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Abstract. Oscillations with periods on the order of 5–
10 min have been observed by instrumented spacecrafts in
the Earth’s magnetosphere. These oscillations often fol-
low sudden impacts related to coronal mass ejections. It is
demonstrated that a simple model is capable of explaining
these oscillations and give a scaling law for their basic char-
acteristics in terms of the basic parameters of the problem.
The period of the oscillations and their anharmonic nature,
in particular, are accounted for. The model has no free ad-
justable numerical parameters. The results agree well with
observations. The analysis is supported by numerical simu-
lations solving the Magneto-Hydro-Dynamic (MHD) equa-
tions in two spatial dimensions, where we let a solar wind
interact with a magnetic dipole representing a magnetized
Earth. We consider two tilt-angles of the magnetic dipole
axis. We find the formation of a magnetosheath with the
magnetopause at a distance corresponding well to the ana-
lytical results. Sudden pulses in the model solar wind sets
the model magnetosphere into damped oscillatory motions
and quantitatively good agreement with the analytical results
is achieved.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics)

1 Introduction

The arrival of the pressure increase associated with the in-
terplanetary shock driven by an interplanetary coronal mass
ejection (ICME) will compress the low latitude geomagnetic
field through an intensification of the Chapman-Ferraro mag-
netopause current. This leads to a sudden impulse (SI) which
can be observed also in low latitude magnetometer records.

Correspondence to:H. L. Pécseli
(hans.pecseli@fys.uio.no)

In a recent publication (Farrugia and Gratton, 2011) it was
demonstrated that such SI-events are followed by large am-
plitude oscillations of∼5 min periods. These are observed,
for instance, by satellites in the cold, dense magnetosheath
and in the hot and tenuous magnetosphere plasmas, consis-
tent with other related observations (Plaschke et al., 2009).
It has also been found (Kivelson et al., 1984; Sibeck et al.,
1989; Korotova and Sibeck, 1995) that magnetic pulsations
with 8–10 min periods measured by geosynchronous satel-
lites are well correlated with oscillations in the solar wind
dynamic pressure.

It is the purpose of this communication to demonstrate that
oscillations at these characteristic periods can be accounted
for by a simple model of the magnetosphere. The entire prob-
lem of the coupling between the solar wind and the mag-
netosphere is extremely complicated even under quiet con-
ditions, and will be even more involved during solar wind
disturbances. The main purpose of the present work is to
reduce the analysis to its bare essentials, and then compare
the results with observations and numerical simulations. The
present approach is global, while some local models (Sam-
son et al., 1992) study field line resonances associated with
Magneto-Hydro-Dynamic (MHD) waveguide modes in the
magnetosphere. Other models consider waves propagating
in the equatorial plane between the flanks of the bow shock
and a turning point deep within the magnetosphere (Harrold
and Samson, 1992). Another approach considers the magne-
topause surface analogous to an elastic membrane, obtaining
its natural modes of oscillation (Freeman et al., 1995).

2 A simple model problem

Assume as a first approximation that the solar wind can be
considered as a “wall” of ideally conducting material. Sur-
face currents are induced in the solar wind, in such a way that
the Earth’s dipolar magnetic field together with the magnetic
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664 S. Børve et al.: Magnetosphere oscillations

Fig. 1. Simple illustrative model for the magnetosphere, obtained
by considering the solar wind as an ideally conducting wall (Chap-
man and Bartels, 1940; Alfv én, 1950). (a) shows the magnetic field
lines, and(b) selected surface current paths at the interface, being
representative for a continuous distribution. The magnetic field van-
ishes at the cusp-points labeledQ. A schematic illustration of the
deformation of the surface of current-paths in(b) is shown in(c) for
a more realistic model.

fields originating from the surface currents cancel inside the
model solar wind. This situation is illustrated in Figs.1a and
1b. For a stationary observer it will appear as if the magnetic
field lines near the Earth are “compressed”. The magnetic
field between the Earth and the ideal solar wind can be de-
termined by the method of images, where an image magnetic

dipole is placed inside the solar wind, as indicated by the ar-
row to the left in Fig.1a. We will not need this exact solution
here, but be content with the overall variation. Note the two
cusp points labeledQ on the figure, where the magnetic field
intensity vanishes. Using the mirror image and the basic ex-
pressions for a magnetic dipole, the construction of Fig.1a
is straight forward. For simplicity we let the magnetic dipole
be parallel to the surface of the interface in Fig.1a, this is a
trivial restriction.

