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Abstract. Oscillations with periods on the order of 5- In a recent publicationRarrugia and Grattqr2011) it was

10 min have been observed by instrumented spacecrafts idemonstrated that such Sl-events are followed by large am-
the Earth’s magnetosphere. These oscillations often folplitude oscillations of~5 min periods. These are observed,
low sudden impacts related to coronal mass ejections. It igor instance, by satellites in the cold, dense magnetosheath
demonstrated that a simple model is capable of explainingand in the hot and tenuous magnetosphere plasmas, consis-
these oscillations and give a scaling law for their basic chartent with other related observationBl&schke et al.2009.
acteristics in terms of the basic parameters of the problemlt has also been foundK{velson et al, 1984 Sibeck et al.

The period of the oscillations and their anharmonic nature, 1989 Korotova and Sibeck1995 that magnetic pulsations

in particular, are accounted for. The model has no free adwith 8-10 min periods measured by geosynchronous satel-
justable numerical parameters. The results agree well witHites are well correlated with oscillations in the solar wind
observations. The analysis is supported by numerical simudynamic pressure.

lations solving the Magneto-Hydro-Dynamic (MHD) equa-  Itis the purpose of this communication to demonstrate that
tions in two spatial dimensions, where we let a solar wind oscillations at these characteristic periods can be accounted
interact with a magnetic dipole representing a magnetizedor by a simple model of the magnetosphere. The entire prob-
Earth. We consider two tilt-angles of the magnetic dipole lem of the coupling between the solar wind and the mag-
axis. We find the formation of a magnetosheath with thenetosphere is extremely complicated even under quiet con-
magnetopause at a distance corresponding well to the anatitions, and will be even more involved during solar wind
Iytical results. Sudden pulses in the model solar wind setslisturbances. The main purpose of the present work is to
the model magnetosphere into damped oscillatory motiongeduce the analysis to its bare essentials, and then compare
and quantitatively good agreement with the analytical resultghe results with observations and numerical simulations. The

is achieved. present approach is global, while some local mod8knt-
Keywords. Magnetospheric physics (Magnetospheric con-SON et al. 1992 study field line resonances associated with
figuration and dynamics) Magneto-Hydro-Dynamic (MHD) waveguide modes in the

magnetosphere. Other models consider waves propagating

in the equatorial plane between the flanks of the bow shock

and a turning point deep within the magnetosphétarfold

and Samsorl992. Another approach considers the magne-

The arrival of the pressure increase associated with the ingopause surface analog(')us'to an elastic membrane, obtaining
. . its natural modes of oscillatiofrfeeman et al1995.

terplanetary shock driven by an interplanetary coronal mass

ejection (ICME) will compress the low latitude geomagnetic

field through an intensification of the Chapman-Ferraro mag- )

netopause current. This leads to a sudden impulse (SI) which A Simple model problem

can be observed also in low latitude magnetometer records. ] ) ) )
Assume as a first approximation that the solar wind can be

) _ considered as a “wall” of ideally conducting material. Sur-
Correspondence td. L. Pecseli face currents are induced in the solar wind, in such away that ©
BY (hans.pecseli@fys.uio.no) the Earth’s dipolar magnetic field together with the magnetic
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dipole is placed inside the solar wind, as indicated by the ar-
row to the left in Figla. We will not need this exact solution
here, but be content with the overall variation. Note the two
cusp points labele@ on the figure, where the magnetic field
intensity vanishes. Using the mirror image and the basic ex-
pressions for a magnetic dipole, the construction of E&.

is straight forward. For simplicity we let the magnetic dipole
be parallel to the surface of the interface in Fig, this is a
trivial restriction.

The plane surface approximation is only locally valid: the
surface containing the current paths is distorted as illustrated
in Fig. 1c). The topology of the surface currents is however
not changed. The plane surface model can therefore be used
as an approximation as the tangent plane at the stagnation
point (or “nose region”) of the solar wind. The model as-
sumes an ideally conducting solar wind. For large magnetic
Reynolds’ number®R| = oo LU > 1 the assumptions are
applicable even for finite conductivities, with £ being a
characteristic length-scale for the problem. In our case we
estimateRr, ~ 10°. A small magnetic field of-5nT embed-
ded in the solar wind is of no significant consequence for the
arguments, and will only change the estimateRorslightly.

