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Abstract: Current high-resolution push-broom hyperspectral cameras 
introduce keystone errors to the captured data. Efforts to correct these errors 
in hardware severely limit the optical design, in particular with respect to 
light throughput and spatial resolution, while at the same time the residual 
keystone often remains large. The mixel camera solves this problem by 
combining a hardware component – an array of light mixing chambers – 
with a mathematical method that restores the hyperspectral data to its 
keystone-free form, based on the data that was recorded onto the sensor 
with large keystone. A Virtual Camera software, that was developed 
specifically for this purpose, was used to compare the performance of the 
mixel camera to traditional cameras that correct keystone in hardware. The 
mixel camera can collect at least four times more light than most current 
high-resolution hyperspectral cameras, and simulations have shown that the 
mixel camera will be photon-noise limited – even in bright light – with a 
significantly improved signal-to-noise ratio compared to traditional 
cameras. A prototype has been built and is being tested. 
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1. Introduction 

Hyperspectral cameras are increasingly used for various military, scientific, and commercial 
purposes. Push-broom cameras are particularly popular when high spatial and spectral 
resolution in combination with high signal-to-noise ratio is required. Figure 1 shows the 
principle of operation of a push-broom hyperspectral camera. Unfortunately, these cameras 
also introduce spatial and spectral artefacts, known as keystone and smile, to the recorded 
hyperspectral data [1]. This may significantly distort the captured spectra, see Fig. 2. 

(a)

(b) (c)

(d)

(e) (f)

(g)

 

Fig. 1. Light from the scene (a) is focused by the foreoptics (b) onto the slit plane (c). The slit 
blocks most of the scene, leaving only a narrow horizontal portion (d) of the scene visible. The 
relay optics (e) forms an image of the scene with superimposed slit onto the sensor (f). 
Because of the presence of a dispersive element in the relay optics, each point of the narrow 
horizontal line (d) is stretched (dispersed) in the vertical direction. The image on the sensor (g) 
contains spectra for each small area of the scene (d). A 2-dimensional image is obtained by 
scanning in the vertical direction. 

Users would like to have cameras with high resolution, high sensitivity, and at the same 
time very low smile and keystone errors. The requirements for smile and keystone are 
normally set to a fraction of a pixel, and hyperspectral cameras therefore have extremely tight 
tolerances for optical aberrations compared to other imaging systems where corrections are 
required only at pixel level. As a result, the development of hyperspectral cameras has more 
or less converged to a couple of standard layouts, each of them with some inherent limitations 
such as minimum possible F-number, maximum possible spatial resolution, etc. 

As new sensors with higher pixel count become available, camera manufacturers try to 
develop the optics for these sensors. This optics must be sharper and faster in order to justify 
the use of a newer, better sensor. And since the requirements for smile and keystone are set 
relative to the pixel size, the absolute smile and keystone errors must decrease. This makes 
the development of new optics increasingly difficult. 
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(a) (b)  

Fig. 2. The light from a small scene area is dispersed in the vertical direction, creating an 
image of the spectrum in the sensor plane. When the keystone is large (a), some wavelengths 
(particularly red, in this example) are partially projected onto the neighboring pixels on the 
sensor. As a result, the spectrum, captured by one column of sensor pixels, may contain large 
errors. A perfect keystone-free optics would project the same spectrum onto the sensor as 
shown in (b). Then, the captured spectrum would be correct. 

Smile could be handled by oversampling the spectrum, since typically there are 
significantly more pixels on the sensor in the spectral direction than the required number of 
spectral channels. However, in the spatial direction one normally wants to take advantage of 
the full resolution of the sensor and resolve with reasonably good contrast pixel sized details. 
Therefore the problem with keystone cannot be handled the same way. 

Some of the recent designs [2–4] have good light gathering capacity and an impressive 
level of keystone correction (0.05 pixel and less), when used with a ~640 pixels sensor. The 
latest sensors may have up to 10 000 pixels in the spatial direction. Making cameras based on 
these sensors with a requirement of having the keystone typically less than 0.1 pixel, means 
correcting lateral chromatic aberration and distortion in such cameras as precise as a fraction 
0.00002 of the image size. Probably, the word “challenging” does not quite describe the 
difficulty of this task. 

But is it really necessary to have so tight requirements for the keystone? All the data is 
still there, even when large keystone is present in the system, it is just not arranged in the 
same “neat” way on the sensor. Could it be possible to restore the data to its preferred 
keystone-free form (Fig. 3) based on the data recorded on the sensor with large keystone? 

 

Fig. 3. Datacube. Hyperspectral data should preferably be completely keystone-free so that the 
spectral information for each spatial pixel is correct. 

The mixel camera presented in this article, is able to do this in a lossless way by 
combining a hardware component (an array of light mixing chambers that is inserted into the 
camera slit) and a mathematical method to restore the data. The mathematical method is 
explained in Section 2 and the light mixing chambers are described in Section 3. Lifting the 
stringent requirements to keystone correction makes the optical design task very much easier 
and opens up for the possibility to design hyperspectral cameras that can collect at least four 
times more light than the widely used Offner design, as we will show in Section 4. In order to 
compare the performance of the mixel camera to traditional hyperspectral cameras, a Virtual 
Camera software was developed and is described in Section 5. The performance of the mixel 
camera is then compared to the performance of traditional cameras in Section 6. The mixel 
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camera requires very precise knowledge about the relative position between the sensor pixels 
and the array of light mixing chambers, and a method for precise camera calibration is 
suggested in Section 7. Finally, a conclusion is given in Section 8. 

Norwegian and international PCT patent applications have been filed for the technology 
presented in this article [5,6]. A hyperspectral camera prototype according to the proposed 
concept has been built and is currently being tested. 

