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ABSTRACT

We have studied the behavior of Fe ions in the slow solar wind, using a fluid model extending from the chromosphere
to 1 AU. Emphasis is on elemental “pileup” in the corona, i.e., a region where the Fe density increases and has
a local maximum. We study the behavior of individual Fe ions relative to each other in the pileup region, where
Fe+10 and Fe+12 have been used as examples. We find that elemental pileups can occur for a variety of densities and
temperatures in the corona. We also calculate the ion fractions and obtain estimates for the freezing-in distance of
Fe in the slow solar wind. We find that the freezing-in distance for iron is high, between 3 and 11 R�, and that a
high outflow velocity, of order 50–100 km s–1, in the region above the temperature maximum is needed to obtain
ion fractions for Fe+10 and Fe+12 that are consistent with observations.
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1. INTRODUCTION

Over the years, there have been numerous theoretical inves-
tigations of the properties of minor ions in the high-speed solar
wind from polar coronal holes (see, e.g., the reviews of Cranmer
2009; Marsch 2006; Hollweg & Isenberg 2002, and references
therein). The great interest in the properties of minor ions in the
corona and the wind is motivated by the expectation that minor
ion properties may provide important insight into the processes
responsible for the heating of the corona. Previously, theoretical
investigations of the effect of different heating rates on sili-
con and oxygen ions in polar coronal holes by Lie-Svendsen &
Esser (2005) have shown that when the heavy ions are no longer
strongly coupled to the protons, abundance enhancements will
occur in the corona if the ions are not sufficiently heated. The
absence of such abundance enhancements in the observations
places a lower limit on the heavy ion heating rate.

Recent solar eclipse observations by Habbal et al. (2007)
of Fe xi 789.2 nm and Fe xiii 1074.7 nm spectral lines show
evidence of local density enhancements in these ions relative to
the electron density at heights of about 1.4–1.5 R� from the solar
center. The most pronounced density enhancements reported by
Habbal et al. (2007) are found on the edges of streamers. The
observations by Habbal et al. (2007) also revealed that density
enhancements may sometimes be present in only one of the two
observed iron ions.

The identification of the source regions of the slow solar
wind remains one of the important unresolved issues in solar
physics. Candidate source regions include open-field regions on
streamer boundaries, defined by, e.g., Uzzo et al. (2006, 2007)
as the streamer “legs,” and open-field regions on the edges of
coronal holes, adjacent to the streamer boundaries (e.g., Abbo
et al. 2010; Antonucci et al. 2005, 2006). Abbo et al. (2010)
showed that the plasma parameters, specifically the electron
density and the O vi kinetic temperature, change from streamer-
like (high density and low O vi kinetic temperature) close to the

5 This work was carried out during a visit at the Harvard-Smithsonian Center
for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA.

bright edges of the streamer to coronal-hole-like (low density
and high O vi temperature) in the open-field region surrounding
the streamer. Given the uncertainty about the origin of the slow
wind, we have chosen to explore two different models. One
where the slow wind is assumed to originate in a region with
high density and low proton temperature intended to resemble
the streamer-edge plasma, and one where the slow wind is
assumed to originate in a region with low density and a higher
proton temperature representative of conditions on the edges
of a coronal hole, adjacent to a streamer. Another reason for
using two different background solutions, regardless of how
important or unimportant we believe them to be as a source
region for the solar wind, is the possibility it offers for studying
the dependence of Fe abundance enhancements on the coronal
plasma parameters.

The goals of this investigation are twofold. First, we wish
to study elemental abundance variations of Fe in the corona
for two different height profiles of the proton–electron plasma
parameters. We will also study the “pileup” of Fe+10 and Fe+12

in detail, and compare synthesized Fe xi line/continuum ratios
to those obtained by Habbal et al. (2007). Second, we wish to
compare the ion fractions obtained with the two background
solutions to observed Fe ion fractions in the slow solar wind
and to estimate the freezing-in heights for the different charge
states of Fe.

2. THE NUMERICAL MODEL

The model is based on the gyrotropic transport equations
of Janse et al. (2005) and calculates the radial profile of the
plasma density, the flow velocity, the parallel and perpendicular
temperature, and the heat flux along the magnetic field for each
particle species. For the iron ions we neglect the heat flux,
since it is expected to be small. The model extends from the
mid-chromosphere to 1 AU and includes radiative energy losses
as well as ionization and recombination processes. We do not
assume ionization equilibrium. The only parameters that can
be chosen freely are the heating rates for the particles and the
shape of the magnetic field. The model builds on the numerical
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Figure 1. (a) Assumed flow tube expansion, A/r2 both background solutions
(black) and flow tube expansion assumed by Cranmer et al. (2007, green),
(b) electron densities, (c) proton and electron temperatures, and (d) proton flow
velocities for the hydrogen background solutions H1 (solid line) and H2 (dashed
line).

(A color version of this figure is available in the online journal.)

model of Lie-Svendsen et al. (2001), and details of the numerical
scheme, as well as information about the atomic data used in the
hydrogen simulations, can be found in Lie-Svendsen & Esser
(2005, and references therein). The main difference between the
model of Lie-Svendsen et al. (2001) and the model used here
lies in an improved description of the Coulomb collisions, and
hence of the heat conduction and thermal forces (Janse et al.
2005). The model equations can be found in Appendix A.

Table 1
Applied Energy Flux Densities at the Lower Boundary and the Resulting

Proton Flux Densities at 1 AU in H1 and H2

Solution Protons Electrons Proton Flux Density,
(W m−2) (W m−2) 1 AU (1012 m−2 s−1)

H1 2500 3300 3.0
H2 3200 3300 3.8

Note. The models are shown in Figure 1.

The equations are solved first for the hydrogen–proton–
electron “background,” in which the minor ions can be treated
as test particles. The protons and electrons are heated by a
prescribed energy flux which flows through the lower boundary
of the model and is damped within 1 R� above the solar surface.
The prescribed energy flux has its maximum at the lower
boundary and decays exponentially with distance from the solar
surface (see also Lie-Svendsen et al. 2002).

