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(U) Summary

This report documents the statistical methods that are used in perforation experiments at the
Norwegian Defence Research Establishment (FFI). We also introduce new (or at least unused)
statistical methods, which have certain advantages over the ones we currently employ.

A concrete example is the receiver operating characteristic curves (ROC curves) and correspond-
ing classification tables, which provide a much more direct method to evaluate the goodness of fit
compared to the more conventional pseudo-𝑅2 measures. The ROC curves take multiple additional
details into account (such as true positives and negatives and false positives and negatives) that 𝑅2

measures do not when evaluating model performance. It is therefore a more reliable goodness of fit
metric. We recommend using both 𝑅2 and ROC methods to supplement each other.

As an example of the application of the various statistical methods, we evaluate whether a 0.5 mm
aluminium plate is suitable as a witness plate in perforation experiments. We find that the aluminium
plate is suitable as a witness plate for shots against skin simulants modelling the abdomen and back.
For other target locations, such as the thorax, thigh, or buttocks, we find that it is necessary to use
plates that are more easily perforated. Both the 𝑅2 measures and the ROC curves indicate that the
experimental model has a high goodness of fit.
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(U) Sammendrag

Denne rapporten dokumenterer de nåværende statistiske metodene som blir brukt i perforeringsek-
sperimenter ved Forsvarets forskningsinstitutt. I tillegg introduseres nye (eller i hvert fall ubrukte)
statistiske metoder som har visse fordeler sammenlignet med metodene som blir benyttet per dags
dato.

Et konkret eksempel er ROC-kurver (opprinnelig «kurver for en mottakers operasjonskarakter-
istikk» – receiver operating characteristic curves – men nå brukt i overført betydning) med tilhørende
klassifikasjonstabeller, som lar oss mer nøyaktig bedømme modellegnethet enn om vi utelukkende
hadde brukt mer konvensjonelle pseudo 𝑅2-mål. Selv om ROC-kurvene inneholder mer informasjon
(som sanne positiver og negativer og falske positiver og negativer) enn 𝑅2-målene, anbefaler vi at
begge metodene brukes for å supplere hverandre.

Som et konkret eksempel på anvendelser av de nye og eldre statistiske metodene studerer
vi egenskapene til en 0,5 mm aluminiumsplate for å finne ut om den egner seg som vitneplate i
perforeringseksperimenter. De statistiske resultatene tilsier at aluminiumsplaten egner seg godt som
vitneplate for skudd mot hudsimulanter som representerer mageregionen og rygg. For andre mål,
som brystkassen og lår, trengs det tynnere vitneplater. Både 𝑅2-målene og ROC-kurvene indikerer
at den eksperimentelle modellen gir resultater som samsvarer godt med dataene.
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1 Introduction
In the ballistic lab at the Norwegian Defence Research Establishment (FFI), perforation experiments
are performed routinely. Usually, the goal is to determine in which velocity regime the armour
system of interest is perforated or the projectile is stopped. The purpose of this report is to document
the statistical methods that can be used to analyze perforation experiments. Some of these methods
have been used at FFI before, while some have not been used. In either case, we believe a detailed
documentation can elucidate the strengths and weaknesses of the statistical methods we employ,
and in particular provide a deeper understanding of how the machinery works.

To provide a concrete example of the statistical methods we have performed a perforation
experiment using a 0.5 mm aluminium plate. Such a system is often used passively in perforation
experiments as a witness plate, to detect whether a projectile perforated an armour system typically
made from steel, ceramics, and ballistic fibres. In our experiment, we have used the aluminium
plates we had available which is of the type 1050-H14. We have compared the perforation properties
of the aluminium plate to the perforation properties of human skin. We find that there is overlap
in the perforation–velocity regime for aluminium plate and human skin, and conclude that the
aluminium plate is suitable as a witness plate for shots against the abdomen and back. For shots
against the thorax, thigh, or buttocks we find that witness plates that are more easily perforated may
be suitable.
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2 Perforation statistics
In this chapter we will introduce some of the statistics necessary to analyze perforation experiments.
Concretely, we will introduce the various regression models used to describe binary outcomes,
how the parameterers of the regression models are determined using the maximum likelihood
formulation, and how to define and calculate the relevant confidence intervals.

2.1 Regressional models

In a perforation experiment a projectile is fired at a target, typically an armour system. Right before
impact the velocity of the projectile is measured, and after impact it is recorded whether or not the
armour was perforated. The set of data is therefore binary in nature. A set of data for 𝑛 shots can be
denoted as {(𝑣1, 𝑦1), (𝑣2, 𝑦2), . . . (𝑣𝑛, 𝑦𝑛)}, where 𝑣𝑖 is the projectile velocity and 𝑦𝑖 determines
whether the armour is completely perforated (𝑦𝑖 = 1) or not (𝑦𝑖 = 0).

From the experimental data it is possible to approximately determine the probability of
perforation as a function of velocity if a suitable regression scheme is utilized. We will denote
the desired probability as 𝑃(𝑦 = 1|𝑣). In an ordinary linear regression one would attempt to write
something of the form

𝑃(𝑦 = 1|𝑣) = 𝛽0 + 𝛽1𝑣 + 𝜖 . (2.1)

Here 𝛽0 and 𝛽1 are the regression coefficients and 𝜖 denotes the error term. In a linear regression
the coefficients become constant, and since there is linear dependence on velocity there will be an
unphysical regime where the probability is greater than one or smaller than zero. Therefore, as well
as for other more technical reasons, the binary nature of the data makes ordinary linear regression
unsuitable for this problem. The solution is to instead use a so–called generalized linear model
(GLM) of the form

𝑃(𝑦 = 1|𝑣) = 𝐹 (𝛽0 + 𝛽1𝑣 + 𝜖) (2.2)

where a nonlinear function 𝐹 (also known as the link function) is used to map the probability back
to the physical interval [0, 1]. In the context of binary data the most frequent choices of 𝐹 are the
ones described by an S shaped (also called sigmoid) curve. There are several choices of S shaped
curves, but the two most frequently used are the so-called probit and logit models. In App. A we
provide a derivation of why it is natural to use the probit or logit model. The functional form of the
probit and logit is

𝐹 (𝑧) ≡ Φ(𝑧) =
∫ 𝑧

−∞
𝜙(𝑢)d𝑢, (2.3)

and
𝐹 (𝑧) ≡ Λ(𝑧) = 𝑒𝑧

1 + 𝑒𝑧 =
1

1 + 𝑒−𝑧 , (2.4)

respectively. Here Φ(𝑧) and Λ(𝑧) denotes the cumulative distribution function (cdf) of the normal
and logistic distribution. 𝜙(𝑢) denotes the normal probability density (pdf) and 𝑧 = 𝛽0 + 𝛽1𝑣.

