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Abstract— Multistatic radar systems with multiple elements
at transmitting and/or receiving side permit multiple target
observations from different viewpoints providing various ad-
vantageous. In an environment with multiple transmitters the
emitters may transmit independent waveform or use a coding
structure to emit pulses across antennas over a predetermined
coherent time-interval. In this work we extend the principles of
employing orthogonal block codes for this purpose and emphasize
on arbitrary or randomly designed block codes with a compressed
sensing based detection at receiver. By employing a compressed
sensing approach only a subset of incoming data needs to be
stored and processed thus significantly reducing the sampling and
integration requirement at the receivers. We show that the use
of more general type of block codes allows for greater flexibility
and better performance in target detection and are hence more
suitable for compressed sensing methods than orthogonal, or
quasi-orthogonal, block codes. Through simulations it is validated
that such a system can operate well and compressed sensing
techniques allow for data reduction and improved detection with
a shorter dwell period.

I. INTRODUCTION

Multistatic or MIMO (multiple-input multiple-output) sys-
tems with widely distributed antennas exploit angular and spa-
tial diversity to provide numerous advantages. Each antenna
typically emits a different waveform thus the receiving antenna
has the potential to observe a target from a varying numbers
of aspect angles. This can be used to for example recede
target fading and provide enhancements in target detection,
directional finding etc. [1], [2], [3]. For these techniques to
operate an often made assumption is that the waveforms emit
from antennas are all orthogonal to each others. In reality,
this condition is hard to satisfy and as an alternative space-
time block coding methods may be put to use with non-
orthogonal waveforms [4], [5], [6]. The waveforms are then
emit across antennas and time slots in a specific manner
where the given coding and receiver processing ensures signal
separation with full diversity by simple matched filtering. The
main benefit of such an approach is that the waveforms can be
designed freely. More specifically one may utilize randomly or
chaotic generated noise waveforms, which are of importance
for military radar systems.

This paper proposes a radar system model to take advantage
of block codes for multistatic transmission and as incoming
radar signals are typically sparse in nature, employ a data
reduction strategy at the receiver and processing end. Instead
of the receiving antennas continuously collecting data with

respect to incoming signals empty gaps of varying lengths
can be incorporated either at random or in a predetermined
manner. The coding duration of the block code emit may
also be reduced at the transmitter. To recover the signals
compressed sensing (CS) algorithms [7], [8], [9], [10], [11]
can be applied to locate and detect potential targets. We
show that such an approach has considerable merit as the
sampling requirements at the receiver antennas are reduced
and the block integration time can be altered. For certain
signals, such as noise waveforms, the signal recovery can be
shown to be exact. The use of orthogonal block codes was
introduced in [12], however, as we show here orthogonal and
quasi-orthogonal block codes designed primarily for matched
filter based decoding are non-optimal when combined with a
compressed sensing based detection. Designing arbitrary block
codes also allow for much greater flexibility is determining
the coherent block time interval and results in lower mutual
coherence. Otherwise selecting orthogonal, or to some extent
quasi-orthogonal, block-codes could be expected to be a
good starting point for compressed sensing applications as
subsampled orthogonal structures can yield effective sensing
matrices for signal recovery [13].

II. GENERIC SIGNAL MODEL

A multistatic radar setup with M transmitting and a single
receiving antenna is assumed, though the system is easily
extendable to the case of multiple receiving antennas. The
transmitter uses a space-time block code C as a model to
transmit waveforms where the columns of C denotes the
antennas and the rows the time slots. The block code is
assumed to require an integration period of K slots. The
incoming signal at the receiver over the total time duration
of K × T , can then be expressed as

r(t) =

 r1(t)
:

rK(t)

 = C∗

 ρ1(t)
:

ρM (t)

 = C∗ρ(t)+n(t), (1)

where ri(t) corresponds to incoming data at the respective
transmissional slot (row i) of C which is collected over
the time duration T . Similarly, block ρi(t) refers to the
echo reflectively, incorporating target’s radar cross-section,
propagation etc. originating through transmitter antenna i.
Each element in ri(t) consequently corresponds to a range-bin
∆, 2∆, 3∆, ..., N∆ where ∆ is the range-bin resolution and
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T∆ the maximum antenna range. ∗ denotes the convolutional
operator and n(t) is additive noise. We assume no or marginal
Doppler within the dwell period of the code.

