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Abstract—Modern anti-submarine warfare sonars are often de-
signed with narrow beamwidths and wide frequency bandwidths
in order to maximize spatial resolution and sonar performance. A
known issue for high-resolution sonars in littoral environments,
is the occurence of high false alarm rates. Increased false
alarm rates increase the workload of sonar operators and also
reduces the usefullness of automatic systems such as autonomous
underwater vehicles, since their limited communication abilities
hinder them from sharing large amounts of contacts.

The false alarm rate may be reduced simply by increasing
the threshold used in the detection process. However, this also
reduces the probability of detecting actual targets. Automatic
classification algorithms provide more sophisticated alternatives
for false alarm reduction.

The work presented here demonstrates an automatic classifi-
cation algorithm on a data set collected in a littoral environment.
The data set contains a large amount of false alarms, particularly
close to the coast, but does not contain any submarine target
detections. Synthetic submarine echoes are therefore added to
the sonar data set.

Six features are extracted from the hybrid synthetic-recorded
data set. The features are fed into supervised machine learning
schemes. The performance of each scheme is presented as receiver
operating characteristic curves.

I. INTRODUCTION

Sea trials in littoral environments have shown that high—
resolution, active sonars generate particularly many false
alarms in the presence of terrain features, such as seamounts,
underwater ridges, and man-made objects, such as ship wrecks
and pipelines [4], [9], [15], [16].

Here supervised machine learning algorithms are applied on
a sonar data set collected during the New Array Technology 3
(NAT3) programme. NAT3 was a joint research programme
between Thales Underwater Systems, TNO, FFI, and the
French, Dutch, and Norwegian navies. We have simulated
echoes from four different submarine targets and integrated
them into the recordings. The acoustic raytrace model, LYBIN
[5], is used to estimate the intensity of the received echoes
from the simulated submarines.

Standard signal processing following the steps presented
in [2] up to cluster level is applied on the hybrid recorded-
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synthetic data set. The resulting clusters are then assigned
classes; either submarine or false alarm. Since the submarine
positions are known, this is easily managed.

Various features are extracted directly from the clusters or
estimated using the cluster centroid as input, e. g. probability
of false alarm rate inflation [9]. The performance of each fea-
ture is assessed by presenting receiver operating characteristic
(ROC) curves [22].

Finally, the features are input into four different machine
learning algorithms; k Nearest Neighbours [23], Naive Bayes
[24], ID3 [18] and Neural networks [8]. The performance of
the algorithms are presented and compared through the use of
ROC curves.
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II. METHOD
A. Synthesising and processing data

A major concern when publishing results from classification
algorithms employed on sonar data containing submarines is
the confidential nature of such data sets. Although the subma-
rine echo is classified, the remaining sonar data, particularly
from experimental systems such as the one considered in
this paper, are not necessarily classified. Our solution is to
synthesize submarine echoes which are then added to a sonar
data set, in which no echoes from submarines were previously
present.

The approach employs the acoustic raytrace model LYBIN
[5] to estimate the eigenrays [11] between the sonar and
the synthetic submarine. Due to two-way propagation, all
eigenrays are combined with each other in order to find all
echo arrivals from the submarine. The submarine is assumed
to be a point target, thus, multiple reflectors are not considered.

Each arrival is characterized by its echo level, EL, arrival
angles (horizontal, 0, and vertical, ¢), and arrival time, ¢. The
vertical arrival angle and arrival time are determined using
LYBIN. The horizontal arrival angle is simply estimated from
the geometry. The echo level, EL, is estimated as follows:

EL SL—TLy—TL,+TS+10logBT — L,
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where SL is the sonar source level. TL; and TL, are the
transmission loss to and from the submarine, respectively,
which are estimated using LYBIN [5]. 7'S is the target strength,
where the aspect angle dependence is taken into account
using the TAP model [10] (50 m long target with 5 m
diameter). B and T are the frequency bandwidth and pulse
length, respectively, and their product is the assumed gain
from the matched filter. L is the assumed coherence loss in
the processing, which is here assumed to be 5 dB.

The synthetic submarine echoes are then added to the
beamformed and matched flltered sonar data, S, in order to
generate the synthetic data S:
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where j is the beam number, k is the time sample number
in the sonar data, and / is the submarine echo number. Note
that several synthetic submarines may be used, and that each
submarine may result in several echoes due to multi-path. T
is the arrival time of sample number k. The horizontal beam
response, b, depends on the beam steering angle o; and the
horizontal arrival angle 6;. The horizontal beam response is
included in order to synthesise the effect of strong echoes
influencing more than one beam.

A cell-averaging constant false alarm rate filter [12] is used
to normalize the data (normalization window of 0.5 s and
guard band of 0.25 s). Note that the normaliser output, Sy,
is considered an estimate of the SNR. A threshold of 12
dB is applied in order to find detections. Finally, clustering,
following the steps of Beerens [2], is employed. The template
used for the clustering has a length of 250 m and a width of
three beams. This template is significantly larger than the one
used in [2], because we would also like a cluster to contain
all multipath arrivals from the same target, not just multiple
reflectors.