2.1 Steady state

We can use the simplified model from Fifj.to obtain an
estimate for the distanc® from the Earth to the stagnation
point between the Earth and the SiWalker and Russell
1995. We take the dipolar Earth magnetic field compo-
nent By = uoMsind /(4 r3) and derive the magnetic field
pressureB?/2u. at this position. An anglé between the
magnetic dipole axis and the Sun-Earth direction was in-
troduced explicitly, noting that for most relevant cases we
haved ~ /2. With the additional magnetic field contribu-
tion from the image dipole, see Fid, we find B%/2uo =
2uoM?2sirf0 /(4 r3)2. For stationary conditions, this mag-
netic pressure has to balance the dynamic pressure from the
solar wind. With this latter pressure being the momentum re-
Fig. 1. Simple illustrative model for the magnetosphere, obtained ceived per sec per unit area, we have the estimaid]zMn,

by considering the solar wind as an ideally conducting walidp-  We used only the directed momentum density of the solar
man and Bartelsl94Q Alfv én, 1950). (a) shows the magnetic field  \yind n MU, with M being an average ion mass, and ignored
lines, and(b_) selected SL_Jrface cu_rre_nt paths at the inter_fac_e, beinga thermal velocity spread. This can be justified sificés
representative for a continuous distribution. The magnetic field van1arge compared to the sound spedas well as the ion ther-

ishes at the cusp-points labeled A schematic illustration of the . .
) o . mal velocity. The net force per unit area on the magnetopause
deformation of the surface of current-pathgbis shown in(c) for is then

a more realistic model.

5 .
F=2M—nMU2, 1)

fields originating from the surface currents cancel inside the (4r3)?

model solar wind. This situation is illustrated in Figs.and

1b. For a stationary observer it will appear as if the magneticwherer is a distance in the Earth-Sun direction, as measured

field lines near the Earth are “compressed”. The magnetidrom the Earth. Fod ~ = /2 we note that the correction due

field between the Earth and the ideal solar wind can be deto the tilt of the magnetic dipole is of the order(f/2—06)2.

termined by the method of images, where an image magneti@ his correction is small and will be ignored in the following.
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Fig. 2. Normalized Earth-magnetopause distaRg&g for varying
dynamic solar wind pressure\ U2,

The equilibrium positiorR is found by equating the mag-
netic and solar wind pressures. We find the relation

1/6
R— poM? /
"\ 8r2aMU? '

Similar expressions can be found in the literatiéalker
and Russe]l1995. Inserting typical numbers a8 ~ 3 x
10°ms 1, n~5x10°m=3, and the hydrogen mass/ =
1.66x 1027kg, we findR ~ 7.2 x 10’ m, or R ~ 11.2 RE,
in terms of the Earth radiu®g = 6.4 x 10° m. The estimate

)
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Fig. 3. The period Z/Q of characteristic small amplitude mag-
netosphere boundary oscillations for varying solar wind pressure
nMU? and mass loadingp.

mass per unit surface area) of the magnetopause, here written
as the product of a thicknegsand a mass densigyto find

d’A poM?
Dp—s=—-3A——, 3
Prar 47 2R7 ®
giving the oscillation period
42R7D, R D,
R ) iy @)
3uoM?2 UV 6nMR

for R is comfortably close to the generally accepted range of

R ~10-15Rg. The model Eq.Z) implies a scaling law for

using Eq. B). For simplicity we assume here that the mass

the distance to the magnetosheath boundary in terms of th@ensityp is approximately uniform, while in reality there can

solar wind velocityU and the solar wind mass density/.
Note that there are no free parameters to fit in Bj. (

The numerical values chosen here are somewhat ad-hoc.
To illustrate the robustness of the results, we show in Eig.
the variability of the normalized Earth-magnetopause dis-

tance R/ Rg for varying solar wind pressuresMU?. We

find that the good agreement with known observational re-

be some irregular variationS¢ng et al.199Q Gosling et al,
1990.

To estimate the mass loadido giving the inertial term

in Eqg. ) we use results fronSpreiter et a].1966. The im-
portance of the inertia for the problem was recognized also in
other studiesgmit, 1968 Freeman et 811995. The numer-
ical studies $preiter et al. 1966 indicate that typical val-

sults is robust. It is therefore reasonable to explore also th&€S areD ~ R/4 (consistent with observations by e$png

dynamical properties of this simple model, its natural oscil- €

lation period in particular.

