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Abstract

This paper is concerned with the computation of turbulence structure tensors in plane

channel flow. It has been pointed out that the previously computed turbulence structure

tensors, for this configuration, used an inconsistent set of boundary conditions. But it was

claimed that this had no influence on the computed structure tensors since the velocity

field reconstructed by the vector potential only had a constant offset when compared to

the original velocity field. In this paper it is shown that this is not the case. Based on a

highly resolved LES simulation, the turbulence structure tensors are computed both using

the previously employed boundary conditions and a consistent set of boundary conditions.

The results exhibit considerable differences in a significant part of the domain.

Keywords:

turbulence structure tensors, vector potential, stream function, plane channel flow

1. Introduction

Turbulent fluid motion consists of many interacting coherent structures commonly

referred to as ’eddies’. These eddies vary greatly in size, shape, and kinematic character,

the distribution of which is highly case dependent. The type of eddies present in a flow

significantly affects its dynamic response to external forcing. In particular, the large

energy containing eddies play an active role in the flow dynamics. One way to quantify

the turbulence structure of a flow is through two-point correlations of the velocity field.

The computation of such correlations can however be exceedingly costly, and one-point
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measures of turbulence structure is therefore desirable from both a flow diagnostic and

turbulence modeling perspective.

A comprehensive mathematical framework for structure-describing one-point mea-

sures was developed by Kassinos and Reynolds [1]. They introduced the concept of

one-point turbulence structure tensors, which have been used for both modeling and tur-

bulence diagnostic purposes [2, 3]. They also demonstrated that two turbulent fields can

have the same Reynolds stress and still have different turbulence structure leading to a

difference in the interaction between the turbulence and the mean flow field. This means

that a description of turbulence based solely on Reynolds stress is fundamentally incom-

plete. Some turbulence structure information must be included for a complete one-point

description.

The definition of turbulence structure tensors is based on the vector potential of the

fluctuating velocity field. A prerequisite for computing the tensors is thus the ability

to compute the vector potential. While the three-dimensional vector potential has been

used in several algorithms involving fluid flow [4, 5, 6, 7, 8, 9, 10], and descriptions of

how to compute them for general domains exist [11, 12, 13, 14], the computation of the

turbulence structure tensors has, until recently, been limited to simple geometries [2].

Recently, however, a general framework for the computation of the turbulence structure

tensors has been proposed [15].

In [15] it was also pointed out that the computations of the structure tensors for

turbulent channel flow presented in [2] used an inconsistent set of boundary conditions

for the computation of the vector potential. It was claimed that this had no influence

on the computed turbulence structure tensors since the velocity field reconstructed by

the vector potential only had a constant offset when compared to the original velocity

field. In this paper it is shown that this is unfortunately not the case. Based on a highly

resolved LES simulation, the turbulence structure tensors are computed both using the

previously employed boundary conditions and a consistent set of boundary conditions.

The results exhibit considerable differences in a significant portion of the domain.

2

Dette er en postprint-versjon / This is a postprint version. 
DOI til publisert versjon / DOI to published version: 10.1016/j.compfluid.2016.06.007



2. Turbulence structure tensors

Using index notation, the vector potential, ψi, commonly called the stream function,

is defined by the following relations

ui = εijkψk,j , ψi,i = 0, ψi,kk = −ωi, (1)

where ui and ωi are the fluctuating parts of the turbulent velocity and vorticity fields,

respectively, εijk is the cyclic permutation symbol, and indices found after a comma

denote differentiation.