2. The data restoring method 

We will explain the method for restoring the data to keystone-free form by a simple 
numerical example. Consider one spatial line which is 4 pixels long and assume that at a 
certain wavelength there is 1 pixel keystone. The 4 pixels from the scene are then recorded 
into 5 pixels on the sensor, see Fig. 4(a). Assume that in case of this particular scene at this 
particular wavelength the pixels in the scene have the following values (i.e., energies): E1 = 
10, E2 = 30, E3 = 100, and E4 = 50. This gives the following values ER for the recorded sensor 
pixels: 
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when we assume that the intensity distribution over each pixel in the scene is uniform. In a 
real scene this will not be the case, but we will show how this can be handled in Section 3. 
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Fig. 4. The figure shows (a) scene pixels with known values and corresponding recorded 
sensor pixels, and (b) recorded sensor pixels with known values and corresponding scene 
pixels with unknown values. 

In reality, we will not know the actual values of the scene pixels, and this situation is 
shown in Fig. 4(b). In order to determine the values of the scene pixels, we set up the 
following set of equations: 
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The equation system (2) can easily be solved for the unknown scene pixel values E1, E2, E3, 
and E4, giving the following values: E1 = 10, E2 = 30, E3 = 100, and E4 = 50, which are 
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identical to the actual values in the scene pixels as given in Fig. 4(a). We have now managed 
to restore the true values of the 4 pixels in the scene, based only on the information about the 
values of the 5 recorded sensor pixels and the amount of keystone (1 pixel). In addition, we 
have assumed that the light distribution is uniform within each scene pixel, but as we will see 
below, it is sufficient that the light distribution is known (not necessarily uniform). 

Let us now consider the general situation where we want to restore N pixels in the scene 
from M recorded sensor pixels, where M>N. This situation is shown in Fig. 5. 
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Fig. 5. Scene pixels and corresponding recorded sensor pixels for the general case. 

We can now set up the following set of general equations: 
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where En is the pixel value (energy) for scene pixel #n, ER
m is the pixel value (energy) 

recorded in sensor pixel #m, qmn is the fraction of the energy contained within scene pixel #n 
that contributes to the value (energy) recorded in sensor pixel #m, N is the total number of 
pixels in the scene, and M is the total number of pixels recorded on the sensor. 

The matrix coefficients qmn depend on the keystone and point-spread function (see Section 
6.4) of the system, and are measured during camera calibration/characterization. Typically, 
only two scene pixels contribute to each recorded sensor pixel, therefore most of the 
coefficients qmn are equal to zero. Equation (3) can then be written in matrix form: 
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where the coefficients qmn are nonzero only along the diagonals and zero everywhere else. 
The matrix system (4) can now be solved for the unknowns En. Note that the system has 

more equations than unknowns (M>N). In fact, each extra pixel of keystone gives one extra 
equation. For the ideal case when there is no noise in the system, the matrix system is 
compatible, i.e., can be solved. However, for a real system with noise, the system is 
overdetermined and an optimization method, such as for instance the least squares method, 
could be used to obtain the solution. 

Simulations have shown that the restoring process (i.e., the solving of the overdetermined 
matrix system (3)) amplifies somewhat the noise that is present in the sensor pixels [7]. In 
order to limit noise amplification, while at the same time preserving spatial resolution, we 
recommend to have about 10% more sensor pixels than scene pixels, i.e., that M/N~1.1. In 
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this case, the noise will typically be amplified by a factor ~1.3. However, since the mixel 
camera can collect considerably more light than traditional cameras, in addition to being free 
of keystone errors, a significant improvement in signal-to-noise ratio will still be obtained 
(see Section 6). 

The restoring process described in this section can be repeated for all spectral channels. 
This means that even though the images of the slit on the sensor have different lengths (i.e., 
different keystone) for different spectral channels, they will all be converted to the same final 
grid without introducing any blur or misregistration errors to the data. Note that the data 
restoring method described in this section is fundamentally different from resampling. 
Resampling would, if used to convert all the spectral channels to the same grid, introduce 
noticeable misregistration errors and blur to the data, even in the absence of noise and other 
error sources [8]. The suggested data restoring method, on the other hand, restores the exact 
scene pixel values for all spectral channels, if the light distribution over each scene pixel is 
uniform and if there is no noise or other error sources present in the system. 

3. The light mixing chambers 

The data restoring method described in the previous section requires that the intensity 
distribution over each scene pixel is known so that the matrix coefficients qmn can be 
determined. This can be obtained by inserting an array of light mixing chambers into the 
camera slit. The purpose of the chambers is to mix the light that goes through each chamber 
as evenly as possible, so that the light distribution at the output of the chamber is independent 
of the light distribution at the input. The light distribution at the output of each chamber will 
then always be the same and therefore always known. Each mixing chamber is a miniaturized 
version of a light-pipe homogenizer [9], which in this case is optimized to provide best 
possible mixing for a particular numerical aperture (F-number) of the incoming light while 
minimizing the number of reflections. Other types of light mixing devices could possibly also 
be used. 

The light content of each chamber corresponds to the light content of a scene pixel. The 
projection of a scene pixel onto the slit, as it appears after passing through the mixing 
chamber, will hereafter be referred to as a ’mixel’. The light content of a mixel will then be 
equal to the light content of the corresponding chamber and scene pixel. Since there are fewer 
mixels than sensor pixels, and the light distribution inside each mixel is known, it will be 
possible to restore the energy content of each mixel based on the recorded sensor pixel values, 
ref. Equation (3). 

