
1

XML and Web Services Security Standards
Nils Agne Nordbotten, Norwegian Defence Research Establishment

Abstract—XML and Web services are widely used in current
distributed systems. The security of the XML based communi-
cation, and the Web services themselves, is of great importance
to the overall security of these systems. Furthermore, in order
to facilitate interoperability, the security mechanisms should
preferably be based on established standards. In this paper we
provide a tutorial on current security standards for XML and
Web services. The discussed standards include XML Signature,
XML Encryption, the XML Key Management Specification
(XKMS), WS-Security, WS-Trust, WS-SecureConversation, Web
Services Policy, WS-SecurityPolicy, the eXtensible Access Con-
trol Markup Language (XACML), and the Security Assertion
Markup Language (SAML).

I. INTRODUCTION

A Web service is defined as a software system designed
to support interoperable machine-to-machine interaction over
a network [1]. Put in another way, Web services provide a
framework for system integration, independent of program-
ming language and operating system. Web services are widely
deployed in current distributed systems and have become
the technology of choice for implementing service-oriented
architectures (SOA). In such architectures, loosely coupled
services may be located across organizational domains.

The suitability of Web services for integrating heteroge-
neous systems is largely facilitated through its extensive use
of the Extensible Markup Language (XML). The interface of
a Web service is for instance described using the XML based
Web Services Description Language (WSDL). Furthermore,
communication is performed using XML based SOAP mes-
sages.1

Thus, the security of a Web services based system depends
not only on the security of the services themselves, but also
on the confidentiality and integrity of the XML based SOAP
messages used for communication.

The Organization for the Advancement of Structured In-
formation Standards (OASIS) and the World Wide Web Con-
sortium (W3C) have over the last years standardized several
specifications related to security in Web services and XML.
This paper provides an overview of these security standards.
Using these established standards when creating Web services,
instead of custom solutions, clearly has the advantages of
facilitating both system interoperability and reusability.

The rest of this paper is organized as follows: we start by
providing a brief overview of XML and Web services security
in the next section. Afterwards, more detailed discussions of
each of the security standards are provided in separate sections.

1SOAP was originally an acronym for Simple Object Access Protocol,
however, as of SOAP 1.2 it is no longer an acronym. Readers who are
unfamiliar with SOAP and WSDL may refer to the introduction provided
by Curbera et al. [2].

II. AN OVERVIEW OF XML AND WEB SERVICES
SECURITY

XML based SOAP messages form the basis for exchanging
information between entities in Web services systems. The
information contained within these SOAP messages may be
subject to both confidentiality and integrity requirements.
Although mechanisms at lower layers may provide end-to-end
security, these lower layer mechanisms are often insufficient.
This is due to the fact that a SOAP message may be subject to
processing and even modification (e.g., removal/insertion of a
SOAP header) at intermediary nodes. The result being that the
end-to-end security provided by lower layer mechanisms (e.g.,
SSL/TLS) is broken, as illustrated in Figure 1. Relying on
lower layers for end-to-end security may also cause problems
if a message is to pass through various networks utilizing
different transport protocols. Furthermore, security at the XML
level has the advantage of enabling confidentiality and source
integrity to be maintained also during storage at the receiving
node(s).

XML Signature and XML Encryption are used to provide
integrity and confidentiality respectively. Although these two
standards are based on digital signatures and encryption, none
of them define any new cryptographic algorithms. Instead,
XML Signature and XML Encryption define how to apply well
established digital signature/encryption algorithms to XML.
This includes:
• A standardized way to represent signatures, encrypted

data, and information about the associated key(s) in
XML, independent of whether the signed/encrypted re-
source is an XML resource or not.

• The possibility to sign and/or encrypt selected parts of
an XML document.

• The means to transform two logically equivalent XML
documents, but with syntactic differences, into the same
physical representation. This is referred to as canonical-
ization. In order to be able to verify the signature of an
XML resource that has had its representation changed,
but still has the same logical meaning, it is essential
that canonicalization is performed as part of the XML
signature creation and verification processes.

As both XML Signature and XML Encryption rely on the
use of cryptographic keys, key management is a prerequisite
for their effective use on a larger scale. Therefore, the XML
Key Management Specification (XKMS) was created to be
suitable for use in combination with XML Signature and XML
Encryption. XKMS basically defines simple Web services
interfaces for key management, thereby hiding the complex-
ity of traditional public key infrastructures (PKIs) from the
clients. XML Signature, XML Encryption, and XKMS are all
discussed in more detail in Section III.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

2

SOAP intermediaryOriginal sender Ultimate receiver

Transport/network layer

SOAP

Fig. 1. The transport/network layer security (e.g., SSL/TLS or IPSec) is broken at the intermediary SOAP node. By applying security at the SOAP/XML
level, on the other hand, end-to-end security can provided.

Fig. 2. The conceptual relationship between the XML and Web services
security standards. Be aware that Web Services Policy can also be used
(independently) for other purposes than security. Also recall that XKMS may
provide key management for use with XML Encryption and XML Signature,
although this is not shown in the figure.

As noted previously, SOAP is an XML based messaging for-
mat. Thus, XML Signature and XML Encryption are obvious
candidates for being reused to provide SOAP security as well.
As illustrated in Figure 2, this is exactly what WS-Security
does. WS-Security specifies how to apply XML Signature and
XML Encryption to SOAP messages, effectively providing
integrity and confidentiality to SOAP messages (or parts of
SOAP messages). As multiple encryptions can be used within
the same SOAP message, the different parts of a SOAP
message may be encrypted for different receivers (SOAP
intermediaries). Likewise, a SOAP intermediary may add an
additional signature to a SOAP message, thereby providing
integrity protection for a newly added header or supporting
separation-of-duty through co-signatures.

In addition to providing confidentiality and integrity for
SOAP messages, WS-Security also provides a mechanism to
avoid replay attacks (i.e., timestamps) and a way to include se-
curity tokens in SOAP messages. Security tokens are typically
used to provide authentication and authorization.

WS-Security has no notion of a communication session,
that is, it is only concerned with securing a single SOAP
message or a single SOAP request/response exchange. In
cases where multiple message exchanges are expected, WS-
SecureConversation may be used to establish and maintain an
authenticated context. The authenticated context is represented
by a URI in a context token and consists of a shared secret
that can be used for key derivation. WS-SecureConversation
relies on WS-Trust to establish the security context.

WS-Trust basically defines a framework for obtaining se-
curity tokens (including the context tokens used in WS-

SecureConversation) and brokering of trust. WS-Security, WS-
Trust, and WS-SecureConversation are all discussed in more
detail in Section IV.

With a range of Web services standards, interoperability
becomes very difficult unless the communicating parties know
what standards to use and how these standards are to be
used. Web Services Policy provides the means by which
service providers and clients can specify their interoperabil-
ity requirements and capabilities. WS-SecurityPolicy can be
viewed as an extension to Web Services Policy, defining how
Web Services Policy can be used to specify requirements and
capabilities regarding the use of WS-Security, WS-Trust, and
WS-SecureConversation. For instance, a service provider may
specify using WS-Policy/WS-SecurityPolicy that it requires
certain message parts to be encrypted. WS-Policy and WS-
SecurityPolicy are also further discussed in Section IV.

The last two standards covered in this paper are the Se-
curity Assertion Markup Language (SAML) and the eXten-
sible Access Control Markup Language (XACML). SAML
may be used to communicate authentication, attribute, and
authorization information in a trusted way. SAML is based
on XML and although its original motivation was single sign-
on for Web browsing, it is also well suited for use in Web
services. XACML on the other hand is used to define access
control policies in XML, and may be used to define access
control policies for any type of resource. Because SAML
and XACML are not targeted exclusively at Web services,
SAML and XACML were not included in Figure 2. However,
this does not imply that there is no interaction between these
standards. A XACML implementation may for instance rely
on the security tokens of WS-Security for authentication. As to
security tokens, there is also a SAML based security token in
WS-Security. SAML and XACML are both further discussed
in Section V.

III. XML SECURITY

XML Signature and XML Encryption are fundamental to
XML and Web services security. Because of this, XML
Signature and XML Encryption are both well supported in
available products and by development tools. The next two
sections describe XML Signature and XML Encryption re-
spectively. Then, in Section III-C, the XML Key Management
Specification (XKMS) is presented. XKMS facilitates the use
of XML Signatures and XML Encryption by simplifying key
management. All three of these specifications are standardized

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

3

by W3C [3][4][5].2

A. XML Signature

The use of digital signatures is a common method for en-
suring message integrity, authentication, and non-repudiation.
XML Signature [3] defines a standard interoperable format for
representing digital signatures in XML and provides mech-
anisms for efficiently applying digital signatures to XML
resources. XML Signature is not limited to signing XML
resources, however, as it can also be used to sign binary
resources such as a JPEG-file.

A single XML signature may cover several resources, where
each resource may be an XML document, a part of an XML
document, or a binary resource. The Signature element
for representing digital signatures in XML is shown in Figure
3. The SignedInfo element is used to specify what is
being signed. A Reference element within SignedInfo
is associated with each resource, identifying the resource
through a URI.3 The Reference element also includes a
digest of the referenced resource. The digest is created by
first applying any applicable transforms and then calculating
the digest value from the result.