For the minor ions we apply a given heating rate per particle
defined as

Qsm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 r < r1,

Cns

r − r1

r2 − r1
exp

(
− r − R�

Hm

)
r1 < r < r2,

Cns exp

(
− r − R�

Hm

)
r > r2,

(1)

where R� is the solar radius and ns is the density of species
s. The minor ion heating begins at a heliocentric distance of
r = r1 = 1.05 R� and is ramped up linearly to its full value at
r = r2 = 1.15 R�. This is done to avoid numerical problems
which may arise when the heating is switched on suddenly.
Above this height the heating is damped with a damping length
of Hm = 1 R�. The heating rate coefficient, C, can be specified
individually for all the different charge states. The minor ions
are heated only in the perpendicular direction. We have included
16 iron charge states in our simulations, neutral Fe to Fe+15. The
ion fraction for Fe+15 is everywhere below 0.001 in all our
simulations, so the exclusion of the higher charge states is not
expected to have any effect on the results.

The rates for the production and loss of the Fe charge states
due to electron collisions and recombinations have been ob-
tained from the High Altitude Observatory Spectral Diagnos-
tic Package for emitted radiation (HAOS-DIAPER; Judge &
Meisner 1994).

3. THE HYDROGEN BACKGROUND SOLUTIONS

The superradial magnetic field expansion is the same for all
hydrogen solutions and is shown in Figure 1(a) (black line).
The flow tube area at the lower boundary is normalized to
1 m2. At large heights, this geometry resembles the streamer-
edge field from the empirically derived solar-minimum field of
Banaszkiewicz et al. (1998). A slightly modified version of that
field was employed by Cranmer et al. (2007), and this geometry
is also plotted in the top panel (green line). At low heights, this
expansion rate is consistent with the idea of so-called coronal
funnels (Dowdy et al. 1986).

In Table 1 we have summarized the input energy flux density
in the two background solutions. In addition to the direct heating
of the plasma particles, energy is also supplied to the plasma
in the form of Alfvén wave momentum deposition. The Alfvén
wave energy flux density at the lower boundary is 1000 W m−2
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Table 2
Fe Models

CA (10−18 W) CB (10−18 W) CC (10−18 W) CD (10−18 W)

H1 1 1A 10 1B 20 1C 0 1D
H2 3 2A 5 2B 10 2C 0 2D

Note. In each column the heating rate coefficient, in units of 10−18 W, is on the left and the name of the
solution is on the right.

in both models. At 1 AU, the Alfvén wave energy flux has been
reduced by about 95%. Also listed in Table 1 are proton flux
densities at 1 AU derived from the model.

The first hydrogen solution (H1) has a high density and a low
proton temperature. As we can see from panel (b) in Figure 1,
the H1 density (black solid line) is higher than the densities
observed by Raymond et al. (2003) and Abbo et al. (2010);
however, it is well below the densities observed in this region in
the study by Uzzo et al. (2007). In the region above 2 R�, the
density of the H1 solution is close to that observed by Uzzo et al.
(2007). The proton perpendicular temperature (solid red line in
panel (c)) in H1 is lower than the observed kinetic temperatures
in the corona. The kinetic temperature includes broadening by
non-thermal processes; however, our calculations of the kinetic
temperature, using the Alfvén wave amplitudes obtained in the
model, suggest that this effect is not very strong in the region
below 2–3 R�. This is consistent with the results of Esser et al.
(1986). The electron temperature (black lines in panel (c) of
Figure 1) is more or less identical in both background solutions,
with a maximum of about 1.2 MK. The flow velocity in the
corona is very low in H1 (panel (d) in Figure 1).

The second solution (H2) has a low density and a high proton
temperature. In the low corona, below 2 R�, the density of H2
is clearly coronal-hole-like, as shown in Figure 1 where the
H2 density is compared to observations from coronal holes by
Doschek (1997), Wilhelm et al. (1998), Cranmer et al. (1999),
and Guhathakurta et al. (1999). In the region 1.6–3.5 R�, the
density of H2 is close to that of Abbo et al. (2010). The proton
perpendicular temperature is higher in the H2 solution than in the
H1 solution. The maximum proton perpendicular temperature
in H2 is 2 MK, which is in good accordance with the results of
Uzzo et al. (2007), but somewhat higher than the temperatures
observed by Abbo et al. (2010) and Antonucci et al. (2005), who
obtained proton kinetic temperatures just below 2 MK. The flow
velocity in the corona is higher in H2 than in H1. Abbo et al.
(2010) found flow velocities of about 100 km s−1 in the region
between 1.6 and 3.5 R� and this is in good accordance with the
flow velocity obtained in H2. The peak in the flow velocity below
1.2 R� is a consequence of the funnel shape of the flow tube.

4. IRON SIMULATION RESULTS

For both hydrogen solutions, the model equations (see
Appendix A) are solved for all 16 Fe charge states simulta-
neously, treating the Fe ions as test particles in a fixed back-
ground. The fractional abundance of Fe, relative to hydrogen, at
the lower boundary has been set to 3×10−5. For both hydrogen
backgrounds we have chosen four different values of the heat-
ing rate coefficient, C, which specifies the maximum heating
rate for the Fe ions (see Equation (1)). This means that we have
produced eight different Fe solutions, which are summarized in
Table 2.

In the following sections, we will discuss two types of cou-
pling between the Fe ions and the background proton–electron

plasma. The first type is the collisional coupling between Fe ions
and protons. As the proton density falls off in the corona, the
collisional coupling between protons and Fe decreases allowing
the Fe temperature and flow velocity to deviate from the proton
temperature and flow velocity. This occurs somewhere below
2 R� and is referred to in the text as “decoupling.”

The second type of coupling is related to ionization and re-
combination of Fe ions. As the Fe velocity increases in the
extended corona, the timescale for expansion decreases and
eventually drops below the timescales for ionization and re-
combination (in which collisions with electrons is an impor-
tant factor). The Fe ions finally reach a state where the flux
of each individual charge state is constant with respect to r
(Hundhausen et al. 1968). This occurs somewhere above 2 R�
and is referred to as “freezing-in” (see Section 4.4 for the results
on the freezing-in distance of Fe).

4.1. Average Properties

The Fe flux into the corona is determined by the Fe abundance
and flow velocity at the base of the transition region. As
discussed by Lie-Svendsen & Esser (2005), no coronal process
can regulate the flux of minor ions into the corona, because the
thermal and frictional forces on the minor ions are very large in
the transition region. If the Fe ions do not have enough energy
when they decouple from the protons in the corona, they will
not be able to escape the solar gravitational field and they will be
trapped in the region where they decouple. And since the supply
of Fe from below is not affected by what goes on in the corona,
the Fe abundance will increase in the decoupling region. As the
Fe density increases, a pressure gradient force is established in
the direction away from the Sun, eventually pushing the Fe ions
out of the decoupling region. A steady state is reached when the
force balance in the corona has been adjusted such that the Fe
flux out of the corona matches the Fe flux into the corona.