The array of light mixing chambers for such a system will typically have feature sizes in 
the tens of microns range for the most common wavelengths and pixel sizes. Machining 
tolerances will therefore be stringent. One possible method to manufacture the chambers is by 
use of a high-aspect-ratio micromachining technique that uses deep X-ray lithography, such 
as the LIGA-process [10]. Figure 6 shows an example of how the light mixing chambers may 
look (only a few chambers are shown), and how they alter the input signal to a form suitable 
for applying the restoring method. Note that light mixing takes place only inside each mixing 
chamber, i.e., no crosstalk between adjacent chambers is introduced at this stage. 

Geometric ray tracing has been used to model the light propagation in the chambers (if the 
width of a spectral channel is very narrow so that the light becomes quite coherent, or if the 
size of the airy disk is comparable to the chamber size, then wave optics should be used 
instead). Many rays (a few hundred) are launched from five areas of the front face in each 
chamber. The density of the rays corresponds to the illumination of the corresponding area of 
the front face. For the calculations it was assumed that the walls of the chambers are infinitely 
thin and 100% reflective. In reality, the walls will have finite thickness, and some losses due 
to absorption and scattering must be expected. It is beneficial to have the walls significantly 
thinner than the width of the chambers, in order to maximize light transmission. While the 
presence of walls does not affect the restoring process, details of the scene may become 
obscured if the walls are too thick. 
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Fig. 6. The light mixing chambers. The light from the scene (green curve) is mixed in the 
chambers so that the light distribution at the output of each chamber (red curve) is as uniform 
as possible. The key is to obtain a known light distribution at the output that is independent of 
the light distribution at the input of the chambers. The picture of the chambers is for 
illustration purposes only. The dimensions of the real chambers will depend on the sensor pixel 
size and the optics. 

Figure 7 shows how the rays are distributed inside one chamber (fewer rays are shown 
than what was used in the calculations). The horizontal black line shows the back face of the 
chamber. Choosing the right length for the chamber is crucial to obtain the best possible 
performance. The length (L) of the mixing chamber can be written as: 

 ,L k F w= ⋅ ⋅  (5) 

where w is the width of the chamber, F is the F-number of the foreoptics, and k is a constant 
that is chosen in such a way that the back face of each chamber has as uniform illumination as 
possible. For a given k, the mixing result at the backface of a chamber with length L will be 
the same for any choice of F-number and width (w). We have used the value k = 2 in our 
simulations, which gives a very uniform light distribution while at the same time keeping the 
number of reflections as low as possible (half of the rays are reflected once, while the rest of 
the rays pass through the chamber without being reflected). 

Figures 7(b)-7(d) show the distribution of light when the rays are launched from a single 
area at the front face of the chamber, simulating that light is coming only to one part of the 
chamber. We see that even in these extreme cases the light is mixed well. In order to preserve 
good light mixing, it is important to focus the foreoptics reasonably precisely on the front face 
of the mixing chambers, preferably to within 5% of the length of the chambers. 

Figure 8 shows the performance of the light mixing chambers for a part of the scene 
(mixels #244-#253) that is used for the simulations in Section 5. We see that even a very 
uneven light distribution (blue) at the front face of the chamber corresponding to mixel #249, 
results in an almost completely even light distribution (red) at the back face of the chamber. 

The array with mixing chambers can be thought of as a hardware sampler, where each 
individual chamber samples the incoming signal in the same way for different wavelengths. 
The data restoring method, described in Section 2, allows to reconstruct those individual 
samples in a lossless way for each spectral channel, based on the sensor output. The spatial 
resolution of the mixel camera is therefore equivalent to that of a traditional camera (where 
keystone is corrected in hardware) which uses the same number of pixels as there is number 
of mixels. However, while a traditional camera introduces misregistration errors due to 
keystone and blur from the relay optics into the final data cube, this is not the case for the 
mixel camera. The modular transfer function (MTF) of the mixel camera at the sampling 
frequency will therefore be determined only by the foreoptics. 
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(a) (b) (c) (d)  

Fig. 7. Distribution of rays within a light mixing chamber. In this example, the F-number is 
F2.8 and the width of the chamber (x-axis) is 1. The corresponding length of the chamber (y-
axis) is 5.6, as calculated from Eq. (5) with k = 2. The backface of the chamber is marked by a 
horizontal black line (approximately at the middle of the figure). (a) Rays are launched from 
all five areas on the front surface (bottom horizontal line). (b)-(d) Rays are launched from 
different single areas on the front surface. Note the different scales on the x- and y-axes. The 
aperture angle (10° in this example) therefore appears larger than it actually is. 

 

Fig. 8. Performance of the light mixing chambers. 

4. Optical design 

In traditional cameras, keystone (even as small as 0.1 of a pixel) introduces noticeable errors 
in the hyperspectral data, as we will show in Section 6.1. Keeping the keystone at such low 
level in a high resolution camera is extremely difficult. Design and manufacturing of the 
camera becomes even more difficult in the case of fast optics. For the proposed mixel camera, 
however, keystone correction is not required in the optics between the mixel array and the 
sensor. This makes it possible to design sharper optics that at the same time can collect more 
light, i.e., has lower F-number. Let us examine how good the optics of the mixel camera can 
be. 

The optics of the mixel camera can be split into two parts: the foreoptics which creates an 
image of the scene on the mixing chambers, and the relay system which projects the slit with 
the mixing chambers onto the sensor. The exit plane of the mixing chambers forms the object 
plane for the relay system. 