The plane surface approximation is only locally valid: the
surface containing the current paths is distorted as illustrated
in Fig. 1c). The topology of the surface currents is however
not changed. The plane surface model can therefore be used
as an approximation as the tangent plane at the stagnation
point (or “nose region”) of the solar wind. The model as-
sumes an ideally conducting solar wind. For large magnetic
Reynolds’ numbersRL ≡ µ0σLU � 1 the assumptions are
applicable even for finite conductivitiesσ , with L being a
characteristic length-scale for the problem. In our case we
estimateRL ≈ 108. A small magnetic field of∼5 nT embed-
ded in the solar wind is of no significant consequence for the
arguments, and will only change the estimate forRL slightly.

2.1 Steady state

We can use the simplified model from Fig.1 to obtain an
estimate for the distanceR from the Earth to the stagnation
point between the Earth and the Sun (Walker and Russell,
1995). We take the dipolar Earth magnetic field compo-
nentBθ = µ0Msinθ/(4πr3) and derive the magnetic field
pressureB2/2µ0 at this position. An angleθ between the
magnetic dipole axis and the Sun-Earth direction was in-
troduced explicitly, noting that for most relevant cases we
haveθ ≈ π/2. With the additional magnetic field contribu-
tion from the image dipole, see Fig.1, we find B2/2µ0 =

2µ0M2sin2θ/(4πr3)2. For stationary conditions, this mag-
netic pressure has to balance the dynamic pressure from the
solar wind. With this latter pressure being the momentum re-
ceived per sec per unit area, we have the estimatep = U2Mn.
We used only the directed momentum density of the solar
wind nMU , with M being an average ion mass, and ignored
a thermal velocity spread. This can be justified sinceU is
large compared to the sound speedCs as well as the ion ther-
mal velocity. The net force per unit area on the magnetopause
is then

F = 2
µ0M2sin2θ

(4πr3)2
−nMU2, (1)

wherer is a distance in the Earth-Sun direction, as measured
from the Earth. Forθ ≈ π/2 we note that the correction due
to the tilt of the magnetic dipole is of the order of(π/2−θ)2.
This correction is small and will be ignored in the following.
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Fig. 2. Normalized Earth-magnetopause distanceR/RE for varying
dynamic solar wind pressurenMU2.

The equilibrium positionR is found by equating the mag-
netic and solar wind pressures. We find the relation

R =

(
µ0M2

8π2nMU2

)1/6

. (2)

Similar expressions can be found in the literature (Walker
and Russell, 1995). Inserting typical numbers asU ≈ 3×

105 m s−1, n ≈ 5× 106 m−3, and the hydrogen mass,M =

1.66×10−27 kg, we findR ≈ 7.2×107 m, or R ≈ 11.2RE,
in terms of the Earth radius,RE = 6.4×106 m. The estimate
for R is comfortably close to the generally accepted range of
R ∼ 10−15RE. The model Eq. (2) implies a scaling law for
the distance to the magnetosheath boundary in terms of the
solar wind velocityU and the solar wind mass densitynM.
Note that there are no free parameters to fit in Eq. (2).

The numerical values chosen here are somewhat ad-hoc.
To illustrate the robustness of the results, we show in Fig.2
the variability of the normalized Earth-magnetopause dis-
tanceR/RE for varying solar wind pressuresnMU2. We
find that the good agreement with known observational re-
sults is robust. It is therefore reasonable to explore also the
dynamical properties of this simple model, its natural oscil-
lation period in particular.

2.2 Oscillations without damping

The model discussed here allows for oscillations of the mag-
netopause around the equilibrium positionR. For small, slow
displacements of the interface between the solar wind and the
magnetosphere, we can assume the solar wind pressure to be
constant, while the magnetic pressure varies like 1/r6. As-
suming small displacements1 from the equilibrium position
R, we will consequently have a net force on the interface
given approximately byF ≈ −31µ0M2/(4π2R7). To set
up an equation of motion we introduce the mass loading (i.e.