In Figure 2 we show the average properties of Fe for heating
rates CB and CD in H1 and H2. The total Fe density (nFe) is
defined as

nFe =
∑

s

ns (2)

and the average Fe temperature (TFe) and velocity (uFe) are
defined as

TFe = 1

nFe

∑
s

ns · Ts, (3)

uFe = 1

nFe

∑
s

ns · us, (4)

where the sum is over all charge states of Fe and Ts =
(Ts,‖ + 2Ts,⊥)/3 is the average temperature of species s. In the
following, we will use the subscript s for quantities associated
with an individual Fe species and the subscript Fe for quantities
that have been calculated by averaging over all Fe species.

Although the pressure gradient force is what ultimately
ensures a force balance where the Fe flux out of the corona is
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(a)

(b)

(c)

Figure 2. (a) Total iron density, (b) average iron temperature, and (c) uFe/up

for iron solutions 1-2B and 1-2D (see Table 2). In solutions 1-2D the iron
temperature is identical to the average proton temperature. The observational
limits shown in (b) are from Seely et al. (1997).

(A color version of this figure is available in the online journal.)

the same as the Fe flux into the corona, it is not necessarily the
dominant force on the Fe ions in this region. For our background
solutions, in the case where no heating is applied to the Fe ions
(corresponding to solutions 1D and 2D in Figure 2), the Fe
velocity in the decoupling region is determined mainly through
the force balance between friction and gravity

GM�
r2

= g = νFeP(up − uFe) ⇒ uFe = up − g

νFeP
, (5)

where G is the gravitational constant, M� is the solar mass, and
νFeP = np · γFeP is the average collision frequency between Fe
and protons. The conservation of proton and Fe flux requires
that

nFe

np

= K
up

uFe
= K

1 − g

upnpγFeP

, (6)

where K is a proportionality constant (i.e., the Fe abundance
at the lower boundary). The pressure gradient force will only
be responsible for a small correction to the above expression.
The magnitude of the abundance enhancement, or “pileup” (i.e.,
nFe/np, from the above equation), is thus determined mainly by
the proton flux density, npup, and γFeP = νFeP/np. The average
collision frequency, νFeP, is

νFeP = 1

nFe

∑
s

ns · νsp, (7)

where νsp, the Coulomb collision frequency between an indi-
vidual Fe species (s) and protons, is

νsp = 1

3

npmp

ms + mp

(
2πkTsp

μsp

)−3/2
Z2e4

ε2
0μ

2
sp

ln λ, (8)

where Tsp = (Tsmp + Tpms)/(ms + mp) is the reduced tem-
perature, μsp = msmp/(ms + mp) is the reduced mass,
ε0 is the permittivity of vacuum, ln λ is the Coulomb logarithm,
k is the Boltzmann constant, e is the elementary charge, and Ze
is the charge of the Fe ion. From the above expressions we can
see that γFeP = νFeP/np depends mainly on the average proton
temperature (i.e., Tp = (Tp,‖ + 2Tp,⊥)/3), but also weakly on
the Fe temperature (Tsp ≈ Tp + (mp/ms)Ts , since ms is much
larger than mp).

In H1, the largest pileup occurs in solution 1B (panel (a),
Figure 2, see also Figure 4). As a result of a very low flow
velocity, the H1 solution has a low proton flux density, which
should favor a large pileup (cf. Equation (6)). However, the H1
background is so cool, that for low heating rates (i.e., 1D and
1A, Table 2) the Fe ions are collisionally coupled to the protons
all the way through the corona. The Fe ions are only able to
decouple from the protons when the Fe temperature reaches
a certain level. The Fe temperature required for decoupling
depends on the background density and temperature. Thus, the
1D solution shows that in a low temperature background, such
as H1, it is possible for Fe to escape from the corona without
being heated and without piling up.

In H2, on the other hand, the largest pileup occurs when
the Fe ions are not heated, i.e., in 2D (green solid line in
Figure 2, see also Figure 4). This is because the coupling to
the protons is weaker in H2 than in H1, as a result of the
higher proton temperature in H2. In this background the exact
position of the Fe pileup is determined by the proton temperature
and flux density. For a given flux density, a small reduction in
temperature will cause the pileup to move to a higher altitude
(and a small temperature increase will cause the pileup to occur
further down).

The 1D and 2D solutions show that in the slow solar wind Fe
can escape from the corona without being heated, i.e., with an Fe
temperature which is only of the order of the proton temperature
(Figure 2(b)). This is in contrast to the result obtained for
the high-speed solar wind by Lie-Svendsen & Esser (2005).

From panel (c) in Figure 2 we see that in the region between
1.5 and 6 R�, the average Fe flow speed deviates significantly
from the proton flow speed. However, above 6 R� the Fe ions
are re-coupled to the protons and are able to escape the solar
gravitational field (they reach uesc at ≈10–15 R�) because of
friction with the protons.

4.2. Pileup of Fe+10 and Fe+12

So far, we have been concerned only with elemental pileup,
where the abundance of an element increases in some region of
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(a)

(b)

(c)

Figure 3. (a) Temperature, (b) velocity, and (c) density of Fe+8–Fe+12 in iron
solution 2A (see Table 2).

(A color version of this figure is available in the online journal.)

the corona. We also wish to study the densities of the individual
Fe charge states. From the expression for the Coulomb colli-
sion frequency between an individual Fe species and protons
(Equation (8)), it is evident that the coupling to the background
for an individual Fe species depends on the ion charge, as well as
the (average) temperature of that particular species. This means
that the degree of pileup may vary from charge state to charge
state.

To see this, we have plotted the average temperature (i.e., Ts =
(Ts,‖ + 2Ts,⊥)/3), the velocity and the density of Fe+8–Fe+12

for model 2A in Figure 3. Also shown are the average proton
temperature and flow velocity (red lines) and the total Fe density
(green line). We find that the highest temperature (of those
shown in the figure) is reached by Fe+8, followed by Fe+9,
then Fe+10, and so on. Fe+8 also has the largest drop in flow
velocity, relative to the protons. The largest pileup is seen in
Fe+8, followed by Fe+9, and then Fe+10. In Fe+12, no increase
in the density can be seen, even though the Fe+12 flow velocity
does drop below that of the protons. Since the heating rate is
the same for all charge states, these are all direct results of the
charge dependency of the Coulomb collision frequency.