Figure 9 shows an example of a possible relay system for the mixel camera. This is a lens 
relay with magnification −0.33x. It is designed for the wave length range 420 nm-1000 nm. 
The relay system is telecentric both in object space and image space. The dispersive element 
is a diffraction grating which is placed at the aperture stop. Placing the aperture stop in the 
middle of the system allows for very good aberration correction. The F-number in the image 
plane is as low as F1.25. This is considerably lower than for the widely used Offner relay 
(traditionally used in hyperspectral cameras when high spatial resolution in combination with 
low keystone is required) which is more or less limited to F2.8 [11]. Another high-
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performance camera, the HySpex VNIR1600 [12], collects slightly more light than the Offner 
design, with its F2.5 lens. The relay optics of the mixel camera therefore collects four times 
more light than most traditional high-resolution systems. The image quality is also good: this 
optics is suitable for a sensor with ~3000 spatial pixels. 

 
Fig. 9. An example of a possible relay system for the mixel camera. The slit with the mixing 
chambers is shown to the left in the figure. Different colors correspond to different field points. 
The direction of the dispersion is perpendicular to the drawing plane. The dispersion is 
therefore not visible in this figure. 

The point-spread-function (PSF) of the relay optics varies a lot across the spectral 
channels. However, this variation will be taken into account during the restoring process (see 
Section 6.4). Since the PSFs can be allowed to be different, the designer can focus on 
optimizing the optical system for maximum sharpness and the lowest F-number. 

The relay system has relatively tight centration requirements of 5-20 μm. This suggests a 
need for active centration, but the requirements are very well within the manufacturing 
capabilities of several optical companies. The part of the optics after the diffraction grating is 
tilted by a few degrees. Tolerances for that tilt are, however, much more relaxed than for the 
rest of the system and easily achievable during manufacturing. 

An attractive property of the design presented here is that, unlike Offner and Dyson 
relays, it has a magnification which is significantly different from −1. This relay was designed 
to have −0.33x magnification, which means two things. First, the mixels will be much larger 
than the sensor pixels. If the sensor pixels are 6.5 μm, then the mixels will be approximately 
3.3 times larger (assuming M/N = 1.1, see Section 2), i.e., the mixels will be approximately 
21.5 μm in size. Second, the F-number for the foreoptics will be much higher than the F1.25 
from the system's specifications. The foreoptics for this relay should have F-number F3.8 ( = 
F1.25/0.33), which makes the optimum length of the mixing chambers equal to 163.4 μm, see 
Eq. (5). This is great news: larger mixing chambers are probably easier to manufacture, and 
the F3.8 foreoptics is definitely much easier to design, manufacture and align than an F1.25 
one. 

The requirements for the foreoptics are different than for the relay system since the 
restoring process restores the mixels, i.e., the scene pixel values as they appear after having 
passed through the mixing chambers in the slit. Any misregistration errors that are introduced 
before the slit will not be corrected for. It is therefore important to minimize the 
misregistration errors in the foreoptics. We have obtained this by using only reflective optics. 
In this case, the rays of all wavelengths follow precisely the same optical path and keystone 
cannot occur. In the relay optics, however, this is not possible since rays of different 
wavelengths are supposed to end up on different parts of the sensor. The rays must therefore 
follow different optical paths through the relay system (this is obtained by use of a dispersive 
element), inevitably introducing a certain amount of keystone. 

Figure 10 shows an example of a possible foreoptics for the mixel camera with F3.8 and 
25 degrees field of view. The foreoptics consists of three mirrors, two of them are off-axis 6th 
order aspheres. The centration tolerances for the mirrors are ~50 μm. The spot size is quite 
small compared to the mixel size. However, the PSF is slightly wavelength dependent due to 
diffraction. This may cause keystone-like misregistration errors in the image projected onto 
the slit. The F-number and mixel size are, however, chosen in such a way that the Airy disks 

Slit Diffraction grating Sensor 
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are quite small compared to the mixel size. The probability that this type of misregistration 
error occurs, as well as the value of such an error, is therefore quite low and noticeably 
smaller than in traditional designs. Also, it might be possible to design a refractive component 
to be placed right in front of the mixing chambers, which would blur the shorter wavelengths 
somewhat in order to equalize the PSFs for different wavelengths. 

 

Fig. 10. Example of a possible foreoptics for the mixel camera. The location of the mixel array 
in the image plane is marked with red color. The direction of the mixel array is perpendicular 
to the figure plane. 

Recently, a high performance camera design based on the Dyson relay has been proposed 
with F1.2 optics and less than 0.1 pixel keystone when used with a 2000 pixels sensor [13]. 
These are very impressive specifications for a hardware corrected camera. However, while 
the Dyson relay itself is keystone-free, the manufacturing tolerances are likely to cause some 
degree of keystone in a real system (for instance, a tilt of the spherical surface of the 
refractive component in the relay will introduce approximately 0.01 pixel keystone per 1 μm 
tilt). Also, unlike the proposed mixel camera optics, the Dyson relay imposes very high 
requirements on the foreoptics, which in this case has to be F1.2 and to resolve 2000 spatial 
elements. This limits the design choices. The Schmidt foreoptics proposed by the authors is 
suitable for a narrow field of view of 4 degrees, but may be difficult to use for wider angles, 
as it already introduces ~0.1 pixel keystone at the edges of the field of view according to the 
authors. The optics is designed for the sensor to be positioned directly on a flat optical surface 
of the refractive component in the Dyson relay, and the sensor should be placed relatively 
close to the slit. This limits the choice of sensor. Nevertheless, the proposed Dyson system 
with Schmidt foreoptics offers a high level of performance, despite these drawbacks. The 
example design of the mixel camera does not have an advantage in terms of light gathering 
capacity in this case. However, the mixel camera concept is much more flexible in its ability 
to customize the field of view and promises much lower keystone errors for a significantly 
higher pixel count. It is also relatively straightforward to manufacture and assemble. 