2.2 Oscillations without damping

t al, 1990 andp ~4nM. As long as the velocity of the
oscillationsd A /dt is smaller than the speed of sound;,
we can consider the motion to be incompressithlengau
and Lifshitz 1987, and therefore leDp be constant. (It is
easily demonstrated thatA /dr/Cs can become large only
for large disturbances. In effect, we assume only that

The model discussed here allows for oscillations of the mag-is constant, which is a weaker assumption than strict incom-

netopause around the equilibrium positi®nFor small, slow

pressibility, p &~ const.). Inserting the numerical values used

displacements of the interface between the solar wind and thbefore into the analytical result we find a characteristic
magnetosphere, we can assume the solar wind pressure to period to be Z/Q = 10.2 min, which is close to those ob-

constant, while the magnetic pressure varies like®1 As-
suming small displacementsfrom the equilibrium position

served. Within the present model the magnetosphere can be
considered as an oscillator which is set into a “ringing” mo-

R, we will consequently have a net force on the interfacetion by a sudden impulse event. The oscillations are global,

given approximately by ~ —3AuoM?/(47%R"). To set

and will give detectable signatures also in ground-based in-

up an equation of motion we introduce the mass loading (i.e struments measuring magnetic fields, as observed.

www.ann-geophys.net/29/663/2011/
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In Fig. 3we illustrate the period of the characteristic mag-
netosphere boundary oscillations for varying solar wind pres-
surenMU? and mass loadindp as defined before. We
find characteristic periods in the interval 2-12 min (corre-
sponding to the frequency range 1-8 mHz), which accom-
modate observations very wePlaschke et al2009. Also
we find the results to be robust in the sense that even
large variations in one of the parameters only give modest
changes in 2/2. A change in solar wind momentum den-
sity changes the equilibrium position, and we havR/R ~
—(1/6)AnMU)/(nMU). We emphasize that there are no
free parameters to fit in Eq3)Y. We use quantities such as
D andp as inputs, but note that all quantities are amenable
to measurements or numerical simulations, so they can not
properly be considered as free parameters available for fitting
analytical results to observations. Our results in the present
work can be seen as an effort to predict some dynamic prop-

erties of magnetospheres, on the basis of measurable steady \

state characteristics.

The simple model outlined here has several features that
can be tested experimentally. Due to the strongly anharmonic
nature of the restoring force we expect a significant harmonic
content. Also the oscillations should have a detectable non-
linear frequency shift.

To discuss the finite amplitude nonlinear case, we rewrite
the force without linearization to obtain Newton’s second law
in the form

<
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a) -

0.05 0.10 0.15 0.20
A

Fig. 4. Numerical solutions of Eq5j are shown ir(a) for five nor-

malized amplitudesA = 0.04,0.08,0.12,0.16,0.20. The normal-
d? ,uo/\/lz ( 1 ) ) ized nonlinear frequency shift of the characteristic magnetospheric

Do A=— -
Pare 872R6\~  (1+A/R)S

boundary oscillations shown ifb) for varying A, whereARQ is

the reference velocity A /dt at the positiorA = 0.

which gives Eq. 8) upon linearization of the right hand side.
Introducing the frequencg of the small amplitude oscilla-

tions we can write EqQ.5) as

a2 (A\_ @ 1
F<F)"F< _<1+A/R)6>’

or

az 2+QZ Z4—t 1) _ o242
dt 3 51+2)° 5) ’

more conspicuous by considering the velocity and acceler-
ation of the boundary layer, but these quantities can not be
detected experimentally, so they are not shown here. We can
also demonstrate by a simple Fourier analysis that the oscil-
lations will have a rich harmonic content even for moderate
oscillation amplitudes due to the strongly anharmonic nature
of the restoring force in Eq5J. The amplitude of the har-
monics is increasing with amplitudé. Harmonics of the

with Z = A /R and the right hand side being an integration magnetospheric oscillations are often obseruégpko and
constant, written in this form for later convenience. The Spence2003.

guantity RQA is the velocity of the perturbation at the equi-

librium position. By integration we obtain the oscillation pe- 2-3 Damped oscillations

riod

- f dz ’ ©)

2 _ 1 1

“ \/ 34 5125 5
where the integration limit&€; < 0 andZ; > 0, with | Z1| #
|Z>|, are given as the solutions @f—1/5+1/(5(1+ Z)°) =

The oscillations observed in space are often strongly
damped, in variance with the simple model discussed in
Sect.2.2 The following extension of our basic model will
account also for a damping mechanism when we take into
account that the momentum transferred from the solar wind
to the magnetosphere is determined by rilative veloci-

3A2. The amplitude dependence of the normalized variationti€s, and not by alone as assumed in Se2t2 The more

of the oscillation period is shown in Fig. The nonlinear
frequency shift is significant, being up t010%, and should

general expression for the forch can be written as

be observable. The anharmonic features can be made even

Ann. Geophys., 29, 66871, 2011
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Fig. 5. Numerical solutions of Eq9) are shown for four amplitudes

y ==+0.15 and+0.30.

