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1 INTRODUCTION
Acoustic measurements of seafloor backscattering are a source of unwanted sound in seafloor
object detection1–3, but also provide a rich set of information regarding the seafloor properties and
structure4–7. The intensity in a sonar image (i.e. a spatial map of measured backscattering) is
typically characterized by a random process7. There are a variety of metrics, or features, that can
be used to describe this random process, including the autocorrelation function, power spectrum8,
wavelet decomposition9, gray-level co-occurance matrix6,10, the mean intensity (scattering cross
section)11,12 and in general, the intensity probability density function13–15.

It was found that for complex scattering environments (such as rocky seafloors, and man-made
structures), a mixture pdf was most appropriate14,16, which was justified by the non-stationary char-
acter of the acoustic data. Each sample of the data was modeled as being drawn from a finite
number of distributions, e.g. either from the seafloor or man-made structure, or from horizontal or
vertical facets.

In general, the number of components that make up a non-stationary sonar image is unknown, and
must be selected prior to choosing a model and estimating the parameters. The more model param-
eters are used (i.e. more components, or a more complex statistical model for each component),
the better the data will be fit, but the parameters may lose meaning. In this work, we explore the use
of several model selection techniques based on Bayesian statistics, primarily the Bayesian informa-
tion criterion (BIC) and Akaike information criterion (AIC). These techniques penalize more complex
models in different ways. We also use the log-likelihood (LL) to characterize the model-data fit.

This paper is organized as follows. A description of the sonar data used in this work and example
images are given in Section 2. The background statistical modeling and model selection techniques
are given in Section 3. Results are presented and discussed in Section 4. Conclusions are given in
Section 5.

2 DATA
The sonar measurements used in this work are synthetic aperture sonar (SAS) images collected
off the coast of Bergen, Norway by the Norwegian Defence Research establishment (FFI). The
platform used for these measurements is the HUGIN-HUS autonomous underwater vehicle (AUV),
using a HISAS-1032 interferometric SAS. This sonar system has a center frequency of 100 kHz and
a bandwidth of 30 kHz. The beamformed data is oversampled on a grid with 2×2 cm resolution.
Data that is used to fit mixture models is decimated by a factor of 6 in each dimension to reduce the
computational complexity of parameter estimation, while reducing the correlation between samples
due to the point spread function of the sonar system.

An example image is shown in Fig. 1. The image consists of an exposed rock outcrop, with sed-
imented areas in between. To show the detailed environmental structure, two tiles are plotted in
Fig. 2, both of which are 600×600 pixels, or 12 m per side.

These tiles show that the rock structure consists of a low intensity uniform scatterer that varies
continuously due to undulations in the rock structure. These continuous variations in intensity are
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Figure 1: An example SAS image, plotted as a function of along track distance on the horizontal axis and
across track distance on the vertical axis. The color scale is in decibels referenced to an arbitrary
pixel pressure, since the system is uncalibrated.

(a) Tile 1 (b) Tile 2

Figure 2: Two tiles from Fig. 1, plotted on a decibel scale with 40 dB of dynamic range. Each image is
600×600 pixels.

punctuated by bright and dark lines due to fractures, and steps created by glacial erosion. These
features are distinguishable due to their different intensities, and the SAS system likely has a high
enough resolution that discrete scatterers in the environment are distinguishable. Therefore a mix-
ture model is appropriate for modeling the pdf of the ensemble consisting of the pixels from each
tile.
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3 BACKGROUND
In this section, the basic definitions, statistical models, and model selection definitions are given.
We assume data is given in the form of an N1 × N2 array of intensity values, where the intensity
samples are statistically uncorrelated with each other. The total number of samples is N = N1N2.

The random variable for intensity is denoted I, and the amplitude random variable is A =
√
I. We

denote the probability of this variable by p(a), with a being a member of the population.

We use two different distributions to build up a mixture model: a Rayleigh distribution for amplitude,
and a K-distribution. A Rayleigh model for amplitude pdf has the form

pR(a|λ0) = 2a/(λ0)e
−a2/λ0 , a ≥ 0, (1)

where λ0 is the mean square value of the pdf. The expected value of the intensity is E[a2] = λ0.

A K-distribution for the scattered field amplitude has the form

pK(a|λ, α) = 4/(
√
λΓ(α))(a/

√
λ)αKα−1(2a/

√
λ), a > 0, (2)

where Γ(·) is the gamma function, λ is the scale parameter of the K distribution, and α is the
shape parameter. The expected value of the intensity for this model is E[I] = αλ = σK , where
σK is the average intensity. In the results below, the K distribution is parameterized using the pair
(σK , α) rather than the shape parameter. When used in a mixture distribution, the parameters have
subscripts to denote which K component the parameters correspond to.

Mixture models are formed by a weighted sum of individual pdf components. The physical meaning
of this type of model is that every measurement in a population, or sample, can be identified with one
of the M components. The weights of the distributions, wm are normalized such that

∑
wm = 1, and

therefore the weights can be interpreted as the fraction of pixels corresponding to each component.

The form of the mixture models used here is

p(a|θ) = w0pR(a|λ0) +

M−1∑
m=1

pK(a|σKm, αm) (3)

where M is the number of mixture components, θ is a vector of length k, consisting of the param-
eters of the model consisting of wm, λ and the average powers and shape parameters of the K
distributions. The parameters of this mixture model are found using the expectation-maximization
(EM) algorithm17. This method maximizes a slightly altered version of the log-likelihood for each
component, but asymptotically maximizes the likelihood function for mixture models17.

