1 0.00218 0.0224 0.0253
72x1 0.0593 0.1246 0.1042

TABLE I: Performance error levels

For further evaluation of the generality of the networks
trained only on noisy signals, a larger set of signals was
generated where a total of five frequencies were incorporated
together over l = 1, ..., 300 signal realizations. The full

1The trained networks are all available for download from:
https://doi.org/10.6084/m9.figshare.14980152

-3 -2 -1 0 1 2 3

Frequency (rad)

-50

-40

-30

-20

-10

0

10

20

30

M
a
g
n
itu

d
e
 (

d
B

)

Test signal

DFT

NN 128x1

NN 112x1

NN 96x1

NN 72x1

Fig. 4: Test signal outcomes

frequency range was covered for two of the frequency com-
ponents sweeping from opposite directions while the signal
amplitude was set to increment or decrease for the various
frequencies as l (x-axis) increased to take account of different
scaling. White Gaussian noise was added and the resulting
image in the case of standard DFT is provided in figure 5.
This can also be seen as a short-time Fourier transform (STFT)
executed over the given signals with no overlap.

DFT

50 100 150 200 250 300

l

-3

-2

-1

0

1

2

3

Fr
eq

ue
nc

y

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30
dBm

Fig. 5: Standard DFT

NN reconstructed

50 100 150 200 250 300

l

-3

-2

-1

0

1

2

3

Fr
eq

ue
nc

y

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30
dBm

Fig. 6: 128x1 neural network

The comparable results from the trained neural networks are
given in figures 6 and 7. To quantify the results, the last column
of table I gives numerical error values where the outcomes
from various sized networks are compared against the standard
DFT. The relative error is now defined as the relative norm

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/VTC2021-Fall52928.2021.9625247

NN reconstructed

50 100 150 200 250 300

l

-3

-2

-1

0

1

2

3

Fr
eq

ue
nc

y

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30
dBm

Fig. 7: 72x1 neural network

error between the images formed by the DFT, WDFT , and the
neural network image, WNN ,

ηI = ||WDFT −WNN ||2/||WDFT ||2 (8)

In the case of a single hidden layer network with 128 nodes,
the approximation to the DFT is again exact, subject to minor
numerical errors. When the number of nodes in the hidden
layer falls below the number of inputs and outputs, the error
rate increases and this is also noticeable in the images as
they become more noisy and granular in structure. The major
features are nonetheless still approximated and distinguished
well.

A neural network with 128 real inputs and 128 output nodes
will consist of input and hidden layer matrices of dimensions
128× 128 alongside bias vectors of 128 entries. To visualize
how the entries are spread, figure 8 presents histogram plots
over the distribution of the values in the hidden layer weight
matrix and bias vector. The entries of the weight matrix follow
a bell shape over a wider interval pointing towards the fact that
the network is not simply making linear combinations of its
input values. The relative values in the bias vector are typically
small which can be attributed to the fact that the input data is
normalized to a maximum value of 1.

From a computational point of view, there exist many
fast implementations of DFT [1] and a neural network, even
with one hidden layer, will not able to achieve the same
level of efficiency. A Fast Fourier transform can execute the
transformation process in O(N logN) operations while the
complexity of a feed forwarding neural network will be on
the order of O(N2). Nevertheless, in regard to deep networks
with hundreds of layers a single additional layer which can
potentially compute the DFT can still be of advantage if a
Fourier transform type of operation can yield better overall
performance and can cut down on other layers.

B. Training on deterministical signals

The previous section demonstrated training on noisy signals
but in practice a learning process may have to be carried out on
measured data which in many scenarios may only contain real
values. With real valued data, the number of input entries to the
neural network can be set to exactly N , while the number of
nodes in the hidden and output layer should still be at 2N for
an exact DFT match. To demonstrate training on such a case,

Fig. 8: Weight distribution in the hidden layer

with a sample length of N = 128, a clean audio recording of
a male voice at 8 kHz was taken advantage of from the freely
available NOIZEUS database [15]. The recording contains
a total of 22529 samples and random signal blocks of 128
samples from within this were extracted for training. The
training was performed with different amounts of data with
K = 160, 192, 256, 1024, 8192 to evaluate how variation in
this impacts the training outcome. Machine learning is a data
driven approach and we note that for lower K values, such as
K = 128, the network is likely to return an exact outcome for
the given data set and thus not generalize well. No tapering
was employed and the neural network contained one single
hidden layer and an output layer each of 256 nodes.