. uoM?3sirtg dAN?

Taking agairg ~ /2, expressiong) becomes

d? uoM? 1
Dp——A = — 1—
Par 872R6 ( (1+A/R)6>
dA  (dA\?
—aM(20==+ (=) ). 8
" ( dt +<dt> ) ®

In the normalized units used before we have

d? 1 1
— 7Z=—"1-—
dt? 6 (1+2)8

2 |RnM dZ RnM [(dZ\?
J/6 dt

Dp dt Dp
in terms of the normalized time= Q. We linearize Eq.9)
to obtain the result

(9)

d?z dz
= 7-2a——,
dt? dt

with the normalized damping coefficieat= /RnM /6Dp.

(10)

The result 1£0) has well known solutions in form of damped

oscillationsZ (1) = coSwt +8)exp(—ta) with w = /1 — a2
whena < 1. Fora = 1 we have critical damping, white > 1
gives over-damped oscillations. Small valuesafre found
when the solar wind speddis large (giving smalR) and the

667

constant. We use the unperturbed condition for the normal-
izing quantities and lep be the fraction of solar wind mass
density enhancement. The basic equation can then be written
in normalized form as

2
d?z 1 1 1 6RnM dZ
s - |1 ~la .11
dt2 6 (1+2)5 6( +\/ Dp df>(+y) (11)

In Fig. 5 we show numerical solutions of EqLY) for dif-
ferent perturbationg to illustrate the damping of the oscil-
lations. This reference calculation usksM = Dp. To il-
lustrate the nonlinear character of the oscillations, we show
solutions for both positive and negative changes in the solar
wind density. For a linear system, the positive and negative
parts of Fig.5 should be mirror images with respect to the
horizontal axis. We expect, however, a different nonlinear re-
sponse to an increase and a rarefaction in the solar wind. We
find that the term containing/Z /dt)? reduces the damping
slightly for realistic amplitudes.

The physical mechanism causing the damping in E@) (
is seen to be a phase-lag between the forcing and the dis-
placement of the magnetospheric boundary when it is taken
into account that the momentum transfer depends on the so-
lar wind velocity relative to the moving boundary.

3 Numerical simulations

In order to make a qualitative test of the foregoing simple
models we carried out some numerical simulations of the in-
teraction of a Solar wind and a magnetic dipole representing
the Earth. For simplicity, our simulations are carried out in
two spatial dimensions. In this representation, the Earth’s
magnetic field is modeled not by a small ring current but by
two parallel wires, carrying current in opposite directions,
perpendicular to the plane of computation. The analytical
model refers to the dynamics of the tangent plane at the stag-
nation point for the solar wind. This plane can be defined for
three as well as two-dimensional conditions, but the analyti-
cal expressions are slightly different for the two cases.

The numerical methods used are based on a Smooth-
Particle-Hydrodynamics (SPH) code solving the Magneto-
Hydro-Dynamic (MHD) equationdonaghan 1992 2005
Bgrve et al. 2005. To generalize the analytical results, we
allow the Solar wind to support a weak magnetic field. In this
two-dimensional representation, the dipole field becomes

mass loadingp is large as well. For most relevant cases we Re\? TR
havea < 1 but the damping of the oscillations may nonethe- B(r) = Be <7) (Co¥ey —sinde,)
less be strong, so that nonlinear effects will be noticeable

only for the initial part of the time evolution of a disturbance. in terms of a reference magnetic fieb¢ at a reference dis-
The numerical example used in Se2t2 had RnM = Dp tanceRg. We note that for this 2-D-model, the magnetic field

giving @ = 1/4/6~0.41. intensity| B| is independent af. We can write the equivalent
A relevant problem to be analyzed by EB) ¢orresponds ~ Of Eq. () in the form

to a sudden enhancement of the solar wind plasma density,

which we here model by increasing while keepingU

(12)

www.ann-geophys.net/29/663/2011/ Ann. Geophys., 29, 6682011
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Fig. 7. Variation of the plasma density, here represented by
log1g(n), is shown with velocity vectors superimposed. See cor-
responding Fig6 for the magnetic field.