Canonicalization is one possible transform that may be
applied to an XML resource before calculating the digest.
The need for XML canonicalization is due to the fact that
two logically equivalent XML resources may differ in physical
representation. Such variations in physical representation may
for instance be due to the use of different character encod-
ings or insignificant structural differences. Canonicalization
methods define a normal form, that is, the canonical form,
into which logically equivalent documents can be converted
to obtain the same physical representation. There are two
main canonicalization methods, Canonical XML [7][8] and
Exclusive XML Canonicalization [9]. 4

Apart from canonicalization, several other transformations
may be applied to a resource. These include Base64 decoding,
XPath filtering, and Extensible Stylesheet Language Transfor-
mations (XSLT). Furthermore, there is a decryption transform
[11] that enables XML Signature applications to distinguish
between XML structures that were encrypted before the sig-
nature was calculated and structures that were encrypted after
the signature was calculated. Later in this section we will
also discuss another transform, that is, the enveloped signature
transform. Independent of which transformations are applied
to a resource, each applied transformation is identified by a
Transform element within the Reference element.

The last element within the Reference element is the
DigestMethod element, used for specifying the digest
algorithm being used. The only digest algorithm required
to be supported is SHA-1. However, there have also been
defined identifiers for additional algorithms [12][4] and several

2The original XML Signature specification was also published as an IETF
RFC [6].

3The URI reference may be omitted, in which case the receiving application
is assumed to know the identity of the resource.

4The UDDI Specification Technical Committee within OASIS has also
released a specification for a schema centric XML canonicalization [10].

implementations support SHA-2 (i.e., SHA-224, SHA-256,
SHA-384, and/or SHA-512).

In addition to containing one or more Reference el-
ements, the SignedInfo element also specifies the sig-
nature method used (SignatureMethod) and the canon-
icalization method for canonicalizing the SignedInfo el-
ement itself (CanonicalizationMethod). Because the
SignedInfo element is what is actually signed in XML
Signature, it is required that this element is canonicalized
before calculating the signature value. Notice that because
the SignedInfo element contains the digests of all the
resources to be signed, these resources are implicitly signed
as well when signing the SignedInfo element. Signature
verification therefore consists of two steps. The first is to
make sure that the SignedInfo element has not changed by
verifying the signature value stored in the SignatureValue
element. The second is to make sure that none of the refer-
enced resources have changed, by verifying the digest of each
resource.

The specification only requires one signature algorithm to
be supported, that is, DSA with SHA-1 (also known as DSS).
Furthermore, support for message authentication codes based
on secret/shared keys (i.e., HMAC-SHA1) is also mandatory.
It is also recommended to support RSA with SHA-1 and many
implementations also support some of the additional defined
algorithms [12], such as RSA with SHA-512 or the Elliptic
Curve Signature Algorithm (ECDSA). Although commonly
used algorithms are likely to be supported by most vendors,
differences between products with regard to what algorithms
are supported may cause interoperability problems.

As mentioned previously, the SignedInfo element con-
tains references to the resources being signed. In this regard,
an XML Signature may be enveloping, enveloped, or detached
with respect to each referenced resource. This is illustrated in
Figure 4. An enveloped signature means that the Signature
element is inside the referenced XML resource. A detached
signature on the other hand references a resource that is sep-
arate from the Signature element. Finally, an enveloping
signature references a resource that is contained within the
Signature element. In the latter case, an instance of the
Object element is used to contain the resource. Because
a single signature can reference/sign multiple resources, a
signature may be enveloped, detached, and enveloping at the
same time. Furthermore, multiple independent signatures may
coexist within the same XML document.

Because the Signature element of an enveloped sig-
nature is actually located within the XML document being
signed, an enveloped signature transform is defined. This trans-
form removes the entire Signature element from the digest
calculation, so that the signature element is not included in the
digest of the XML resource being signed. Otherwise it would
not be possible to calculate the correct digest, considering
that the resource (from which the digest is to be calculated)
would be subject to change when adding the digest to the
Signature element.

XML Signature also defines a KeyInfo element, as shown
in Figure 3, that may be used to provide information about the
key to be used for verifying the signature. This information

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

4

ds:SignatureType

Signature

ds:SignedInfoType

ds:SignedInfo

ds:CanonicalizationMethod

ds:SignatureMethod

ds:ReferenceType

ds:Reference

1 ∞..

ds:Transforms

ds:DigestMethod

ds:DigestValue

ds:SignatureValue

ds:KeyInfoType

ds:KeyInfo

1 ∞..

ds:KeyName

ds:KeyValue

ds:RetrievalMethod

ds:X509Data

ds:PGPData

ds:SPKIData

ds:MgmtData

##otherany

ds:Object

0 ∞..

Fig. 3. The Signature element. (XML attributes are not shown.)

Detached

 Signature element

Enveloped

Enveloping

Signature element

Signature

element

Fig. 4. Enveloped, detached, and enveloping signatures.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

5

xenc:EncryptedDataType

EncryptedData

EncryptionMethod

ds:KeyInfo

xenc:CipherData

xenc:EncryptionProperties

Fig. 5. The EncryptedData element.

may be provided by identifying the key by name, by including
the raw public key itself, and/or by including (or referencing)
an X.509 or SPKI certificate corresponding to the key pair
being used. Using the PGPData element, a PGP key packet
can also be included. Furthermore, the RetrievalMethod
element may be used to reference KeyInfo information at
another location (i.e., within another KeyInfo element).

As we will see in the next section, the KeyInfo element
defined by XML Signature is also used by XML Encryption.
In fact, XML Encryption extends the KeyInfo element with
an EncryptedKey element, which may provide transport for
a secret/symmetric key. The KeyInfo element is also used
by the XML Key Management Specification (to be discussed
in Section III-C), facilitating its close integration with XML
Signature and XML Encryption.

B. XML Encryption

XML Encryption [4] provides confidentiality by allowing
selected parts of, or an entire, XML document to be encrypted.
XML Encryption is similar to XML Signature in many ways.
For instance, like XML Signature, XML Encryption does not
apply only to XML resources as it may be used to encrypt
arbitrary binary resources as well.

Data that is encrypted using XML Encryption is represented
by an EncryptedData element. The EncryptedData
element is shown in Figure 5. As can be seen, the
CipherData element is the only mandatory child element
of EncryptedData. CipherData either contains or pro-
vides a reference to the ciphertext of the encrypted data.
As may be noticed, this is equivalent with the enveloping
and detached variations of XML Signature. Contrary to XML
Signature, however, a single EncryptedData element can
only contain or reference one resource. If multiple resources
are to be encrypted within the same XML document, multiple
EncryptedData elements must be used.

When encrypting an XML element, one may choose to
encrypt the entire element (including its outmost tags) or
only the element’s content. In the case where the ciphertext
is contained within the CipherData (i.e., enveloping), the
EncryptedData element replaces the XML element (or
element content) being encrypted.

The encryption algorithm used may be specified in the
EncryptionMethod element (or be known by the re-
ceiver). The specification requires support for both Triple-DES
and AES-128/256. Both are used in cipher block chaining

xenc:EncryptedKeyType

EncryptedKey

EncryptionMethod

ds:KeyInfo

xenc:CipherData

xenc:EncryptionProperties

xenc:ReferenceList

CarriedKeyName

Fig. 6. The EncryptedKey element.

(CBC) mode, with an initialization vector that is prefixed
to the ciphertext. Additional information (e.g., specifying the
time/date at which the encryption was performed) may be
included within the EncryptionProperties element.

As mentioned, in Section III-A, XML Encryption defines
an EncryptedKey element that may be used to provide
transport for a secret/symmetric key. As can be seen in Figure
6, the EncryptedKey element contains all the child ele-
ments of EncryptedData plus two additional ones. In fact,
EncryptedKey and EncryptedData are both derived
from the same abstract type (i.e., EncryptedType). When
using the EncryptedKey element to provide key transport,
it is included as a child element of the KeyInfo element
of EncryptedData. EncryptedKey’s CipherData is
then used to transport the secret key in encrypted form, while
the KeyInfo element within the EncryptedKey element
is used to communicate information about the key used for
encrypting the secret key. Typically a pre-shared secret key or
the public key of the receiver is used for this latter purpose.

In the case that the same key is used to encrypt mul-
tiple EncryptedData elements, the ReferenceList
within EncryptedKey may be used to identify the
EncryptedData elements that utilize the key. The
EncryptedKey can also be given a key name, so that it
can be referenced from each respective EncryptedData
element.

C. The XML Key Management Specification (XKMS)

An appropriate method for key management is essential in
order to employ XML Signature and XML Encryption in a
scalable manner. The XML Key Management Specification
(XKMS) [5] defines simple Web services for retrieving, val-
idating, and registering public keys, thereby shielding clients
from the complexity of the potentially underlying public key
infrastructure (PKI).

XKMS is divided into two main parts, the XML Key
Registration Service Specification (X-KRSS) and the XML
Key Information Service Specification (X-KISS). The XML
Key Registration Service Specification defines services in
order to register, recover, revoke, and reissue keys. In the case
of registering a new public key, the key pair generation may

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

6

either be performed by the client or as part of the offered
service. In the case that the key pair is generated by the client,
the client is required to prove possession of the private key
in order to register the public key. In either case, the XML
Key Registration Service Specification provides mechanisms
for authenticating clients.

The XML Key Information Service Specification defines
two services, namely locate and validate. The locate service
enables a client to retrieve a public key, or information
about a public key. The data format for communicating key
information is provided by the KeyInfo element defined by
XML Signature (and also used by XML Encryption), thereby
facilitating the use of XKMS together with XML Signature
and XML Encryption.