The mean 𝜇 and standard deviation 𝜎 of the probit and logit model is given by

𝜇Probit = − 𝛽0
𝛽1
, 𝜎Probit =

1
𝛽1
, (2.5)

and
𝜇Logit = − 𝛽0

𝛽1
, 𝜎Logit =

𝜋
√

3
1
𝛽1
, (2.6)
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respectively.

2.2 Maximum likelihood estimation of regression coefficients

Most programming languages and statistical software (Matlab, python, Mathematica, R) are
equipped with statistical packages such that the determination of the regression coefficients become
trivial. Nevertheless, it is useful to know how the machinery works, which is what we will succinctly
explain in this section.

2.2.1 Coefficients

To determine the statistical regression coefficients the maximum likelihood estimation (MLE)
method is used. Given some observed data the likelihood function is maximized so that, under the
assumed statistical model, the observed data is the most probable.

Since the data is binary there are only two things which may occur. Either the projectile
perforates the armour with probability 𝑃(𝑦 = 1|𝑣) = 𝐹 (𝑧) or it doesn’t with probability 𝑃(𝑦 =

0|𝑣) = 1 − 𝑃(𝑦 = 1|𝑣) = 1 − 𝐹 (𝑧). This can be succintly expressed on a binomial form as

𝑃(𝑦 = 𝑦𝑖 |𝑣) = [𝐹 (𝑧)]𝑦𝑖 [1 − 𝐹 (𝑧)]1−𝑦𝑖 (2.7)

where 𝑦𝑖 = 0, 1. The likelihood of obtaining a set of experimental data {(𝑣1, 𝑦1), (𝑣2, 𝑦2), . . . (𝑣𝑛, 𝑦𝑛)}
can be written as the following product

𝐿𝑛 =

𝑛∏
𝑖=1

𝑃(𝑦 = 𝑦𝑖 |𝑣) =
𝑛∏
𝑖=1

[𝐹 (𝑧)]𝑦𝑖 [1 − 𝐹 (𝑧)]1−𝑦𝑖 . (2.8)

Directly maximizing the above product can become numerically unwieldy. Instead it is customary
to work with the so–called log–likelihood where we take the logarithm to convert the product into
the following sum

L𝑛 = ln 𝐿 =

𝑛∑︁
𝑖=1

𝑦𝑖 ln [𝐹 (𝑧)] + (1 − 𝑦𝑖) ln [1 − 𝐹 (𝑧)] , (2.9)

where 𝑧 = 𝛽0 + 𝛽1𝑣. The maximum likelihood method works by solving the equations

𝜕L𝑛

𝜕𝛽0
= 0

𝜕L𝑛

𝜕𝛽1
= 0 (2.10)

numerically. Two concrete numerical schemes often employed when solving Eqs. (2.10) are the
gradient descent method or the Newton–Raphson method.

2.2.2 Confidence interval on coefficients

In general, the maximum likelihood estimators have a number of attractive limit properties, which
is often referred to as the regularity conditions. For our purposes the most important property is
that the estimated parameters 𝛽 = (𝛽0, 𝛽1) are themselves normally distributed for sufficiently large
sample sizes

𝛽 ∼ 𝑁2

(
𝛽𝑇 , 𝐼

−1
𝑛 (𝛽𝑇 )

)
, 𝑛→ ∞. (2.11)
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Here 𝛽𝑇 is a vector containing the true values of the parameters and the covariance matrix1 is the
inverse of the so–called Fisher information matrix which is defined as

𝐼𝑛 (𝛽𝑇 ) = 𝐸
[(
𝜕L𝑛

𝜕𝛽

) (
𝜕L𝑛

𝜕𝛽

)𝑇 ]
= −𝐸

[
𝜕2

𝜕𝛽2L𝑛

]
(2.12)

where the expectation value is taken with respect to the distribution of the dataset {(𝑣1, 𝑦1), . . . , (𝑣𝑛, 𝑦𝑛)}.
In the following we denote the covariance matrix as 𝑉𝛽 = 𝐼−1

𝑛 , and set 𝛽𝑇 = 𝛽 since we do not
actually know the true values of the parameters. If the dataset are identically distributed and
independent of each other the Fisher information matrix can be computed using only one observation
𝐼𝑛 = 𝑛𝐼1. In practice this means that the error for the estimated regression coefficients decreases
with the sample size as 1/𝑛.

Since the estimated parameters 𝛽 obey a normal distribution with covariance matrix 𝑉𝛽 a
confidence interval on the parameters is given by[

𝛽0 − 𝑍1− 𝛼
2

√︃(
𝑉𝛽

)
11, 𝛽0 + 𝑍1− 𝛼

2

√︃(
𝑉𝛽

)
11

]
,[

𝛽1 − 𝑍1− 𝛼
2

√︃(
𝑉𝛽

)
22, 𝛽1 + 𝑍1− 𝛼

2

√︃(
𝑉𝛽

)
22

]
.

(2.13)

The number 𝑍1− 𝛼
2

is the Z–score2 of the normal distribution with significance level 𝛼. The
confidence level is expressed through the significance level as 100 · (1 − 𝛼)%.

2.3 Confidence interval on velocities

In a perforation experiment we are typically interested in the upper or lower quantiles of the velocity
which we can estimate from the regression. Equally important we are interested in how much of an
error our estimate contains. For example, when comparing various types of armour we are often
interested in 𝑉90, which is the projectile velocity at which the armour will be perforated 90% of the
time. However, depending on the application we could also be interested in other quantiles such as
𝑉10, 𝑉50, 𝑉95, etc. In the following we will derive an expression that can be used to determine the
confidence interval on any velocity quantile of interest. The calculations are based on related works
from the US Research Laboratory [1, 2].

In general, a confidence interval for an estimated quantity �̂� can be written on the form[
�̂� − 𝑍1− 𝛼

2
SE(�̂�), �̂� + 𝑍1− 𝛼

2
SE(�̂�)

]
(2.14)

where SE(�̂�) is the standard error of �̂�. If there is only one regression coefficient the standard
error is the standard deviation. If there are several regression coefficients the standard error of a
linear combination of the coefficients is given by

√
𝐾𝑉𝐾𝑇 , where 𝐾 is a vector describing the linear

combination and 𝑉 is the covariance matrix of the coefficients themselves.
If we use some programming language or statistical software to perform a logit/probit regression

we obtain a covariance matrix of the parameters 𝛽0 and 𝛽1, which we will refer to as 𝑉𝛽. To

1A covariance matrix is a square matrix giving the covariance between each pair of regression coefficients. The
diagonal elements are coefficient variances, and the off–diagonal elements are the covariances between pairs of coefficients.
The covariance matrix is by construction symmetric and positive definite.