In the above notation, the components of the Reynolds stress, Rij , which are also

referred to as the components of componentality, can be expressed in terms of the stream

function as follows

Rij = 〈uiuj〉 = εipqεjrs〈ψq,pψs,r〉, (2)

where 〈·〉 denotes averaging. By employing the well known relation between the product

of cyclic permutation symbols and the Kronecker delta, δij , the following constitutive

relation is obtained

Rij +Dij + Fij − (Cij + Cji) = 2kδij , (3)

where 2k = Rkk is twice the turbulence kinetic energy, and the various structure tensors,

and their associated normalized and anisotropic forms, are defined as follows:

Componentality Rij = εipqεjrs〈ψq,pψs,r〉 rij = Rij/Rkk r̃ij = rij − δij/3, (4)

Dimensionality Dij = 〈ψk,iψk,j〉 dij = Dij/Dkk d̃ij = dij − δij/3, (5)

Circulicity Fij = 〈ψi,kψj,k〉 fij = Fij/Fkk f̃ij = fij − δij/3, (6)

Inhomogenity Cij = 〈ψi,kψk,j〉 cij = Cij/Dkk c̃ij = cij − ckkδij/3. (7)

The lower case letters represent the normalized tensors and (̃.) denotes the anisotropic

form. The various structure tensors carry complementary statistical information about

the turbulence, and detailed discussions of their physical interpretation can be found in

[1, 2, 16]. Here, only a short description is provided.

The componentality, or Reynolds stress, provides information about the amplitude of

the various components of the fluctuating velocity field. The dimensionality is a measure

of the spatial extent of the turbulent structures. A small value of dimensionality means
3
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that there is a large coherence length present in the turbulent field in that direction.

This indicates the presence of elongated structures in that direction. The circulicity is

a measure of the average large scale circulation in the turbulent field. A large value of

circulicity is thus an indicator of the presence of “vortical” eddies with axis oriented in

a particular direction. Finally, the inhomogeneity tensor is a measure of the deviation

from a homogeneous turbulence state. This interpretation of the inhomogeneity tensor

is supported by the observation that equation 7 can be recast, using the Euclid gauge

condition (ψi,i = 0), into the following form

Cij = 〈ψiψk,j〉,k, (8)

which clearly is zero for homogeneous turbulence.

2.1. Anisotropy measures

The anisotropy tensors associated with componentality, dimensionality, and circulicity

are symmetric second rank trace-free tensors. This means that they have two independent

anisotropy invariants that can be used to characterize the anisotropy state of the tensors.

One commonly used set of invariants is

IIx =− 1

2
xijxji (9)

IIIx =
1

3
xijxjkxki. (10)

For these tensors all possible states fall within the Lumley triangle [17] in (IIIx,−IIx)-

space. One useful way to characterize a turbulent flow is to plot the invariant coordinates

for different positions in the physical domain. This results in a graphical representation

of the change in turbulence structure as a parametric function of position, which is very

useful for analyzing the flow. This method will be employed to highlight the differences

in the turbulence structure predicted using the different boundary conditions.

3. Boundary conditions for the vector potential

For general multiply connected domains, such as a plane channel flow, an appropriate

set of boundary conditions for the vector potential takes the following form [12, 15]

εijkψk,j = εijknjuk and niψi = 0 on Γ, (11)
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where Γ denotes the boundary of the computational domain and ni is its unit normal.

As pointed out in [15], the computations of the structure tensors for turbulent channel

flow presented in [2] used an inconsistent set of boundary conditions for the computation

of the vector potential. The boundary conditions used for these calculation were on the

form

εijknjψk = 0 and ψi,i = 0 on Γ. (12)

It was then claimed that this had an insignificant effect on the computed turbulence

structure tensors, since it only leads to a constant offset of the velocity field reconstructed

from the vector potential. This is, however, not the case. A constant velocity field is

reconstructed from a stream function with non-zero gradients, which necessarily also

changes the turbulence structure tensors.

Consider a turbulent channel flow domain aligned with the coordinate axis such that

x is the streamwise coordinate, y is the wall normal coordinate, and z is the spanwise

coordinate. A constant velocity field in the streamwise direction is then given by

ci = εijkψk,j , (13)

where ci = cδ1i and c is a constant. The vector potential of ci takes the form

ψi = cyδ3i + constant. (14)

This yields the following partial derivatives of the vector potential

ψi,j = cδ3iδ2j , (15)

which is clearly non-zero and will thus contribute to the turbulence structure tensors.