To assess the trained networks, a different audio signal from
the same database, corresponding to a crowd of people, with a
noise level of 15.1 dB was put to use. The zoomed in standard
DFT spectrogram of the evaluation signal can be seen in figure
9 (top) with an overlap of 50% (64 samples). The middle
plot demonstrates the neural network result when trained with
K = 160 while the bottom represents the outcomes with K =
1024. The symmetrical property of DFT for real signals can
be observed and even with K = 160 the spectrum is visually
very close to the original DFT though small deviations can
be observed. Table II displays numerical errors with outcomes
from various sized data levels as compared against the standard
DFT, over the full sample duration of about three seconds. The
errors are low, however, as expected, more available training
data results in better outcomes.

K, number of MSE Spectrogram image,
training signals performance relative error ηI

160 1.21 · 10−6 0.3209
192 1.99 · 10−6 0.1272
256 1.08 · 10−6 0.0017

1024 1.34 · 10−6 0.0003
8192 1.61 · 10−6 0.0001

TABLE II: Performance error levels

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/VTC2021-Fall52928.2021.9625247

Standard DFT

0.2 0.3 0.4 0.5 0.6 0.7 0.8

-2

0

2

F
r
e
q

u
e
n

c
y

NN (K=160)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

-2

0

2

F
r
e

q
u

e
n

c
y

NN (K=1024)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

-2

0

2

F
r
e

q
u

e
n

c
y

Fig. 9: Spectrogram with DFT and NN

V. CONCLUSION

This paper proposed a training strategy for neural networks
in order to return the discrete Fourier transform. The key
aspect being training over an alternative normalized version
of signals. The results show that with an appropriate structure
one can indeed train a fully-connected feed forwarding neural
network with one single hidden layer to learn to yield the com-
plex DFT which can also optionally incorporate a windowing
function. Smaller networks can be used as an approximation
to the transform. The use of neural network in this context
opens up for the possibilities where only time domain data
is fed into networks and the network itself determines if a
transformation is desirable for solving a given task.

REFERENCES

[1] A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing".
Prentice-Hall, 1989.

[2] W. K. Pratt, "Digital Image Processing". Wiley & sons Inc., 1991.
[3] H. Huttunen, "Deep neural networks: A signal processing perspective".

Handbook of Signal Processing Systems (Third Edition), S. S. Bhat-
tacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Eds. Springer,
2019.

[4] D. Gündüz, P. de Kerret, N. Sidiropoulos, D. Gesbert, C. Murthy, and
M. van der Schaar, “Machine learning in the air,” IEEE J. Sel. Areas
Comm., vol. 37, no. 10, pp. 2184–2199, Oct. 2019.

[5] R. Velik, “Discrete Fourier transform computation using neural net-
works,” in International Conference on Computational Intelligence and
Security, 2008, pp. 120–123.

[6] M. Namba and Y. Ishida, “Pitch synchronous Fourier transform using
neural networks,” in International Conference on Neural Networks,
1995.

[7] O. Moreira-Tamayo and J. P. D. Gyvez, “Filtering and spectral process-
ing of 1-D signals using cellular neural networks,” in IEEE International
Symposium on Circuits and Systems, 1996, pp. 76–79.

[8] M. A. García and A. E. Destéfanis, “Spectrogram prediction with neural
networks,” in XXIV Congreso Argentino de Ciencias de la Computación,
2018, pp. 42–51.

[9] J. M. Winograd and S. H. Nawab, “Incremental refinement of DFT and
STFT approximations,” IEEE Signal Processing Letters, vol. 2, no. 2,
pp. 25–27, Feb. 1995.

[10] M. Kulin, T. Kazaz, I. Moerman, and E. D. Poorter, “End-to-end learning
from spectrum data: A deep learning approach for wireless signal
identification in spectrum monitoring applications,” IEEE Access, vol. 6,
pp. 18 484–18 501, March 2018.

[11] M. Crisan, "Dynamic Neural Network Model of Speech Perception" in
"Advances in Intelligent Systems and Computing" S. Bhatia, S. Tiwari,
K. Mishra, M. Trivedi (Eds.). Singapore: Springer, 2019.

[12] Y.-H. Pan, C.-H. Lin, and T.-S. Lee, “GAN-CRT: A novel range-Doppler
estimation method in automotive radar systems,” in Proc. IEEE VTC
Spring, 2020.

[13] J. Akhtar, “Sparse range-Doppler image construction with neural net-
works,” in Proc. of IEEE Radar Conference, 2020, pp. 291–296.

[14] ——, “Augmenting radar Doppler resolution with neural networks,” in
European Signal Processing Conference, 2021.

[15] Y. Hu and P. Loizou, “Subjective evaluation and comparison of speech
enhancement algorithms,” in Speech Communication, 2007, pp. 588–
601.

Dette er en postprint-versjon/This is a postprint version.
DOI til publisert versjon/DOI to published version: 10.1109/VTC2021-Fall52928.2021.9625247