Since the number of components that constitutes the environment is in general unknown, model
selection techniques are used to pick the number of K distribution components. As the number
of components, M , increases, it is better able to match the pdf of the measurement, but at the
cost of more uncertainty per parameter14. The likelihood function, ℓ(θ|a), is a common metric for
model-data fit. It is defined for N independent samples by,

ℓ(θ|a) =
N∏

n=1

p(an|θ) (4)

where an is the n−th member of the ensemble, and again θ is the parameter vector. The parameter
vector θ̂ that maximizes ℓ is called the maximum likelihood estimate. It is common to work with the
log-likelihood, L = log(ℓ), which is given as

L(θ|a) =
N∑

n=1

log(p(an|θ)) (5)
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As stated before, more complex models typically result in a more uncertain maximum likelihood
function, so L cannot be used as a basis on which a decision about M can be made. There exist
various model selection techniques, some of which are based on Bayesian concepts18. Two simple
metrics are based on the log-likelihood function, but with an additional penalty that depends on the
number of parameters, k. The Bayesian information criterion (BIC) is defined as

BIC = −2L(θ̂) + log(N)k (6)

with smaller BIC preferred. This criterion results from an asymptotic (i.e. large N) Gaussian ap-
proximation of the posterior probability density (ppd) function of θ given the data. The penalty to the
log-likelihood is therefore a function of the number of parameters, which is due to the ppd becom-
ing narrower as N becomes asymptotically large. Another model selection criterion is the Akaike
information criterion (AIC), due to Akaike19, and also described by Gelman18. It is given by the
formula

AIC = −2L(θ̂) + 2k (7)

This criterion is simpler than the BIC and penalizes the log-likelihood independently of the number
of samples.

Both the AIC and BIC are based on the log-likelihood function evaluated at θ̂, and are therefore quite
sensitive to the numerical estimate. Additionally, point estimates do not contain any information
about the ppd as a whole. Other information criteria such as the deviance information criterion
and the Wantanabe-Akaike information criterion18 are not studied here, but we consider them as
fruitful areas for future work. Another possibility is to use trans-dimensional Monte-Carlo methods
to estimate the model with the highest posterior probability20.

4 RESULTS AND DISCUSSION
R-K mixture models were fit to the amplitude data in Figs. 2 (a) and (b), using between M = 2
and M = 5 components. This means that the maximum number of K-distribution components
was 4. The model-data fit is shown graphically in Fig. 3 for both tiles in terms of the log of the
probability of false alarm (PFA), also called the excedence distribution function (EDF). The PFA is
related to the cumulative distribution function (CDF) through PFA = 1 − CDF , and is a common
method of presenting sonar reverberation statistics21. The data in Tile 1 shows a slight “knee” near
a normalized amplitude of 2, 6, and 8. These changes in slope of the log-PFA indicate different
components that make up the model. The log-PFA of Tile 2 has more pronounced knees in the
curve, near the normalized amplitudes of 2, 4, and 12, although the last one is more uncertain due
to the finite sample size being more evident at high amplitudes (i.e. the PFA curve becomes more
stair-case like, rather than a smooth curve).

Model-data fits for both tiles are poor for both R-K1 and R-K2. This behavior is likely due to the
fact that there are not enough components to fit the data. R-K3 and R-K4 fit the data much better,
but are almost the same. This behavior indicates that a 5-component model does not provide
significantly better fit than the 4-component model. From a visual standpoint, it makes sense to use
a 4-component model for both of these data sets. This hypothesis will be compared to the results
of the more formal model selection techniques.

Model section criteria, the log-likelihood (LL), BIC, and AIC are shown for both tiles in Table 1. The
maximum LL value for Tile 1 is a tie between the 4- and 5-component models, and the maximum
LL for Tile 2 is for the 4-component model. Intuitively, the more complex model should have a
higher likelihood function, but here, this may be an issue with the numerical parameter estimates.
Additionally, as discussed in Section 3, one cannot base a model selection decision purely on the
maximum of the likelihood function. Further work on refining these estimate should be made. In
terms of the AIC, the smallest value occurs for the 4-component model for both datasets. However,
for the BIC, the smallest value occurs for the 3-component model for Tile 2, and the 4-component
model for Tile 1. The AIC penalizes model complexity only slightly, whereas the BIC has a severe
penalty for complexity for large number of data samples. Since the number of data samples was
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Figure 3: The probability of false alarm (PFA) for the data from snippets 1 and 2, compared to the various
mixture models explored here.

Tile 1 Tile 2
Model LL AIC BIC LL AIC BIC
R-K1 -4321 8652 8688 -885 1780 1810
R-K2 -4157 8331 8389 -847 1711 1759
R-K3 -4137 8297 8377 -839 1700 1766
R-K4 -4137 8301 8404 -840 1709 1793

Table 1: Model selection results for both image tiles. The log-likelihood (LL), Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) are shown.

about 104, the penalty for model complexity is about 0.5 log 104 ≈ 4.6 times larger for the BIC as it is
for the AIC. We conclude that the 3-component model is preferred by BIC for Tile 2 because of the
much larger penalty for model complexity.

5 CONCLUSION
We presented a statistical model for SAS images of complex, non-stationary, rocky seafloors. This
model consisted of a Rayleigh distribution, plus an unknown number of K distributions. The number
of K-distributions was selected using model selection techniques, including the AIC and BIC. For
the AIC, the 4-component model was selected as the most appropriate for two image tiles used
here. For the BIC, different number of components were chosen for each image tile. It is likely that
a different number of components was chosen by the BIC due to its more severe penalty for model
complexity. Future work should include more robust model selections techniques, such as the de-
viance information criterion, which employs a Monte-Carlo Markov chain sampling of the distribution
parameters. This work can also be used to partition an image into different scattering components,
which can aid in estimates of image complexity, and may also be the basis for quantitative seafloor
remote sensing of geological and/or biological parameters.
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