Figure 4. ni/ne for Fe+10 (black) and Fe+12 (red) for different values of the
heating rate coefficient, C (see Table 2), in both hydrogen backgrounds.

(A color version of this figure is available in the online journal.)

In Figure 4, we have plotted ni/ne for Fe+10 and Fe+12 for
solutions 1A-C and 2A-C. In ionization equilibrium, the ion
fractions of Fe+10 and Fe+12 reach their highest values at a
temperature equal to, or higher than, the maximum electron
temperature obtained in our solutions. This means that any
increase in ni/ne that occurs above the electron temperature
maximum (at 1.2 R�, indicated by vertical lines in the figure) is
a pileup. We find that the solutions 1B and 2A have fairly large
pileups in both Fe+10 and Fe+12. The 1C and 2B solutions also
have clearly visible pileups in the Fe+10 density, but not in the
Fe+12 density.

In the observations of Habbal et al. (2007), a density en-
hancement is sometimes seen only in the Fe xi 789.2 nm line,
and not in the Fe xiii 1074.7 nm line. This could be an effect
of preferential heating of Fe+12 relative to Fe+10. We test this
idea by redoing the simulation for H2 in which a large pileup
was obtained in Fe+10 and Fe+12 (i.e., 2A), but now we heat the
Fe+12 more than the Fe+10. Since the ion fractions of all charge
states above Fe+9 are decreasing in the pileup region, which
means that the source term in the equations for Fe+12 that re-
sults from recombination of Fe+13 is important in this region,
we have chosen to apply extra heating not only to Fe+12, but
also to Fe+13. The result can be seen in Figure 5. We find that
the preferential heating of Fe+12 and Fe+13 causes the pileup in
Fe+12 to disappear, while the pileup in Fe+10 is retained.

4.3. Comparison with Observations of Fe Spectral Lines

Figure 6(a) shows synthesized Fe xi 7892 line/continuum
ratios for the H2 background. The ratios have been normalized
to 1 (a description of the Fe xi 789.2 nm line calculation can be
found in Appendix B). Thus, we can only compare the shapes
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Figure 5. ni/ne for 2A with (dashed lines) and without (solid lines) increased
heating of Fe+12 and Fe+13. An increased heating rate of C = 10−17 W was used
for Fe+12 and Fe+13.

(A color version of this figure is available in the online journal.)

(a)

(b)

Figure 6. (a) Synthesized Fe xi 789.2 nm line/continuum ratio for three different
values of the Fe heating rate, C, in the H2 background and (b) observed Fe xi

line/continuum ratios from Habbal et al. (2007, their Figure 9, left panel). In
panel (a), a vertical black line has been drawn at the height 1.05 R�.

Table 3
Ion Fractions, at the Height of the Temperature Maximum and at 1 AU, and

Freezing-in Heights for Fe+10 and Fe+12 in Six Fe Solutions (see also Table 2)

Fe solution Fe+10 Fe+12

Ion Fraction rfreeze (R�) Ion Fraction rfreeze (R�)

T max
e 1 AU T max

e 1 AU

1A 0.28 0.06 11 0.13 0.003 9.5
1B 0.28 0.02 10.3 0.13 0.003 9.5
1C 0.28 0.04 11.3 0.13 0.0002 7.7
2A* 0.28 0.09 7.4 0.09 0.04 8.2
2B* 0.28 0.16 7.2 0.09 0.04 6.7
2C 0.29 0.21 3.7 0.09 0.05 7.2

Note. In solutions 2A and 2B (marked by an asterisk), there is a secondary
pileup in the extended corona (4–10 R�).

of the calculated and measured line/continuum ratios, not their
absolute values. Below 1.05 R� (black vertical line in Figure 6),
the ratio is increasing due to production of Fe+10 in the low
corona. Between 1.05 R� and 1.3 R� the ratio drops off. We get
a clear maximum in the line/continuum ratio at about 1.7 R�
for the lowest heating rate. For the two higher heating rates, the
line/continuum ratio has a change in the slope starting at around
1.3 R�, but no peak. If we compare the line/continuum ratios
with the corresponding ion/electron density ratios in Figure 4,
we find that a rather large pileup is needed to produce a peak in
the line/continuum ratio. This is a result, at least in part, of the
contributions along the line of sight (LOS) from regions further
away from the Sun. This can be seen by choosing a shorter LOS
in the calculation of the spectral line (see Appendix B for details
of the spectral line calculation). The synthesized line/continuum
ratios look qualitatively similar to the line/continuum ratios
shown in Figure 9 of Habbal et al. (2007), which we have
plotted in Figure 6(b).

4.4. Ion Fractions and Freezing-in

Next, we wish to examine the ion fractions and freezing-in
heights for Fe+10 and Fe+12. The electron temperature profile is
more or less identical for both hydrogen background solutions.
This means that any difference in the “frozen-in” ion fractions
at 1 AU between H1 and H2 is the result of the difference
in flow speed, since the flow speed determines the degree of
departure from ionization equilibrium and the height where
freezing-in occurs. Generally, a high ion velocity will lead to
large departures from ionization equilibrium, and freezing-in
close to the Sun.

In the low-velocity background H1, the ion fractions are
nearly identical to the ionization equilibrium values below
1.5 R�. Above this height they deviate slightly from the ioniza-
tion equilibrium values. For the H2 background, the ion fractions
are 5%–10% below the ionization equilibrium values at 1.2 R�,
and above this height the departure from ionization equilibrium
is large.

In Table 3 we have listed the freezing-in heights for Fe+10 and
Fe+12, defined as the height above which the relative ion flux
(i.e., niui/nFeuFe) is always within 10% of its value at 1 AU,
for all Fe solutions shown in Figure 4. Also listed in Table 3 are
the ion fractions for Fe+10 and Fe+12 at the height of the electron
temperature maximum and at 1 AU. As we can see from the
table, the freezing-in height is very large in most of the Fe
solutions. For the high-speed solar wind, freezing-in distances
of between 1.3 and 4 R� have been reported (Chen et al. 2003;
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Ko et al. 1997). The lowest freezing-in height for Fe+10 and
Fe+12 obtained in these simulations is 3.7 R� (in solution 2C).