Fig. 6. The magnetic field intensity, here represented gy 1),

is shown in color coding with selected magnetic field lines superim-
posed. Distances are normalized with the Earth raflitisSee cor-
responding Fig7 for the plasma density. The Sun is in the negative

x-direction. 15F : : B
b, 4 _ 282 ! i
pdtz HO (1+A/R)4 E W‘Oi : :
dA\? > f : :
—-nM\{U+—) , 13 g ' '
! ( dt ) t3) S o5t | |
where the equilibrium position is !
1/4 0.0 '
2B2 /
R=Re\ omuz] -30 -25 -20 —-15  —10
r/Re
and the characteristic oscillation period
Fig. 8. Variation of plasma density along the line connecting the
71 271 R5/2 /Lon R1 | Dp 14 Sun and the Earth. Distance is normalized also here with the Earth
- BER2 U2\ RuM’ (14) radiusRg. This figure serves to define the positions (shown with

vertical dashed lines) of the bow shock (left) and the magnetopause
A change in solar wind momentum density changes the equi¢right) as used later on. The density is normalized by the steady state
librium position, and in the present two-dimensional model solar wind plasma density. Note the logarithmic vertical axis. Even

we haveAR /R~ —(1/H)A(nMU)/(nMU). small variations of the density can give a large change in the local
In normalized units, the expressial8j becomes maximum to the right, so motions of this position are not always
' well defined.

d? 1 1
a2’ ="\ s e
t coding with selected magnetic field lines superimposed,
RnM dZ RnM (dz)2 while Fig. 7 shows the plasma density by lggr) with solar

dt  Dp \dr 15 wind velocity vectors superimposed. Note the ring-shaped

magnetic field intensity near the Earth in F&j.consistent

The nonlinear features are less prominent in two spatial diwith Eq. (12). A part of the axial variation of the plasma den-
mensions, as seen by comparing the nonlinear témz) sity is shown in Fig8. For the numerical results in Figs-8
in Eq. (15 with (1+2)~% in Eq. @). The present two- the positive x-axis (with origin at the Earth) is pointing away
dimensional results are, however, not significantly differentfrom the Sun. The magnetosheath plasma density is larger
from the model outlined in Sec. Our model is thus robust, than in a fully three-dimensional case since the plasma can
and can be tested also with a simplified two-dimensional nu-escape from the stagnation point in two directions only. The
merical model as the one used here. distance from Earth to the magnetosheath is approximately

Representative results are shown in Fégshowing the R =14 Rg, in reasonable agreement with predictions of our
magnetic field intensity represented by(|IB| + 1) in color model.

Ann. Geophys., 29, 66871, 2011 www.ann-geophys.net/29/663/2011/
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2.0[

v /

Fig. 10. Magnetopause boundary oscillations corresponding to

Fig. 9. Bow shock boundary oscillations, see Figfor definition Fig. 9. See Fig8 for definition of the position considered.

of the position being considered. The normalizing time is here
T = Rg/U whereU is the solar wind velocity. We show results
for An/n =10% 15% and 20%,

keeping the solar wind velocity . . .
constant. See also Fi0. the present two-dimensional model. The results are thus in

qualitative agreement with the analytical results of S2@.
and Fig.5.

When this reference model has reached a steady state, we imulati ith a tilted i< diool
impose a sudden increada: in the solar wind density. The 3.1 Simulations with a tilted magnetic dipole

%Ngcﬁgiligz?z 'Eg/';?;ﬁ?c'gu%fea;e dg]rinesc?; Inrirr:qogtcrés?wi ¢ Most of the analysis and the numerical simulations presented
q P pring @o far refer to the case where the magnetic dipole axis is per-

%{Tﬂisjvitiarﬂgsvxih ;r:ctj ja?rlsinhltrr:rc])iisr?tzfﬁgit])&/ %I'E:so pendicular to the direction from the Sun to the Earth. The
J ' ying ' analytical expressionl] allows for a tilt of the magnetic

spring will be set into oscillatory motion until the entire sys- dipole, so formally this simplifying assumption can be re-