2Note that if the sample size is small, one can instead use the T–score where the number of degrees of freedom is the
sample size minus the number of estimated parameters: d.o.f. = 𝑛 − 2.

10 FFI-RAPPORT 23/02387



estimate the quantiles we need estimates for the mean 𝜇 = 𝑉50 and slope 𝑠 of the S shaped regression
curve. In the logit/probit model the mean and slope can be expressed as 𝜇 = −𝛽0/𝛽1 and 𝑠 = 1/𝛽1
respectively. To simplify the notation, we collect the mean and slope into a single matrix 𝜃 = [𝜇, 𝑠]𝑇 .
To determine the covariance matrix 𝑉𝜃 between 𝜇 and 𝑠 we use the matrix equivalent of the chain
rule which states that

𝑉𝜃 =

(
d𝜃
d𝛽

)𝑇
𝑉𝛽

(
d𝜃
d𝛽

)
(2.15)

where (
d𝜃
d𝛽

)
=

[
d𝜇/d𝛽0 d𝑠/d𝛽0
d𝜇/d𝛽1 d𝑠/d𝛽1

]
= − 1

𝛽2
1

[
𝛽1 0
−𝛽0 1

]
. (2.16)

If we denote 𝑣𝑝 as the velocity that corresponds to the probability 𝑝 we can use the inverse of
the probit/logit model to express the velocity as a function of probability

𝑣𝑝 = 𝜇 + 𝑠 · 𝑄0(𝑝). (2.17)

Here 𝑄0(𝑝) is the quantile function which can be written

𝑄0(𝑝) =
{√

2erf−1(2𝑝 − 1) Probit,
ln 𝑝

1−𝑝 Logit,
(2.18)

and
erf (𝑥) = 2

√
𝜋

∫ 𝑥

0
𝑒−𝑡

2
d𝑡 (2.19)

is the error function. The trick is that we can now express Eq. (2.17) as a product of two vectors

𝑣𝑝 = [1, 𝑄0(𝑝)]
[
𝜇

𝑠

]
≡ 𝐾𝜃 (2.20)

where we identified the vector 𝐾 = [1, 𝑄0(𝑝)] which describes the appropriate linear combination
to express a velocity quantile in terms of the mean and slope.

Finally, to obtain the confidence interval, it is necessary to assume that the vector 𝜃 ∼ 𝑁 (𝜃,𝑉𝜃 )
is normally distributed around the true value of the mean and slope. If this is the case, the product
𝐾𝜃 ∼ 𝑁 (𝐾𝜃, 𝐾𝑉𝜃𝐾

𝑇 ) will also be normally distributed. Hence, the confidence interval for the
velocities 𝑣𝑝 = 𝐾𝜃 take the form[

𝑣𝑝 − 𝑍1− 𝛼
2

√︁
𝐾𝑇𝑉𝜃𝐾, 𝑣𝑝 + 𝑍1− 𝛼

2

√︁
𝐾𝑇𝑉𝜃𝐾

]
. (2.21)

In a similar fashion we can determine the confidence interval on the probability. In this case we
use the vectors 𝐾 = [1, 𝑣] and 𝛽 = [𝛽0, 𝛽1] so that the probability can be expressed as 𝑝 = 𝐹 (𝐾𝛽).
By then assuming that the coefficients are normally distributed around the true values 𝛽 ∼ 𝑁 (𝛽,𝑉𝛽),
it follows that the product 𝐾𝛽 ∼ 𝑁 (𝐾𝛽, 𝐾𝑉𝛽𝐾𝑇 ) is also normally distributed. The corresponding
confidence interval on the probabilities then take the form[

𝐹

(
𝐾𝛽 − 𝑍1− 𝛼

2

√︃
𝐾𝑇𝑉𝛽𝐾

)
, 𝐹

(
𝐾𝛽 + 𝑍1− 𝛼

2

√︃
𝐾𝑇𝑉𝛽𝐾

)]
. (2.22)
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3 Experimental method
In our perforation experiment an airgun was used to fire copperhead 2500 premium BB bullets of
diameter 4.5 mm and an average mass of 0.33 g at aluminium plates with a thickness of 0.5 mm.
The aluminium plates was made from aluminium 1050-H14. A schematic setup of the experiment
is illustrated in Fig. 3.1. For each shot, the impact velocity is measured, and it is recorded whether
the projectile perforates or is stopped by the aluminium plate. The use of an airgun allows the
impact velocity to be varied, either by controlling the pressure inside the airgun or by varying the
shooter–target distance. The raw data of the experiment is available in App. B.

Figure 3.1 A schematic of the experimental setup.

A ”good” data set consists of three regions: a high–velocity region of primarily perforations, a
low–velocity region of primarily stops, and an overlapping region where there are both perforations
and stops. Of most importance is the overlapping region, as it is these data points that provide
the most signifcant contributions to the intercept 𝛽0 and slope parameter 𝛽1. In a data set without
any overlapping region, the probit or logit method outputs a unit–step function, with infinite slope
𝛽1 = ∞.

When performing perforation experiments, the shooting method is of importance to obtain
data on which a statistical analysis can be performed. There are several choices possible, and the
simplest is the up–down method. The up–down method is designed to converge to the 𝑉50 velocity.
Unfortunately, it does not predict the upper or lower quantiles accurately. Therefore alternative
shooting methods have been devised. A summary of alternating shooting methods can be found in
Fig. 3.2, which is taken from a report written by the American Department of Defence [3].

In the experiment performed here we have utilized the 3POD method [4, 5]. The complete
technical details, are provided in the original article. The 3POD method is useful for estimating
both 𝑉50 and an upper velocity quantile, e.g. 𝑉90. In simple terms, the estimates are obtained by
utilizing different phases, of which there are three in total. In the first phase, the width of the overlap
region is crudely estimated, as well as the intercept term 𝛽0 and slope term 𝛽1. In the second phase
shots are placed around 𝑉50 and new estimates of the intercept and slope are provided. In the final
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and third phase, shots are placed around the upper velocity quantile re–estimating the intercept and
slope term. The 3POD method provides better estimates than e.g. up–down, because the shooting
is performed around two velocity quantiles, instead of one, which provides a better estimate for the
slope.