The large freezing-in height means that the final frozen-in
charge states are quite sensitive to the outflow velocity in the
region above the temperature maximum. As we can see from the
table, the ion fraction of Fe+12 at the height of the temperature
maximum is higher in H1 compared to H2. However, at 1 AU
the ion fraction of Fe+12 in H1 is extremely low. Clearly,
the low outflow velocity in this solution ensures that as the
electron temperature drops, above 1.2 R�, the ion fractions of
the higher charge states decrease considerably before they reach
the freezing-in distance. In H2 the ion fraction of Fe+12 is much
higher at 1 AU, because the high flow velocity keeps the Fe ions
well out of ionization equilibrium. Two of the solutions should
be mentioned in particular: 2A and 2B. Solution 2A displays a
large secondary abundance enhancement in the extended corona
(4–10 R�). In solution 2B there is also a secondary pileup region,
but it is less pronounced and mainly visible in the densities of
the lower charge states. Nevertheless, in 2B as well as in 2A
the secondary pileup has a large effect on the ion fractions at
1 AU. This is because the pileup is associated with a drop in
the flow velocity. When the flow velocity falls off, the Fe ions
come closer to being in ionization equilibrium, and since this
occurs in a region of decreasing electron temperature, it leads
to an increase in the ion fractions of the lower charge states at
the expense of Fe+10 and Fe+12. However, keeping that in mind,
it appears that it is the low density background, H2, which can
produce ion fractions that are closest to the results of von Steiger
et al. (2000), who found that the ion fractions for Fe+10 and Fe+12

in the slow solar wind are 0.2–0.25 and 0.08–0.1, respectively.
The agreement between solution 2C, in particular, and the results
of von Steiger et al. (2000) is quite good, especially taken
into account the uncertainties in the atomic data used in the
model.

5. DISCUSSION

We have found that Fe pileups in the corona can occur for
a range of proton densities and temperatures. Even in a solar
wind with a strong coupling between protons and Fe, such as
the H1 solution, pileup can occur if the Fe temperature exceeds
some minimum value, (typically around 10 MK in the H1
background) which depends on the density and temperature of
the background, as well as the applied heating of the Fe ions. We
find that the amount of heating that is consistent with a moderate
pileup differs considerably between the two background models.
This reflects the differences in density and temperature between
the hydrogen backgrounds. Based on the results described here
we cannot place any strong constraint on the required level of
Fe heating in the corona.

As seen in Fe solutions 1-2D, the good coupling between
protons and Fe in the slow solar wind ensures that it is not
necessary to heat the Fe ions to temperatures of order 100 MK
for them to escape from the solar gravitational field. Even if
Fe decouples from the protons and piles up in the corona, the
Fe ions will re-couple to the protons a little further out (in the
extended corona) and be dragged out by friction with protons.
In a low density background such as H2, a large pileup is needed
to push the Fe out of the pileup region and into the extended
corona.

Our choice of magnetic field expansion is consistent with
the idea of so-called coronal funnels (Dowdy et al. 1986)
and resembles the streamer-edge field from the empirically

derived solar-minimum field of Banaszkiewicz et al. (1998)
at large heights. However, it does not have the characteristic
expansion–contraction, seen just below 2 R� in the field em-
ployed by Cranmer et al. (2007) in Figure 1. The main effect
of such an expansion–contraction of the magnetic field is a
corresponding dip in the proton flux density. As discussed in
Section 4.1, the magnitude of the pileup depends on the proton
flux density, where a low flux density leads to larger pileups.
Thus, we expect that choosing a magnetic field expansion such
as that of Cranmer et al. (2007) might result in larger pileups
than what was found in this study. It might also be possible to
regulate the location of the pileup by adjusting the location of
the expansion–contraction in the magnetic field. Nevertheless,
the results obtained in this study are not expected to depend
significantly on the choice of magnetic field expansion.

Habbal et al. (2007) found that enhancements in the Fe+12 den-
sity were not always present where Fe+10 density enhancements
were observed. They suggested that this might be the result of a
low electron temperature, favoring the production of the lower
charge state. Since all of our hydrogen background solutions
have approximately identical electron temperature profiles, we
cannot test this idea; however, we do note that, although the
electron temperatures in our simulations are close to the lower
limit of observed values, Fe+12 is produced in both background
solutions. In general, the amount of Fe+12 in the corona is de-
termined not only by the magnitude of the electron temperature
maximum, but also by the flow velocity in the region below
the electron temperature maximum (where high velocities lead
to less Fe+12), the flow velocity in the region above the elec-
tron temperature maximum (where high velocities lead to more
Fe+12) and the rate of decrease of Te above the electron tempera-
ture maximum (Ko et al. 1997; Esser et al. 1998). In addition, the
height where pileup occurs, which is determined mainly by the
average proton temperature, could be important in determining
whether or not enough Fe+12 is present to produce a signifi-
cant pileup. We have also found that it is possible, by applying
more heating to the higher charge states (i.e., Fe+12 and Fe+13 in
Figure 5), to avoid a pileup in Fe+12, while still retaining a pileup
in Fe+10. In summary, the presence of a pileup in Fe+12 seems
to be a rather complicated function of the background plasma
parameters and may also be affected by the amount of energy
supplied to the higher charge states.

The synthesized line/continuum ratio of model 2A and 2B
in Figure 6 quite successfully reproduces the observations by
Habbal et al. (2007). This confirms that the observed “bumps” in
the line/continuum ratio must be a signature of a local increase
in the total density of Fe, since ionization and recombination
processes are not able to produce such increases in the density
of a single charge state (or two). We find that a rather large pileup
is needed to produce a local maximum in the line/continuum
ratio.

Habbal et al. (2010) argued that when the Fe xi 789.2 nm
line changes from the collisionally excited regime, where it
is proportional to ni · ne, to the radiatively excited regime,
where it is proportional to ni, the line/continuum ratio should
change from rapidly decreasing (i.e., proportional to ni) to a
constant value (i.e., proportional to ni/ne), given that the radial
falloff of ion and electron densities is the same. They named
the distance above which the Fe xi λ789.2 nm line is dominated
by radiative processes Rt and estimated it from their data by
finding the distance where the derivative of the line/continuum
ratio becomes (nearly) zero. Rt, as determined by Habbal et al.
(2010), varied between 1.1 and 2 R�.
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Figure 7. Ratio of radiative to collisional emissivity for H1 (solid line) and H2
(dotted line). A vertical black line has been drawn at the height 1.05 R�.

As we can see from Figure 4, the assumption that the falloff
of ion and electron densities is the same is not always valid. A
Fe buildup in the corona may cause problems when attempting
to define Rt. If the buildup occurs in the region where the Fe
line is dominated by radiative excitation, then the ratio will
become constant at some distance, and then begin to increase
again, and there is no problem. However, if the buildup occurs
in the region where the Fe line is dominated by collisional
excitation, or in the transition between the two regions, then
there is no way to distinguish between a change in the slope of
the line/continuum ratio caused by a transition between the two
regions, and a change in the slope caused by a change in the
Fe abundance. Thus, if there is a buildup of Fe in the corona,
the Rt as defined by Habbal et al. (2010) may be lower than the
“true” Rt.