The optics of the mixel camera presented in this section is merely a starting point, but 
shows how easy it is to design a high performance hyperspectral imager using the mixel 
camera concept. The lens relay presented here is larger than Offner and Dyson relays, as we 
were focusing on achieving high spatial resolution (by hyperspectral standards), low F-
number, and ease of manufacturing. The optics can be further customized or improved. The 
field of view of the foreoptics can be changed and increased to at least 40 degrees. If the 
magnification of the relay is changed from −0.33x to −0.16x, for example, then the required 
F-number for the foreoptics will increase to F7.5. This will allow for an even wider field of 
view and even more relaxed centration tolerances for the mirrors. The relay optics can be 
modified in order to improve spatial resolution (for a sensor with significantly higher pixel 
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count) and/or F-number in the image space. The wavelength range can also be expanded to 
400 nm. Alternatively, a completely different layout can be adopted, for example, with focus 
on smaller size or expanded wavelength range instead of highest possible spatial resolution 
and light throughput. 

An optical designer will always have more flexibility when thorough aberration correction 
on subpixel level is no longer required. This flexibility, provided by the mixel camera 
concept, should allow to push camera specifications beyond what is currently possible. 
However, even in its present state the suggested optics for the mixel camera seems to meet or 
exceed the specifications of the best available high-resolution hyperspectral cameras. 

5. Virtual camera simulations 

In order to evaluate and compare the performance of the mixel camera to traditional 
hyperspectral cameras where the keystone has been corrected in hardware (HW corrected 
cameras), a Virtual Camera software was developed [14]. The Virtual Camera software 
simulates the performance of a hyperspectral camera and uses the hyperspectral data of a real 
scene (captured by a real hyperspectral camera) as input. The virtual camera distorts the input 
data somewhat in accordance with the modeled optical distortions, sensor characteristics, and 
photon noise. Then by comparing the data at the output of the virtual camera with the data at 
the input, we are able to evaluate the performance of the camera. 

A hyperspectral data set containing 1600 spatial pixels, originally captured using a 
HySpex VNIR1600 hyperspectral camera [12], forms the “continuous” 1-dimensional scene 
(blue curve in Fig. 11) to be captured by the virtual camera. The virtual camera is set to have 
significantly lower resolution (320 pixels) than the resolution of the scene. This means that 5 
spatial pixels from the HySpex VNIR1600 data set form 1 scene pixel. By doing this, we 
simulate the fact that any real scene contains smaller details than the resolution of the camera 
being tested. 

 

Fig. 11. The reference scene consisting of 320 scene pixels. The blue curve shows the photon 
number density, while the corresponding scene pixel values are shown in red. 

Figure 11 shows the number of photons in the signal from the scene for one spectral band. 
The signal contains large areas with slowly changing brightness, relatively sharp borders 
between such areas, and some quite small objects which are significantly different in intensity 
compared to the background. This scene will therefore allow us to examine how the two 
cameras perform on different scene features. Further, the number of pixels is large enough 
that some conclusions can be drawn based on statistics. 

Both photon and readout noise are included in the simulations. The readout noise depends 
on the choice of sensor. One of the best available sensors [15], which we will use as a 
reference, has the following specifications: full-well is 30 000 electrons and the readout noise 
in the global shutter mode is 3 electrons (rms) with Gaussian distribution. In order to meet the 
requirements for pixel full-well, typically 2 or 3 pixels will be binned in the spectral direction 
(perpendicular to the direction of the slit), giving a full-well of up to 90 000 electrons and 
readout noise of about 5 electrons. We see that the input signal (Fig. 11) is well below 
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saturation. For the calculations, we will assume that the quantum efficiency is 100%, i.e., 
when 1 photon is hitting the sensor 1 electron-hole pair is being generated. 

When photon noise is included, the number of photons in the signal follows a Poisson 
distribution with mean E and standard deviation √E [16]. Here E is the number of photons in 
the noise-free signal. The resulting relative error in the signal due to photon noise has zero 
mean value and standard deviation: 

 
1

.
E

σ =  (6) 

The relative error due to photon noise decreases when the signal increases. When the signal 
increases by a factor 2 the relative error decreases with a factor √2. Figure 12 shows the 
relative error (1σ) as a function of number of photons in the signal. 

 

Fig. 12. Relative error (1σ) due to photon noise as a function of the number of photons in the 
signal. 

When evaluating the performance of the cameras, we calculate the error in the final data 
relative to the input. The relative error, dE, is given by: 
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where Einit is the scene pixel value (number of photons) and Efinal is the calculated value of the 
same scene pixel after the signal has been processed by the camera. We can then find the 
standard deviation of dE over the 320 pixels and we can also determine the maximum relative 
error. Both are important parameters when evaluating the performance of the cameras. 

6. Camera performance 

The best hyperspectral cameras on the market are specified to have less than 0.1 pixel 
keystone. The performance of the mixel camera will therefore be compared to a HW 
corrected camera with 0.1 pixel keystone. In reality, however, the keystone is often 0.3 pixel 
or more for many cameras. We will therefore also compare the mixel camera to a HW 
corrected camera with 0.3 pixel keystone. The mixel camera has 32 pixels keystone, i.e., the 
320 scene pixels (or mixels) are recorded onto 352 sensor pixels. The mixel camera is also 
able to collect about four times more light than traditional high-resolution cameras (see 
Section 4) and this will be taken into account in the analyses. 