A client may for instance receive a signed XML document
where the key to be used to verify the signature is identified
by some mechanism provided by the KeyInfo element (e.g.,
an included X.509 certificate or a key name). Instead of
being required to resolve the key itself, the client may simply
include the received KeyInfo element within a request to
the locate service, which then resolves the required KeyInfo
elements (e.g., by including the key value) and returns it
to the client. The locate service could obtain the resolved
information by parsing a certificate included in the KeyInfo
element, based on a previous registration of the key with an
XML key registration service, from an underlying public key
infrastructure, or by some other means. In any case, the locate
service shields the client from the complexity of having to
perform these actions itself. However, the locate service does
not validate the returned key information.

This is where the validate service has its role. The validate
service provides the same functionality as the locate service,
but also assures that the returned information meets specific
validation criteria (e.g., by validating the X.509 certificate).
In order for such an assurance to be trustworthy, the client
is obviously required to have a trust relationship with the
validation service. Furthermore, it must be assured that the
applied validation criteria are appropriate for the application.

Because validation incurs additional overhead, the locate
service is likely to be preferable in scenarios where there
is no sufficient trust relationship between the client and the
validation service, or where the validation requirements of the
application are not fulfilled by the validation service.

Let us consider the scenario in Figure 7, where Alice wants
to send an encrypted document to Bob using his public key.
However, Alice does not possess the public key of Bob.
Furthermore, although Bob has registered his public key with
the XKMS service within his own domain, there is no trust
relationship between Alice and the XKMS service within
Bob’s domain. In this case, Alice may contact the validate
service within her own domain, specifying that she requires the
public key of Bob to be used for encryption (or key exchange).
The validate service may then forward this request to the locate
service within Bob’s domain (which might be located through
DNS). Before the response is returned to Alice, it is validated
by the validate service within her own domain.

IV. WEB SERVICES SECURITY

While the previous section focused on security standards
for XML in general, we will now turn our attention to
security standards targeted exclusively at Web services. In
particular, this section provides an overview of WS-Security,
Web Services Policy, WS-SecurityPolicy, WS-Trust, and WS-
SecureConversation. All five were originally proposed as part
of the Web services security roadmap by IBM and Microsoft
[13]. WS-Security, WS-Trust, WS-SecureConversation, and
WS-SecurityPolicy have later become standardized within
OASIS [14][15][16][17], while Web Services Policy has been
standardized within the W3C [18]. Development support for
these standards can for instance be found in the Web Services
Interoperability Toolkit [19] for Java and in the Windows
Communication Foundation [20] for .Net. The standards are
also supported by various products, such as XML firewalls
[21].

Before we look at each individual standard, let us first
briefly repeat the relationships between these standards (as
previously illustrated in Figure 2). First of all, WS-Security
is concerned with security for SOAP messages, thus, WS-
Security clearly builds on top of SOAP. In addition, WS-
Security also makes use of XML Signature and XML En-
cryption. WS-Trust again builds on WS-Security, while at the
same time providing functionality that may be utilized by WS-
Security. WS-SecureConversation builds on WS-Security and
WS-Trust, while at the same time enabling WS-Security to
be used in a more efficient way. Finally, WS-SecurityPolicy
extends Web Services Policy in order to facilitate the use of
WS-Security, WS-SecureConversation, and WS-Trust.

A. WS-Security

The Web Services Security (WSS) specifications aim to
provide a framework for building secure Web services us-
ing SOAP, and consist of a core specification and several
additional profiles. The core specification, the Web Services
Security: SOAP Message Security specification [14] (WS-
Security for short), defines a security header for use within
SOAP messages and defines how this security header can
be used to provide confidentiality and integrity to SOAP
messages. XML Encryption is utilized to provide confiden-
tiality, while message integrity is provided through the use
of XML Signature. Using these mechanisms, SOAP message
body elements, selected headers, or any combination thereof
may be signed and/or encrypted; potentially using different
signatures and encryptions for different SOAP roles (i.e.,
different intermediaries and ultimate receiver(s)).

Recall (from Section II) that because SOAP message
headers may be subject to processing and modification by
SOAP intermediaries, lower layer security mechanisms such as
SSL/TLS are often insufficient to ensure end-to-end integrity
and confidentiality for SOAP messages. For such messages,
the functionality provided by WS-Security is essential if
confidentiality and/or integrity are required.

In order to ensure that the response received by an initiator
has been generated in response to the original request in its
unaltered form, WS-Security defines a signature confirmation

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

7

Fig. 7. Alice utilizes XKMS in order to obtain a validated public key for Bob.

attribute to be used for including a copy of the digital signature
value of the request message. By including this attribute in the
digital signature of the response message, as a signed receipt,
the response message is tied to the original request.

The specification also defines a timestamp element that may
aid in preventing replay attacks. This element specifies the
creation time of the message and optionally an expiration time.
As no clock synchronization is provided, it is suggested that
recipients take clock skew into consideration when evaluating
the freshness of a message, unless clock synchronization is
performed out-of-band. It is recommended that the timestamps
are cached for a minimum of five minutes (or, if present, until
the expiration time) to detect replay of previous messages. If
there is a risk that the message could potentially be replayed
to another receiver, the recipient should be uniquely identified
and bound to the timestamp by means such as a digital
signature.

In order to provide extensibility, WS-Security also provides
a mechanism to include security tokens within SOAP mes-
sages. Security tokens contain a set of claims, and may be
in binary or XML representation. An authority may assert
the claims contained within a security token by signing the
security token. Currently five token types are defined in
separate profiles. These are the X.509 certificate token profile
[22], the Rights Expression Language (REL) token profile
[23], the Kerberos token profile [24], the UsernameToken
profile [25], and the SAML token profile [26]. There is also a
WSS: SOAP Messages with Attachments (SwA) Profile [27],
which is applicable to SOAP 1.1 but not to SOAP 1.2.

1) The UsernameToken Profile: The UsernameToken pro-
file [25] specifies how the UsernameToken can be used as
a means to identify a requester by username. A password, or
some sort of shared secret constituting a password equivalent,
may also be included. Passwords may be included in their
original form or as a SHA-1 digest. In order to prevent replay
attacks, it is also recommended that a nonce (i.e., a random

value created by the sender) and a timestamp are included. By
combining nonces with timestamps, nonces are not required to
be cached beyond their validity period. The SHA-1 password
digest is to be calculated over the nonce, timestamp, and
password, thus, both the sender and the receiver need to know
the plaintext password or password equivalent. Notice though,
that if the password equivalent is the digest of the password,
the receiver is not required to store the plaintext password.

The UsernameToken profile also defines a way to derive a
shared cryptographic key from the password associated with
a given username. Key derivation is achieved by specifying
a salt (i.e., a random value) and a number of iterations. By
hashing the password and salt, and iterating the number of
times specified on the result, the shared key can be obtained.
This way, only those who know the password are able to
derive the shared key (given the salt and the number of
iterations). The maximum size of a derived key is 160 bits,
although the entropy of keys generated from typical passwords
in this way is likely to be much lower. For instance, there
are only (26+26+10)8, or about 248, different eight character
passwords consisting of lower- and uppercase letters as well as
numbers. Thus, a key derived from such a password would be
comparable in strength with a 48-bit key, which is not secure
for general use. Additionally, such a scheme may be vulnerable
to dictionary attacks unless the passwords have been randomly
generated.

The specification does not provide measures to prevent a
UsernameToken from being replayed to a different receiver.
Thus, if the same usernames/passwords are valid with multiple
receivers, measures against such replay attacks must be pro-
vided by implementers. One potential solution is to require
the identity of the receiver to be included in the password
digest. Nevertheless, such custom solutions may be susceptible
to cause interoperability problems.

2) The X.509 Certificate Token Profile: The X.509 certifi-
cate token profile [22] defines how to include X.509 certifi-

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

8

cates in SOAP messages. Such certificate tokens may be used
to validate the public key used for authenticating the message
or to specify the public key, which was used to encrypt the
message (or more commonly to convey the secret key used to
encrypt the message). When the X.509 certificate is used to
authenticate the sender, ownership of the certificate token is
proved by signing the message using the corresponding private
key.

3) The Rights Expression Language (REL) Token Profile:
The Rights Expression Language (REL) token profile [23]
defines how to include ISO/IEX 21000-5 Rights Expressions
in SOAP messages. In the context of XML and Web services,
the Rights Expression Language is also known as the XML
Rights Management Language (XrML). Although a technical
committee was formed within OASIS in order to standardize
XrML, this committee was disbanded before reaching an
agreement on a standard.

Anyway, in REL/XrML, rights are expressed in the form
of licenses. A license grants a key holder some rights and is
signed by the issuer. Licenses may for instance be used to
convey attributes of the key holder or to provide authorization
to perform certain actions (e.g., issuing specific types of
licenses to others). Considering that SAML is more widely
supported by Web services implementations, and can be used
to achieve much of the same things, one may want to consider
using SAML instead.

4) The SAML Token Profile: The SAML token profile
[26] defines how to include SAML assertions within security
headers and how to reference these assertions from within the
SOAP message. A binding between a SAML token and the
SOAP message (and its sender) can be created by signing
the message with a key specified within the SAML assertion.
Alternatively, an attesting entity that the receiver trusts may
vouch for the message being sent on behalf of the subject for
whom the assertion statements apply. In this latter case, the
attesting entity must ensure the integrity of the vouched for
SOAP message (e.g., by applying a digital signature). SAML
is discussed in more detail in Section V-B.