In a traditional processing approach a matched filtering
operation is carried over r(t) with the conjugated version
of the code, C∗, to recover potential targets as orthogonal
block codes fulfill the property C∗C = αI where I is the
identity matrix and α =

∑
si(t)s

∗
i (t) corresponds to the

waveforms reflecting the overall system’s pulse spreading
function. However, as orthogonal or quasi-orthogonal, codes
are generally designed and optimized for linear matched filter
based processing it is unlikely that they are still highly suitable
when other types of receiver processing is to be performed.

Signal model (1) may be re-written in the form of a matrix
multiplication through the aid of a convolutional matrix S,

r(t) = S ρ(t) + n(t). (2)

The matrix S follows a structure with Toeplitz blocks con-
sisting of delay shifted waveforms. The incoming radar data
is however likely to be highly sparse and contain many zero
figures pointing towards the fact that all matrix entries may
not be decisive for a signal recovery particularly when there
may only be a few targets to detect. To contract the amount
of data, the receiver may thus decide to cut down on sample
storing in the spirit of compressed sensing methodology. This
can be accomplished by e.g. not sampling with respect to
certain range-bins during alternating block code transmission
periods. As an example amid the reception of the first row
of the block code the receiver may decide to store incoming
data corresponding to range-bins 2∆, 4∆, 6∆, ... while during
the second row transmission sample and store with respect
to range-bins ∆, 3∆, 5∆, , ... . This trims the amount of
data in half. This process can also be performed randomly
and detailed conventionally through a sensing matrix Φ. The
observed data is then described by

r(t) = Φ S ρ(t) + n(t). (3)

A plain sensing matrix Φ will therefore contain either 0 or 1
corresponding to the observation at that time step and range-
bin is stored or discarded.

Beside not sampling with respect to certain ranges, the
receiver may further decide not to store data altogether with
respect to given transmissional periods. This is analogous to
not transmitting a row of the block code and cuts down on
required block transmissional period; which may be quite
lengthy if a large number of transmitters are put to use.
This does eliminate the orthogonal properties of an orthogonal
block code but since a CS detection does not rely directly on
that, one may study various approaches like this to curtail data
intake.

By eliminating any empty row entries of ΦS and the
corresponding values of r(t) we can re-write (3) as

r̂(t) = Ŝ ρ(t) + n(t). (4)

The under-determined linear system of (4) generally does not
have a single unique solution, however, a recovery process

through CS can lead to the desired unique solution if the matrix
Ŝ satisfies certain conditions [7], [8]. One such condition is
that the mutual coherence µ of Ŝ is low, defined as

µ = max
i6=j

|Ŝ∗i Ŝj |
||Ŝi||||Ŝj ||

. (5)

The number of targets for whom perfect reconstruction is
guaranteed is then given by k, k < 1

2 (µ−1 + 1). Assuming
the elements of Φ are selected randomly off-line, or in a
pseudo-randomly manner, the matrix Ŝ can be designed and
optimized beforehand with respect to the given waveforms
and the desired data rate to achieve a low mutual coherence
value. We point out that if elements of ΦS are selected
randomly, i.e. from a noise waveform, and optionally follow
a Toeplitz or block structure [14], [15], [16], then the matrix
will typically result in acceptable CS conditions for signal
recovery [17]. In this particular case the matrices are sparse
convolutional Toeplitz blocks which can through permutation
methods e.g. Cuthill-McKee type algorithms [18] generally
be converted into a matrix with a block diagonal structure.
An example of this is shown in figure 1 for a matrix used
in the next section where the bipartite graphs of the original
matrix and the permuted matrix are displayed. Although the
permuted matrix retains some sparsity it nevertheless shows
a very concise diagonal structure. With very low data levels
the matrix properties will still start to deviate too strongly to
satisfy a perfect recovery; how many targets may be detected
as a function of data rate is examined in the simulation section.
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Fig. 1. A convolutional matrix and it’s permuted version

The recovery of ρ(t) can be accomplished by well-
established methods by e.g. attempting to find min ||ρ̃(t)||1
subject to Ŝ ρ̃(t) = r̂(t), which is particularly suitable for low-
noise situations. In the presence of noise the minimization can
be carried out with subject to ||Ŝ ρ̃(t)− r̂(t)||2 ≤ ε. Numerous
algorithms have been proposed in the literature [9].