Fig. 3. The period 2π/� of characteristic small amplitude mag-
netosphere boundary oscillations for varying solar wind pressure
nMU2 and mass loadingDρ.

mass per unit surface area) of the magnetopause, here written
as the product of a thicknessD and a mass densityρ to find

Dρ
d21

dt2
= −31

µ0M2

4π2R7
, (3)

giving the oscillation period

T =
2π

�
= 2π

√
4π2R7Dρ

3µ0M2
= 2π

R

U

√
Dρ

6nMR
, (4)

using Eq. (2). For simplicity we assume here that the mass
densityρ is approximately uniform, while in reality there can
be some irregular variations (Song et al., 1990; Gosling et al.,
1990).

To estimate the mass loadingDρ giving the inertial term
in Eq. (3) we use results from (Spreiter et al., 1966). The im-
portance of the inertia for the problem was recognized also in
other studies (Smit, 1968; Freeman et al., 1995). The numer-
ical studies (Spreiter et al., 1966) indicate that typical val-
ues areD ≈ R/4 (consistent with observations by e.g.Song
et al., 1990) andρ ≈ 4nM. As long as the velocity of the
oscillationsd1/dt is smaller than the speed of sound,Cs,
we can consider the motion to be incompressible (Landau
and Lifshitz, 1987), and therefore letDρ be constant. (It is
easily demonstrated thatd1/dt/Cs can become large only
for large disturbances. In effect, we assume only thatDρ

is constant, which is a weaker assumption than strict incom-
pressibility,ρ ≈ const.). Inserting the numerical values used
before into the analytical result (4) we find a characteristic
period to be 2π/� = 10.2 min, which is close to those ob-
served. Within the present model the magnetosphere can be
considered as an oscillator which is set into a “ringing” mo-
tion by a sudden impulse event. The oscillations are global,
and will give detectable signatures also in ground-based in-
struments measuring magnetic fields, as observed.
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666 S. Børve et al.: Magnetosphere oscillations

In Fig. 3 we illustrate the period of the characteristic mag-
netosphere boundary oscillations for varying solar wind pres-
surenMU2 and mass loadingDρ as defined before. We
find characteristic periods in the interval 2–12 min (corre-
sponding to the frequency range 1–8 mHz), which accom-
modate observations very well (Plaschke et al., 2009). Also
we find the results to be robust in the sense that even
large variations in one of the parameters only give modest
changes in 2π/�. A change in solar wind momentum den-
sity changes the equilibrium position, and we have1R/R ≈

−(1/6)1(nMU)/(nMU). We emphasize that there are no
free parameters to fit in Eq. (3). We use quantities such as
D andρ as inputs, but note that all quantities are amenable
to measurements or numerical simulations, so they can not
properly be considered as free parameters available for fitting
analytical results to observations. Our results in the present
work can be seen as an effort to predict some dynamic prop-
erties of magnetospheres, on the basis of measurable steady
state characteristics.

The simple model outlined here has several features that
can be tested experimentally. Due to the strongly anharmonic
nature of the restoring force we expect a significant harmonic
content. Also the oscillations should have a detectable non-
linear frequency shift.

To discuss the finite amplitude nonlinear case, we rewrite
the force without linearization to obtain Newton’s second law
in the form

Dρ
d2

dt2
1 = −

µ0M2

8π2R6

(
1−

1

(1+1/R)6

)
, (5)

which gives Eq. (3) upon linearization of the right hand side.
Introducing the frequency� of the small amplitude oscilla-
tions we can write Eq. (5) as

d2

dt2

(
1

R

)
= −

�2

6

(
1−

1

(1+1/R)6

)
,

or(
dZ

dt

)2

+
�2

3

(
Z+

1

5(1+Z)5
−

1

5

)
= �2A2,

with Z ≡ 1/R and the right hand side being an integration
constant, written in this form for later convenience. The
quantityR�A is the velocity of the perturbation at the equi-
librium position. By integration we obtain the oscillation pe-
riod