5) The Kerberos Token Profile: The Kerberos token profile
[24] defines how to attach Kerberos tickets to SOAP messages.
The specification is limited to the Kerberos AP-REQ message
[28], allowing a client to authenticate to a service. Like with
the X.509 certificate token, ownership of the token is proved
by signing the message using the corresponding key. How the
AP-REQ is to be obtained is outside the scope of the profile,
but such functionality is provided by the Kerberos specification
and might also be provided using WS-Trust.

6) The Basic Security Profile: The Web Services Interop-
erability Organization (WS-I) has also defined another related
profile called the Basic Security Profile [29]. This profile
provides clarifications, and requirements, on how WS-Security
and its associated profiles should be implemented in order to
promote interoperability. Because WS-Security makes use of
XML Signature and XML Encryption, the Basic Security Pro-
file also applies to XML Signature and XML Encryption when
these are used with WS-Security. Because the Basic Security
Profile is mostly about implementation details, however, it is
not discussed in further detail in this paper.

B. Web Services Policy

The Web Services Policy framework [18] provides for
expressing policies in Web services-based systems. Using such
policies, interoperability requirements and capabilities can be
expressed by both Web service consumers and providers.
Before looking at Web Services Policy in more detail, let us
first consider a usage scenario. A service provider may for
instance require that all messages are encrypted using XML
Encryption, using AES-128 (i.e., AES encryption with 128-
bit keys) or AES-256. Likewise, a potential service consumer
might support XML Encryption using TripleDES or AES-128.
Clearly, in order to be interoperable, both parties should make
use of XML Encryption with AES-128. Still, the consumer
and provider need to be able to make this decision themselves
in an automatic way. This is where Web Services Policy has its
role, enabling the capabilities and requirements of both service
consumers and providers to be expressed through policies.

At the top level, a policy consists of a collection of policy
alternatives. Each policy alternative again contains policy
assertions corresponding to specific requirements and capa-
bilities associated with that policy alternative. For instance, a
Web service consumer may choose to use any single one of the
policy alternatives supported by the provider. However, once a
policy alternative has been chosen, both parties are required to
fulfill all the policy assertions (i.e., requirements/capabilities)
within that policy alternative. Returning to our example sce-
nario, the policy alternatives (of the consumer and provider)
requiring XML Encryption using AES-128 would be chosen.
However, within those same policy alternatives, there might
also be other requirements that must be fulfilled (e.g., that all
messages are to include a timestamp).

The specific policy assertions are actually not defined within
the Web Services Policy specification, as these are to be
defined within domain specific specifications such as WS-
SecurityPolicy (which will be discussed in Section IV-B2).
The use of domain specific assertions makes the Web Services
Policy framework highly adaptable to various application
areas. Furthermore, because an entity is only required to
understand the assertions within the policy alternative being
used, incremental deployment of new assertions can easily be
achieved. That is, by adding the new assertions within separate
policy alternatives, the original policy alternatives may remain
unchanged in order to provide backward-compatibility. Guide-
lines for defining policy assertions are provided in a separate
working group note [30].

A policy according to Web Services Policy may be ex-
pressed in XML using one of two forms, normal form or
compact form. Normal form is a straightforward representation
of a policy’s XML Infoset, enumerating each of its policy
alternatives and their assertions. Alternatively, a policy may be
more space efficiently represented using an equivalent compact
form. To ensure interoperability, the specification recommends
that the normal form is used where practical though.

The Web Services Policy specification also defines a
domain-independent policy intersection algorithm. This policy
intersection algorithm may be used when two or more com-
municating parties want to determine their set of compatible

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

9

policy alternatives. If defining new assertions, one should keep
in mind that parameterized assertions may require a domain-
specific policy intersection algorithm to be provided. Thus,
parameterized assertions should preferably be avoided.

Apart from being exchanged between consumers and
providers, Web Services Policy may also be used as a declar-
ative language for configuring a system. This was for instance
the case in Microsoft’s Web Services Enhancements (WSE)
2.0. However, this approach has been abandoned in WSE
3.0 [31]. Apparently, the policies had a tendency to become
too complex for manual editing. This may indicate that Web
Services Policy in its current form is best suited as a language
used by applications, and is less suitable for use by system
developers in order to specify system policies (at least in more
complex systems). Still, a compromise may be to utilize Web
Services Policy for configuration but to provide preconfigured
policies providing common configurations. This is the solution
used in for instance the BEA WebLogic Server [32].

1) Web Services Policy - Attachment: Web Services Policy
- Attachment [33] defines two general mechanisms for asso-
ciating policies with the entities to which they apply. The first
mechanism enables references to policies to be included within
arbitrary XML elements. This way, Web services policies can
be referenced within the entities’ existing metadata. More
specifically, this is done using a PolicyURIs attribute, con-
taining a list of IRIs (Internationalized Resource Identifiers),
referring to the policies. If more than one IRI is included
within the PolicyURIs attribute, the referenced policies
must be merged to obtain the applicable policy. In the case
that policies are merged, conformance to the final applicable
policy enforces conformance to all the referenced policies as
well.

Alternatively, with the second mechanism, policies may be
associated to the entities to which they apply through an
external binding. For this purpose, a PolicyAttachment
element is defined. This element contains a policy scope in
addition to defining and/or referencing one or more poli-
cies. The policy scope identifies the entities to which the
referenced/included policies apply. This way, policies can be
associated with arbitrary entities.

Although the Web Services - Attachment specification
defines two new mechanisms for attaching policies (i.e.,
PolicyURIs and PolicyAttachment), this does not
prevent the Policy and PolicyReference elements (as
defined in the Web Services Policy framework specification
[18]) from being used directly as child elements within other
XML elements. In fact, the Web Services Policy - Attachment
specification advocates the use of these original mechanisms
within WSDL and UDDI. Even though WSDL 1.1 forbids the
use of extensibility elements/attributes within some elements,
the WS-I Basic Profile 1.1 overrules this restriction and allows
element extensibility everywhere [33].

2) WS-SecurityPolicy: As previously mentioned, the Web
Services Policy specification itself does not define any pol-
icy assertions for expressing specific requirements and ca-
pabilities, as this is left to domain specific specifications.
One such assertion specification is WS-SecurityPolicy [17],
which defines policy assertions corresponding to the secu-

rity features provided by WS-Security, WS-Trust, and WS-
SecureConversation.

For instance, WS-SecurityPolicy defines two mechanisms
for specifying the parts of a message that are to be integrity
protected. With the SignedParts assertion, QNames are
used to specify that the entire SOAP message body and/or
selected headers require integrity protection. Alternatively, the
XPath based SignedElements assertion may be used to
specify arbitrary message elements requiring integrity pro-
tection. Although the names of these assertions suggest that
integrity protection is to be provided through the use of digital
signatures, this is not a requirement. Likewise, assertions
are also defined for specifying the parts of a message that
needs confidentiality protection. The EncryptedParts and
EncryptedElements assertions are equivalent to their
integrity counterparts (using QNames and XPaths respec-
tively). Furthermore, the ContentEncryptedElements
assertion allows XPaths to be used to specify arbitrary ele-
ments that require confidentiality protection of their content
only. The RequiredElements and RequiredParts as-
sertions may be used to specify header elements that the
message must contain, using XPaths and QNames respectively.

Likewise, token assertions may be used to specify required
tokens. The supported token types are those specified for WS-
Security (i.e., the Username, X509, Kerberos, SAML, and
REL tokens) and security context tokens according to WS-
Trust and WS-SecureConversation. The WS-SecurityPolicy
specification also defines a KeyValueToken assertion. Re-
call from Section III-A that the KeyInfo element of XML
Signature provides for identifying a public key pair by in-
cluding the public key value itself (i.e., in the KeyValue
element). Hence, the KeyValueToken assertion provides a
way to specify that the public key value must be included.

As an alternative to the token assertions corresponding
to specific tokens, an IssuedToken assertion intended for
use in combination with WS-Trust is also provided. Al-
though WS-Trust is first to be discussed in the next sec-
tion, let us say for now that WS-Trust defines a secu-
rity token service from which security tokens can be re-
quested. Such requests are made using a request security
token message, where the requested security token is described
by a RequestSecurityTokenTemplate element. In
this context, the IssuedToken assertion can be used to
provide/specify the RequestSecurityTokenTemplate
(and identify the issuing security token service). Thus, the
IssuedToken assertion serves two important functions: Not
only does it provide for identifying tokens of arbitrary type
but it also enables the token to be obtained, even when the
details of the request message are unknown (and potentially
incomprehensible) to the requester.

In addition to simply being able to specify the presence
of a security token, assertions are also provided in order to
specify that the token must contain specific claims and be
issued by a specific issuer. Furthermore, a range of token
specific assertions are defined for the different token types,
enabling the characteristics of a token to be closely described.
Moreover, it can be specified whether a token is required to
be present in all messages (i.e., from the initiator, from the

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

10

Fig. 8. The policy of the service (which is expressed using Web Services
Policy/WS-SecurityPolicy) specifies a security token required to access the
service. After retrieving the policy (e.g., from the WSDL file of the service),
the service consumer uses the information in the policy to obtain the correct
security token from the security token service (STS). The communication
with the STS consists of a request security token (RST) element/message and
a request security token response (RSTR) element/message. When receiving
the security token from the service consumer, the service may have the token
validated by the STS or validate the token itself.

recipient, or both ways), only in the first message, or is not
required to be included at all (i.e., being identified through a
reference instead).