In addition, the determination of Rt relies on the idea that the
line is in the collision-dominated regime at the lowest heights of
the observation, because this ensures that we see the very large
change in the slope of the line/continuum ratio that occurs below
Rt. If one assumes that the falloff of ion and electron densities is
the same, an assumption which ensures that the line/continuum
ratio will be constant above Rt, it would be possible to determine
Rt even when the line is not in the collision-dominated regime
at the lowest heights of the observation. However, the falloff
of ion and electron densities is not always the same and we
therefore need to see the transition from collisional to radiative
excitation in order to get a reasonable estimate for Rt. In Figure 7
we have plotted the ratio of radiative to collisional emissivity
as function of heliocentric distance, r, for the Fe xi 789.2 nm
line for both hydrogen backgrounds. Since the ion density, ni,
is present in both the numerator and denominator, this ratio is
independent of the Fe properties and thus Figure 7 applies to
all the Fe models described earlier. Note that when an LOS
integration is performed, to calculate (or measure) the spectral
line intensity, the integrated intensity at height r will be more
dominated by radiative excitation than the local emissivity at
height r, since the integrated intensity includes contributions

from higher altitudes, where radiative excitation dominates. The
lowest ratio is obtained for the H1 background, where the ratio
is about 0.7 at 1.05 R� (vertical line in Figure 7), which is close
to the maximum in the line/continuum ratios in Figure 6. This
means that the line/continuum ratios calculated here are never
really in the collision-dominated regime (i.e., a rad/coll ratio
below 0.1). For the Fe line to be collision-dominated at 1.05 R�,
we would have to increase the electron density there by almost
an order of magnitude compared to the H1 background. This
would result in densities in accordance with the observations of
Uzzo et al. (2007). If such high densities are to be combined
with flow velocities large enough that Fe is driven well out
of ionization equilibrium, ensuring that the high charge states
survive to 1 AU, then the mass flux of the wind would become
very large.

If the observed Fe lines are in the collision-dominated regime
below 1.2 R�, as suggested by Habbal et al. (2007), then the
electron densities in the structures they have observed should
be very high compared to our modeled densities. Although we
cannot exclude the possibility that the observed Fe lines really
are collision dominated at low heights, it is clear that this cannot
be inferred directly from the line/continuum ratio, since the
modeled line/continuum ratios shown in Figure 6 all fall off
below 1.2 R�, just like the observed ratios. Clearly, this falloff
is related to the diminishing collisionally excited component
of the line, but the transition occurs over an extended region,
enabling us to see a falloff in the line even though it is never
dominated by collisional excitation.

Finally, we have seen that the freezing-in height of Fe+10 and
Fe+12 is large in all Fe simulations. The result is that for a low-
velocity background such as H1, the ion fractions of the high
charge states at 1 AU are very small compared to the value of the
ion fractions at the height of the electron temperature maximum.
In the high-velocity background H2, Fe is pushed further out
of ionization equilibrium, and the high charge states are able
to survive to larger distances, ensuring a higher ion fraction
at 1 AU in these backgrounds. However, if a pileup occurs
in the extended corona (4–10 R�), such as in 2A and 2B, the
frozen-in ion fractions of the high charge states are significantly
reduced.

6. CONCLUSIONS

We have found that Fe abundance enhancements, or “pileups,”
can occur in the slow solar wind for a variety of density and
proton temperature profiles. For low proton temperatures in
the corona, the existence and location of a pileup depends
on the Fe temperature. For high proton temperatures, pileup
occurs as a result of low Fe heating rates. In the latter type
of hydrogen background, the location and magnitude of the
pileup is sensitive to proton temperature and flux density. In
both types of background solution, Fe is able to escape the
corona regardless of the amount of Fe heating; hence, high Fe
temperatures, of order 100 MK, are not required.

We also find that a lack of pileup in Fe+12, where a pileup
in Fe+10 is present, can occur either as a result of preferential
heating of the higher charge states or because the radial profiles
of the electron and proton temperature, density, and flow velocity
produce a low Fe+12 density at the height of pileup. The lack of
an Fe+12 pileup is not, in general, an indication of the magnitude
of the electron temperature maximum.

The synthesized Fe xi 789.2 nm line/continuum ratios suc-
cessfully reproduce the observations by Habbal et al. (2007),
confirming that the observed “bumps” in the line/continuum
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ratio must be a signature of a local increase in the total density
of Fe. By calculating the ratio of the radiative and the collisional
emissivity we have determined that for our solar wind solutions,
the Fe xi 789.2 nm line is never fully in the collision-dominated
regime. To reach the collision-dominated regime at low heights,
the electron density would have to be increased by about an or-
der of magnitude with respect to our highest density hydrogen
background solution.

Finally, we find that a high density–low-velocity corona leads
to very low ion fractions for Fe+10 and Fe+12 at 1 AU, while a
low density–high-velocity wind leads to ion fractions in better
accordance with observations of Fe charge states in the solar
wind (von Steiger et al. 2000). This is mainly a result of the
large freezing-in distance of Fe in the slow solar wind. A Fe
pileup in the extended corona (4–10 R�) has a large impact
on the frozen-in ion fractions, with the effect of reducing the
ion fractions of the high charge states. Our results on the ion
fractions of Fe+10 and Fe+12 support the idea that the slow solar
wind is rooted in open magnetic field structures with coronal-
hole-like densities in the low corona, as suggested by Abbo
et al. (2010), Antonucci et al. (2005), and Antonucci et al.
(2006).
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APPENDIX A

THE MODEL EQUATIONS

When assuming radial flow, the equations of Janse et al.
(2005) reduce to five transport equations for matter, momentum,
temperature (parallel and perpendicular to the field), and heat
flow, for each particle species, s.

The equation of continuity,

∂ns

∂t
= − ∂

∂r
(nsus) − nsus

1

A

∂A

∂r
+

δns

δt
, (A1)

contains the number density, ns, the flow velocity, us, the cross-
sectional area of the flow tube, A, and the production and loss
term δns

δt
, which is given by

δns

δt
=

∑
t

(ntRts − nsRst ), (A2)

where Rst is the transition rate from charge state s to charge
state t as a result of photoionization, collisional ionization,
recombination, and charge exchange.