Figure 3.2 A comparison of the different shooting methods usually employed in perforation
experiments. The figure is taken from [3].
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4 Regression analysis of aluminium plate
Having obtained the experimental data we will in this section perform the regression analysis. We
use Matlab for the statistical analysis. The logit and probit fit to the experimental data in App. B are
shown in Fig. 4.1. We have here used Eq. (2.21) to calculate the 95% confidence interval on the
velocities. We note that the probability–velocity relationship provided by the logit and probit models
are statistically indistuingishable, since both curves are very similar and lie within each others
confidence interval. The curve exhibits the S–shape, and captures the feature that the perforation
probability should increase with velocity. Before we can draw conclusions about the aluminium
plate, we need to determine whether our model is a good or a bad fit to the experimental data.
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Figure 4.1 A comparison of the probit and logit fit to the experimental data. The dashed
lines represent the confidence intervals on the impact velocities.

4.1 Goodness of fit

Next, we discuss the different methods that are useful for evaluating the goodness of fit when
employing a logit or probit regression.
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4.1.1 Standard statistics of the coefficients

The standard statistics output by Matlab is given in Tab. 4.1. The values and the 95% confidence
interval of the intercept (𝛽0) and slope (𝛽1) is obtained by maximum likelihood estimation as
described in Sec. 2.2. The t–statistic and p–value is obtained from a Wald test as described in App.
C.1.

The small p–values indicate that both the intercept (𝛽0) and slope 𝛽1 are significantly different
from zero and should be retained in the regression. The coefficients in the logit and probit are
significantly different because the logit and probit have different functional form. Nevertheless, the
models are for all purposes practically identical as shown in Fig. 4.1, and we can’t learn much more
about the goodness of fit from these simple statistics.

Finally, we note that the confidence interval on the coefficients is large. This is a consequence of
that the associated standard error is also large. In order to obtain smaller standard errors we would
have to fire a much larger number of shots spread more evenly across the velocity range, which
for practical purposes are unrealistic. The standard error of the coefficients can nevertheless be
used for testing whether the coefficient is significantly different from 0, as we did in App. C.1. The
standard errors can also be used to form a confidence interval for the probability according to Eq.
(2.22). However, as mentioned before, we are more interested in the probability on the velocities.

Table 4.1 Standard statistics of the logit and probit regression for the aluminium plate.

Model Intercept 𝛽0 Slope 𝛽1
Value (95% CI) t-statistic p–value Value (95% CI) t–statistic p–value

Probit −42.9 (−67.1,−18.6) −3.46 0.540 · 10−3 0.387 (0.169, 0.605) 3.48 0.511 · 10−3

Logit −72.2 (−117.1,−27.3) −3.15 1.60 · 10−3 0.652 (0.248, 1.06) 3.16 1.60 · 10−3

4.1.2 Deviance residuals

Deviance is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary
least squares to cases where model-fitting is achieved by maximum likelihood, such as in the logit
or probit model. The deviance is defined as the difference in log–likelihood between a saturated
(perfect) model and a model of interest. In the saturated model, each data point is connected
by a line, thus producing perfect predictions. The deviance can be decomposed into a sum of
individual data points. Each term in the sum gives a contribution to the so called deviance residual.
Mathematically the deviance is defined and decomposed into a sum as

𝐷 = 2 (Lsaturated − Lmodel) =
𝑛∑︁
𝑖=1

𝑑𝑖 , (4.1)

and the deviance residual for datapoint 𝑖 is

deviance residual i = sign (𝑦𝑖 − �̂�𝑖)
√︁
𝑑𝑖 . (4.2)

The sign of the deviance residual is determined by whether the datapoint 𝑦𝑖 is above or below the
predicted value �̂�𝑖 . The size of the deviance residual is determined by the distance between the data
point and predicted value, which here is implicitly defined through 𝑑𝑖 . A deviance close to zero is
thus an indicator of a goodness of fit, and is a useful measure when comparing two different models.
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For the saturated model, each datapoint is predicted perfectly. Consequently, the likelihood of
the saturated model is one, and its log–likelihood is zero. This leads to the following relationship
between the deviance and log–likelihood of the model of interest,

𝐷 = −2Lmodel. (4.3)

In Fig. 4.2 we have plotted the deviance residuals for the probit and logit model. The deviance
residuals are very similar because the S–shape produced by each curve fit is similar. Naturally
both models have small deviance residuals for small and high velocities, where it is the easiest to
predict perforation or stop. For intermediate regions, where we have a mix of perforations and stops,
the deviance residuals oscillate. The total deviance of the logit and probit model is 28.2 and 27.7
respectively. Naively, this indicates that the probit fits the data slightly better than the logit. We can
understand this by noting that in Fig. 4.1 (𝑎) the tail of the logit is slightly heavier than the tail of
the probit. We emphasize that the difference in deviances are so small, that we can not conclude
that one model is significantly better than the other.

Figure 4.2 A comparison of the probit and logit deviance residuals.

4.1.3 Pseudo R squared

In standard regression techniques the overall fit of a multiple regression model is judged, for example,
by a unique well–defined quantity such as 𝑅2 computed from the fitted model. For a logit or probit
regression there are several different ways of calculating so–called pseudo 𝑅2 and, unfortunately,
there is no consensus on which is best. For the sake of completeness we briefly discuss some of the
pseudo 𝑅2 measures that have been proposed. A common feature of many of the various pseudo
𝑅2 are that they are based on comparisons of the predicted values from the fitted model to those
from a reduced model. The reduced model is a fit to the data using only the intercept 𝛽0 and fixing
the slope to zero, 𝛽1 = 0. Consequently, the pseudo 𝑅2 only measures if the model is improved by
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including a dependence on the variable (velocity in our case) and as such do not directly assess the
goodness of fit. We think that a better measure for goodness of fit is based strictly on a comparison
of observed to expected values from the full fitted model. We will discuss such a goodness of fit
measure in the next subsection.

However, the pseudo 𝑅2 can of course provide some useful information when comparing
competing models to the same set of data. Mittlböck and Schemper [6] studied the properties
of 12 different pseudo 𝑅2 using the following criteria: (i) the 𝑅2 has an intuitive interpretation,
(ii) the 𝑅2 is bounded to the interval [0, 1], (iii) the 𝑅2 is well–behaved during the logit or probit
transformation. Menard [7] performed a similar analysis, but for different pseudo 𝑅2. Currently,
there are several models that are used routinely.

4.1.3.1 McFadden

McFadden’s 𝑅2 [8] are calculated by comparing the log–likelihood of the reduced model to the full
model,

𝑅2
McFadden = 1 − Lmodel

Lreduced
. (4.4)

The McFadden 𝑅2 is bounded on the interval [0, 1]. The higher the value, the more likely it is that
the full model outperforms the reduced model.