If resampling of the data in postprocessing is considered acceptable, the misregistration 
errors of a HW corrected camera with a certain residual keystone could in principle be 
somewhat reduced. However, the keystone stability of such cameras is of concern. 
Alternatively, resampling could be used in a camera with uncorrected keystone. Such a 
resampling camera would have the same advantages as the mixel camera with respect to light 
gathering capacity and high spatial resolution, but the misregistration errors would be 
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equivalent to those of a HW corrected camera with 0.1 pixel keystone. The performance of 
such a resampling camera is discussed in [8], and compared to the mixel camera in [14]. Here 
we will focus the discussion on mixel camera performance compared to cameras with well-
corrected keystone that do not use resampling. 

In Section 6.1 we look at misregistration errors alone, before moving on to investigate 
what happens when photon and readout noise are present in the system in Section 6.2. Section 
6.3 treats the bright light case, which truly highlights the benefits of the mixel camera 
compared to traditional HW corrected cameras. Then, in Section 6.4, we show how to handle 
variations in PSF across different wavelengths and the potential errors connected to this. 
Finally, in Section 6.5 we look at the errors resulting from misalignment between the mixel 
array and the sensor pixels, demonstrating the need for a very precise calibration of the 
system. The scene in Fig. 11 is used as the input signal for all the calculations in this section. 

6.1 Misregistration errors 

In this section we compare the misregistration errors from a mixel camera to the 
misregistration errors from a HW corrected camera with 0.1 pixel keystone. Photon and 
readout noise are not included in the calculations. Figure 13(a) shows the misregistration 
errors for the HW corrected camera. The graph shows random looking errors with standard 
deviation 1.9% and distinct peaks up to 15% in the areas with large differences between 
adjacent pixels. 

(a)

(b)  

Fig. 13. Misregistration errors for (a) the HW corrected camera with 0.1 pixel keystone and (b) 
the mixel camera. The standard deviation of the error is marked by a dashed red line. Photon 
and readout noise are not included. 

Figure 13(b) shows the misregistration errors for the mixel camera. These errors are due 
to the fact that the mixing chambers do not mix the light perfectly (see Section 3). Compared 
to the results for the HW corrected camera, this looks very promising. The misregistration 
error is practically zero with standard deviation 0.07% and peaks up to only 0.6%. 
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6.2 Errors when photon and readout noise are included 

We will now look at what happens to the errors when photon and readout noise are included. 
Figure 14(a) shows the results for a HW corrected camera with 0.1 pixel keystone. The 
standard deviation of the relative error has increased from 1.9% to 2.8%, but the peaks are 
similar to before (Fig. 13(a)). It looks like the photon and readout noise are not able to 
completely mask the misregistration errors at this signal level. 

Figure 14(b) shows the results for a HW corrected camera with 0.3 pixel keystone. The 
standard deviation of the relative error has now increased to 5.8% and the maximum error is 
as large as 48%. Clearly, the presence of 0.3 pixel keystone in the system has a large impact 
on the data quality. 

Figure 14(c) shows the results for a mixel camera that collects the same amount of light as 
the HW corrected cameras. We see that the mixel camera has similar performance to the HW 
corrected camera with 0.1 pixel keystone (standard deviation 2.7% versus 2.8% and peaks up 
to 13% versus 16%). We expected the errors to be somewhat larger for the mixel camera in 
this case due to noise amplification (see Section 2), but the almost complete absence of 
misregistration errors seems to outweigh this effect. 

However, the mixel camera is capable of collecting about four times more light than the 
HW corrected cameras. Figure 14(d) shows the relative error in this case. The difference in 
performance is now very visible, when compared to the HW corrected camera with 0.1 pixel 
keystone: standard deviation 1.4% versus 2.8% and peaks less than 5% versus almost 16%. 
Unlike the graphs for the HW corrected systems (Figs. 14(a) and 14(b)), the graphs for the 
mixel cameras (Figs. 14(c) and 14(d)) do not contain any large peaks connected to scene 
features. The misregistration error of a mixel camera is virtually zero (Fig. 13(b)), and the 
performance of the mixel camera is therefore limited only by photon noise. More light – 
better performance (as we will see in the next section), and no peaks in the areas with large 
differences between adjacent pixels. 

6.3 Bright light 

We will now look at the camera performance in bright light conditions. Imagine that the 
amount of light in the scene is so large that the sensor pixels of the HW corrected camera are 
almost saturated. The integration time for the mixel camera (that collects four times more 
light) must then be shortened in order not to saturate the sensor. How does the mixel camera 
perform compared to the HW corrected camera when they both receive the same amount of 
light under optimum light conditions? 

When the HW corrected camera with 0.1 pixel keystone (Fig. 15(a)) is receiving five 
times more light than in the previous examples, the standard deviation of the relative error 
decreases from 2.8% to 2.1%. However, the peak error remains more or less the same (around 
15%). 

The mixel camera (Fig. 15(b)) shows much better performance under the same light 
conditions. The standard deviation of the error is 1.3%. The maximum error is only about 4% 
and not linked to any signal features. The errors are dominated by photon noise and appear 
completely random. 

In principle, it may be possible to avoid saturation in the mixel camera by either using 
multiple exposures (provided that the sensor is fast enough) or by increasing the dispersion in 
the camera and binning eight pixels in the spectral direction, giving a full-well of 240 000 
electrons. The mixel camera can then again collect four times more light. 