T =

√
3

�

∫ Z2

Z1

dZ√
3A2−Z−

1
5(1+Z)5 +

1
5

, (6)

where the integration limitsZ1 < 0 andZ2 > 0, with |Z1| 6=

|Z2|, are given as the solutions ofZ−1/5+1/(5(1+Z)5) =

3A2. The amplitude dependence of the normalized variation
of the oscillation period is shown in Fig.4. The nonlinear
frequency shift is significant, being up to∼ 10%, and should
be observable. The anharmonic features can be made even

Fig. 4. Numerical solutions of Eq. (5) are shown in(a) for five nor-
malized amplitudesA = 0.04,0.08,0.12,0.16,0.20. The normal-
ized nonlinear frequency shift of the characteristic magnetospheric
boundary oscillations shown in(b) for varying A, whereAR� is
the reference velocityd1/dt at the position1 = 0.

more conspicuous by considering the velocity and acceler-
ation of the boundary layer, but these quantities can not be
detected experimentally, so they are not shown here. We can
also demonstrate by a simple Fourier analysis that the oscil-
lations will have a rich harmonic content even for moderate
oscillation amplitudes due to the strongly anharmonic nature
of the restoring force in Eq. (5). The amplitude of the har-
monics is increasing with amplitudeA. Harmonics of the
magnetospheric oscillations are often observed (Kepko and
Spence, 2003).

2.3 Damped oscillations

The oscillations observed in space are often strongly
damped, in variance with the simple model discussed in
Sect.2.2. The following extension of our basic model will
account also for a damping mechanism when we take into
account that the momentum transferred from the solar wind
to the magnetosphere is determined by therelative veloci-
ties, and not byU alone as assumed in Sect.2.2. The more
general expression for the force (1) can be written as
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Fig. 5. Numerical solutions of Eq. (9) are shown for four amplitudes
γ = ±0.15 and±0.30.

F = 2
µ0M2sin2θ

(4π(R+1)3)2
−nM

(
U +

d1

dt

)2

. (7)

Taking againθ ≈ π/2, expression (5) becomes

Dρ
d2

dt2
1 = −

µ0M2

8π2R6

(
1−

1

(1+1/R)6

)
−nM

(
2U

d1

dt
+

(
d1

dt

)2
)

. (8)

In the normalized units used before we have

d2

dτ2
Z = −

1

6

(
1−

1

(1+Z)6

)
−

2
√

6

√
RnM

Dρ

dZ

dτ
−

RnM

Dρ

(
dZ

dτ

)2

, (9)

in terms of the normalized timeτ ≡ �t . We linearize Eq. (9)
to obtain the result

d2Z

dτ2
= −Z−2α

dZ

dτ
, (10)

with the normalized damping coefficientα ≡
√

RnM/6Dρ.
The result (10) has well known solutions in form of damped
oscillationsZ(τ) = cos(ωτ +δ)exp(−τα) with ω ≡

√
1−α2

whenα < 1. Forα = 1 we have critical damping, whileα > 1
gives over-damped oscillations. Small values ofα are found
when the solar wind speedU is large (giving smallR) and the
mass loadingDρ is large as well. For most relevant cases we
haveα < 1 but the damping of the oscillations may nonethe-
less be strong, so that nonlinear effects will be noticeable
only for the initial part of the time evolution of a disturbance.
The numerical example used in Sect.2.2 had RnM = Dρ

giving α = 1/
√

6≈ 0.41.
A relevant problem to be analyzed by Eq. (9) corresponds

to a sudden enhancement of the solar wind plasma density,
which we here model by increasingnM while keepingU

constant. We use the unperturbed condition for the normal-
izing quantities and letγ be the fraction of solar wind mass
density enhancement. The basic equation can then be written
in normalized form as

d2Z

dτ2
=

1

6

1

(1+Z)6
−

1

6

(
1+

√
6RnM

Dρ

dZ

dτ

)2

(1+γ ). (11)

In Fig. 5 we show numerical solutions of Eq. (11) for dif-
ferent perturbationsγ to illustrate the damping of the oscil-
lations. This reference calculation usesRnM = Dρ. To il-
lustrate the nonlinear character of the oscillations, we show
solutions for both positive and negative changes in the solar
wind density. For a linear system, the positive and negative
parts of Fig.5 should be mirror images with respect to the
horizontal axis. We expect, however, a different nonlinear re-
sponse to an increase and a rarefaction in the solar wind. We
find that the term containing(dZ/dt)2 reduces the damping
slightly for realistic amplitudes.

