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1 INTRODUCTION

Sonar performance depends heavily on the present environment, particularly the oceanography, bottom
topography, bottom sediments, and surface wave conditions. Acoustic models provide insight on the
impact of each environmental parameter. The impact is often heavily frequency-dependent, and for sonar
systems in the low KHz-domain the most important factors are the sound speed profile (SSP), topography,
and the surface wave conditions.

For sonar experiments, measurements of the sound speed, local wind speed measurements, and a
topographic model are used as input to sonar performance models. A sonar operator or an algorithm
may optimise the sonar parameters for the present conditions by first testing them in acoustic models1.
The increasing availability of high-quality oceanographic data, e.g. climatology and ocean models2, allow
more refined methods that account for variability and uncertainty3,4,5.

Consider a vessel equipped with a variable depth active sonar searching for a subsurface target surveying
the surface with a passive sonar. The target wants to remain undetected by the surface vessel, while
maximising its own ability to detect other vessels. For a given environment, the sonar performance
depends heavily on the relative positions of target, source, and receivers6. In a previous work7 we
employed game theory to explore this optimisation problem. There we determined target and sonar
depths using the Nash equilibrium8 strategies for the two opponents. For a sample environment, such a
method can be used to find best avoidance and detection depths for both parties. However, this approach
fails to capture the environmental uncertainty and any further analysis is limited to a single environment,
which may cause problems in terms of robustness.

This game theoretical method is what we aim to improve by introducing environmental variability, contin-
uing to utilise the fast and environmentally configurable acoustic ray tracing model Lybin9. The resulting
single Nash equilibrium target and sonar depths can then be aggregated into distributions representative
for the present environment.
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2 METHOD

The method proposed here expands upon previous work7 by introducing spatially varying bottom depths
and spatio-temporal variations in sound speed profiles (SSPs) and wind. To do this, we need to calculate
a payoff matrix10 which depends on the bearing θ and range r from the active sonar position and the
current time t:

U(z, d; t, θ, r) = (1− UA(z, d; t, θ, r)) · UP (z; t, θ, r). (1)

The payoff is a product of the probability of avoiding active detection (1 − UA) and the probability of
having passive surface coverage (UP ), which the underwater target seeks to maximise by selecting its
depth z. Simultaneously, the active sonar agent seeks to minimise this payoff by selecting its variable
sonar depth d (assuming here a co-located transmitter and receiver). For each tuple of (t, θ, r), this
is optimally solved by finding the set of Nash equilibrium strategies. These strategies are guaranteed
to exist if one allows for mixed-strategies11, which are maps from our possible alternatives (Z,D) to
probability simplexes (RZ ,RD). Unlike pure strategies, which recommend only a single alternative, these
can assign non-zero probabilities to several alternatives. For a two-player zero sum game defined by Eq.
1, these strategies can be efficiently found by formulating the problem as a linear program10, which we
implement via NashPy12.

The bottleneck for modelling the variability present in an area is in running a suitable acoustic model for
each (t, θ, r) in order to calculate both UA and UP . We propose to divide the relevant area into annular
sector subareas, as shown in Fig. 1. The sectors’ angular width is kept constant at 360◦/B, where B is
the number of different bearings from the active sonar considered. The inner and outer ranges of each
annular sector subarea are chosen such that the surface area of each subarea remains constant. Each
bearing consists of R subareas defined by these ranges, making the total number of subareas B × R. A
2D acoustic model can cover all R ranges and relevant target depths z in one run, but will need B × D
runs to cover all bearings and the number of active sonar depths D.

In principle, the passive sonar performance in each subarea will also have environmental bearing and
range dependence, as it will aim to detect an arbitrary noisy surface vessel with an unknown position.
In order to simplify the number of acoustic model runs required to calculate UP , we use constant bot-
tom depths, wind and sound speed profiles for each subarea, sampled at the centroid of each subarea
(marked with red stars in Fig. 1). The total number of acoustic model runs required for each active sonar
position is therefore

T ×B × (D +R), (2)

where T is the number of different times samples t considered. For each (t, θ, r) we can then calculate
the Nash equilibrium strategies and aggregate them into a single global distribution of strategies for both
the active sonar and the target.
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Figure 1: Bottom depths for the test area supplied by GEBCO13, with subarea division and cen-
troids for B = 16 and R = 4.

3 DATASET

We demonstrate the proposed method for a test area with notable variation in both bathymetry and
oceanography. The global topographic model GEBCO13, which has 15 arc-second resolution, is used
to extract the required topographic profiles. Fig. 1 shows the topography of the area, consisting of up-
slopes which flank an approximately 300 m deep trench going North-West to South-East. The subareas
start at 5 km range and end at 25 km, which means that targets outside that range are not optimised for.

The range-dependent sound speed profiles and wind profiles are taken from NorKyst8002, which is the
main ocean forecasting tool for Norwegian waters, with a spatial resolution of 800 m. Fig. 2 shows a
sample of the sea surface temperature and wind speed in the selected area. The sea surface temperature
shows signs of eddy currents and fronts, both of which may cause significant range-dependent acoustic
propagation effects. The wind and SSP are sampled at 10 points along each bearing out to the max
range of 25 km.

