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Abstract—Vertical profiles of temperature, salinity, and sound
speed velocity are used in numerous applications where accurate
vertical profiles are crucial. Conventional climatological represen-
tations of vertical oceanographic profiles are based on mean or
median profiles of historic data in a rectangular area containing
the position in question. In areas containing oceanographic fronts
mean profiles may not be representative for the profiles in the
area and may even be unphysical.

We propose a different approach to generate more realistic
climatological estimates of the vertical profiles at a given time
and position. The depth-dependent behaviours of all historic
temperature and salinity profiles are classified by combining
Empirical Orthogonal Function (EOF) analysis with K-means
clustering. All profiles with similar EOF-coefficients are sorted
into a single cluster and averaged to find a representative profile
for that cluster. The geographical extent and temporal validity
of the cluster are given by the positions and measurement times
of the contained profiles.

The method is here illustrated using ARGO temperature
profiles from the North Atlantic from 2001 to 2012. The proposed
method automatically allocates a high density of clusters in
areas with large oceanographic variability, such as areas with
oceanographic fronts.

On the eastern coast of North America cold water from
the Labrador Sea runs southwards between the coastline and
the warmer Gulf Stream running northeast, resulting in strong
fronts. The depth–dependent behaviour of an average profile
from all profiles contained in a rectangular, geographic window
may differ strongly from the present oceanographic profiles. The
profiles representing the nearby clusters, on the other hand,
better represent the general depth-dependent behaviour of the
profiles in this region.

I. INTRODUCTION

In areas dominated by different water masses seperated by
fronts, a typical situation in the littorals [1]–[3], estimating
representative climatological profiles is a challenging task.
Conventional estimates are based on mean or median profiles
of historic data in a rectangular area containing the position
in question. An example of a climatology database is World
Ocean Atlas [4], [5] which uses geographical boxes of either
1o or 5o for either annual, seasonal, or monthly temporal
resolutions.

A geographical box used for estimating climatological pro-
files may contain several distinctly different profiles, and since
fronts are dynamic [2], the water masses present in a small
geographical box may change in the course of a month. The
non-Gaussality of the profiles present in such a geographical

box may result in an averaged profile which is statistically
improbable in that area or even nonphysical.

In the acoustic community, climatological oceanographic
profiles are widely used to estimate sound speed profiles for
acoustic propagation modeling. The modeled acoustic field is
sensitive to errors in the sound speed [6], [7], and particularly
to the vertical sound speed gradient [8]. It is therefore vital
in these applications that the climatological estimate of the
vertical profile has a depth–dependent behaviour similar to
the oceanographic profiles expected in the region of interest.

Here we show that a newly proposed method [9] cap-
tures the essence of all present types of water. The method
employs Empirical Orthogonal Functions (EOF) [10] and k-
means clustering [11] to divide a set of historic profiles
into different clusters. The clusters replace the rectangularly
shaped geographical boxes and are then each associated with
average temperature profiles and an averaged position. When
a sufficient amount of clusters is used, the statistics for each
cluster will be approximately Gaussian [12], and thus the
average profiles are more representative for their respective
clusters. Similar methods have earlier been demonstrated on
modelled oceanography [13], [14] in an area in the Norwegian
Trench dominated by fronts due to the interaction of Atlantic
water and the Norwegian Coastal Current.

The method is here tested on approximately 87 600 mea-
sured oceanographic profiles from the North Atlantic Ocean.
The data are ARGO profiles collected and made freely avail-
able by the Coriolis project and programmes contributing to
it (http://www.coriolis.eu.org).

Comparisons of the proposed and conventional methods are
made in order to assess the ability of the proposed method to
generate valid climatology for areas dominated by fronts. The
presented analysis focuses on an area along the eastern coast
of North America. In this area cold water from the Labrador
Sea runs southwards between the coastline and the warmer
Gulf Stream running northeast, resulting in strong fronts [1],
[15], [16, and more].

II. THEORY

The depth-dependent behaviour of historic temperature pro-
files are classified by combining EOF analysis [10] with K-
means clustering [11] following [9].