;(ar]rgvj?g:ae:tsigzlt\iar;;\,t\?:r?sug“?:;]uem Sot;t%nlg oFflgt?:%%)(\?stiocklaxed' but the complexity of the problem becomes signif-
P icantly increased, nonetheless. We can use the numerical

a_nd thg magnetopause as def'f‘ed n B!gThe numerical simulations to estimate the significance of the assumption of
simulations give a smooth density variation between the two

. - : ) ) 6 = /2. Numerical results are shown in Figsl and 12,
bo_u_nda_rles shown_ in Fig, while observa'Flo_ns show eI 10 be compared with Figé and7 for the magnetic field and
larities in the density. These probably originate from den5|tyOlensity variations, while the time-variations shown in Fig
variation in the solar wind. The density profile in the simu- should be compa,red with Fig8.and 10, We find that aII.
Iat|0n§ changes S|gn|f|gantly during th(_a dynamical evqutlonthe basic features of the simplifiet= /2 model are re-
following the perturbation, so the motion of the local max- covered, the main difference being that a noticeable phase

imum position at the_ inner bo_und_ary _at the magnetopauseshift between the oscillating spatial displacement of the two
(right hand position indicated in Fi@) is not always well

defined boundaries defined on Fi§. We also find a reduction in
ined. the equilibrium distanc&, consistent with Eq.q) if a sirf6
Torrection is included. The average plasma density of the

gl\l/l:rt]lt?]r;s”, S’St:{ttl'g%ftth;hﬁerv?/fzreur;ﬁsriE?ns't'ggiﬁtigﬁcégit;?getr?tmagnetosheath in the simulations is found to decrease with
y d P 15-20% when the dipole axis is tilted, while the width

with the new (increased) solar wind pressure. The two posi- . - . e
tions indicated in Fig8 move together in phase, albeit with changes only little. The characteristic period of the oscilla

) . . tions is slightly reduced as compared to the case without tilt
different amplitudes. We find/RnM/Dp ~0.5. The os- : : ) . - .
cillation period is found to be of the order of Re/U ~ of the magnetic axis, and the damping time is slightly in

(11/14)R/U. This result is within an order of magnitude creased, so that also this observation is in qualitative agree-

consistent with Eq.1(4), which predicts a period of approx- ment with our analytical model.

imately 2r/Q =27 R/U for the present conditions. The

oscillations are damped, with a damping time of 1-2 0s-4 Conclusions

cillation periods. From the numerical results we estimate

a = +/RnM](4Dp) ~ 0.25, in reasonable agreement with We have described a simple model that takes into account the
the observed damping time. A nonlinear frequency shift isbasic features of the interface between the Earth’s magneto-
here barely noticeable, in agreement with the properties okphere and the solar wind. We demonstrated how this simple

www.ann-geophys.net/29/663/2011/ Ann. Geophys., 29, 6682011



670 S. Barve et al.: Magnetosphere oscillations

Fig. 11. Magnetic field variations, corresponding to F&. The
present case has a tilt of/6 for the magnetic dipole axis.

1.0
0.5
-0.5¢ N
0.0 :
0 10 20 350

-0.5 t/ T

Fig. 13. Figures corresponding to Figa(top) and10 (bottom).
-1.0

-30 —-20 -10 0 10 20 30 40

ence across the magnetospheric boundary as compared to our
Fig. 12. Density variations corresponding to Fig.here with a tilt model and .thus reduce the psc!llatlon frequency. The dif-
of /6 for the magnetic dipole axis. ferent amplitudes of the oscillations of the bow shock and
the magnetosphere boundary in Fi§@sand 10 indicate that