B. Features

Six different features are extracted from each cluster:
¢ Max SNR - The maximum SNR within the cluster, where
SNR is the normalised output.
e Mean SNR - The mean SNR in the cluster.
o Std bearing - The standard deviation of the bearing of all
samples in the cluster.
o Size - The total amount of samples in the cluster.
All these features are easily extracted from the data processed
as described in the previous section. In addition, the probabil-
ity of false alarm rate inflation (FARI) is included, as described
in [9]. FARI is a signal-processing induced phenomenon that
occurs when the reverberation in the normalisation windows
are non-stationary [20]. The area considered in this work is
close to the coast and contains many underwater ridges and
seamounts. The occurence of FARI has a high likelihood in
such an environment. Probability of FARI is estimated for all
samples in each cluster, yielding two more features:
+ Maximum FARI - The maximum of the estimated FARI
probabilities within the cluster.
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Fig. 1: This flow chart illustrates the supervised learning
scheme used to classify the cluster data.

o Mean FARI - The mean of the estimated FARI probabil-
ities within the cluster.

Other features were examined as well, but are not included
here either due to poor performance or because the information
contents of those features correlated strongly with one of the
included features.

C. Machine learning

After extracting the mentioned features from the echoes,
these values are fed into a machine learning system in order
to generate a classification algorithm. The flow chart in Fig. 1
illustrates the procedure. In order to be able to get a reliable
estimate of the performance of the various machine learning
algorithms, the data set is split into two parts: One part, the
training set, consisting of 70% of the echoes, is fed into the
machine learning algorithms, while the remaining part, the fest
set, was not presented to the algorithms during training, but
was retained for final testing. This allows us to get a reliable
estimate of how well the machine learning algorithms can be
expected to perform on new, previously unseen, data.

Four different machine learning algorithms were tested. In
k Nearest Neighbours [23], new instances are classified based
on comparing them with the k most similar instances in the
training set. The probability of submarine is estimated as "",f”,
where k is the number of instances from the training set with
which the new instance is compared, and ng,; is the number
of submarine instances among these instances. We also ran
tests where we applied the LaPlace correction, replacing the
above fraction with %. Finally, we also tested assigning
weights d% to the k nearest instances, where d is the distance
from the instance to the instance to be classified, so that the
most similar instances had more influence on the outcome than
more distant ones.

Somewhat similarly, Naive Bayes Classification [24] also
bases its classifications on comparisons with instances in
the training set. Instead of simple similarity comparisons, it
computes probability distributions for the various features and
combines these probabilities to compute a probability estimate
for the new instance. Since this algorithm requires discrete
feature values, we applied a simple discretization algorithm in
advance, dividing each feature value into a fixed number of
bins in such a way that each bin contained the same number




of instances from the training set. Additionally, we tested
the algorith both with and without the LaPlace correction, as
explained above.

The third algorithm tested, /D3 [18], builds a decision
tree based on the training set in a greedy, top-down manner.
We tested the algorithm both with and without the LaPlace
correction [17], together with and without Reduced Error
Pruning using 30% of the training set as a validation set [19].
Also, we tested with discretization in advance as explained
above, in addition to the C4.5 approach of creating thresholds
“on the fly” when selecting tests for continuous parameters
[19].

Finally, we tested training of Neural Networks [8] using
Resilient Propagation [21] with varying numbers of hidden
neurons, as well as different strategies to avoid overtraining.
We tested using Early Stopping [13] (based on a validation
set consisting of 30% of the training data), Weight Decay
[14] with various A values, as well as without any overfitting
avoidance strategy at all. Additionally, we tested training the
neural networks with restarts, that is, repeating the training a
number of times, each time assigning a new set of random
values to the weights of the network, and finally choosing the
network with best performance on the training data.

Additionally, all the above methods were enhanced with
Bagging [3], a meta-method that re-runs the machine learning
algorithm several times, using different random resamplings
of the traning set each time. The resulting classifiers are
combined into one by averaging their results. In many cases
this can improve the performance of the machine learning
algorithm significantly, especially for unstable methods like
ID3 and training of Neural Networks [1].

Each of the different machine learning algorithms has
several parameters that need to be set. We performed a simple
manual tuning of these parameters, by running each algorithm
on the training set several times with different parameter
values, and for each method selecting the set of parameters
that yielded the best results on the test set.

For k Nearest Neighbours, the best results were achieved
when using k = 100, weighting instances by distance, using
the LaPlace correction and without using bagging. For ID3,
the best results were achieved without using the LaPlace cor-
rection, using pruning, no discretization and bagging with 20
resamples. The best classifier using Naive Bayes were found
using the LaPlace correction, discretizing with 20 bins and
no bagging, while the best results using neural networks were
obtained using 20 hidden neurons, no overfitting avoidance
strategy, 10 restarts and bagging with 20 resamples.

