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Abstract— Radars employing electronically steering arrays are
capable of instantaneously altering the direction of the beam
along with other parameters. This flexibility offers great op-
portunities to a radar as it may e.g. divide its time between
several directions or frequently modify the waveforms being emit.
These kinds of techniques can often result in several sequences
of coherent processing intervals illuminating the same area,
however, the data may not necessarily be coherent across the
acquired sections. In this paper we propose a technique based
on sparse reconstruction to transform such groups of blocks
into a single continuous coherent entity. Data obtained from an
experimental radar is used to validate the techniques.
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I. INTRODUCTION

Modern pulse-Doppler radars typically engage by transmit-
ting a number of pulses within a set coherent processing inter-
val (CPI) and for each pulse a matched filtering operation is
carried out on the incoming delayed and Doppler-shifted pulse
echoes. The collected data is presumed to be coherent and
a range-Doppler map may be formed by executing a Fourier
transform with respect to slow-time. Sophisticated array based
multifunction radars are though able to electronically alter the
beam direction and may revisit areas of interests multiple times
thus ending up with several independent blocks of coherent
data. In other applications, in order to confuse a jammer a
radar may decide to alter the waveforms from time to time
and similarly end up with distinctive blocks of data. The
data within each block is accordingly coherent, however, the
different blocks may not necessarily be coherent with each
others. In order to make most out of available data, techniques
are required to transform incoherent blocks into a single set of
fully coherent sequence. A larger collection of coherent data
will in turn permit generation of higher resolution plots which
are fundamental for detection and classification [1].

There is a great deal of available literature on compressed
sensing (CS) and reconstruction techniques in a radar frame-
work [2], [3], [4]. Much of the work is related to irregular
data collection and an on-following optimization. In e.g. [5] a
method was proposed to sample data irregularly in slow-time
domain and interpolation of any gaps. However, only a single
dwell consisting of coherent data was considered. Another
familiar trait of the previous works is that the sparse solution
found is regarded as the final output which therefore contains

a very large number of zero values. To improve upon sparse
solutions a hybrid sparse reconstruction technique is suggested
where the recovered sparse solution is only employed partly
to fill in empty data gaps.

The overall contributions of this paper are linked with the
introduction of a co-joined phase optimization and sparse
reconstruction technique to transform several sets of data into a
single coherent sequence. Data collected from an experimental
radar setup is used for validation.

II. RADAR AND SYSTEM MODEL

A standard pulse-Doppler radar is assumed where trans-
mission and reception of pulses takes place within a CPI
aimed at a specific direction. After the CPI, the radar may
digitally change the direction to transmit other beams and start
a new CPI. Taking advantage of electronically steering arrays,
the radar may at a later point decide to revisit the previous
direction and collect a new dwell of data. It may also return
to past regions with different waveforms and vary the length of
CPIs in order to distract a jammer. It is presumed that the radar
acquires a total of two such CPI blocks for the same direction
each block containing, respectively, N; and N, number of
pulses. The incoming signal can be characterized by

s(t,up) = Z onp(t — Ay)ed U 4 4i(t), (1)

where up, b = 1,2 indicates slow-time with respect to the first
or second CPI, u; = 1,...N7 and us = 1,...Ns. t is fast-time,
oy, are the reflectivity levels of incoming echoes while A, is
the signal delay of each reflector n and j = /—1. w(t) is
white Gaussian noise and e’V is the Doppler phase shift
which for fixed velocity targets is modeled by

AT febn
¢ PRF’

where 6,, is the radial velocity of target n, f. being the carrier
frequency, PRF is the pulse repetition frequency and c is
the speed of light [6]. For convenience we define v, o = 0.
After emission of each waveform p(t) the radar samples any
incoming pulse reflections and a pulse compression operation
is carried out via the time-reversed and conjugated p*(—t),

Yi(twp) = onp*(—t) xp(t — Ap)e' e +w(t)  (3)

2

Un,up, = Un,up—1 +
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where * designates convolution in fast-time. The fast-time
parameter will normally also be discrete, re-writing this with
regard to the CPI and with range bins as the first parameter
we arrive to

Y (rup) =Y (r At,up) € VB r =12 .. R, (4)

given At as the time-resolution of the radar. RA¢ thus corre-
sponds to the largest time-delay associated with the maximum
unambiguous radar range. The total number of transmitted and
received pulses over the two blocks is

N = N; + Ns. ®)

Within these N pulses we can safely assume that the targets
only vary slightly in amplitude and there is no range walk or it
has already been compensated for. The two-block aggregated
data is represented by

Y (r,u) = [Yi(r,u1) Ya(r,u2)] € CNxE (6)

given u = 1,2, ..., N. For further processing each slow-time
vector of Y(r,u), y.(u), is conventionally multiplied by a
window tapering function w(u) € CN*!. Performing a
Fourier transformation yields the Doppler profile d,(w) for
range bin 7:

d,(w) =F w(u)y,(u) € CV*L, (7

F is the discrete Fourier matrix of size N x N, Fj; =
exp(—2mjkl/N). Clustering together the profiles over all
ranges gives a range-Doppler D(r,w) representation of radar
data. The main factors forming the contours in a Doppler pro-
file are constant phase variations originating from (2). Targets
showing a consistent velocity will after Fourier processing
appear contracted in Doppler as long as the data is sufficiently
coherent. In contrast, with two incoherent blocks the target
Doppler model (2) over N pulses is likely to project a more
discontinuous behavior

A feOn

cPRF’
where any phase discrepancies are described by the function
P(u) € R. A leap in phase will occur at starting of the second

block causing incoherence and leading to Doppler leakage and
declined integration gain.