Figure 15(c) shows the relative error of such a mixel camera. The errors are now 
remarkably low (standard deviation 0.6% and maximum error less than 2%) and still appear 
completely random. Even in so bright light the performance of the mixel camera is limited 
only by photon noise! 
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(a)

(b)

(c)

(d)  

Fig. 14. Camera performance when photon and readout noise are included. The figures show 
the relative error for (a) a HW corrected camera with 0.1 pixel keystone, (b) a HW corrected 
camera with 0.3 pixel keystone, (c) a mixel camera that collects the same amount of light as 
the HW corrected cameras and (d) a mixel camera that collects four times more light. The 
standard deviation of the error is marked by a dashed red line. 
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(a)

(b)

(c)  

Fig. 15. Camera performance in bright light when photon and readout noise are included. (a) 
Relative error for a HW corrected camera with 0.1 pixel keystone, (b) relative error for a mixel 
camera that collects the same amount of light as the HW corrected camera and (c) relative 
error for a mixel camera that collects four times more light. The standard deviation of the error 
is marked by a dashed red line. 

6.4 Transitions between mixels 

So far, we have assumed that the transitions between the mixels in the mixel camera are 
instant. In a real camera, the signal is blurred in the optics between the slit and the sensor, so 
that the transitions between the mixels are no longer instant when the mixels are projected 
onto the sensor. However, if the shape of the transition is known, the mixel content can be 
accurately restored as before. Note that it is the initial “sharp” data (where the transitions are 
instant) that are being restored, i.e., we restore the mixel content as it was before being 
blurred in the relay optics. If the shape of the transition is not known, or is known only 
approximately, errors will be introduced in the restored signal. 

In order to investigate the magnitude of these errors, we simulate a system with given 
transitions between the mixels and try to restore the data while making different assumptions 
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about the transitions. For these simulations we have assumed that the mixing of the light in 
the mixing chambers is perfect (as opposed to the simulations in the previous sections where 
geometric ray tracing was used to model the light mixing) and that there is no noise in the 
system. Any errors in the restored signal will then be due only to the discrepancy between the 
actual transitions and the assumed transitions in the system. 

We have used third order polynomials to model the transitions. In reality the transitions 
will not look exactly like this, but it will be sufficient to give us a good indication of the 
errors involved. Figure 16 shows an example of a third order polynomial transition (red) 
between two mixels. The transition starts at x = x1 and ends at x = x2. The ‘sharp’ value of 
mixel #1 (i.e., the signal level of the part of the mixel that is not affected by the transition) is 
equal to E1. The ‘sharp’ value of mixel #2 is equal to E2. 

 

Fig. 16. Example of a third order polynomial transition (red). 

The equation for the third order polynomial transition is: 

 3
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The transition has odd symmetry about its center (x0, E0), with x0 = (x1 + x2)/2 and E0 = (E1 + 
E2)/2. In order to calculate the transition between the two mixels, we must know the width 
and position of the transition zone, i.e., x1 and x2, and the ‘sharp’ mixel values E1 and E2. A 
transition that extends 30% into each mixel is here referred to as a 30% transition. 

The width of the transition will in general be wavelength and field dependant. Imagine 
that in the real system we only know the transition for a wavelength somewhere at the middle 
of the spectrum. We use this value also for all the other wavelengths when we restore the 
mixel values, but let us say that in this particular system the shorter wavelengths will have a 
somewhat narrower transition than what we are assuming and the longer wavelengths will 
have a somewhat wider transition. How will this affect the errors in the restored data? 

This situation was investigated by simulating four cases where the true transitions are 
20%, 30%, 40%, and 50% respectively and then restoring the data assuming 35% transitions 
in each case. Figure 17 shows the resulting errors when the transitions are 50% and 40% 
(cases with 20% and 30% transitions have similar errors with opposite sign). We see that we 
get the largest errors when the deviation between the assumed transitions (35%) and the true 
transitions (50%) is the largest, see Fig. 17(a). The standard deviation is small (0.7%) but the 
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peaks are quite large (up to about 6%). When the deviation is smaller (when the true 
transitions are 40%), the standard deviation decreases to about 0.2% and the largest peaks are 
only about 2%, see Fig. 17(b). 

(a)

(b)  

Fig. 17. Mixel camera with (a) 50% transitions and (b) 40% transitions. The data are restored 
assuming 35% transitions. Photon and readout noise are not included. 

The results in this section show that the presence of transitions does not prevent us from 
restoring the data, but that it is important to know the shape of the transitions reasonably well. 
We expect that in a real system the point spread function will be accurately measured for 
several wavelengths at several field points, providing the necessary information about the 
transitions. Alternatively, we can assume a certain transition that is not too much off, and 
restore the data according to this assumption. This will eliminate the hazzle of determining 
the shape of the actual transitions, and the resulting error may still be acceptable. 

6.5 Misalignment in the relative position between the mixel array and the sensor pixels 

So far, we have assumed that the relative position of the mixel array and the sensor pixels in 
the direction along the mixel array is known with absolute accuracy. In reality, there will be 
errors in the determination of the relative position (misalignment) and this will lead to errors 
in the restored data. We have investigated how large these errors will be. For the calculations 
we have assumed that the signal is perfectly mixed in the mixing chambers and that there are 
no other error sources present. The transitions between the mixels have been modeled as 
being instant. 

Figure 18(a) shows the resulting error in the restored data when the misalignment between 
the mixel array and the sensor pixels is 0.06 pixel. We see that the error is comparable to that 
of a HW corrected system with 0.1 pixel keystone (Fig. 13(a)). The standard deviation of the 
errors is 2% (versus 1.9%) with peaks up to about 18% (versus 15%). 

Figure 18(b) shows the resulting error in the restored data when the misalignment is only 
0.01 pixel. The error is now quite small with standard deviation 0.3% and peaks up to 3%. 
We have also calculated the error when the misalignment is as small as 0.001 pixel (not 

#185751 - $15.00 USD Received 21 Feb 2013; revised 22 Apr 2013; accepted 23 Apr 2013; published 29 Apr 2013
(C) 2013 OSA 6 May 2013 | Vol. 21,  No. 9 | DOI:10.1364/OE.21.011057 | OPTICS EXPRESS  11074



shown here). The error is then very small with standard deviation 0.03% and peaks up to 
0.3%, and can be considered negligible. 