a more accurate analysis should take into account the com-

model accounts for the basic characteristics of the distanc@ressibility of the magnetospheric plasma, i.e. take into ac-
from the Earth to the magnetosphere boundary and also howount the time it takes for the perturbation to propagate from
the same model accounts for observed characteristic minutd1® Pow shock to the magnetosphere boundary. The relatively
scale oscillations often observed in the magnetosphere folStrong damping in our simulations makes the nonlinear fre-
lowing Sl-events. The observed periods of oscillation can beduency shift barely noticeable, they might be observable for
accounted for. It is also shown how a simple extension ofWeaker dampings, i.e. smaller valuesy0RnM /6Dp.
the model explains the damping of the oscillations. Nonlin-  In the small amplitude limit we have a normalized damp-
ear effects were included in the analysis, and these can havieg constantr = /RnM /6Dp which has to be determined
importance for cases with weakly damped oscillations. Weby observations or numerical simulations. The damping is
believe that the suggested model can be applied also to othetery sensitive to changes in Quite generally we can state
magnetized planets in a solar system. that R is reduced for increasing solar wind velocities. At the
In support of the analytical model we show results from same time we expegtto increase as well bub to decrease
numerical simulations, obtained for a model system in twoin such a way thaDp changes only little. At the same time
spatial dimensions. Good qualitative agreement is found. Ave expect that the natural frequer@ywill increase withU
sudden change in the solar wind momentum density give®s Well so that the normalized damping constant varies as
rise to damped oscillations of the boundaries of the com-v/RnM/6Dp ~U~*3 by use of Eq.2).
putational magnetopause. The simulations demonstrate that By numerical simulation we studied also the importance of
the solar wind magnetic field has only minor importance. the simplifying assumption @f = 7 /2 in the analysis. Some
Its presence will reduce the net magnetic pressure differdifferences can be noted as already mentioned. Nevertheless
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we find the overall features to be well accounted for by theGosling, J. T., Thomsen, M. F., Bame, S. J., Onsager, T. G., and

simple model, even for a case where the magnetic dipole axis Russell, C. T.: The electron edge of low latitude boundary layer

is tilted by as much as /6 with respect to the reference case.  during accelerated flow events, Geophys. Res. Lett., 17, 1833~
We mention also a possibility for a parametrically driven 1836, 1990. _

oscillation for cases where the solar wind pressure is fluc-Harrold, B. G. and Samson, J. C.: Standing ULF modes of the

tuating. This case can be modeled by setiihg: U () in magnetosphere: A theory, Geophys. Res. Lett., 19, 1811-1814,

. _ doi:10.1029/92GL018Q2992.
Eq. @), recalling that now als& = R(¢). If the power spec- Kepko, L. and Spence, H. E.. Observations of discrete,

trum of the solar wind pressure contfiln_s S|gn_|f|c§nt energy global magnetospheric oscillations directly driven by so-

near(2, we have the possibility of periodic oscillations sus-  |5r wind density variations, J. Geophys. Res., 10, 1257,

tained for a long time. A similar possibility was mentioned  {oi:10.1029/2002JA009678003.

also byKepko and Spencg003. Kivelson, M. G., Etcheto, J., and Trotignon, J. G.: Global compres-
Our ambition here was to obtain the simplest possible sional oscillations of the terrestrial magnetosphere —the evidence

model, but point out that many details can be added without and a model, J. Geophys. Res., 89, 9851-9856, 1984.

much additional effort, such as a dilute plasma in the EarthKorotova, G. I. and Sibeck, D. G.: A case study of transit event

magnetosphere, and a weak solar wind magnetic field. These motion in the magnetosphere and in the ionosphere, J. Geophys.

additions to the model will contribute to the force balance _Res- 100, 35-46, 1995. o _

in relation (). A tilt of the Earth's magnetic dipole axis is Landau, L. D. and Lifshitz, E. M.: Fluid Mechanics, vol. 6 of

. f Th tical Physics, 2 ed., Butt th-Hei
readily accounted for, as demonstrated. The model can be Course of Theoretical Physics, ed., Butterworth-Heinemann,
Great Britain, 1987.

generalized to account also for torsional oscillations whereMonaghan J. 3. Smoothed particle hydrodynamics, Annu. Rev.
the normal of the local plane of the magnetosphere boundary astron. Astrophys., 30, 543-574, 1992.

is turning around a line perpendicular to the Sun-Earth direcvionaghan, J. J.: Smoothed particle hydrodynamics, Rep. Prog.
tion. In, for instance, Figla one of the two lines mentioned Phys., 68, 1703-1759, 2005.

is vertical in the plane of the figure, the other one perpen-Plaschke, F., Glassmeier, K.-H., Sibeck, D. G., Auster, H. U., Con-
dicular to this, out of the paper. Thus, two modes can be stantinescu, O. D., Angelopoulos, V., and Magnes, W.: Mag-

identified here, one where the line is parallel to the Earth’s netopause surface oscillation frequencies at different solar wind

magnetic dipole axis and one where it is perpendicular. conditions, Ann. Geophys., 27, 4521-4581j:10.5194/angeo-
27-4521-200920009.
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