4. Computational setup

A highly resolved LES simulation of a turbulent channel flow with Reτ = 395 has

been carried out on a domain with dimensions (2πH, 2H,πH), where H is the channel

half height. The code used for this simulation was the incompressible flow solver Cliff

from Cascade Technologies. It is an unstructured collocated nodal-based finite volume

code that solves the primitive variable Navier-Stokes equations using a fractional-step

method. It is algorithmically similar to the the CDP code, which is described in [18,
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19, 20]. After each step, the required Poisson equations are solved in order to compute

the stream function, and the structure tensors are computed based on this calculation.

The coordinate system is aligned such that x is the streamwise direction, y is the wall

normal direction and z is the spanwise direction. This is the same case as presented in [2].

The number of computational points used in the different directions are (Nx, Ny, Nz) =

(87, 169, 156), which results in the near wall resolution (dx+, dy+, dz+) = (30, 0.4, 8).

For this configuration, the structure tensors were computed using both the incon-

sistent boundary conditions from equation 12 and the consistent boundary conditions

found in equation 11. When the boundary conditions in equation 12 are employed, the

calculation of the three components of the stream function is decoupled, and its compu-

tation is thus carried out by solving three scalar equations. On the other hand, when

the boundary conditions in equation 11 are used, the equations for the three components

are coupled and the solution of a vector equation is required to determine them. This

vector equation can either be solved for all components simultaneously, or an iterative

procedure can be used, to reduce memory requirements, as described in [15]. In this

paper the simultaneous solution strategy was employed.

The numerical method used to solve the vector Poisson equation deviates slightly from

that of [15]. Here the following form of the equation, which is obtained by employing a

corollary of Stokes theorem, has been discretized for each control volume

∫
Ap

nj
∂ψi

∂xj
dAp +

∮
Cp

εijktjψkdcp =

∫
Vp

−ωidVp +

∫
Sp

εijknjukdSp. (16)

Ap is the internal part of the surface area associated with the control volume of node

p, Sp is the external part of the surface area, Vp is the control volume, Cp is the curve

bounding the external part of the surface area, and tj is the tangent vector to this curve.

Using the notation from [15], this is discretized according to∑
e′∈E′

p

ne
′

j

∂ψi

∂xj

∣∣∣∣
e′
Ae′+

∑
f ′∈F ′

∑
e∈∂f ′

εijk±(xf
′

j −xej)
1

2
(ψe

k+ψ
F
k ) = −ωiVp+

∑
f ′∈F ′

εijkn
f ′

j u
f ′

k Af ′ ,

(17)

where the sign of the second term depends on the orientation of the edge. For the channel

flow configuration this equation set is discretely equivalent to the method presented in

[15].
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5. Results

The normalized components of the dimensionality tensor results are shown in Figure 1.

They clearly show that the two boundary conditions yield similar results for the d11 and

d12 components in the entire domain, and all components behave similarly towards the

center of the channel. Close to the wall, however, very different behavior is observed for

the d22 and d33 components. The inconsistent boundary conditions used in [2], henceforth

referred to as BC1, result in d22 < d33, indicating that the spatial coherence length is

larger in the wall normal direction than the spanwise direction, while the opposite is true

for the consistent boundary conditions, which will be referred to as BC2. For BC2 the

difference between the two components is also larger with a maximum ratio approaching

d22/d33 ' 3. Furthermore, for BC1 both components have two extremal points very

close to the wall (y+ ' 3.4 and y+ ' 11.3), while BC2 only has one extremal point

(y+ ' 12.0).

The same trend is observed for the circulicity data in Figure 2. The results are

similar towards the center of the channel and f11 and f12 are largely unaffected by the

boundary conditions. For the spanwise and wall normal components, differences are

again noticeable. For BC1, the wall normal component of circulicity dominates close to

the wall, while the opposite is true for BC2. The number of extremal points are the

same as for the dimensionality tensor.