III. FOUR TRANSMITTER CASE

We next portray an example case of the proposed approach
and demonstrate it through simulations. A four transmitter
antenna case is considered with a single receiver antenna. For
this scenario we put to use a more or less randomly selected
block code with no specific properties apart from the fact that
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each transmitter emits all four pulses across the four time slots:

C4 =
1√
4


s1(t) s2(t) s3(t) s4(t)
s∗2(t) −s3(t) s∗4(t) −s1(t)
−s4(t) s1(t) s∗2(t) −s3(t)
s∗3(t) −s∗4(t) −s∗1(t) s2(t)

 . (6)

The second code we analyze is based on emitting different
pulses on all occasions, corresponding to a radar system where
no coding is done across time:

CN =
1√
4


s1(t) s2(t) s3(t) s4(t)
s5(t) s6(t) s7(t) s8(t)
s9(t) s10(t) s11(t) s12(t)
s13(t) s14(t) s15(t) s16(t)

 . (7)

To compare these against more established block codes we
use the orthogonal code [19]

CO =
1√
3


s1(t) s2(t) s3(t) 0
−s∗2(t) s∗1(t) 0 s∗3(t)
−s∗3(t) 0 s∗1(t) −s2(t)

0 −s3(t) s∗2(t) s1(t)

 , (8)

and the quasi-orthogonal code of [20]:

Cq =
1√
4


s1(t) s2(t) s3(t) s4(t)
−s∗2(t) s∗1(t) −s∗4(t) s∗3(t)
−s∗3(t) s4(t) s∗1(t) −s2(t)
−s∗4(t) −s3(t) s∗2(t) s1(t)

 . (9)

s1(t) to s16(t) refers to the different waveforms of the block
code with s∗i (t) being the conjugated waveform. Although the
orthogonal block code only emits 3 independent waveforms
it nevertheless satisfies the major property of C∗OCO = αI.
The receiver will hence be able to determine which targets
are arriving through which emitter without any ambiguity or
interference with a matched filtering operation over r(t) as
long as full data set is acquired - which may be excessive and
unnecessary assuming that there may only be a few targets to
detect.

The single receiving antenna is simulated to receive a total
of 12 targets of varying amplitudes, with 4 target echos off
transmitter antenna one, 2 from the second antenna and 3
returns from antenna three and four, as depicted in figure 2.
The simulated range is composed of 400 sampling bins. How
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Fig. 2. Simulated scenario of target returns

well a CS recovery process performs in this given scenario
will depend primarily on parameters such as the pulse length,
number of targets and collected data amount.

For the simulations we consider cases with varying amount
of pulse lengths and investigate the performance of the re-
covery process. This is accomplished with the block codes
as given in (6)-(9) but where only the first two, or the first
three, transmissional periods are put to use. This cuts the block
transmissional period by, respectively, half and one-quarter. In
addition to that the receiver utilizes a randomly generated,
unoptimized, sensing matrix to only collect and store data
at certain sampling ranges in a typical random compressed
sensing framework. Noisy baseband waveforms are generated
and for the first simulations consist of only 6 discrete samples.
Standard compressed sensing algorithms from are utilized to
obtain target location estimates.