The equation of motion,

∂us

∂t
+ us

∂us

∂r
= − k

ms

∂Ts‖
∂r

− kTs‖
nsms

∂ns

∂r

− 1

A

dA

dr

k

ms

(Ts‖ − Ts⊥) +
es

ms

E

− GM�
r2

− 1

nsms

∂Psw

∂r
+

1

nsms

δMs

δt
, (A3)

contains the parallel and perpendicular temperature, Ts‖ and
Ts⊥, the mass and charge of a particle of species s, ms and es, the
Boltzmann constant, k, the electric field, E, the solar mass, M�,
the gravitational constant, G, and the Alfvén wave pressure, Psw
(see Lie-Svendsen et al. 2001 for details). The collisional term
is given by

δMs

δt
= −

∑
t

nsmsνst (us − ut ) +
∑

t

νst

3

5

μst

kTst

×
[
qs

(
1 − 5

7

mt

ms + mt

)
− qt

msns

mtnt

(
1 − 5

7

ms

ms + mt

)]

+ ms

∑
t

(ntutRts − nsusRst ) −
∑

t

nsmsν
2str
st (us − ut ).

(A4)

The reduced mass is

μst = msmt

ms + mt

, (A5)

and the reduced temperature, Tst, is defined as

Tst = Tsmt + Ttms

ms + mt

, (A6)

where Ts = (Ts‖ + 2Ts⊥)/3 is the average temperature.
The Coulomb collisional frequency is given in Equation (8).

The Coulomb logarithm is a factor which accounts for the Debye
screening of the particles’ electric fields. The expression for the
Coulomb logarithm used in the model is

ln λ = 23 − ln

[(
ne

n0

)1/2(
Te

T0

)−3/2
]

, (A7)

where T0 = 106 K and n0 = 1 m−3. In the numerical model,
ion–neutral and neutral–neutral collisions are also included,
with the collision frequency (Banks & Kockarts 1973)

νst = 2 × 10−42 kg m3 s−1

ms

nt . (A8)

The last term in (Equation (A4)) is introduced to mimic the two-
stream instability in the outer solar wind. The extra frictional
force associated with this term ensures that the drift velocities
of protons and iron ions do not deviate by more than the
local Alfvén speed, va = B/

√
μ0ρ0, as required from in situ

measurements (e.g., Marsch 2006, and references therein). The
collision frequency ν2str

st is given as

ν2str
st = νmax

2

[
tanh

(
Δu0

Δu

)
+ tanh

(
Δva − Δu0

Δu

)]
, (A9)

νmax = uflow

r2str

(
1 + ρs

ρt

) , (A10)

Δva = |us − ut |
va

, (A11)

where ρ0 is the total mass density, μ0 is the permeability of
vacuum and uflow, r2str , Δu and Δu0 are constant parameters
which have been set to 300 km s−1, 100 R�, 0.2, and 1,
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respectively. The dependence on tanh(Δu0/Δu) ensures that the
force from this extra friction term is zero when the difference in
drift speed is small compared to the Alfvén speed.

The energy conservation equations describe the evolution of
the parallel and perpendicular temperature in a frame moving
with the fluid:

∂Ts‖
∂t

+ us

∂Ts‖
∂r

= −2Ts‖
∂us

∂r
− 1

nsk

∂qs‖
∂r

− 1

A

dA

dr

qs‖
nsk

+
2

A

dA

dr

qs⊥
nsk

+
1

nsk
Qsm‖ +

1

nsk

δEs‖
δt

, (A12)

∂Ts⊥
∂t

+ us

∂Ts⊥
∂r

= − 1

A

dA

dr
usTs⊥ − 1

nsk

∂qs⊥
∂r

− 2

A

dA

dr

qs⊥
nsk

+
1

nsk
Qsm⊥ +

1

nsk

δEs⊥
δt

, (A13)

where Qsm‖ and Qsm⊥ describe heating, and the terms 1
nsk

δEs⊥
δt

and 1
nsk

δEs‖
δt

are collisional terms given by

δEs‖
δt

= −
∑

t

2
ms

ms + mt

nsνst k

{
Ts‖ − Tt‖ − 2

5

[
mt

ms

(Ts⊥ − Ts‖)

+ Tt⊥ − Tt‖

]}
+

∑
t

(ntkTt‖Rts − nskTs‖Rst )

+
2

3
ns

∑
t

μst νst (us − ut )
2, (A14)

δEs⊥
δt

= −
∑

t

2
ms

ms + mt

nsνst k

{
Ts⊥ − Tt⊥ − 1

5

[
mt

ms

(Ts⊥ − Ts‖)

+ Tt⊥ − Tt‖

]}
+

∑
t

(ntkTt⊥Rts − nskTs⊥Rst )

+
2

3
ns

∑
t

μst νst (us − ut )
2 + ns

∑
t

μst ν
2str
st (us − ut )

2.

(A15)

The radial heat flux density satisfies

∂qs

∂t
+ us

∂qs

∂r
= −2qs‖

∂us

∂r
− 1

2
usqs‖

1

A

dA

dr
− 2qs⊥

∂us

∂r

−2usqs⊥
1

A

dA

dr
− k2nsTs‖

ms

∂

∂r

(
3

2
Ts‖ + Ts⊥

)

− 1

A

dA

dr

k2nsTs⊥
ms

(Ts‖ − Ts⊥) +
δqs

′

δt
, (A16)

where
δqs

′

δt
= δqs

δt
− k

ms

(
3

2
Ts‖ + Ts⊥

)
δMs

δt
(A17)

and

δqs

δt
= −

∑
t 
=s

νst

{
Est

(1)qs − Est
(4) msns

mtnt

qt +
5

2
ps(us − ut )

×
[
1 − 3

5

mt

ms + mt

]}
− 16

35
νssqs +

∑
t

(qtRts − qsRst ),

(A18)

and the mass factors Est
(1) and Est

(4) are defined as

Est
(1) ≡ 1

m0
3

(
3ms

3 − 1

2
ms

2mt − 2

5
msmt

2 − 4

35
mt

3

)
,

(A19)

Est
(4) ≡ 1

m0
3

(
6

5
mt

3 − 171

70
mt

2ms − 3

7
mtms

2

)
, (A20)

where m0 = ms + mt and qs is related to the parallel and
perpendicular heat fluxes through the equations

qs‖ = 30qs

Ts‖3(4Ts⊥ + 3Ts‖)

16Ts⊥4 + 48Ts⊥3Ts‖ + 6Ts⊥2Ts‖2 + 60Ts⊥Ts‖3 + 45Ts‖4

(A21)

and

qs⊥ = 2qs

Ts⊥2
(
8Ts⊥2 + 24Ts⊥Ts‖ + 3Ts‖2

)
16Ts⊥4 + 48Ts⊥3Ts‖ + 6Ts⊥2Ts‖2 + 60Ts⊥Ts‖3 + 45Ts‖4 .