Apart from the already mentioned assertions, WS-
SecurityPolicy also defines assertions for identifying re-
quired/supported cryptographic algorithms and transport bind-
ings (e.g., requiring the use of HTTPS), and for specifying
the order in which confidentiality and integrity protection is
to be applied. Furthermore, additional assertions can be found
in the specification (in particular with regard to specifying the
options of WS-Security and WS-Trust).

C. WS-Trust

We have seen in the previous sections that WS-Security
provides for including security tokens in SOAP messages,
while Web Services Policy and WS-SecurityPolicy together
provides for specifying what security tokens are required (or
supported). Thus, a scenario like the one shown in Figure 8
may easily occur. In this scenario, the service consumer wants
to access a service. The service, however, requires a specific
security token to be included in all SOAP messages for access
to be granted. In order to facilitate interoperability, the service
communicates this requirement using Web Services Policy
(and the policy assertions provided by WS-SecurityPolicy).
However, assuming that the service consumer does not have
access to the appropriate security token, being aware of the
requirement is not likely to help much apart from being able
to generate a sensible error message. This is exactly where
WS-Trust has its role, by providing mechanisms for security
token management.

WS-Trust [15] augments the functionality of WS-Security
and Web Services Policy/WS-SecurityPolicy by defining
mechanisms for obtaining/issuing, renewing, cancelling, and

Fig. 9. The policy of the service specifies that a security token from the STS
in domain 2 is required. The policy of the STS in domain 2 requires a security
token from the STS in domain 1 (i.e., one of its policy alternatives accepts such
a security token). The STS in domain 1, for which the service consumer has a
valid username/password, requires a username token for authentication. After
retrieving the policies in the given order (1, 2, and 3), the service consumer
obtains a security token, from the STS in domain 1 (4-5), which is then used
to obtain a security token from the STS in domain 2 (6-7). This last security
token is then used to access the service (8).

validating security tokens. Specifically, a security token service
(STS) is defined, providing these mechanisms as Web services.
Thus, after discovering what security token is required, the
service consumer may use WS-Trust in order to obtain the
required token from an STS as illustrated in Figure 8. Then,
when the service consumer attempts to access the service after
having obtained the required security token, the service may
rely on the security token service to validate the token or chose
to perform the validation itself.

Although this appears to solve our example scenario, there
are some important underlying assumptions. Clearly, in order
for the security token to be of value, it must be trusted by
the relying party (i.e., in our case the service). This trust
may exist because the relying party has a pre-established trust
relationship with the STS, implying that the relying party
trusts the claims within security tokens issued by that STS.
Considering that the relying party may specify the trusted
issuer of a security token in its policy, this is not an unlikely
scenario. Even when the relying party has no direct trust rela-
tionship with the STS, the relying party may sometimes still be
able to trust security tokens issued by that service. This may
for instance be the case for X.509 certificate tokens, whose
trustworthiness is based on whether the certificate chain can
be validated or not (relying on a trusted certificate authority).
In this latter case it may very well be that the certificate is not
really issued by the STS, but that the security token service
simply provides an interface to obtain a certificate issued to
the client by someone else.

Likewise, the STS also requires trust in the claims for which
it vouches in a security token. Thus, the client will usually
be required to supply the STS with some evidence of its
identity and/or of the claims to be included in the security
token. The client may for instance provide this evidence
by authenticating using a username/password (token) or by

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

11

supplying a security token from some other trusted STS.
This facilitates trust brokering, where a security token from
one domain can be exchanged for another security token
for use in another domain. This is illustrated in Figure 9,
where the service consumer first obtains a security token from
the STS in its own domain (i.e., by authenticating with a
username/password). The security token issued by the STS
in domain 1 is then used to obtain the security token (from
the STS in domain 2) required to access the service. This
illustrates the fact that an STS, like any other Web service, may
require specific security tokens to be supplied. Also notice that
the security token obtained from the STS in domain 2 may be
of the same or a different type as the one issued by the STS in
domain 1. In the prior case it could potentially be sufficient to
have the STS in domain 2 to co-sign the security token issued
by the STS in domain 1.

Please be aware that the scenarios shown in Figure 8
and Figure 9 are just examples of possible communication
patterns. For instance, in Figure 9, the STS in domain 1 could
potentially have obtained the final security token on behalf of
the client from the STS in domain 2. Likewise, the service
could potentially request the required security token on behalf
of the client (even without the client requesting it). In fact, the
STS might be collocated with the service in the sense that the
security token is generated by the service and transmitted to
the client using the message elements defined by WS-Trust.
The request-response model may also be extended to include
a challenge-response, or include negotiation.

Another important point is that the client should not be
required to parse the token. Thus, all parameters required by
the client (e.g., the token lifetime) should be included as part
of the response message. For security tokens where a private-
key is used as proof of possession, this key is also returned to
the client (typically encrypted using XML Encryption unless
a secure connection is used). In order to ensure that the token
contains the required claims, the client may also specify the
required claims in the request message.

Considering that security tokens (e.g., the X.509 certificate
token or the SAML token) may bind a key with an identity,
a security token service issuing, renewing, validating, and
cancelling such security tokens offers similar functionality as
that provided by the XML Key Management Specification
(XKMS). Still, important differences exist. For instance, while
WS-Trust can in principle be used to handle any type of secu-
rity token, XKMS is primarily intended (and better suitable)
for use together with XML Signature and XML Encryption,
utilizing their KeyInfo element. Cancelling a security token
is also different from revoking a certificate as we know it from
public key infrastructures. Cancelling a security token at the
issuer (i.e., the STS issuing the security token) simply means
that the issuer will no longer renew or validate the token.
Because there are no revocation lists, it is required to have a
token validated by the issuer in order to make sure that is has
not been cancelled.

D. WS-SecureConversation
In Section IV-A we discussed how WS-Security can be used

to secure the integrity and confidentiality of SOAP messages.

WS-Security provides no notion of a context for exchang-
ing multiple messages however. WS-SecureConversation [16]
therefore builds on WS-Security and WS-Trust to provide
mechanisms for establishing and identifying a security context.
The security context is shared by the communicating parties
for the duration of the communication session, and has the
benefit of providing an authenticated state with associated key
material.

Consider for instance a scenario where the SOAP messages
between a service consumer and provider require integrity
protection. By using WS-Security/XML Signature, this may
for instance be achieved by signing the messages using the
private key of the sender and including the associated X.509
certificate token in the message. If multiple messages are to be
exchanged, however, such a solution has several disadvantages.
First of all, having to include the same X.509 certificate in
multiple messages to the same recipient is clearly a waste of
bandwidth. Also notice that such a stateless approach, where
the certificate token is resent with each message, may incur
the overhead of performing full certificate validation for each
received message. Thus, in order to avoid these disadvantages,
the service consumer and provider may establish a security
context at the beginning of the conversation/session. This
way, full key exchange and authentication (e.g., using X.509
certificate tokens) is only required to be performed when
establishing the security context, and not for every message.

The security context is represented by a security context
token, where the security context is identified by a URI. The
specification defines three different ways to obtain the security
context token (and thereby establishing the security context).
All three methods utilize the WS-Trust framework in order
to request/distribute the security context token. One way is
for the context initiator to request a security context token
from a security token service (STS), which then distributes
the security context token to the communicating parties. If
not to rely on an STS, the context initiator may instead create
a security context token itself and unsolicited distribute this
token to the other parties. Alternatively, the initiating party
may send a request for a security context token to the other
party, which may then return the security context token or
initiate negotiations.

WS-SecureConversation also provides for establishing a
shared secret among the communicating parties. The shared
secret is distributed within a proof-of-possession token that
is distributed together with the security context token. This
proof-of-possession token contains a secret encrypted for the
recipient of the token (e.g., using the public key of the recipient
or a TLS connection). Although the shared secret might be
used for encrypting and/or authenticating messages directly,
the specification recommends that a new key is derived for
each message. Key derivation is, by default, performed by
hashing the shared secret together with some supplied param-
eters.5 A derived key token is used to identify the key being
used, by referencing the security context token and providing
the (non-secret) parameters used for deriving the key from the

5This is similar, but not identical, to the key derivation discussed in Section
IV-A1 (for use with the Username token).

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

12

shared secret or previously derived key. An XML Signature
or Encryption element, utilizing the derived key, may refer to
the derived key token in order to identify the key being used.

The security context token will typically have a lifetime.
Thus, in case the security context expires before the end of
the communication session, the token will have to be renewed.
Likewise, the security context token may be explicitly can-
celled if its lifetime lasts beyond the end of the communication
session. It is also possible to amend the security context token
with additional associated claims during the communication
session. Renewal, cancellation, and amending of security con-
text tokens are all performed using the mechanisms provided
by WS-Trust.

V. SECURITY MARKUP LANGUAGES

This section provides an overview of the eXtensible Ac-
cess Control Markup Language (XACML) and the Security
Assertion Markup Language (SAML), which have both been
standardized within OASIS [34][35]. While the previous sec-
tion focused on standards targeted exclusively at Web services,
XACML and SAML are applicable to other types of systems
as well. In particular, XACML may be used to define access
control policies for any type of system, while SAML is also
being used for single-sign-on web browsing.

Open-source implementations of both standards are freely
available to developers. For instance, the Open SAML project
[36] provides Java and C++ implementations of SAML. Like-
wise, an open source Java implementation of XACML is
available from Sun [37]. An extensive list of XACML related
work and products is provided by the XACML Technical
Committee [38].