A typical data reconstruction example is shown in figure 3
with orthogonal block code CO and transmission/reception
of only first three rows of the code with a further 50%
random data reduction via the sensing matrix assuming and
average SNR of 8dB. Although not a perfect reconstruction
due to the heavy data cutback, apart from the weakest target
returns, majority of reflections come out quite clear and are,
due to absence of noise, easily detectable through a simple
thresholding test.
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Fig. 3. CS based reconstruction with 50% deduction
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Fig. 4. Matched filter based reconstruction with 50% deduction

A standard matched filtering output on the same signal data
provides figure 4, were the overall SNR is lower and where
the impacts of the pulse spreading functions are much more
discernible. A CFAR type detector would need to be applied
for target detection, more importantly, matched filtering in this
situation does not have the ability to distinguish the waveforms
which causes significant overlaps of spreading functions par-
ticularly at the peak points; thus making it difficult to to locate
and determine with accuracy which reflections arrive through
which transmitter.
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More sophisticated detection algorithms can combine the
results from matched filtering, which is computationally in-
expensive, with CS to reduce the overall false detection rate.
These simulations do demonstrate the fact that CS methods
under space-time block codes can work exceptionally well
in certain settings and the increased system complexity can
to some extent be compensated by reducing the block dwell
period and relying on collection of randomized data. Similar
methods can also become useful when only parts of the data
may be available in e.g. a distributed environment.

More detailed simulations are shown in figures 5 and 6
where the sampling sensing matrix is randomly varied to alter
the collected data rate. The plots display the results of the
average number of targets detected through a thresholding test,
out of a total of 12 targets, based on 100 simulation runs. This
is shown as a function of the reduced data rate, in percentage,
under the prescribed block code consisting of either 3 or 2
block integration intervals with the average SNR at 8dB and
each pulse composed of six samples.
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Fig. 5. Target detection with CS, 3 block code rows, SNR=8dB, plen = 6

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

A
ve

ra
g
e
 n

u
m

b
e
r 

o
f 
ta

rg
e
ts

 d
e
te

ct
e
d

Data reduction in sensing matrix, in %

Block code duration: 2 pulse transmissions (2/4)

 

 

C
O

 Orthogonal Block code

C
4
 Random code

C
Q

 Quasi−Orthogonal Block Code

C
N

 16 pulse code

Fig. 6. Target detection with CS, 2 block code rows, SNR=8dB, plen = 6

It is evident from the simulations that the arbitrary block
code (6) gives reasonable outcomes while the orthogonal block

code clearly starts to lag behind. Performance of CN with
all independent pulses is also respectable along with quasi-
orthogonal code under limited integration time. In all cases, the
weaker targets are more easily degraded, particularly in low
SNR situations, while the more stronger ones remain stable
for a recovery in a CS reconstruction. Heavy data degradation
starts to cause more issues with fewer targets being detected,
particularly where only two rows of the block code are put
to use. Apart from the more extreme cases, stable recovery
and reconstruction is generally achievable with moderate data
amount which otherwise would be problematic under standard
matched filtering. The performance levels are further improved
significantly if longer pulses are put to use. Figures 7 show a
comparative plot with the pulse length at ten samples where
the target detection probability generally shifts for all type of
block codes.

10 20 30 40 50 60 70 80 90
6

7

8

9

10

11

12

A
ve

ra
g
e
 n

u
m

b
e
r 

o
f 
ta

rg
e
ts

 d
e
te

ct
e
d

Data reduction in sensing matrix, in %

Block code duration: 3 pulse transmissions (3/4)

 

 

C
O

 Orthogonal Block code

C
4
 Random code

C
Q

 Quasi−Orthogonal Block Code

C
N

 16 pulse code

Fig. 7. Target detection with CS, 3 block code rows, SNR=8dB, plen = 10

IV. CONCLUSION

This purpose of this paper has been to demonstrate a
space-time block coding method for multistatic radar systems
combined with a compressed sensing approach at the receiver.
This use of block codes allows for flexibility in selecting ar-
bitrary non-orthogonal waveforms while compressive sensing
methodology permits a great deal of reduction in data acqui-
sition through random data collection rather than continuous
sampling and a reduction of the integration period of a block
code. The paper has analyzed different block-codes and found
that overall selecting arbitrary codes performs better than
orthogonal block codes. It was shown that these approaches
work well and provide estimates of the dominant targets even
with significant data reduction. The utilization of compressed
sensing with block codes follows the framework of similar
methods where the hardware requirements can be diluted and
instead replaced by advanced processing in software.
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