4.1.3.2 Cox–Snell

The Cox–Snell 𝑅2 [9] compares the likelihood of the full model and the reduced model (McFadden’s
𝑅2 uses the log–likelihood). The Cox–Snell 𝑅2 is defined as

𝑅2
C&S = 1 −

(
𝐿reduced
𝐿model

)2/𝑛
. (4.5)

It’s worth noting that while the Cox–Snell 𝑅2 is similar to McFadden’s 𝑅2, the upper limit of
Cox–Snell’s 𝑅2 is not one. The upper limit can in many cases be much less than one, and is
determined by the likelihood of the reduced model.

4.1.3.3 Nagelkerke

Nagelkerke’s 𝑅2 [10] can be viewed as an ”adjusted Cox–Snell 𝑅2”, which addresses the problem
of the upper limit not being equal to one. This is done by dividing the Cox–Snell 𝑅2 by its largest
possible value. Nagelkerke’s 𝑅2 is defined as

𝑅2
Nagelkerke =

𝑅2
C&S

max(𝑅2
C&S)

=
1 − (𝐿reduced/𝐿model)2/𝑛

1 − 𝐿2/𝑛
reduced

. (4.6)

4.1.3.4 Tjur

Tjur’s 𝑅2 [11] has an intuitive definition. For all of the observed 0s in the data, we calculate the
mean predicted value 𝜋0. Similarly, for all of the observed 1s in the data, we calculate the mean
predicted value 𝜋1. Tjur’s 𝑅2 is then the distance between the two means. Thus, a Tjur’s 𝑅2 value
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approaching one indicates that there is clear separation between the predicted values for the 0s and
1s. Additionally, Tjur’s 𝑅2 is bounded to the interval [0, 1]. Mathematically, Tjur’s 𝑅2 is defined as

𝑅2
Tjur = 𝜋1 − 𝜋0. (4.7)

Here we have defined 𝜋𝑖 = 1/𝑛𝑖
∑

𝑗 𝑃(𝑦 𝑗 = 𝑖) for 𝑖 = 0, 1. The sum over 𝑗 indicates that we either
sum over the velocities where we obtained a perforation or the velocities where we obtained a stop.
Tjur’s pseudo 𝑅2 stands out from the others, as it is not based on comparing the full model with the
reduced model.

4.1.3.5 Pseudo 𝑅2 for the logit and probit model

In Tab. 4.2 we have calculated the various pseudo 𝑅2 we have just discussed. In all cases, the
pseudo 𝑅2 are very similar, but the probit has slightly higher values than the logit. The reason is the
same as for the deviance, the logit has slightly heavier tails. The high values of Tjur’s 𝑅2 tells us
that our model is excellent at distinguishing stops and perforations. The low values of the remaining
pseudo 𝑅2’s might naively be interpreted as indicating a bad model fit. However, they occur because
our data set mostly consists of points in the overlapping region coupled with the fact that the slope is
relatively high. If we had performed more shots in the low and high velocity regime the 𝑅2 values
would become larger. This discussion illustrates the danger of only relying on one pseudo 𝑅2 value.

Table 4.2 Pseudo 𝑅2 values for the logit and probit model.

Model 𝑅2
Tjur 𝑅2

McFadden 𝑅2
C&S 𝑅2

Nagelkerke
Probit 0.955 0.592 0.560 0.746
Logit 0.952 0.584 0.555 0.740

4.1.4 Classification tables

In the following the logit and probit analysis produces identical results for our dataset. The goodness
of fit can be analyzed through so–called classification tables, which is a much more direct method
than computing the pseudo 𝑅2. A detailed description can be found in [12]. A Classification Table
(aka a confusion matrix) compares the predicted number of successes with the number of successes
actually observed and similarly the predicted number of failures compared to the number actually
observed. There are four possible outcomes:

• True positive (TP): The number of cases that were correctly classified as positive. I.e our
model predicted a perforation, and we obtained a perforation.

• False positive (FP): The number of cases that were incorrectly classified as positive. I.e our
model predicted a perforation, but we obtained a stop.

• True negative (TN): The number of cases that were correctly classified to be negative. I.e our
model predicted a stop, and we obtained a stop.

• False negative (FN): The number of cases that were incorrectly classified as negative. I.e our
model predicted a stop, but we obtained a perforation.
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Utilizing these definitions the classification matrix is generally defined as

Classification matrix =

[
TP FP
FN TN

]
. (4.8)

The definition of the classification table depends on a so–called probability cutoff 𝑝𝑐. If the
predicted probability is larger than the cutoff we expect to obtain a perforation, if it is smaller we
expect the projectile not to perforate the target. The most natural choice is a cutoff probability of
𝑝𝑐 = 0.5, the corresponding classification table for our perforation experiment is then

Classification matrix =

[
20 5
4 20

]
. (4.9)

The accuracy (inaccuracy) of our model can be defined as the number of correct (wrong) predictions,

Model accuracy = 1 − Model inaccuracy =
TP + TN

TP + TN + FP + FN
= 0.81. (4.10)

So with a cutoff value of 𝑝𝑐 = 0.5, our model gives the correct prediction in 81% of the shots.
As mentioned before the classification table, as well as the accuracy depends on the probability

cutoff value 𝑝𝑐. While 𝑝𝑐 = 0.5 is a natural choice given a large (100-1000) amount of shots, it is
not necessarily the best possible choice given our limited number of shots, as is typically (20-50)
in the case of perforation experiments. To investigate how our models predictive power depends
on the probability cutoff it is customary to use the ROC curves (receiver operating characteristic
curve). To define the ROC curves we need to introduce the following rates:

True positive rate (TPR) =
Number of perforations predicted correctly

Total obtained perforations
=

TP
TP + FN

,

True negative rate (TNR) =
Number of stops predicted correctly

Total obtained stops
=

TN
TN + FP

,

False positive rate (FPR) =
Number of perforations predicted wrongly

Total obtained stops
=

FP
TN + FP

,

False negative rate (FNR) =
Number of stops predicted wrongly

Total obtained perforations
=

FN
TP + FN

.

(4.11)

Since the number of shots are fixed, we also have the following summation relations,

TPR + FNR = FPR + TNR = 1. (4.12)

The ROC curves are calculated by varying the probability cutoff on the interval 𝑝𝑐 ∈ [0, 1] and
for each value calculate the rates defined in Eq. (4.11). The result of the calculation is shown in Fig.
4.3. There are several different curves which tells us similar things so we will only focus on Figs.
4.3 (𝑎) and (𝑔).