Combining the information in the dimensionality and circulicity tensors, the difference

in the predicted near wall turbulence structure using the two different boundary condi-

tions is quite apparent. While both predict structures with elongation in the streamwise

direction and small circulicity about this axis, the results differ greatly in the spanwise

and wall normal directions. BC1 predicts nearly circular jets (R11 >> R22, R33 not

shown here) with a dominant circulation around the wall normal axis. On the other

hand, BC2 predicts a reduced structure size in the wall normal direction creating a more

ellipsoidal shape with a dominant circulation around the the spanwise axis.

The results for the normalized inhomogeneity tensor is shown in Figure 3. Here, a

discrepancy between the present results for BC1 and those presented in [2] is noted. The

present results have a region with large negative values for the c22 and c33 components

close to the wall. This was not evident in the data from [2]. The reason for this deviation
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is unknown. Comparing the results for BC1 and BC2, we see that BC2 predicts a

slightly wider region with significant inhomogeneity than BC1. The main difference is

again between the wall normal and spanwise components.

Further information about the difference in turbulence structure, predicted by the

two boundary condition sets, can be obtained by considering the anisotropy invariant

maps of dimensionality and circulicity found in Figure 4 and 5. For circulicity, the two

boundary conditions result in the same overall behavior, but the switch to BC2 shifts

the extremal points further from the wall. Since the f12 component has a relatively large

value in a large part of the domain, the coordinate axis are significantly removed from

the principal axis of the circulicity tensor in this region. The reversal point, for BC1 at

y+ = 28.92, is the point at which the dominant direction of circulation switches from the

spanwise direction to a direction making an approximate 48◦ angle with the streamwise

direction. This dominant circulation direction is quite stable until y+ ' 350, which is

close to the channel center.

Figure 4 shows that with BC2, the anisotropy state of the dimensionality evolves

in a manner similar to the anisotropy of componentality, see [2], although it is slightly

shifted away from the 2D − 2C line, i.e., the line that represents 2 dimensional and 2

componental turbulence. BC1 exhibits a rather peculiar reversal at y+ = 3.4 that seems

to be a clear indication that the boundary conditions are yielding erroneous near wall

behavior.

6. Conclusion

In this paper it has been demonstrated that the inconsistent boundary conditions

that was previously used to compute the vector potential in plane channel flow affects

the value of the turbulence structure tensors. This was demonstrated by computing

the turbulence structure tensors, from a highly resolved LES simulation, using both the

previously employed inconsistent form and a consistent form of the boundary conditions.

The results show that the predicted turbulence structure is considerably different in a

significant part of the domain with particularly large deviations close to the walls.
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Figure 1: Normalized dimensionality results for half the channel. ’− · −’, 11 component;’——’, 22

component; ’- - - -’, 33 component; ’· · ·’, 12 component. Unmarked lines are results using the old

formulation of the boundary conditions (BC1) and black dots, •, mark results using new boundary

conditions (BC2).
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Figure 2: Normalized circulicity results for half the channel. ’− · −’, 11 component;’——’, 22 component;

’- - - -’, 33 component; ’· · ·’, 12 component. Unmarked lines are results using the old formulation of the

boundary conditions (BC1) and black dots, •, mark results using new boundary conditions (BC2).
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Figure 3: Normalized inhomogeneity results for half the channel. ’− · −’, 11 component;’——’, 22

component; ’- - - -’, 33 component; ’· · ·’, 12 component. Unmarked lines are results using the old

formulation of the boundary conditions (BC1) and black dots, •, mark results using new boundary

conditions (BC2).
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Figure 4: Anisotropy invariant map for dimensionality in half the channel. ’——’ is the results using

the old formulation of the boundary conditions (BC1). ’- - - -’ is the results using the new boundary

conditions (BC2).
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Figure 5: Anisotropy invariant map for circulicity in half the channel. ’——’ is the results using the old

formulation of the boundary conditions (BC1). ’- - - -’ is the results using the new boundary conditions

(BC2).
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