A. The eXtensible Access Control Markup Language
(XACML)

The eXtensible Access Control Markup Language
(XACML) [34] is a specification for defining access control
policies using XML. In addition to defining a policy language
for expressing policies, XACML also provides an architectural
model. The basic architectural model is shown in Figure 10.
As illustrated in the figure, policy enforcement is performed
by one or more policy enforcement points (PEPs). A policy
enforcement point again relies on a policy decision point
(PDP) for deciding the outcome of a request, based on the
policies applicable to the request.

XACML also relies on policy administration points (PAPs)
and Policy Information Points (PIPs). Policy administration
points are used to create policies and make them available to
the PDP(s), although the exact features of a PAP are imple-
mentation dependent. The PAP may store the policies in one
or more centralized locations or attach them to the resource(s)
to which they apply. In the former case, the location(s) may
be referenced by the resource(s). Policy information points, on
the other hand, provide attributes of subjects, resources, and
the environment (e.g., the role of a subject or the time of day).
Such attributes may be required by a PDP in order to evaluate
a request against a policy.

A context handler may be used to translate between native
formats used by PIPs and the format used by PDPs (referred
to as the XACML context), enabling a PDP to interoperate
with native PIPs (e.g., LDAP servers). Likewise, a context
handler may also be used to translate between a PDP and
various PEPs, enabling non-XACML aware PEPs to rely on
the same XACML PDP. Furthermore, notice that although the
access requester and the resource are depicted as separate
computers in the figure, this is not necessarily the case. In
fact, the resource, PEP, PDP, PAP, PIP, and access requester
could potentially all be located on the same machine.

Let us now turn our attention to the XACML policy lan-
guage. As shown in Figure 11, the XACML rule constitutes
the basic building block for defining policies in XACML. Each
rule has an effect, which is either permit or deny. Furthermore,
each rule may specify a target. The target of a rule defines the
subjects, resources, actions, and/or environments to which the
rule applies (i.e., who may, or may not, do what to which
resource given the environment).

A rule may also contain a condition, further restricting
the applicability of the rule. Such a condition may involve
attributes of the subject, resource, action, and/or environment,
and can make use of arithmetical, comparative, set, and
Boolean operators. Thus, XACML provides high granularity
for defining rules and allows rules to be made context sensitive.
A condition may for instance involve the role of the subject,
the time of day, and/or previous events.

A XACML rule is not to exist on its own, but instead as part
of a XACML policy. In case there is more than one rule in
a policy, these are interrelated by a rule-combining algorithm.
Three different rule combining algorithms are defined: deny-
overrides, permit-overrides, and first-applicable. In addition,
custom algorithms can be defined.

The target of a policy may be determined from the targets
of its rules or be specified explicitly. If no target is specified
by a rule, the target of the rule is taken to be the same as the
target of the containing policy. Anyway, the target is used by
the PDP to determine if the policy/rule is applicable to a given
request. Consequently, the effective target of a rule is at least
as strict as the target of the containing policy (i.e., PDPs only
consider the rules within applicable policies).

A policy may also specify obligations. Such obligations may
for instance be that an e-mail should be sent to the resource
owner if access is granted or that denied requests for access
should be logged. In order to ensure that the obligations are
fulfilled, any obligations should be carried out by the PEP
before granting access.

Policies may again be combined into a policy set in basically
the same way as rules are combined into policies. The algo-
rithms for this are equivalent to the ones for combining rules,
with the addition of an only-one-applicable algorithm, where
only one policy is to be applicable to a given request/target.

A request may have multiple subjects, but only one action
and one resource (some exceptions for multiple resources are
specified in a separate profile). A PDP’s response to a request
is either permit, deny, not applicable (i.e., if no policy/rule was
applicable), or indeterminate (i.e., if an error occurred). One
or more obligations may also be specified, and the PEP must

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

13

Fig. 10. The architectural/usage model of XACML, containing a policy decision point (PDP), a policy enforcement point (PEP), a policy administration
point (PAP), and a policy information point (PIP). The access requester wants to access the resource.

Fig. 11. The XACML policy language model [34].

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

14

deny access unless it can fulfill all the obligations.
While the description here is based on the current version of

XACML (i.e., version 2.0), the XACML technical committee
within OASIS is currently working on the specification for
XACML 3.0. One of the major changes will be with regard
to the Target element, which will be based on a generic
matching mechanism instead of using the current special target
categories (i.e., the subject, resource, action, and environment
categories). For anyone wanting to experiment with XACML
3.0, there is a preliminary patch for Sun’s XACML imple-
mentation available from the Swedish Institute of Computer
Science (SICS) [39].

In addition to the core specification, XACML also has
several profiles. We will now give a brief overview of each of
these profiles.

1) The Privacy Policy Profile: The Privacy policy profile
[40] defines two attributes for specifying the purpose for which
personal identifiable information is collected. It also defines a
rule for enforcing that the information/resource is being used
according to the purpose for which it was collected.

2) The SAML Profile: The SAML profile [41] de-
fines how to use SAML to carry XACML policies,
queries, and responses. In particular, the profile extends
SAML with a XACMLAuthzDecisionQuery and a
XACMLAuthzDecisionStatement which may be used to
communicate authorization queries and responses between a
policy enforcement point (PEP) and a policy decision point
(PDP). The profile also defines a XACMLPolicyQuery and
a XACMLPolicyStatement which may be used to query
and distribute policies from a policy administration point
(PAP). Furthermore, it is defined how standard SAML attribute
requests and responses are to be used for requesting and
exchanging XACML attributes, defining a mapping between
SAML and XACML attributes.

By defining extensions to SAML, the profile
enables the full functionality of XACML to be
utilized when used in conjunction with SAML. In
addition, the XACMLAuthzDecisionStatement,
the XACMLPolicyStatement, and SAML’s attribute
statement may be used as part of SAML assertions for storing
authorizations, policies, and attributes respectively.

3) The XML Signature Profile: The XML Signature profile
[42] recommends that XACML schema instances are embed-
ded in SAML assertions, requests, and responses as defined in
the SAML Profile [41]. These SAML objects should then be
canonicalized and signed according to the SAML specification
[35]. The use of SAML for this purpose has the advantage of
providing a format for specifying the identity of the signer and
a validity period.

4) The Core and Hierarchical Role Based Access Con-
trol (RBAC) Profile: The RBAC profile [43] specifies how
XACML can be used to meet the requirements for “core”
and “hierarchical” role based access control according to the
ANSI/INCITS standard [44]. In order to meet these require-
ments, the RBAC profile defines four types of policies, out of
which the first two are mandatory:
• A role policy set is used to associate a given role with a

permission policy set.

• A permission policy set defines the permissions associ-
ated with a given role.

• A role assignment policy (or policy set) may be used to
define which roles can be enabled or assigned to which
subjects. The role assignment policy may also impose
restrictions on combinations of roles or the total number
of roles held by a subject.

• A HasPrivilegesOfRole policy may be included
within each permission policy set in order to support
queries asking whether a subject has the privileges of
a given role. It can not be used to answer questions such
as what roles are associated with a given subject though.

By including multiple roles in the target of a role policy
set, that policy set only applies to subjects having all the
specified roles enabled. In order to support hierarchical roles,
the permission policy set for a senior role may refer to the
permission policy set(s) of its junior role(s) in order to inherit
those privileges as well. It is recommended in the profile that
roles are specified as values of a role attribute. However, roles
may also be identified by defining separate attributes for each
role.

5) The Hierarchical Resource Profile: The Hierarchical
resource profile [45] defines how XACML can be efficiently
used to provide access control for a resource organized as
a hierarchy (e.g., file systems, XML documents, and orga-
nizations). The hierarchical resource is required to form a
directed acyclic graph (i.e., a tree or a forest) and may be
represented as an XML document or in some other way. The
individual resources that are part of the hierarchical resource
are referred to as nodes. The profile defines how the identities
of nodes are to be consistently represented (using XPath if
the hierarchical resource is represented as an XML document
and URIs otherwise). Furthermore, the profile defines how to
request access to a node and suggests how to define policies
applying to multiple nodes.

6) The Multiple Resource Profile: The Multiple resource
profile [46] defines how access to multiple resources can be
requested in a single request to a PDP, and how the response
to such a request can be sent in a single response.

7) The Web Services Profile: Although it has not yet
reached standardization status, the Web services profile [47]
defines XACML related policy assertions for use with Web
Services Policy. The XACMLAuthzAssertion may for
instance be used to communicate required/provided role at-
tributes or to specify the willingness/requirement to fulfill
certain obligations (such as encrypting stored data). The
XACMLPrivacyAssertion may for instance be used to
specify the intended/acceptable use, distribution, and time of
retention for a resource.

8) XACML 3.0 Administrative Policy: There is also work
in progress on an Administrative policy profile [48], defining
how administration and delegation policies can be expressed
in XACML 3.0. In particular, policy administration policies
may be used to define the types of policies that individuals
can create and modify. Delegation policies may permit users
to dynamically create policies of limited duration in order to
delegate capabilities to others.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

15

B. The Security Assertion Markup Language (SAML)

The Security Assertion Markup Language [35] defines how
to express security assertions in XML. Conceptually, an as-
sertion is a set of statements, made by an asserting party (i.e.,
a SAML authority), that a relying party may trust. To clarify
this, we will consider the contents of SAML assertions in more
detail.