The easiest curve to understand is 4.3 (𝑔) where the model accuracy is plotted as a function of
the probability cutoff value. For almost the entire range of cutoff values, we see that our model
predicts perforations or stops with an accuracy of ≈ 80%. The high–accuracy is indicative of a high
goodness of fit.

Figure 4.3 (𝑎) is what is referred to as the ROC curve in the literature. The true positive rate
and false positive rate is plotted for various values of the probability cutoff. The endpoints (0, 0)
and (1, 1) are always the same and correspond to 𝑝𝑐 = 1 and 𝑝𝑐 = 0 respectively. To understand the
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plot better it is useful to consider a simple limit case. If the ROC curve was the line 𝑦 = 𝑥 (dashed in
the figure) the rate of true positives would be equal to the rate of false positives, indicating that the
model is no better than guessing the outcome randomly. If the ROC lies below 𝑦 = 𝑥 (dashed line)
the predictions of the model would be worse than guessing randomly. If the ROC lies above 𝑦 = 𝑥
(dashed line) the predictions of the model are much better than guessing randomly, and indicative
of a good model fit. This behaviour can be quantified by evaluating the area under the ROC curve,
which is commonly referred to as the AUC. Unfortunately, there is no ”magic number”, only general
guidelines. In general, we use the following rule of thumb

AUC =



< 0.5 Bias towards wrong predictions, worse than random guess.
= 0.5 No discrimination, equivalent to random guess.
(0.5, 0.7) Poor discrimination, slightly better than random guess.
(0.7, 0.8) Acceptable discrimination.
(0.8, 0.9) Good discrimination.
(0.9, 1) Excellent discrimination.

(4.13)

For our case, the ROC curve lies above the line 𝑦 = 𝑥 (dashed line), and the area under the ROC
curve is 0.95. This indicates that our model has a large true positive rate and a small false positive
rate; thus it is useful for predicting the outcome of the perforation experiment.

The remaining curves in Fig. 4.3 (𝑏) − ( 𝑓 ) have similar interpretations, so we will not go into
more detail. Nevertheless, they are included for completeness to show that they indeed exhibit
similar behaviour. Note that (𝑐) − (𝑑) simply expresses that the summation law in Eq. (4.12) is
satisfied and serves as a consistency check.

As always when utilizing statistics, no measure of goodness is perfect. The best strategy is
to use several measures, while being aware of their limitations. For instance, the classification
matrix and ROC curve, utilized here, should be treated with caution. In practice, if more shots
were performed at the same plate, the AUC would likely decrease. The rate of decrease depends
on whether we have obtained representative data, which again depends on the shooting method.
The probability model has an upward bias. The bias arises due to the fact that the same data that
were used to fit the model, was used to judge the performance of the model. The model fitted to a
specific set of data is, after all, expected to perform well on the same data. The true measure of the
performance of the regression model can be obtained by using the same model to predict future
observations.
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Figure 4.3 The various ROC curves indicating how well our model predicts the data for
various values of the probability cutoff.
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4.2 The physical perforation properties of the aluminium plate

Based on the discussion of various goodness of fit measures in the previous section, we conclude that
both the probit and logit models seems to describe the perforation experiment in an accurate manner.
In this section, we will apply the probit model to describe the physics of the aluminium plate and
evaluate whether or not it is suitable to be used as a witness plate in perforation experiments.

An extensive literature study of the perforation properties of human skin can be found in G. R.
James’ thesis [13]. For our purposes the research culminates in one empirical expression for the
𝑉50 and an expression for the perforation probability as a function of the impact velocity 𝑉 . The
formulas are

𝑉50 = 153.8 (𝛾𝛼𝛿𝑎𝜖𝑎𝜂𝑎) 𝑆−0.354(𝛾𝑏 𝛿𝑏𝜅𝑏𝜂𝑏) (4.14)

and
𝑃Skin perforation = Φ

{
2.95 − 2.80

[
153.8 (𝛾𝛼𝛿𝑎𝜖𝑎𝜂𝑎) 𝑆−0.354(𝛾𝑏 𝛿𝑏𝜅𝑏𝜂𝑏)

𝑉

]}
, (4.15)

where the projectiles sectional density 𝑆 is its mass divided by its cross sectional area. Here the
empirical constants {𝛾𝑎, 𝛾𝑏} depends on the target type, {𝛿𝑎, 𝛿𝑏} depends on the target location,
𝜖𝑎 depends on the backing type, {𝜂𝑎, 𝜂𝑏} depends on the projectile shape, and 𝜅𝑏 depends on the
storage condition of the target. The empirical parameters are given in Tab. 4.3.

Target type 𝛾a 𝛾b
Child PMHS 0.898 1.208

Goat 1.053 1.103
Pig 1.226 1.029

PMHS 1.000 1.000
Sheep 0.972 1.007

(a) Target types

Target location 𝛿a 𝛿b
Abdomen 1.788 1.894

Back 1.225 0.813
Buttocks 0.757 0.719

Thigh 1.000 1.000
Thorax 1.256 1.413

(b) Target locations

Backing type 𝜖a
Intact 1.000

Isolated 1.2000
Isolated and backed by cork 0.969

Isolated and backed by mipoplast 1.189

(c) Backing types

Projectile shape 𝜂a 𝜂b
Blunt 1.345 1.276

Round or pointed 1.000 1.000

(d) Projectile shape

Storage condition 𝜅b
Fresh 1.000

Frozen–thawed 1.166
Refrigerated 0.798

(e) Storage condition

Table 4.3 The empirical parameters used in Eqs. (4.14) and (4.15). The tables, with
corresponding equations, are adapted from [13].
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In Fig. 4.4 we plot the empirical Eqs. (4.14) and (4.15) together with our statistical estimate for
the 𝑉50 and perforation probability. Concretely, we consider: the target type to be child and adult
PMHS, all target locations, intact skin, round or pointed projectile, and fresh storage condition.

Figure 4.4 A comparison of the perforation statistics of the aluminium plate and human
(Child/Adult) skin.

We observe that the 𝑉50 and perforation probability of the aluminium plate lies in a velocity
regime representative of the considered targets. However, the slope of the aluminium plate is much
steeper than for human skin. This means that the overlap region between perforations and stops is
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much smaller than for actual human skin. This property makes the aluminium plate a poor skin
simulant, but useful as a witness plate. Concretely, the steep slope of the aluminium plate is useful
because it allows a definite discrimination between perforations and stops.