III. DATA

The data set used was recorded during the Clutter Ex-
periment 02 (CEX02), which was carried out in 2002 as a
part of the New Array Technology 3 (NAT3) programme.
This research programme was a collaboration between Thales
Underwater Systems, TNO, FFI, and the French, Dutch, and
Norwegian navies. The intent was to test, at sea, new pro-
cessing methods and algorithms for a low-frequency, towed

Fig. 2: The paths of the sonar vessel (green) and the four
synthetic submarines (yellow). The dots are cluster centroids.
The blue dots are classified as false alarms, while the red dots
are classified as submarines.

linear array sonar system. CEX02 was designed to maximize
the amount of false alarms and was therefore carried out close
to the coast in the Norwegian Trench, see Fig. 2.

The data set consists of 80 hyperbolic frequency modulated
(HFM) pulse transmissions. The pulse length was 2 s and its
frequency bandwidth was 800 Hz. The receiver array consisted
of 64 triplet hydrophones [7] spaced at half a wave length.

Four different synthetic submarines were added to the data
set, following the steps described in section II-A. The paths
of the submarines are plotted in Fig. 2.

IV. RESULTS

The processing described in section II-A was applied on
the data set described in section III. Fig. 2 shows the resulting
cluster centroids along with sonar and submarine positions for
all 80 transmissions.

The six features described in section II-B were extracted
for each cluster. Each set of features (from a single cluster) is
defined as an instance. The instances are divided into two
groups; false alarms and true alarms. Instances where the
corresponding cluster contains a sample that coincides with
a submarine position are assumed to be true alarms. All other
instances are assumed to be false alarms.



An efficient way of measuring how well a feature dis-
tinguishes a true alarm from a false alarm is to display
the receiver operating characteristic (ROC) curves. The ROC
curves are estimated by applying a series of threshold values
to the features, where each threshold value yields a single
classification rate and false alarm rate. All instances above
(or below) the threshold are classified as true alarms, while
those below (or above) are classified as false alarms. The
percentage of false alarm instances classified as true alarms
is the false alarm rate, while the percentage of true alarm
instances correctly classified as true alarms is the classification
rate. Fig. 3 shows the ROC curves for each feature.

The six features were then input into the four different
machine learning algorithms that were briefly described in
II-C; k Nearest Neighbours, ID3, Naive Bayes Classifier, and
Neural Networks. The resulting ROC curves are shown in Fig.
4. The ID3 algorithm outperforms the remaining three algo-
rithms, the k& Nearest Neighbours and Naive Bayes algorithms
perform better than simepl SNR thresholding, while the Neural
Networks classifiers perform comparable to SNR thresholding.

The results from one of the ID3 classifiers are presented
geographically in Fig. 2, where all clusters with a probability
of being a submarine above 0.9 are plotted in red, all other
clusters are plotted in blue. Notice that there are only a few
false alarms, yet most of the clusters on submarine 3 and 4
are classified as submarines. Submarine 1 and 2 both move
through a difficult area that is dominated by reverberation
from strong upslopes and underwater ridges and mountains.
The classification algorithm is able to classify submarine
2 correctly approximately half the time, and submarine 1
occasionally. A reduction of the threshold on the Neural Net
output would increase the classification rate, but at the cost of
increased false alarm rate.

There are two obvious reasons why the proposed method
has difficulties in classifying clusters on submarine 1 and
2 correctly. Firstly the submarines move through an area
with strong reverberation, which implies that their SNRs are
low. The maximum SNR feature is, according to Fig. 3,
the most important feature. Also, the FARI-related methods
have limited usefullness in such areas, as they predict a high
probability of FARI for all positions close to the coast, see Fig.
5. Submarine 1 is well within the area where a high probability
of FARI is predicted, while submarine 2 is in its outskirts.

V. CONCLUSION

Four different machine learning algorithms have been ap-
plied on six features extracted from a hybrid synthetic-
recorded data. Three of the algorithms, ID3, k Nearest Neigh-
bours and Naive Bayes classification, are quite successful in
classifying the synthetic submarines correctly.

The submarines followed straight paths through both easy
areas (flat bottom, low reverberation) and more challenging
areas (close to the coast, strongly varying bathymetry, high
reverberation). The proposed method achieved a very high
classification rate in the easy areas, but had difficulties in
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Fig. 3: Receiver operating characteristic curves for each fea-
ture.
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Fig. 4: Receiver operating characteristic curves for each
machine learning algorithm. The maximum SNR feature is
included for reference.

classifying submarines moving through a cluttered environ-
ment close to the coast. The strong reverberation close to the
coast results in low target SNR and high probability of false
alarm rate inflation, which strongly reduces the performance
of four of the six included features. Improved classification of
the submarine in the cluttering environment may be achieved
either by decreasing the threshold applied on the Neural Net
output, or by including more features that are less sensitive to
reverberation. Track level features, such as track kinematics
[6], may be useful in such a domain.
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. 5: Probability of FARI as a function of range and bearing

(red= high, blue = low) for a single transmission. The white
circles are the cluster centroids for the same transmission. The
black diamonds incidate the positions of the four submarines.
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