The physical mechanism causing the damping in Eq. (10)
is seen to be a phase-lag between the forcing and the dis-
placement of the magnetospheric boundary when it is taken
into account that the momentum transfer depends on the so-
lar wind velocity relative to the moving boundary.

3 Numerical simulations

In order to make a qualitative test of the foregoing simple
models we carried out some numerical simulations of the in-
teraction of a Solar wind and a magnetic dipole representing
the Earth. For simplicity, our simulations are carried out in
two spatial dimensions. In this representation, the Earth’s
magnetic field is modeled not by a small ring current but by
two parallel wires, carrying current in opposite directions,
perpendicular to the plane of computation. The analytical
model refers to the dynamics of the tangent plane at the stag-
nation point for the solar wind. This plane can be defined for
three as well as two-dimensional conditions, but the analyti-
cal expressions are slightly different for the two cases.

The numerical methods used are based on a Smooth-
Particle-Hydrodynamics (SPH) code solving the Magneto-
Hydro-Dynamic (MHD) equations (Monaghan, 1992, 2005;
Børve et al., 2005). To generalize the analytical results, we
allow the Solar wind to support a weak magnetic field. In this
two-dimensional representation, the dipole field becomes

B(r) = BE

(
RE

r

)2

(cosθ êθ −sinθ êr) (12)

in terms of a reference magnetic fieldBE at a reference dis-
tanceRE. We note that for this 2-D-model, the magnetic field
intensity|B| is independent ofθ . We can write the equivalent
of Eq. (8) in the form
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Fig. 6. The magnetic field intensity, here represented by ln(|B|+1),
is shown in color coding with selected magnetic field lines superim-
posed. Distances are normalized with the Earth radiusRE. See cor-
responding Fig.7 for the plasma density. The Sun is in the negative
x-direction.

Dρ
d2

dt2
1 =

2B2
E

µ0

(
RE

R

)4 1

(1+1/R)4

−nM

(
U +

d1

dt

)2

, (13)

where the equilibrium position is

R = RE

(
2B2

E

µ0nMU2

)1/4

,

and the characteristic oscillation period

2π

�
=

2πR5/2

BER2
E

√
µ0Dρ

8
= 2π

R

U

1

2

√
Dρ

RnM
. (14)

A change in solar wind momentum density changes the equi-
librium position, and in the present two-dimensional model
we have1R/R ≈ −(1/4)1(nMU)/(nMU).

In normalized units, the expression (13) becomes

d2

dτ2
Z = −

1

4

(
1−

1

(1+Z)4

)
−

√
RnM

Dρ

dZ

dτ
−

RnM

Dρ

(
dZ

dτ

)2

. (15)

The nonlinear features are less prominent in two spatial di-
mensions, as seen by comparing the nonlinear term(1+Z)−4

in Eq. (15) with (1+ Z)−6 in Eq. (9). The present two-
dimensional results are, however, not significantly different
from the model outlined in Sect.2. Our model is thus robust,
and can be tested also with a simplified two-dimensional nu-
merical model as the one used here.

Representative results are shown in Fig.6 showing the
magnetic field intensity represented by ln(|B|+1) in color

Fig. 7. Variation of the plasma density, here represented by
log10(n), is shown with velocity vectors superimposed. See cor-
responding Fig.6 for the magnetic field.