Consider a set of N measured temperature profiles. The
temperature measurements are interpolated to selected depth
steps and given by the vector Tn = [T
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where n is the measurement number and each element cor-
responds to a single depth. The geographical latitude and
longitude coordinates of the measurements are given by xn =
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Let the weighted temperature profile and weighted position
be given by:
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where j corresponds to depth steps of the temperature profile.
The weights, wT and wx, may be selected freely, but the
choice will have a strong influence on the resulting clusters.
If a single weight is selected far higher than all other weights,
then the corresponding measurement (either a single depth step
in the temperature profile or a single geographical coordinate)
will have a significantly higher influence on the shape of the
resulting clusters. An interesting note is that if the inverted
standard deviation

(
1
σ

)
for each measurement is used instead,

then all depth steps and geographical coordinates will have
equal influence on the resulting clusters.

Let the data matrix P begiven by:
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where pn = [T̂n, x̂n]. EOF and K-means clustering method
described in [9] is applied on the matrix P. Each of the
measurements may then be described as a sum of the mean
value and the computed EOFs times their corresponding
coefficients:

p (j)
n = p (j) +

K∑
k=1

κnku
(j)
k . (4)

p (j) is the jth value of the mean data vector. K = J + 2 is
the length of the data vector pn. u (j)

k is the jth depth step in
the kth EOF with correspoinding coefficient κnk.

The resulting coefficients are entered into the K-means
clustering algorithm in order to group the measurements into
clusters. A useful property of EOFs is that the majority of
the variance in the data set is represented by the first few
coefficients. The clusteringing may be simplified by reducing
the number of coefficients used. The Bayesian information
criteria [12] is employed to determine both the number of
coefficients and clusters used.

The K-mean clustering algorithm sorts the profiles with sim-
ilar EOF-coefficients into a single cluster and their temperature
profiles are averaged to find a representative profile for that
cluster. The geographical extent and temporal validity of the
cluster are given by the positions and measurement times of
the contained profiles.

TABLE I: Number of ARGO profiles from the North Atlantic
Ocean. Q1 to Q4 indicate different seasons from Winter (Jan
– Mar) to Autumn(Oct – Dec).

Year Q1 Q2 Q3 Q4 Total

2001 203 320 429 575 1 527
2002 640 937 1 270 1 295 4 142
2003 1 200 1 169 1 175 1 368 4 912
2004 1 341 1 282 1 317 1 342 5 282
2005 1 277 1 272 1 337 1 584 5 470
2006 1 572 1 668 1 898 2 126 7 264
2007 2 138 2 230 2 359 2 567 9 294
2008 2 599 2 588 2 604 2 678 10 469
2009 2 625 2 753 2 531 2 561 10 470
2010 2 479 2 515 2 565 2 905 10 464
2011 3 013 2 717 2 157 1 997 9 884
2012 1 918 1 882 2 008 2 587 8 395

Sum 21 005 21 333 21 650 23 585 87 573

III. DATA SET

The data set used was collected and made freely available
by the Coriolis project and programmes that contribute to it
(http://www.coriolis.eu.org). The data set consists of 87 573
ARGO profiles from the North Atlantic Ocean from 2001 to
2012, (see Tab. I).

Nonphysical and incomplete profiles are removed. A profile
is considered incomplete if it does not contain measurements
shallower than 10 m depth and deeper than 500 m depth.
Profiles containing temperature measurements below -10oC
and above 40oC are considered nonphysical. Likewise for
profiles containing salinity measurements below 15 PSU and
above 50 PSU. Also, profiles with spikes in temperature (more
than 5oC) or salinity (more than 2 PSU) between neighbouring
depth samples are considered nonphysical. The remaining
profiles are interpolated linearly to the following depths (in
meters): 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300,
400, and 500.

IV. RESULTS

The proposed method is employed on the ARGO data
set. 20 clusters and four EOF–coefficients were used in the
clustering as determined by the Bayesian information criteria
[12]. The geographical distribution of the clusters for the
first and third quarter of the year are shown in Fig. 1. The
geographical distribution of the clusters vary in time due to
heating of the sea surface during the summer season and
cooling during winter season.

The proposed method automatically allocates a high density
of clusters in areas with large oceanographic variability, such
as areas with oceanographic fronts [9]. There is a strong
temperature front outside the eastern coast of North America
[1], [15], [16, and more]. Due to the presence of many different
clusters in a secluded area this front is easily seen in Fig. 1.