®)

Un,u = Un,u—1 + (U)

A. Phase optimization and Sparse reconstruction

The presence of two independent sections in Y (r,u) de-
mands appropriate processing before the data may be regarded
as a single consistent entity. In order to transform the data
into a coherent set appropriate phase adjustment needs to take
place:

Y (r,u) = [Y; e9Y,] € CV¥E, 9)

where ¢ attempts to reverse the incoherence. Determining the
phase value can be a challenging task and herein a combined
sparse reconstruction approach is introduced; assuming that

each range bin contains a relative few number of targets. Uti-
lizing a sparse reconstruction technique also offers additional
leverage as a more generalized solution of this form is sought:

Y(r,a) =

, 10
(W4 Y, /Yy, Wp| € CEXE, (10

The sparse reconstruction solution to the posed problem is
hence an attempt to assemble an expanded range-Doppler
profile while simultaneously correcting for any phase discrep-
ancies. In the extended Y (r, ) reconstruction W 4 (r, 41) €
CNaxE and Wp(r,u;) € CNeXE represent extrapolated
samples. For each range bin; N4 and Np number of additional
slow-time samples are extrapolated at the edges containing
respectively N4 > 0 and Np > 0 number of values. The
total number of available slow-time pulses in the regenerated
Y comes to

L=N+Nj+ Np. Y

Additionally extrapolated samples provide extra degrees of
freedom for sparse reconstruction and have potential to im-
prove the Doppler bin resolution. The rationale being that a
sparse solution to the problem must attempt to maximize the
sparsity which is achieved if objects of interest are extended
with a determined velocity and consequently get more and
more narrowly confined to an exact velocity [5].

In the following, a column representing range bin r of
the reconstructed Y (r, ) is designated by y (i), € CL*1,
4 = 1,2,..., L, though the subscript is dropped for clarity.
The same applies for ¥(u) being a column of Y (r,u). The
association between the reconstructed slow-time data and its
Doppler profile is given by

d(@) = F w(a)y(a) e CF*! (12)
where F is an L x L Fourier matrix.

Next, a binary selection matrix is defined M € BN XL
by taking an L x L identity matrix Iy .7 and removing the
first Ny and the last Ng rows. The selection matrix is to
allow for extraction of values from slow-time positions with
acquired data. The tapering function w(u) is constructed by
selecting a windowing function of L entries, W(@) € CE*1,
and truncating it: w(u) = Mw(a) € CN*1,

Several techniques may be adopted to solve the stated prob-
lem. A direct descriptive approach in order to simultaneously
optimize the phases and establish a sparse solution can be
based on splitting the problems into two parts, an inner sparse
reconstruction and an outer phase optimization.

1) The inner algorithm, assumes the phase ¢ is provided
and finds a sparse Doppler profile a(d;) consisting of L
Doppler samples while concurring with the observations where
available. This requirement of a profile being in agreement
with measured data can, be expressed as

(My)(u) = y(u).

For clarity, the index terms are only given for the final prod-
uct. With windowing functions incorporated the requirement

(13)
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becomes
M(Wy) (u) = (MwW)y (u),
or Fd (@) = wy (u),

(14)
(15)

where F M 1s the partial inverse Fourier matrix F M= MF* €
CN XL .

Sparse reconstruction, under convex relaxation, can there-
fore be detailed by

d(@) = argmin | d(@)]]1
st || Fa d(@) — w(u) §(u) |2 <e

(16)
A7)

where € is acceptable error.

2) The outer algorithm addresses phase optimization by
recovering A A

(b:&rgmén”d(d})“l (18)

such that the same L7 norm is minimized. In the most basic
form, the outer algorithm searches over ¢, correcting for the
phase shift in §(u), and for each iteration the inner algorithm
resolves the sparse Doppler problem.

Collecting solutions across all ranges r = 1,2, ...., R gives
a full range-Doppler map matrix D(r,&) € CL*R with any
extrapolated values. Notice that this process is independent
for each range bin and may be executed in parallel. For the
outer loop any standard nonlinear programming solver may
be applied; however, several efficient algorithms have been
proposed in the literature with regard to optimization and
sparse reconstruction [7], [6], [8], [9] and we refer to them
for more details. We remark that to reduce computational
complexity the phase optimization process may be carried out
only once, or alternatively over a representative set of range
bins.