(a)

(b)  

Fig. 18. Relative error for the mixel camera due to (a) 0.06 pixel and (b) 0.01 pixel 
misalignment between the mixel array and the sensor pixels. The standard deviation of the 
error is marked by a dashed red line. Photon and readout noise are not included. 

We conclude that any change in the relative position between the mixel array and the 
sensor pixels, that is not accounted for, should be less than 0.01 pixel and preferably as small 
as 0.001 pixel, in order not to contribute noticeably to the errors. In the slit plane this 
corresponds to a required precision of ± 0.0091 mixel or better (assuming that the image of a 
mixel covers 1.1 sensor pixels), which for 21.5 μm large mixels translates into a precision of 
about ± 200 nm. In the following section we will show how to measure with high precision 
the relative position between the mixel array and the sensor pixels. 

7. Camera calibration 

Solving the overdetermined matrix system (3) will only provide correct mixel values if the 
coefficients qmn are correct. These coefficients describe the geometry of the mixel array image 
on the sensor, as well as the PSF of the relay optics, and must be determined precisely. 

The relative position between the mixel array and the sensor pixels can be measured by 
placing a single mixel at one side of the slit, see Fig. 19. The light from the single mixel will 
illuminate an area on the sensor somewhat larger than one pixel, see Fig. 20. The intensity 
distribution (blue curve) is determined by the size of the mixel and the point spread function 
of the relay optics. If we know the shape of the intensity distribution, we will be able to derive 
the relative position of that mixel and the sensor pixels since we can measure the signal from 
the illuminated pixels. 

Mounting the slit with the mixing chambers on a high resolution translation stage, and 
moving it relative to the sensor, makes it possible to measure the intensity distribution from 
the single mixel at the end. Piezo-electric translation stages with subnanometer resolution are 
readily available as off-the-shelf components at relatively low cost. Such translation stages 
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can move with a resolution far better than the ± 200 nm requirement for the determination of 
the relative position between the mixel array and the sensor pixels. By reading out the signal 
from the illuminated pixels, then move the slit with the single mixel by a few nanometers, 
take another readout, move the mixel again, take another readout, etc., it will be possible to 
determine the intensity distribution in the sensor plane. Alternatively, the data can be stored 
as a look-up table for finding the position of the single mixel relative to the sensor. 

 

Fig. 19. The mixel array with one single mixel at the left end of the slit. 

 

Fig. 20. Intensity distribution (blue curve) of light coming from a single mixel onto the sensor 
pixels. The shape of the curve is determined by the size of the mixel and the point spread 
function of the relay optics. 

If we also place a single mixel at the other end of the slit, then we will be able to measure 
both the length of the slit and its position relative to the sensor. It may even be possible to do 
this during normal image acquisition, by using either a dedicated light source for each single 
mixel or even the light coming from the scene through these two mixels. This means that 
more or less every frame captured by the camera will have calibration data that can be used 
when restoring the image, i.e., requirements for alignment stability during operation will be 
far more relaxed (μm range instead of nm range). 

Actually, extra mixels combined with a translation stage may also be a very useful tool for 
measuring the size and shape of the transitions between mixels, not only at the edges of the 
field of view but everywhere. Knowing the size and shape of the transitions is important when 
restoring the data (Section 6.4). If we introduce a second array of mixels which is parallel to 
the main array of mixels (Fig. 21), then the intensity distribution (i.e., the transitions) can be 
determined at several field points for all wavelengths. 

During this type of calibration, the main mixel array (the upper one) is covered by a 
shutter and the secondary mixel array (the lower one) is used for measuring the illumination 
curves for many wavelengths and field points simultaneously. This calibration may be 
performed in a lab, or perhaps the calibration equipment may even be built into the camera. 
When the calibration is complete, the secondary mixel array is covered by a shutter. The main 
mixel array can then be used for image capture, while the single mixels on each side of the 
mixel array are used for real time measurements of the slit position and length. 
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Fig. 21. The mixel array with a single mixel at the end and a second mixel array below. 

8. Conclusion 

The mixel camera, presented in this paper, is a new type of push-broom hyperspectral camera 
which has the potential to significantly outperform the existing push-broom instruments. 

The fundamental advantage of the mixel camera, compared to the existing instruments, is 
the virtually perfect correction of the keystone and PSF variations (that are always present in 
the optics) in the final hyperspectral datacube. No additional blur is introduced during the 
conversion of the sensor data into the hyperspectral datacube; on the contrary – the blur, 
introduced by the relay system, is actually removed from the hyperspectral data. 

Other potential advantages of the mixel camera are increased spatial resolution and 
improved signal-to-noise ratio, which come as a direct consequence of the fact that it is no 
longer necessary to correct keystone and PSF variations in the optics. Existing push-broom 
cameras have very tight requirements for keystone and PSF corrections in the optics, and this 
severely limits optical design in terms of achievable spatial resolution and light gathering 
capacity. The mixel camera is not limited by such constraints and can therefore have both 
significantly higher spatial resolution and increased signal-to-noise ratio compared to the 
existing push-broom cameras. 

Many applications, such as spectral signature analysis, anomaly detection algorithms, etc., 
could take advantage of the technology presented in this paper. In fact, it is difficult to 
imagine applications which would not be able to benefit from a camera with practically 
perfect keystone and PSF corrections, high signal-to-noise ratio and very high spatial 
resolution. 

A prototype of the mixel camera has been built and is currently being tested. 
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