Fig. 8. Variation of plasma density along the line connecting the
Sun and the Earth. Distance is normalized also here with the Earth
radiusRE. This figure serves to define the positions (shown with
vertical dashed lines) of the bow shock (left) and the magnetopause
(right) as used later on. The density is normalized by the steady state
solar wind plasma density. Note the logarithmic vertical axis. Even
small variations of the density can give a large change in the local
maximum to the right, so motions of this position are not always
well defined.

coding with selected magnetic field lines superimposed,
while Fig.7 shows the plasma density by log10(n) with solar
wind velocity vectors superimposed. Note the ring-shaped
magnetic field intensity near the Earth in Fig.6, consistent
with Eq. (12). A part of the axial variation of the plasma den-
sity is shown in Fig.8. For the numerical results in Figs.6–8
the positive x-axis (with origin at the Earth) is pointing away
from the Sun. The magnetosheath plasma density is larger
than in a fully three-dimensional case since the plasma can
escape from the stagnation point in two directions only. The
distance from Earth to the magnetosheath is approximately
R = 14RE, in reasonable agreement with predictions of our
model.
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Fig. 9. Bow shock boundary oscillations, see Fig.8 for definition
of the position being considered. The normalizing time is here
T ≡ RE/U whereU is the solar wind velocity. We show results
for 1n/n = 10%,15% and 20%, keeping the solar wind velocity
constant. See also Fig.10.

When this reference model has reached a steady state, we
impose a sudden increase1n in the solar wind density. The
two positions indicated in Fig.8 are then set in motion. A
mechanical equivalent could be a damped spring at rest with
a mass loadM which at t = 0 is hit inelastically by a pro-
jectile with mass1M, and carrying momentumU1M. This
spring will be set into oscillatory motion until the entire sys-
tem settles at its new equilibrium state. In Figs.9 and10 we
show the time variations of the positions of the bow shock
and the magnetopause as defined in Fig.8. The numerical
simulations give a smooth density variation between the two
boundaries shown in Fig.8, while observations show irregu-
larities in the density. These probably originate from density
variation in the solar wind. The density profile in the simu-
lations changes significantly during the dynamical evolution
following the perturbation, so the motion of the local max-
imum position at the inner boundary at the magnetopause
(right hand position indicated in Fig.8) is not always well
defined.

We observe that the magnetosphere is set into damped os-
cillations, starting at the reference position, oscillating to
eventually settle at the new equilibrium position consistent
with the new (increased) solar wind pressure. The two posi-
tions indicated in Fig.8 move together in phase, albeit with
different amplitudes. We find

√
RnM/Dρ ≈ 0.5. The os-

cillation period is found to be of the order of 11RE/U ≈

(11/14)R/U . This result is within an order of magnitude
consistent with Eq. (14), which predicts a period of approx-
imately 2π/� = 2πR/U for the present conditions. The
oscillations are damped, with a damping time of 1–2 os-
cillation periods. From the numerical results we estimate
α =

√
RnM/(4Dρ) ≈ 0.25, in reasonable agreement with

the observed damping time. A nonlinear frequency shift is
here barely noticeable, in agreement with the properties of

Fig. 10. Magnetopause boundary oscillations corresponding to
Fig. 9. See Fig.8 for definition of the position considered.

the present two-dimensional model. The results are thus in
qualitative agreement with the analytical results of Sect.2.3
and Fig.5.

3.1 Simulations with a tilted magnetic dipole

Most of the analysis and the numerical simulations presented
so far refer to the case where the magnetic dipole axis is per-
pendicular to the direction from the Sun to the Earth. The
analytical expression (1) allows for a tilt of the magnetic
dipole, so formally this simplifying assumption can be re-
laxed, but the complexity of the problem becomes signif-
icantly increased, nonetheless. We can use the numerical
simulations to estimate the significance of the assumption of
θ = π/2. Numerical results are shown in Figs.11 and12,
to be compared with Figs.6 and7 for the magnetic field and
density variations, while the time-variations shown in Fig.13
should be compared with Figs.9 and 10. We find that all
the basic features of the simplifiedθ = π/2 model are re-
covered, the main difference being that a noticeable phase
shift between the oscillating spatial displacement of the two
boundaries defined on Fig.8. We also find a reduction in
the equilibrium distanceR, consistent with Eq. (2) if a sin2θ

correction is included. The average plasma density of the
magnetosheath in the simulations is found to decrease with
15–20% when the dipole axis is tilted, while the widthD

changes only little. The characteristic period of the oscilla-
tions is slightly reduced as compared to the case without tilt
of the magnetic axis, and the damping time is slightly in-
creased, so that also this observation is in qualitative agree-
ment with our analytical model.