Furthermore, our results indicate that it seems reasonable to assume that if a projectile perforates
the aluminium plate the potential for perforation or damage of human skin is high. In fact, one
might consider employing thinner aluminium with lower 𝑉50 as a witness plate, to make it easier to
detect relatively low–probability (< 0.5) perforations in the lower velocity regime (50 − 80 m/s).
Alternatively, another material could be used, such as the skin simulant developed [14] and utilized
[15, 16] at FFI. This would make the perforation experiments even more sensitive to perforations,
and therefore possibly avoid a situation where the skin is perforated, while the aluminium plate
stops the projectile. An increased sensitivity seems to be of particular importance for experiments
where the target is the thorax, thigh, or buttocks. That being said, in experiments testing ballistic
wests for adults, where the appropriate target is the abdomen or back, the aluminium plate seems to
be sufficiently sensitive.
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5 Summary and conclusion
In this report we have introduced various statistical methods that are useful in analyzing perforation
experiments. Concretely, we have focused on the probit and logit model to describe data, where
the outcome is binary. We have discussed the fundamental properties of the probit and logit and
how they are used to perform a nonlinear regression. Importantly, we have derived the confidence
interval on the velocity quantiles. The various measures of goodness of fit has also been introduced,
which can be used to evaluate how reliable our model actually is in its predictions.

As a concrete example of the application of the statistical methods we have considered the
perforation statistics of a 0.5 mm aluminium plate. We find that that the aluminium plate experience
perforations in a velocity regime which is a subset of the corresponding velocity regime for human
skin. In general, we find that aluminium plate is a good witness plate, but an unrealiable skin
simulant because of the steepness of its slope. More specifically, we find that the aluminum plate is
a suitable witness plate for shots against the abdomen or back. For shots against the thigh, thorax,
or buttocks we recommend to use an aluminum plate that is more easily perforated.
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A Derivation of the appropriate GLM models
The shape of the appropriate GLM curves can be derived from a latent variable description. We
consider the case where there exists some unmeasureable variable 𝑦∗ which needs to exceed
some threshold value in order for a perforation to occur. The value 𝑦∗ is related to the material
characteristics of the armour system. For concreteness we consider the following latent variable
model

𝑦 =

{
1 if 𝑦∗ > 0,
0 if 𝑦∗ < 0,

(A.1)

where the unobservable variable depends linearly on the velocity plus an error term

𝑦∗ = 𝛽0 + 𝛽1𝑣 + 𝜖 = 𝑧 + 𝜖, (A.2)

with 𝑧 = 𝛽0 + 𝛽1𝑣. Crucially, perhaps surprisingly, it is the distribution of the error term 𝜖 that
determines the appropriate model. Specifically, if the error term is normally distributed, the model
is a probit model. If the error term is distributed according to the logistic distribution, we end up
with the logistic model. To see this, we simply express the probability of the latent variable to be
bigger than 0:

𝑃(𝑦 = 1|𝑣) = 𝑃(𝑦∗ > 0|𝑣)
= 𝑃(𝑧 + 𝜖 > 0|𝑣)
= 𝑃(𝜖 > −𝑧 |𝑣)
= 𝑃(𝜖 < 𝑧 |𝑣)
= 𝐹 (𝑧)

(A.3)

where we in the penultimate line utilized that both the normal and logistic distribution is symmetric
around the mean.

Of course it is more natural to think of an error term being normally distributed than for it
to obey a logistic distribution. Nevertheless, a logistic distribution is often used to model binary
response systems, because its coefficients have direct physical interpretations related to odds and
that the equations are not transcendental. In practice, the logit and probit produce very similar
results that often are statistically indistinguishable when employing appropriate confidence intervals.
Usually this leads to that choosing between logit and probit effectively becomes a matter of taste.
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B Experimental data
The raw data from the perforation experiment is given in Tab. B.1.

Table B.1 Experimental data from the perforation experiment. A perforation is indicated by
1 and a stop is indicated by 0.

Impact velocity [m/s] Perforation/stop [1/0]
96.6 0
131.4 1
95.3 0
112.8 1
128.8 1
122.4 1
104.5 0
121.6 1
120.6 1
117.1 1
114.5 1
118.0 1
116.0 1
108.8 1
111.7 0
113.8 1
104.4 0
103.6 0
104.0 0
104.8 0
106.2 0
102.9 0
114.3 1
113.8 1
111.3 1

Impact velocity [m/s] Perforation/stop [1/0]
102.7 0
109.7 0
109.1 1
109.0 0
102.0 0
110.3 0
105.3 0
104.9 0
111.9 0
107.2 0
115.8 1
113.8 1
110.4 1
95.1 0
103.7 0
106.7 0
110.8 1
112.0 1
111.3 0
111.8 0
112.3 1
114.4 1
114.0 1
113.0 0

FFI-RAPPORT 23/02387 29



C Wald test
In logit and probit regression a Wald test can either be used to determine the siginificance of the
regression coefficients or compare different experiments with each other.

C.1 Significance of coefficients

In a Wald test for determining if the obtained regression coefficients are significant the zero
hypothesis and alternative hypothesis are:

• 𝐻0: 𝛽𝑖 = 0,

• 𝐻1: 𝛽𝑖 ≠ 0,
where 𝑖 = 0, 1. Under the null hypothesis the Wald statistic takes the form

𝑊𝑖 =
𝛽𝑖

2

Var𝛽𝑖
(C.1)

and obeys a 𝜒2
1–distribution with one degree of freedom. The t–statistic output by matlab is

√
𝑊 .

The p–value (probability to obtain a coefficient larger than zero, given the null hypothesis) is
determined by the CDF function:

p–value = 1 − CDF(𝜒2
1 ,𝑊). (C.2)

In our case the p–values are very small, so we reject the null hypothesis and conclude that the
coefficients are significant.

C.2 Comparing experiments

Consider that we have performed 𝑛 experiments (e.g. utilized 𝑛 = 2 different aluminium plates),
and performed a probit or logit analysis to obtain the set of estimates {𝜃𝑖}𝑛𝑖=1. Each estimate can be
expressed as

𝜃𝑖 = [𝜇𝑖 , 𝑠𝑖]𝑇 (C.3)

and is accompanied by a covariance matrix3

�̂�𝑖 =

[
(𝑉𝑖)11 (𝑉𝑖)12
(𝑉𝑖)21 (𝑉𝑖)22

]
. (C.4)

The 𝑛 estimates and covariance matrices can be collected into a single vector and matrix as

𝑋 = [𝜃1, 𝜃2, . . . , 𝜃𝑛]𝑇 and 𝑉 = diag(𝑉1, 𝑉2, . . . , 𝑉𝑛) (C.5)

respectively. By multiplying the variable matrix 𝑋 with the so–called contrast matrix 𝐾 we can
construct an hypothesis test as follows:

𝐻0 : 𝐾𝑋 = 0 and 𝐻1 : 𝐾𝑋 ≠ 0. (C.6)

3Note that it has to be the covariance matrix relating the parameters utilized in the vector 𝜃𝑖 . The matlab output, which
gives the covariance between the coefficients 𝛽0 and 𝛽1 would then need to be transformed according to the chain rule.
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For instance if we wish to test if 𝜇1 = 𝜇2 we would choose the contrast matrix𝐾 = [1, 0,−1, 0, 0, . . . , 0].
The relevant Wald test statistic then becomes

𝑊 = (𝐾𝑋)𝑇
(
𝐾𝑉𝐾𝑇

)−1
𝐾𝑋

𝐻0∼ 𝜒2
𝑟

𝐻1∼ 𝜒2
𝑟 , 𝛿 .