(A22)

The transport of energy occurs strictly parallel to the magnetic
field. The perpendicular heat flow is a flow of perpendicular
thermal energy, in the direction parallel to the magnetic field.

The cross-sectional area of the flow tube is given by (Kopp
& Holzer 1976)

A(r) = A0

(
r

RS

)2

f1(r)f2(r), (A23)

where A0 = 1 m2 is the area of the flow tube at the solar surface
and

fi(r) =
fmaxi exp

[
r−R1 i

σi

]
+ f1i

exp
[

r−R1 i

σi

]
+ 1

, (A24)

where

f1i = 1 − (fmaxi − 1) exp

[
R� − R1i

σi

]
. (A25)

fi(r) is the expansion function and describes the expansion of
the flow tube as a function of radial distance. The expression
for the cross-sectional area of the flow tube allows for non-
radial expansion in two different regions along the flow tube,
around R11 and R12. At R11(R12), the cross-sectional area of
the flow tube increases to fmax1(fmax1fmax2) times the area of
a radially expanding flow tube, and most of the increase occurs
in the region R11 − σ1 to R11 + σ1(R12 − σ2 to R12 + σ2).
The maximum value of ∂fi

∂r
occurs at R1i . In our hydrogen

background models, fmax1 = 14, fmax2 = 7, R11 = 1.017 RS ,
R12 = 1.3 RS , σ1 = 0.004 RS , and σ2 = 0.5 RS .

APPENDIX B

Fe xi LINE SYNTHESIS

The spectral line intensity at a radial distance r = r ′ was
calculated by integrating the sum of the collisional and radiative
emissivity along the LOS, which is assumed to be perpendicular
to the radial direction. The integration was done over a region
of 60 R�, centered on the point r ′. We assume a spherically
symmetric atmosphere so that the parameters at a distance L
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(where L varies between 0 and 30 R�) from the point r = r ′ can
be approximated by the plasma parameters at r =

√
r ′2 + L2.

The frequency-dependent collisional emissivity can be ex-
pressed in terms of the ion and electron densities, ni and ne, as

jcoll,ν = hν0

4π
qij (Te)neniφ(ν), (B1)

where ν0 is the line-center frequency in vacuum and h is the
Planck constant. Assuming a Maxwellian velocity distribution,
the line profile function, φ(ν), is

φ(ν) = 1

ΔνD

√
π

exp

[
−

(
ν − ν0

ΔνD

)2
]

(B2)

with ΔνD = ν0vth/c, where vth is the ion perpendicular thermal
speed and c is the speed of light. By integrating over wavelength
we obtain the frequency-independent emissivity

jcoll = hν0

4π
qij (Te)neni. (B3)

The temperature-dependent excitation rate between levels i and
j, qij (Te), can be written as

qij = Cij exp

[−hν0

kTe

]
, (B4)

where k is the Boltzmann constant, Te the electron temperature,
and Cij is defined as (Bhatia & Doschek 1996)

Cij = 8.63 × 10−6

gi

√
Te

· ϒij . (B5)

The factor gi is the statistical weight assigned to level i and
ϒij , the effective collision strength, is a function of electron
temperature and is tabulated in Aggarwal & Keenan (2003). For
Fe xi λ7892, ϒij ranges from 2.26 at Te = 104 K to 0.56 at
Te = 5 × 106 K.

The frequency-dependent radiative emissivity is

jrad,ν = hν0

4π
niBij

∫ ∫
Iν ′RI

dΩ′

4π
dν ′, (B6)

where Bij is the rate of direct absorption of photons, Iν ′ is the
intensity profile from the solar disk, and RI is the redistribution
function. The integral over dΩ′ can be approximated by the

“dilution factor,” W = 0.5(1 −
√

1 − (R2
S/r2)). The intensity

profile can be approximated by

Iν ′ = Icont − Iabs exp

[
−

(
ν − ν0

ΔνI

)2
]
. (B7)

The parameters Icont, Iabs, and ΔνI can be obtained from the
solar flux atlas of Kurucz et al. (1984). For Fe xi λ7892,
Icont ≈ 4.4 × 10−8 W (m2 sr Hz)–1, Iabs ≈ 1.1 × 10−8 W
(m2 sr Hz)–1, and ΔνI ≈ 0.18 nm.

The redistribution function, assuming a Maxwellian velocity
distribution function and isotropic, coherent, pure right angle
scattering from idealized two-level atoms, can be written as
(e.g., Cranmer 1998)

RI = 1

Δν2
Dπ

exp

[
−

(
ν ′ − ν0

ΔνD

)2
]

exp

[
−

(
ν − ν0

ΔνD

)2
]
.

(B8)

This expression assumes that “Doppler dimming” due to the so-
lar wind flow is negligible. Integrating the frequency-dependent
emissivity over wavelength we obtain

jrad = hν0

4π
BijniW

⎛
⎝Icont − Iabs

ΔνI√
Δν2

I + Δν2
D

⎞
⎠ . (B9)

An accurate calculation of the continuum emissivity would
involve an integral over the photospheric absorption spectrum
and over the velocity distribution function of the coronal
electrons (Cram 1976). Since we are primarily interested in
the radial evolution of the line/continuum ratio, rather than its
absolute value, we have chosen a simpler approach by assuming
that the continuum emissivity is proportional to ne.

We wish to compare the calculated line/continuum ratios
with those shown in Habbal et al. (2007). In that paper, the line/
continuum ratios were normalized by dividing with the mean
ratio along the radial path. In principle, it would be possible to
normalize the calculated line/continuum ratio in the same way,
so as to be able to compare the calculated and observed ratios
directly. However, the length of each radial path, along which
the line/continuum ratio was observed, varies, which means that
the choice of normalization constant employed by Habbal et al.
(2007) is actually somewhat arbitrary. To compare the magni-
tude of the calculated line/continuum ratios with the observed
ones is, therefore, not straightforward. For this reason, we have
chosen to normalize the calculated line/continuum ratios to 1.

REFERENCES
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