As indicated in Figure 12, the asserting party issuing the
assertion is identified by the Issuer element. Although the
Issuer element is the only required element of an assertion,
an assertion without any statements is generally not of much
use. Thus, SAML defines three different statement types,
namely authentication, authorization, and attribute statements.
In order to provide for extensibility, these three statement
types are all derived from the same abstract type (i.e., the
Statement element), from which additional statement types
may be derived. As shown in the figure, a SAML assertion can
contain any number of statements.

An assertion containing an authentication, authorization, or
attribute statement is also required to specify the subject to
which the assertion(s) apply, utilizing the Subject element.
Apart from identifying the subject, the Subject element may
also specify methods for subject confirmation. Such methods
for subject confirmation may be used by the relying party to
confirm that a message indeed came from the subject identified
in the assertion (or an associated entity of the subject).
There are several such methods for subject confirmation [49].
Typically, the subject may authenticate itself by signing the
message using a private key associated with the assertion.
Alternatively, other application specific procedures may be
applied or it may be considered sufficient to be in possession
of the assertion (potentially in combination with some other
constraint(s), such as a short validity period).

Let us now take a closer look at the three defined state-
ment types, starting with the authentication statement. An
authentication statement specifies how and when the subject
was authenticated. As a wide range of authentication methods
exists, how to specify the authentication context is covered in
a separate standards document [50].

An authorization decision statement states whether autho-
rization to perform specific actions on a specific resource has
been granted or not (or alternatively that authorization could
not be decided). An authorization statement may also refer
to or include other assertions, upon which the authorization
decision was made. Finally, the attribute statement element
may include one or more attributes associated with the subject,
e.g., the subject’s role or credit limit. Such attributes may be
included in plaintext or in encrypted form.

The Conditions element allows an asserting party to
place restrictions on the valid use of an assertion. Such restric-
tions may specify the intended audience (i.e., restricting the
potential relying parties) or the assertion’s validity period. It
may also be indicated that the information within the assertion
is likely to change soon, and that the assertion should therefore
only be relied upon once. In fact, considering the lack of a
revocation model in SAML, it is preferable that assertions have
a relatively short lifetime. Restrictions may also be placed

on the use of the assertion for issuing new assertions (with
regard to the audience of the new assertion and the number of
indirections).

The Signature element provides for protecting the in-
tegrity of the assertion by applying a signature. Typically,
the asserting party will sign the assertion using its private
key, thereby providing proof of the assertion’s origin. Finally,
the Advice element may be used by the asserting party
for communicating additional information. This additional
information should not affect the validity of the assertion,
however, as applications are allowed to ignore this element.

1) SAML Protocols: In addition to defining the syntax and
semantics of SAML assertions, SAML also defines various
request/response protocols. For instance, an assertion query
and request protocol is defined. This protocol may be used
for requesting an existing assertion by referring its unique
identifier or for querying assertions based on subject and
statement type. In the latter case, queries are defined for all
of the three statement types. Thus, an authentication query
can be used to obtain the assertions containing authentication
statements for a given subject, while an attribute query can
be used to obtain assertions containing specific attributes of a
given subject. Likewise, an authorization decision query may
be used to query whether specific actions should be permitted
on a specific resource by the given subject. However, as noted
in the specification, one may consider using XACML instead
for this latter purpose. Considering that XACML provides
richer features for authorization decisions and is very well
suited for being used in combination with SAML, using
XACML is clearly a good option.

SAML also defines an authentication request protocol. The
authentication request protocol differs from the authentication
query just discussed by being a request for having authenti-
cation performed by an identity provider, while the authenti-
cation query was for existing authentication assertions. How
authentication is performed by the authentication provider
is outside the scope of the protocol, although the entity
requesting the authentication to be performed may specify
requirements on how the authentication is to be performed.
One potential usage of this protocol would be a service
provider requesting a client to authenticate, providing the
client a list of trusted identity providers. The client could then
present this authentication request to one of the listed identity
providers, which upon successful authentication returns an
assertion containing an authentication statement.

In addition to the already discussed protocols, SAML also
defines a single logout protocol and protocols for managing
the identifiers used, between identity providers and service
providers, for identifying principals. Bindings for the SAML
protocols (i.e., to SOAP and HTTP) are specified in a separate
document [51].

2) Usage Scenarios: Being designed to work without a
single centralized authority, SAML has many potential uses in
scenarios where having a central authority is challenging from
a political or technical point of view. Potential usage scenarios
include single sign-on, federated identity, authorization, and
SOAP message security (i.e., being used as a security token
for WS-Security). As discussed in Section V-A2, SAML is

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

16

saml:AssertionType

Assertion

saml:Issuer

ds:Signature

saml:Subject

saml:Conditions

saml:Advice

0 ∞..

saml:Statement

saml:AuthnStatement

saml:AuthzDecisionStatement

saml:AttributeStatement

Fig. 12. The SAML assertion element.

also well suited for being used in combination with XACML.
For additional and more in-depth usage scenario examples,
please refer to the SAML technical overview [52].

VI. FINAL REMARKS

In this paper we have provided an overview of current
security standards for XML and Web services. Together these
standards provide a flexible framework for fulfilling basic
security requirements such as confidentiality, integrity, and
authentication, as well as more complex requirements such
as non-repudiation, authorization, and federated identities.
Furthermore, the standards offer flexibility with respect to
the cryptographic algorithms used, facilitating adaptation of
stronger algorithms if required.

The flexibility and high number of options does nonetheless
come at the cost of an increased risk of erroneous use. For
instance, the option to only sign parts of a message may put
an implementation at risk if its security in some direct or
indirect way depends on message parts that are not signed.
The combination of relatively complex policies and subjects
operating across organizational boundaries may also require
advanced management and auditing tools, and may in some
cases make it difficult to determine exactly who has access to
a given resource.

Mechanisms such as those provided by Web Services Policy
and the Web Services Description Language (WSDL) may also
provide valuable sources of information to an attacker trying
to find weaknesses in a system. Furthermore, the severity
of a single vulnerability may be amplified when federated
identities or trust brokering is being used. When relying on
trust brokering or other trust relationships, it is also essential
to ensure that the level of trust is sufficient for the application
at hand.

In addition to more common security issues, there are
also some attacks/vulnerabilities that are specific to XML

[53][54][55]. Although XML firewalls may be able to detect
messages trying to exploit these vulnerabilities, the use of
end-to-end encryption may effectively prevent such detection.
Consequently, XML parsers and other affected applications
should be able to handle such messages in a secure manner.
Thus, in summary, although the standards discussed in this
paper provide essential mechanisms for successfully deploying
secure Web services, they do not provide a complete solution.

We will now conclude this paper by providing some refer-
ences to related standards and specifications. In particular, the
Web services security roadmap [13] from IBM and Microsoft
also proposed three other specifications, namely WS-Privacy,
WS-Federation, and WS-Authorization, in addition to those
discussed in Section IV. Because none of these additional
proposals have become standardized, they were not included
in this paper. There is, however, a technical committee [56]
within OASIS working to standardize WS-Federation.

WS-Federation extends WS-Trust in order to provide fed-
erated identities. Recall from our discussion of WS-Trust that
a security token service (STS), supporting a range of security
token types and with the proper trust relationships, can provide
a cornerstone for brokering trust and federating identities
between different domains. Although this is similar to what
is offered by SAML, a key difference is that WS-Federation
is independent of the security token type. Considering that
SAML and WS-Federation are both strongly supported, they
appear likely to coexist in the imminent future. Because the
standardization process for WS-Federation is still in an early
stage, however, WS-Federation is not covered in more detail
in this paper. The interested reader is referred to the overview
provided by Goodner et al. [57].

Another specification of interest is WS-MetadataExchange
[58], which may be used to request and exchange metadata,
including policies.

In addition to the OASIS standards discussed previously in

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

17

this paper, there is also an OASIS standard defining how to
represent biometric information in XML, that is, the XML
Common Biometric Format (XCBF) [59]. Because XCBF has
very specific (and relatively narrow) usage, it was not included
in this paper.

WS-ReliableMessaging [60] (which is also an OASIS stan-
dard) may be used to implement ordered and guaranteed
delivery of SOAP messages (without duplicates). Considering
that guaranteed and ordered delivery may be fundamental for
the security of some applications, WS-ReliableMessaging may
beneficially be used together with WS-SecureConversation for
securing sequences of messages.

Finally, considering that the security standards discussed
in this paper are of recent date, they should be expected to
evolve as more experience on their use is gained. Also, as
new Web services technologies and usage patterns become
established, additional security functionality will likely be
required. Consider for instance the Web Services Business Pro-
cess Execution Language (WS-BPEL) [61]. WS-BPEL allows
executable business processes to be defined by specifying the
interactions among several Web services, thereby creating a
composite service. Such an executable business process may
potentially be defined by an external party and involve both
internal and external services. Thus, some method to assure
that such a processes is in accordance with the local security
policy is required [62]. Nevertheless, the security standards
discussed in this paper are applicable to such composite
services as well, e.g., securing the interactions within the
composite service or enforcing access control to the resulting
service. It is also worth to notice that WS-BPEL may be used
to implement fault tolerance in Web services [63], thereby
complementing the standards discussed in this paper.

REFERENCES

[1] D. Booth, H. Haas, F. McCabe, E. Newcomer, C. Ferris, and D. Orchard.
“Web Services Architecture,” W3C Working Group Note, 2004.

[2] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the Web Services Web: An Introduction to SOAP,
WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 1, 2002, pp.
86-93.