4 Conclusions

We have described a simple model that takes into account the
basic features of the interface between the Earth’s magneto-
sphere and the solar wind. We demonstrated how this simple

www.ann-geophys.net/29/663/2011/ Ann. Geophys., 29, 663–671, 2011
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Fig. 11. Magnetic field variations, corresponding to Fig.6. The
present case has a tilt ofπ/6 for the magnetic dipole axis.

Fig. 12. Density variations corresponding to Fig.7, here with a tilt
of π/6 for the magnetic dipole axis.

model accounts for the basic characteristics of the distance
from the Earth to the magnetosphere boundary and also how
the same model accounts for observed characteristic minute
scale oscillations often observed in the magnetosphere fol-
lowing SI-events. The observed periods of oscillation can be
accounted for. It is also shown how a simple extension of
the model explains the damping of the oscillations. Nonlin-
ear effects were included in the analysis, and these can have
importance for cases with weakly damped oscillations. We
believe that the suggested model can be applied also to other
magnetized planets in a solar system.

In support of the analytical model we show results from
numerical simulations, obtained for a model system in two
spatial dimensions. Good qualitative agreement is found. A
sudden change in the solar wind momentum density gives
rise to damped oscillations of the boundaries of the com-
putational magnetopause. The simulations demonstrate that
the solar wind magnetic field has only minor importance.
Its presence will reduce the net magnetic pressure differ-

Fig. 13. Figures corresponding to Figs.9 (top) and10 (bottom).

ence across the magnetospheric boundary as compared to our
model and thus reduce the oscillation frequency. The dif-
ferent amplitudes of the oscillations of the bow shock and
the magnetosphere boundary in Figs.9 and10 indicate that
a more accurate analysis should take into account the com-
pressibility of the magnetospheric plasma, i.e. take into ac-
count the time it takes for the perturbation to propagate from
the bow shock to the magnetosphere boundary. The relatively
strong damping in our simulations makes the nonlinear fre-
quency shift barely noticeable, they might be observable for
weaker dampings, i.e. smaller values of

√
RnM/6Dρ.

In the small amplitude limit we have a normalized damp-
ing constantα =

√
RnM/6Dρ which has to be determined

by observations or numerical simulations. The damping is
very sensitive to changes inα. Quite generally we can state
thatR is reduced for increasing solar wind velocities. At the
same time we expectρ to increase as well butD to decrease
in such a way thatDρ changes only little. At the same time
we expect that the natural frequency� will increase withU

as well so that the normalized damping constant varies as
√

RnM/6Dρ ∼ U−1/3 by use of Eq. (2).

By numerical simulation we studied also the importance of
the simplifying assumption ofθ = π/2 in the analysis. Some
differences can be noted as already mentioned. Nevertheless
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we find the overall features to be well accounted for by the
simple model, even for a case where the magnetic dipole axis
is tilted by as much asπ/6 with respect to the reference case.

We mention also a possibility for a parametrically driven
oscillation for cases where the solar wind pressure is fluc-
tuating. This case can be modeled by settingU = U(t) in
Eq. (8), recalling that now alsoR = R(t). If the power spec-
trum of the solar wind pressure contains significant energy
near�, we have the possibility of periodic oscillations sus-
tained for a long time. A similar possibility was mentioned
also byKepko and Spence(2003).

Our ambition here was to obtain the simplest possible
model, but point out that many details can be added without
much additional effort, such as a dilute plasma in the Earth
magnetosphere, and a weak solar wind magnetic field. These
additions to the model will contribute to the force balance
in relation (1). A tilt of the Earth’s magnetic dipole axis is
readily accounted for, as demonstrated. The model can be
generalized to account also for torsional oscillations where
the normal of the local plane of the magnetosphere boundary
is turning around a line perpendicular to the Sun-Earth direc-
tion. In, for instance, Fig.1a one of the two lines mentioned
is vertical in the plane of the figure, the other one perpen-
dicular to this, out of the paper. Thus, two modes can be
identified here, one where the line is parallel to the Earth’s
magnetic dipole axis and one where it is perpendicular.
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