The times sampled from the model are from May 12th to 17th 2023, but we limit ourselves to the 5 hourly
snapshots around midnight (22:00 to 02:00 UTC), making the number of time samples T = 25. A cloud of
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Figure 2: Sea surface temperature in ◦C (left) and surface wind speed (right) taken from the
NorKyst800 model2 output for 15th of May 2023, at 00:00 UTC. Active sonar position marked with
blue star and max range with dashed circle.

sound speed profiles taken from the ocean model at those times is shown in Fig. 3. The profiles exhibit
a typical late spring behaviour, showing a strong sound channel with a sound speed minimum varying
between 25 m and 75 m depth.

4 RESULTS AND DISCUSSION

Applying the method in section 2 on the dataset in section 3, Fig. 3 shows the resulting sonar depth
distribution for B = 128 and R = 4. The available sonar depths were bounded between 50 m and 200
m. Observe that the algorithm prefers sonar depths close to the sound speed minimum (approximately
50 m depth). For these highly beneficial sound speed profiles, placement of the sonar within the channel
will result in long-range detection of targets also within the channel, see Fig. 4. Placement close to the
sound speed minimum also minimises the interaction with the surface, where the surface bubble layer
and waves will attenuate and scatter the transmitted pulse.

The target’s goal is two-fold; it wants to remain undetected while retaining its ability to detect surface
targets. Fig. 4 shows the target depth distribution proposed by the algorithm, along with the averaged
active sonar detection probability for d = 50 m on the left. The available target depths are bounded
between 30 m depth and 30 m above the minimum bottom depth within each subarea, as indicated in the
figure. Comparing the two figures side by side, it is clear that the target avoids the sound channel above
100 m. Outside this channel, the target generally prefers shallower depths, as the passive sonar range
generally decreases with depth. This is shown in Fig. 5 along with the standard deviation of the active
sonar detection. The latter plot also shows that the active detection performance can be quite variable
beyond 10 km for depths between 100 m and 150 m, shown as a white-blue stripe.

The peak observed at 270 m in the target depth distributions may be attributed to the histogram of lower
target depth bounds, as shown in Fig. 4. In 28% of the cases, the calculated Nash equilibrium has
its maximum probability at the deepest allowed target depth. The target attempts to avoid detection by
going as deep as possible, which therefore makes the strategy distribution toward the deep end mirror the
distribution of the lower bound. The most prominent peak at 210 m, however, seems to indicate a hiding
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Figure 3: Left: Cloud of SSPs used in the modelling. The SSPs are derived from the NorKyst800
model described in section 3. Right: Distribution of resulting optimised sonar depths, d, based
on the proposed method.
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Figure 4: Left: Mean (over time and bearing) modelled probability of active sonar detection of
the underwater target for the sonar depth with the highest strategy probability (indicated by a
black, dashed line). The solid black lines are the bottom profiles for different bearings. Right:
Distribution of resulting optimised target depths, z, based on the proposed method, along with
histogram of lower bounds for each area (not to scale).
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Figure 5: Left: Standard deviation (over time and bearing) of modelled probability of active sonar
detection of the underwater target for the sonar depth with the highest strategy probability (indi-
cated by a black, dashed line). The solid black lines are the bottom profiles for different bearings.
Right: Mean (over time and position) modelled probability of passive sonar detection by the un-
derwater target of a surface target. Histogram of lower bounds for each area also shown.

depth which is abnormally invariant of time, bearing and range. This may be partially due to peaks in the
bottom reverberation levels hiding the target’s echo, seen as the blue patch around 5 km in Fig. 4.

The strong spatial dependence in both topography and oceanography in this area requires a high number
of subareas to achieve stable results. This is illustrated in Fig. 6. As the number of bearings used, B,
increases, the depth distributions converge when considering the Euclidean distance in probability space
from the B = 128 distributions:

δ(R
Z/D
B ,R

Z/D
128 ) =

∑
z/d

(R
z/d
B −R

z/d
128)

2 (3)

The distributions for B = 64 fall within 1% of the distributions derived for B = 128. The number of bearings
required for sufficiently accurate results will depend on both the spatial variability in the considered area
and the requirements for accuracy. A difference of 1% is by this metric less than the difference between
a fair coin and one with 51% odds for heads and 49% for tails.
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Figure 6: The ℓ2-distance (Euclidian distance) of the distributions from those with B = 27 = 128
versus the number of bearings included in the method.

5 CONCLUSION

From the aggregated active sonar and target depth strategies shown in Fig. 3 and 4 we can conclude
that there is no single best depth when you take variability into account. Previous work7 showed that this
was already the case for a single environmental realisation due to mixed strategies, but even these mixed
strategies are not themselves stable. In this work, however, we see that certain trends in the strategies,
like the peak at 210 m in Fig. 4, remain stable throughout the varying environment. The peaks also
display spread in depths, akin to the Gaussian filter applied to single mixed strategies previously7. The
strategies aggregated over environmental variability are therefore more robust against slight variations
than those generated from a single realisation.

It should be remarked that the distribution created by aggregating the optimal strategies for each (t, θ, r) is
not itself an optimal strategy for the whole area. This is most obvious when considering the target depth,
as we see that e.g. the peak at 210 m in Fig. 3 is below the lower bound caused by the bottom depth in
some subareas. Uncertainty in which subarea the target is located can be properly treated by defining a
Bayesian game, where Bayesian-Nash equilibrium strategies constitute true optimal strategies10. If, how-
ever, the goal is to calculate expected sonar ranges integrated over likely target depths in an environment,
or to use sensible sonar depths in Monte Carlo simulations, sampling from distributions like those in Fig.
3 and Fig. 4 can be sufficient. This would result in more accurate performance evaluations and less time
wasted on strategically unreasonable simulations.
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