[3] D. Eastlake, J. Reagle, D. Solo, F. Hirsch, and T. Roessler, “XML Signa-
ture Syntax and Processing (Second Edition),” W3C Recommendation,
2008.

[4] D. Eastlake and J. Reagle, “XML Encryption Syntax and Processing,”
W3C Recommendation, 2002.

[5] P. Hallam-Baker and S. H. Mysore, “XML Key Management Specifica-
tion (XKMS 2.0),” W3C Recommendation, 2005.

[6] D. Eastlake 3rd, J. Reagle, and D. Solo, “(Extensible Markup Language)
XML-Signature Syntax and Processing,” IETF RFC 3275, 2002.

[7] J. Boyer, “Canonical XML Version 1.0,” W3C Recommendation, 2001.
[8] J. Boyer and G. Marcy, “Canonical XML 1.1,” W3C Recommendation,

2008.
[9] J. Boyer, D. Eastlake 3rd, and J. Reagle, “Exclusive XML Canonical-

ization Version 1.0,” W3C Recommendation, 2002.
[10] S. Aissi, A. Hately, and M. Hondo, “Schema

Centric XML Canonicalization Version 1.0,”
http://www.uddi.org/pubs/SchemaCentricCanonicalization.htm, 2005.

[11] M. Hughes, T. Imamura, and H. Maruyama, “Decryption Transform for
XML Signature,” W3C Recommendation, 2002.

[12] D. Eastlake 3rd, “Additional XML Security Uniform Resource Identi-
fiers,” IETF RFC 4051, 2005.

[13] IBM Corporation and Microsoft Corporation, “Security in a
Web Services World: A Proposed Architecture and Roadmap,”
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-
secmap.pdf, 2002.

[14] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004),” OASIS
Standard, 2006.

[15] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist, “WS-
Trust 1.3,” OASIS Standard, 2007.

[16] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist, “WS-
SecureConversation 1.3,” OASIS Standard, 2007.

[17] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist, “WS-
Security Policy 1.2,” OASIS Standard, 2007.

[18] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T.
Boubez, and Ü. Yalcinalp, “Web Services Policy 1.5 - Framework,”
W3C Recommendation, 2007.

[19] Sun Microsystems, “The WSIT Tutorial,”
http://java.sun.com/webservices/reference/tutorials/wsit/doc/, 2007.

[20] Microsoft Corporation, “Web Services Protocols Supported by System-
Provided Interoperability Bindings,” http://msdn2.microsoft.com/en-
us/library/ms730294.aspx, 2007.

[21] Layer 7 Technologies, “XML Firewall and VPN,”
http://www.layer7tech.com/products/page.html?id=70, 2007.

[22] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security X.509 Certificate Token Profile 1.1,” OASIS Standard, 2006.

[23] T. DeMartini, A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker,
“Web Services Security Rights Expression Language (REL) Token
Profile 1.1,” OASIS Standard, 2006.

[24] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security Kerberos Token Profile 1.1,” OASIS Standard, 2006.

[25] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security UsernameToken Profile 1.1,” OASIS Standard, 2006.

[26] R. Monzillo, C. Kaler, A. Nadalin, and P. Hallam-Baker, “Web Services
Security: SAML Token Profile 1.1,” OASIS Standard, 2006.

[27] F. Hirsch, “Web Services Security SOAP Messages with Attachments
(SwA) Profile 1.1,” OASIS Standard, 2006.

[28] J. Kohl and C. Neuman, “The Kerberos Network Authentication Service
(V5),” IETF RFC 1510, 1993.

[29] M. McIntosh, M. Gudgin, K. S. Morrison, and A. Barbir, “Basic Security
Profile Version 1.0,” Web Services Interoperability Organization (WS-I)
Final Material, 2007.

[30] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T.
Boubez, and Ü. Yalcinalp, “Web Services Policy 1.5 - Guidelines for
Policy Assertion Authors,” W3C Working Group Note, 2007.

[31] A. Skonnard, “Migrating to WSE 3.0,”
http://msdn.microsoft.com/msdnmag/issues/06/04/ServiceStation/,
2006.

[32] BEA, “WebLogic Web Services: Security - Configuring Message-Level
Security,” http://edocs.bea.com/wls/docs100/webserv sec/message.html,
2008.

[33] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T.
Boubez, and Ü. Yalcinalp, ”Web Services Policy 1.5 - Attachment,”
W3C Recommendation, 2007.

[34] T. Moses, “eXtensible Access Control Markup Language (XACML)
version 2.0,” OASIS Standard, 2005.

[35] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML) v2.0,”
OASIS Standard, 2005.

[36] Internet 2, “OpenSAML - an Open Source Security Assertion Markup
Language toolkit,” http://www.opensaml.org/, 2007.

[37] Sun Microsystems, “Sun’s XACML Implementation,”
http://sunxacml.sourceforge.net/, 2006.

[38] OASIS Open, “XACML References and Products, Version 1.83,”
http://docs.oasis-open.org/xacml/xacmlRefs.html, 2007.

[39] Swedish Institute of Computer Science, “SICS’s implementation of the
XACML 3.0 draft,” http://www.sics.se/spot/xacml 3 0, 2007.

[40] T. Moses, “Privacy policy profile of XACML v2.0,” OASIS Standard,
2005.

[41] A. Anderson and Hal Lockhart, “SAML 2.0 profile of XACML v2.0,”
OASIS Standard, 2005.

[42] A. Anderson, “XML Digital Signature profile of XACML v2.0,” OASIS
Standard, 2005.

[43] A. Anderson, “Core and hierarchical role based access control (RBAC)
profile of XACML v2.0,” OASIS Standard, 2005.

[44] American National Standards Institute, “ANSI INCITS 359-2004, Role
Based Access Control,” 2007.

[45] A. Anderson, “Hierarchical resource profile of XACML v2.0,” OASIS
Standard, 2005.

[46] A. Anderson, “Multiple resource profile of XACML v2.0,” OASIS
Standard, 2005.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

18

[47] A. Anderson, “Web Services Profile of XACML (WS-XACML) Version
1.0,” OASIS XACML TC Working Draft, 2007.

[48] E. Rissanen, H. Lockhart, and T. Moses, “XACML v3.0 Administrative
Policy Version 1.0,” OASIS XACML TC Working Draft, 2007.

[49] J. Hughes, S. Cantor, J. Hodges, F. Hirsch, P. Mishra, R. Philpott, and
E. Maler, “Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0,” OASIS Standard, 2005.

[50] J. Kemp, S. Cantor, P. Mishra, R. Philpott, and E. Maler, “Authentication
Context for the OASIS Security Assertion Markup Language (SAML)
V2.0,” OASIS Standard, 2005.

[51] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, and E. Maler, “Bindings
for the OASIS Assertion Markup Language (SAML) V2.0,” OASIS
Standard, 2005.

[52] N. Ragouzis, J. Hughes, R. Philpott, E. Maler, P. Madsen,
and T. Scavo, “Security Assertion Markup Language
(SAML) V2.0 Technical Overview,” http://www.oasis-
open.org/committees/download.php/23920/sstc-saml-tech-overview-
2.0-cd-01.pdf, 2007.

[53] E. Moradian and A. Håkansson, “Possible attacks on XML Web Ser-
vices,” International Journal of Computer Science and Network Security,
vol. 6, no. 1B, pp. 154-170, 2006.

[54] P. Lindstrom, “Attacking and Defending Web Services,”
http://forumsystems.com/papers/Attacking and Defending WS.pdf,
2004.

[55] B. Hill, “A Taxonomy of Attacks against
XML Digital Signatures & Encryption,”
http://www.isecpartners.com/files/iSEC HILL AttackingXMLSecurity Handout.pdf,
2004.

[56] “OASIS Web Services Federation (WSFED) TC,” http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsfed, 2008.

[57] M. Goodner, M. Hondo, A. Nadalin, M. McIntosh, and D. Schmidt,
“Understanding WS-Federation,” http://msdn2.microsoft.com/en-
us/library/bb498017.aspx, 2007.

[58] K. Ballinger et al., “Web Services Metadata Ex-
change (WS-MetadataExchange), Version 1.1,”
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
mex/metadataexchange.pdf, 2006.

[59] J. Larmouth, “XML Common Biometric Format,” OASIS Standard,
2003.

[60] D. Davis, A. Karmarkar, G. Pilz, S. Winkler, and Ü. Yalcinalp, “Web
Services Reliable Messaging (WS-ReliableMessaging) Version 1.1,”
OASIS Standard, 2007.

[61] C. Barreto et al., “Web Services Business Process Exe-
cution Language Version 2.0 - Primer,” http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf, 2007.

[62] K.-P. Fischer, U. Bleimann, W. Fuhrmann, and S. M. Furnell, “Se-
curity Policy Enforcement in BPEL-Defined Collaborative Business
Processes,” Proc. 23rd International Conference on Data Engineering
Worskshops, 2007, pp. 685-694.

[63] G. Dobson, “Using WS-BPEL to Implement Software Fault Tolerance
for Web Services,” Proc. 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, 2006, pp. 126-133.

BIOGRAPHY

Nils Agne Nordbotten (nils.nordbotten@ffi.no) has a PhD
in computer science from the University of Oslo. He is cur-
rently a research scientist at the Norwegian Defence Research
Establishment (FFI). Before joining FFI in 2007, he was
employed as a research fellow at Simula Research Laboratory.
His main research interests are within networks and distributed
systems, in particular with regard to security and fault toler-
ance.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/SURV.2009.090302