The clusters dominating the ocean outside the easter coast of
North America vary in time (see Fig. 2). During winter season
the vertical profiles closest to the coast are almost constant
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Fig. 1: The geographical distribution of clusters in the North
Atlantic Ocean.

due to mixing of the upper layers, and therefore more similar
to the profiles in the cold water in the Labrador Sea than the
water further away from the coast (see Fig. 3). During summer
season the surface water is more heated and therefore more
similar to the water further south.

Estimating vertical profiles in an area dominated by fronts
is a challenging task because fronts are dynamic. Conventional
climatological methods average profiles measured in the vicin-
ity of the desired location. However, the average profile in an
area dominated by fronts may fall between different types of
profiles (see Fig. 3). During the first quarter cluster number
1 (light green) and 7 (blue) dominate both the 15o x 15o

and the 5o x 5o window outside the eastern coast of North
America (see Fig. 4). During the third quarter the surface
waters are more heated and thus cluster number 2 (red) and
6 (dark green) dominate. Cluster number 2 and 7 represent
the warmer profiles further from the coast and cluster number
1 and 6 represent the colder water closer to the coast. The
representative profiles of the two dominant clusters in the area
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Fig. 2: The cluster distribution at the East Coast of North
America. The profiles inside a 15o x 15o (dashed) and a 5o x
5o (solid) window are studied.

are more probable and physically correct representations of
the oceanographic profile at a given location than the mean
profiles (see Fig. 3).

Acoustic modeling is an example of an application where
correct representation of the vertical oceanographic profile is
important. The modeled acoustic field is very sensitive to
errors in the sound speed profile [6], [7], which is calculated
from temperature, salinity, and pressure profiles.

Fig. 5 shows the modeled, incoherent transmission loss [8]
for a source at 50 m depth for sound speed profiles estimated
from the temperature profiles of the two most dominant
clusters and the mean temperature profile in the 5o × 5o

window shown in Fig. 3. The acoustic model LYBIN [17]
is used to model the transmission loss. For this analysis the
salinity value is assumed constant in depth, which makes the
sound speed dependent on the hydrostatic pressure and the
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Fig. 3: The profiles in the 15o x 15o (left) and the 5o x 5o

(right) window together with the mean profile and representa-
tive profiles of the dominant clusters in the area. Only profiles
from the relevant season are used to estimate the mean and
representative profiles.

temperature profile alone.
The observed differences in the modeled transmission loss,

Fig. 5, are due to the differences in the vertical sound speed
gradient. Since the source is placed in a surface duct, the
calculated transmission loss depends strongly on the local
vertical sound speed gradient near the surface [8]. There are
also some subtle differences below the surface duct, due to
the differences in the vertical gradient in the lower half of
the profiles. The representative profile for the most dominant
cluster has a local minimum in the sound speed close to
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Fig. 4: The amount of profiles belonging to each cluster in
the 15o x 15o (upper) and 5o x 5o (lower) window at the East
Coast of North America.
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Fig. 5: The sound speed profile (left) and transmission loss
(right) corresponding to the mean sound speed profile (black,
upper), and the representative profiles for the most (blue,
midle) and second most (green, lower) dominant cluster in
the 5o × 5o window during the first quarter.

the surface, resulting in a surface duct and strong surface
interaction. The representative profile for the second most
dominating cluster has close to constant sound speed in the
upper 100 m, resulting in far less surface interaction. The
mean profile contains a weak surface duct with some surface
interaction. The transmission loss modeled using the mean
profile deviates from the transmission loss modeled using the
representative profiles of the two most dominant clusters. This
illustrates that the acoustic field is sensitive to the differences
observed in the mean profile and the profiles representing the
clusters.



V. CONCLUSION

The proposed method for dividing measured profiles into
groups with equivalent statistical attributes have been demon-
strated on measured ARGO data. The method employs em-
pirical orthogonal functions and k-means clustering for the
grouping. The method is particularly good at estimating phys-
ically correct and statistically probable vertical profiles in areas
dominated by fronts. Here demonstrated on the northeastern
coast of North America, where it is shown to outperform
conventional methods.

An application which requires a physically correct repre-
sentation of the vertical gradient is modeling of underwater
propagation of acoustic waves. A simple example using the
acoustic model LYBIN demonstrates that the modeled acoustic
transmission loss is very sensitive to the choice of temperature
profile used in the modeling.
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