(C.7)

As indicated above the Wald statistic obeys a central 𝜒2
𝑟 distribution with 𝑟 = rank(𝐾) degrees of

freedom under the null hypothesis. Under the alternative hypothesis the Wald statistic is noncentral
𝜒2
𝑟 , 𝛿

distributed with noncentrality parameter 𝛿 = (𝐾𝑋)𝑇 (𝐾𝑉𝐾𝑇 )−1𝐾𝑋 ≠ 0.
Before we proceed we make a comment on what a noncentral distribution is. In general,

each of the standard distributions (normal, chi square, student–t) are considered to be central
distributions. Each central distribution has a noncentral cousin. The relationship between the central
and noncentral distributions is parametrized through a noncentrality parameter. If the noncentrality
parameter of a distribution is zero, then the distribution is identical to the corresponding central
distribution. For example, when the noncentrality parameter is zero the noncentral normal, chi
square, and student–t reduces to the central normal, chi square, or student–t distributions.

In general, the central distribution describes the distribution of a test statistic when the difference
tested is null (so 𝐻0 is then true). The noncentral distribution describes the test statistic when
the difference tested is nonzero (so 𝐻1 is then true.) Consequently, the central and noncentral
distributions are used when calculating the p–value and test power respectively. We can now
proceed with the mathematical analysis.

A type–I error means that we reject the null hypothesis 𝐻0 even though it is true. If we say that
a type–I error is equal to 𝛼, this means that there exists a critical value𝑊0 of the test statistic𝑊 ,
which satisfies

𝛼 = 𝑃 (𝑊 > 𝑊0 | 𝐻0). (C.8)

It follows automatically that 𝑃 (𝑊 < 𝑊0 | 𝐻0) = 1 − 𝛼. This tells us that the critical value is
𝑊0 = CDF−1(𝜒2

𝑟 , 1 − 𝛼). We reject the null hypothesis if the measured value �̂� is larger than
the critical value, i.e. �̂� > 𝑊0. In an equivalent fashion, we can also define the p–value of an
experiment as

𝑝 = 𝑃
(
𝑊 > �̂� |𝐻0

)
= 1 − CDF(𝜒2

𝑟 , �̂�). (C.9)

We reject the null hypothesis if 𝑝 < 𝛼.
A type–II error, means that we keep the null hypothesis, even though it is false. If we say that

the type–II error equals 𝛽, it means that the conditional probability of not rejecting 𝐻0 is equal to 𝛽,
i.e.

𝛽 = 𝑃 (𝑊 < 𝑊0 |𝐻1) = CDF
(
𝜒2
𝑟 , 𝛿 ,𝑊0

)
= CDF

[
𝜒2
𝑟 , 𝛿 ,CDF−1(𝜒2

𝑟 , 1 − 𝛼)
]
. (C.10)

The power 𝑞 of the test is then defined as rejecting 𝐻0 when it is false

𝑞 = 1 − 𝛽. (C.11)

C.2.1 Example 1: Equivalence of velocity

Let us now consider a relevant example. Assume that we want to test whether two𝑉50 are statistically
equivalent. The null and alternative hypothesis then takes the form

𝐻0 : 𝑚1 = 𝑚2 and 𝐻1 : 𝑚1 ≠ 𝑚2. (C.12)
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We then use the contrast matrix 𝐾 = [1, 0,−1, 0, . . . ], such that 𝐾𝑋 = 𝑚1 − 𝑚2 and 𝐾𝑉𝐾𝑇 =

(𝑉1)11 + (𝑉2)11. Since, 𝐾 only has one independent column, its rank 𝑟 = rank(𝐾) = 1. Hence, the
Wald statistic takes the form

𝑊 =
(𝑚1 − 𝑚2)2

(𝑉1)11 + (𝑉2)11
𝐻0∼ 𝜒2

1
𝐻1∼ 𝜒2

1, 𝛿 .

(C.13)

The noncentrality parameter is given by

𝛿 =
Δ2

(𝑉1)11 + (𝑉2)11
, (C.14)

where Δ = 𝑚1 − 𝑚2. If we then have 𝛿, know the covariance matrix, and decide on 𝛼 we can
calculate the p–value and test power from Eqs. (C.9) and (C.11) respectively. Finally, we can then
compare the p–value and 𝛼 to determine whether the two 𝑉50 are the same.

C.2.2 Example 2: Equivalence of mean and slope

To test for whether two probits (or logits) are equivalent we form the hypothesis test

𝐻0 : [𝑚1, 𝑠1] = [𝑚2, 𝑠2] and 𝐻1 : [𝑚1, 𝑠1] ≠ [𝑚2, 𝑠2] . (C.15)

To this end we use the contrast matrix

𝐾 =

[
1 0 −1 0 0 . . .

0 1 0 −1 0 . . .

]
, (C.16)

which has two linearly independent columns and therefore 𝑟 = rank(𝐾) = 2. If we define the mean
and slope differences Δ𝑚 = 𝑚1 − 𝑚2 and Δ𝑠 = 𝑠1 − 𝑠2, the Wald statistic takes the form

𝑊 =
Δ2
𝑠 [(𝑉1)11 − (𝑉2)11] − 2Δ𝑠Δ𝑚 [(𝑉1)12 − (𝑉2)12] + Δ2

𝑚 [(𝑉1)22 − (𝑉2)22]
[(𝑉1)11 − (𝑉2)11] [(𝑉1)22 − (𝑉2)22] − [(𝑉1)12 + (𝑉2)12]2

𝐻0∼ 𝜒2
2

𝐻1∼ 𝜒2
1, 𝛿 .

(C.17)

The noncentrality parameter is is equal to the Wald statistic, when the differences Δ𝑚 and Δ𝑠 are
nonzero. If we then know the necessary parameters, we can proceed as before to determine whether
to discard the null hypothesis.
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