B. Hybrid reconstruction

A disadvantage with a sparse solution is that it can be
viewed as performing a threshold based detection. A low
value for € will preserve noise in the optimization process
thus not yielding clear fixation with respect to targets; while
selecting larger threshold values can make more sensitive
targets disappear. A merger of the sparse solution with real
data is therefore examined next. At corresponding slow-time
blocks without any radar measurements results from the sparse
solution are utilized otherwise the original data, after phase
corrections with the obtained ¢ is retained; or alternatively
linearly combined with the sparse solution.

The hybrid range-Doppler map is constructed by transform-
ing the sparse range-Doppler solution back to time domain

Ys(r,a) = F*D(r,0) € CEXF (19)
which is then merged with available measurements after ta-
pering and phase shifting
YHyb (’I’7 ﬂ) =

aw Y (r,0) + /(1 — a®)Ys(r, i), Na<@<Na+ N
Ys(r,a), @< Nag, >N+ Ny
(20)

where F* € CEXL is the inverse Fourier matrix and 0 < o <
1. A Fourier transform across slow-time forms the final hybrid
range-Doppler map:

Ry (r,@) =F Yy, (r,0) € CEXE, 1)

a may be chosen to scale the solutions appropriately. For
detection purposes more emphasis may be placed on the sparse
solution, i.e. « close to zero. To preserve the more subtle
details all of the original (phase shifted) data can be kept in
place by setting « to greater values.

III. EXPERIMENTS

To evaluate the performance of the proposed methods data
acquired from an experimental FFI radar. The S-band radar
was aimed at a commercial Boeing 737-800 flying at a distance
of 6.2km. The system was operating at 3.3 GHz with a
bandwidth of 50MHz, LFM pulses with horizontal polarization
and PRF of 4kHz. The maximum range being approximately
R = 10km.

Utilizing the radar, a dwell of 18 pulses was collected and
figure 1 shows the idealistic range-Doppler map assuming all
pulses are fully coherent. In all results the Blackman window
has been applied. There is a great amount of ground clutter
in the image which has willingly not been filtered out; the
overall resolution from 18 pulses is clearly also not sufficient
to fully isolate the aircraft. To transform this data into a more
realistic case scenario the slow-time samples were divided into
two blocks, one consisting of 12 pulses and the other of 6
pulses. The two sections made incoherent with each others by
introducing a phase change of g% = 7 on the second sequence.
Figure 2 displays the corresponding incoherent range-Doppler
map where both the clutter and the aircraft experience clear
leakages in Doppler.

The incoherent data is used to solve the posed problem
of determining the optimized phase value and to do an
extrapolated sparse reconstruction over each range-bin. For the
sparse algorithm € = 26 is used, i.e. twice the estimated noise
level, alongside N4 = Np = 10 yielding 20 extra extrapolated
slow-time samples for each range-bin, in total giving L = 44
bins in Doppler. Note that with the selected low level € a
significant amount of noise is aspired retained.
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Fig. 1: R-D map with 18 coherent pulses

(b) Zoomed in, psNr=25.00dB
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Fig. 2: R-D map with incoherent data blocks

Sparse reconstruction with incoherent data dBm

Sparse reconstructior incoherent data. dBm

Range (km)

= -90
-80 -60 -40 -20
Velocity m/s

-50 40 -3 -20 -10 0
Velocity m/s

(a) Full
Fig. 3: Sparse reconstruction from incoherent data (r = 1)

(b) Zoomed in, psnr=42.90d8

Figure 3 depicts the result of applying the proposed two-
step technique on the incoherent data set for sparse and hybrid
reconstruction. The algorithm has managed to refocus the
target well and also narrowed down in Doppler to the extent
that target and clutter is fully separated. The recovered phase
for each range is shown in figure 4 and is in agreement with
the optimal value of (/3 = 37" for stretches with the presence
of either clutter, target or both. In this case, the full two-step
algorithm was run over each range bin though from the plot it’s
evident that the phase recovered from a single typical range
would also have been sufficient to provide good outcomes.
Nevertheless, there is a great amount of speckle in the final
sparse image coming from the low thresholding value. The
hybrid solutions of section II-B tries to improve upon this
by merging together the available phase corrected data and
any extrapolated statistics. The result with o = 1 is visible
in figure 5 which resembles a traditionally generated range-
Doppler map. The incoherent block has been compensated
accordingly and the extrapolated samples increase the Doppler
bin resolution to isolate out the aircraft while concurrently the
collected data is exploited fully.

IV. CONCLUSION

Having access to longer sections of coherent data is of
great importance for modern radar system as higher resolution
estimates and plots can be obtained. This paper investigated
a multifunction radar in this context collecting independent
dwells of the same region where the various blocks may not
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Fig. 4: Recovered phase, & = 14
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Fig. 5: Hybrid reconstruction from incoherent data (. = 44

be coherent with each others. A technique based on sparse
reconstruction was proposed to compensate for phase changes
and transform blocks of data into a single coherent arrange-
ment. Sparse reconstruction additionally permits extrapolation
of samples in slow-time and the paper also explored hybrid
solutions constructed by merging collected and reconstructed
data. The methods were tested and demonstrated on real radar
data where the algorithms were shown to provide competent
performance.
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